1
|
Hamilton R, Gebbie W, Bowman C, Mantanona A, Kalyuzhnaya MG. Microbial hauberks: composition and function of surface layer proteins in gammaproteobacterial methanotrophs. Appl Environ Microbiol 2025; 91:e0136424. [PMID: 39745414 PMCID: PMC11784148 DOI: 10.1128/aem.01364-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/01/2024] [Indexed: 02/01/2025] Open
Abstract
Many species of proteobacterial methane-consuming bacteria (methanotrophs) form a hauberk-like envelope represented by a surface (S-) layer protein (SLP) matrix. While several proteins were predicted to be associated with the cell surface, the composition and function of the hauberk matrix remained elusive. Here, we report the identification of the genes encoding the hauberk-forming proteins in two gamma-proteobacterial (Type I) methanotrophs, Methylotuvimicrobium buryatense 5GB1 (EQU24_15540) and Methylotuvimicrobium alcaliphilum 20ZR (MEALZ_0971 and MEALZ_0972). The proteins share 40% amino acid (AA) sequence identity with each other and are distantly related to the RsaA proteins from Caulobacter crescentus (20% AA sequence identity). Deletion of these genes resulted in loss of the characteristic hauberk pattern on the cell surface. A set of transcriptional fusions between the MEALZ_0971 and a superfolder green fluorescent protein (sfGFP) further confirmed its surface localization. The functional roles of the hauberk and cell-surface-associated proteins, including MEALZ_0971, MEALZ_0972, EQU24_15540, and a copper-induced CorA protein, were further investigated via gene expression studies and phenotypic tests. The hauberk core protein of M. alcaliphilum 20ZR showed constitutive expression across 18 growth conditions with reduced growth at high salinity, high methanol, and metal-limited conditions, suggesting a role in cell-envelope stability and metal scavenging. Overall, understanding the genetics, composition, and cellular functions of S-layers contributes to our knowledge of methanotroph adaptation to environmental perturbations and opens a promising prospect for (nano)biotechnology applications. IMPORTANCE Understanding the genetics, composition, and cellular functions of the cell envelope proteins, such as S-layers, contributes to our knowledge of microbial cell biology and stress responses and molecular adaptations to environmental perturbations. In addition, this study opens a promising prospect for (nano)biotechnology applications of methane-derived self-assembling protein materials.
Collapse
Affiliation(s)
- Richard Hamilton
- Biology Department, San Diego State University, San Diego, California, USA
| | - William Gebbie
- Biology Department, San Diego State University, San Diego, California, USA
| | - Chynna Bowman
- Biology Department, San Diego State University, San Diego, California, USA
| | - Alex Mantanona
- Biology Department, San Diego State University, San Diego, California, USA
| | | |
Collapse
|
2
|
Kulyashov MA, Hamilton R, Afshin Y, Kolmykov SK, Sokolova TS, Khlebodarova TM, Kalyuzhnaya MG, Akberdin IR. Modification and analysis of context-specific genome-scale metabolic models: methane-utilizing microbial chassis as a case study. mSystems 2025; 10:e0110524. [PMID: 39699184 PMCID: PMC11748545 DOI: 10.1128/msystems.01105-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Context-specific genome-scale model (CS-GSM) reconstruction is becoming an efficient strategy for integrating and cross-comparing experimental multi-scale data to explore the relationship between cellular genotypes, facilitating fundamental or applied research discoveries. However, the application of CS modeling for non-conventional microbes is still challenging. Here, we present a graphical user interface that integrates COBRApy, EscherPy, and RIPTiDe, Python-based tools within the BioUML platform, and streamlines the reconstruction and interrogation of the CS genome-scale metabolic frameworks via Jupyter Notebook. The approach was tested using -omics data collected for Methylotuvimicrobium alcaliphilum 20ZR, a prominent microbial chassis for methane capturing and valorization. We optimized the previously reconstructed whole genome-scale metabolic network by adjusting the flux distribution using gene expression data. The outputs of the automatically reconstructed CS metabolic network were comparable to manually optimized iIA409 models for Ca-growth conditions. However, the CS model questions the reversibility of the phosphoketolase pathway and suggests higher flux via primary oxidation pathways. The model also highlighted unresolved carbon partitioning between assimilatory and catabolic pathways at the formaldehyde-formate node. Only a very few genes and only one enzyme with a predicted function in C1 metabolism, a homolog of the formaldehyde oxidation enzyme (fae1-2), showed a significant change in expression in La-growth conditions. The CS-GSM predictions agreed with the experimental measurements under the assumption that the Fae1-2 is a part of the tetrahydrofolate-linked pathway. The cellular roles of the tungsten (W)-dependent formate dehydrogenase (fdhAB) and fae homologs (fae1-2 and fae3) were investigated via mutagenesis. The phenotype of the fdhAB mutant followed the model prediction. Furthermore, a more significant reduction of the biomass yield was observed during growth in La-supplemented media, confirming a higher flux through formate. M. alcaliphilum 20ZR mutants lacking fae1-2 did not display any significant defects in methane or methanol-dependent growth. However, contrary to fae1, the fae1-2 homolog failed to restore the formaldehyde-activating enzyme function in complementation tests. Overall, the presented data suggest that the developed computational workflow supports the reconstruction and validation of CS-GSM networks of non-model microbes. IMPORTANCE The interrogation of various types of data is a routine strategy to explore the relationship between genotype and phenotype. An efficient approach for integrating and cross-comparing experimental multi-scale data in the context of whole-genome-based metabolic network reconstruction becomes a powerful tool that facilitates fundamental and applied research discoveries. The present study describes the reconstruction of a context-specific (CS) model for the methane-utilizing bacterium, Methylotuvimicrobium alcaliphilum 20ZR. M. alcaliphilum 20ZR is becoming an attractive microbial platform for the production of biofuels, chemicals, pharmaceuticals, and bio-sorbents for capturing atmospheric methane. We demonstrate that this pipeline can help reconstruct metabolic models that are similar to manually curated networks. Furthermore, the model is able to highlight previously overlooked pathways, thus advancing fundamental knowledge of non-model microbial systems or promoting their development toward biotechnological or environmental implementations.
Collapse
Affiliation(s)
- M. A. Kulyashov
- Department of Computational Biology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - R. Hamilton
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Y. Afshin
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, California, USA
| | - S. K. Kolmykov
- Department of Computational Biology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - T. S. Sokolova
- Department of Computational Biology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - T. M. Khlebodarova
- Department of Computational Biology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - M. G. Kalyuzhnaya
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, California, USA
| | - I. R. Akberdin
- Department of Computational Biology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
3
|
Guo S, Li C, Su Y, Huang X, Zhang C, Dai Y, Ji Y, Fu R, Zheng T, Fei Q, Fan D, Xia C. Scalable Electro-Biosynthesis of Ectoine from Greenhouse Gases. Angew Chem Int Ed Engl 2025; 64:e202415445. [PMID: 39410669 DOI: 10.1002/anie.202415445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Indexed: 11/14/2024]
Abstract
Converting greenhouse gases into valuable products has become a promising approach for achieving a carbon-neutral economy and sustainable development. However, the conversion efficiency depends on the energy yield of the substrate. In this study, we developed an electro-biocatalytic system by integrating electrochemical and microbial processes to upcycle CO2 into a valuable product (ectoine) using renewable energy. This system initiates the electrocatalytic reduction of CO2 to methane, an energy-dense molecule, which then serves as an electrofuel to energize the growth of an engineered methanotrophic cell factory for ectoine biosynthesis. The scalability of this system was demonstrated using an array of ten 25 cm2 electrochemical cells equipped with a high-performance carbon-supported isolated copper catalyst. The system consistently generated methane at the cathode under a total partial current of approximately -37 A (~175 mmolCH4 h-1) and O2 at the anode under a total partial current of approximately 62 A (~583 mmolO2 h-1). This output met the requirements of a 3-L bioreactor, even at maximum CH4 and O2 consumption, resulting in the high-yield conversion of CO2 to ectoine (1146.9 mg L-1). This work underscores the potential of electrifying the biosynthesis of valuable products from CO2, providing a sustainable avenue for biomanufacturing and energy storage.
Collapse
Affiliation(s)
- Shuqi Guo
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chengbo Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yuehang Su
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaohan Huang
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chenyue Zhang
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yizhou Dai
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yuan Ji
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Qiang Fei
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| |
Collapse
|
4
|
Esembaeva MA, Kulyashov MA, Kolpakov FA, Akberdin IR. A Study of the Community Relationships Between Methanotrophs and Their Satellites Using Constraint-Based Modeling Approach. Int J Mol Sci 2024; 25:12469. [PMID: 39596533 PMCID: PMC11594979 DOI: 10.3390/ijms252212469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Biotechnology continues to drive innovation in the production of pharmaceuticals, biofuels, and other valuable compounds, leveraging the power of microbial systems for enhanced yield and sustainability. Genome-scale metabolic (GSM) modeling has become an essential approach in this field, which enables a guide for targeting genetic modifications and the optimization of metabolic pathways for various industrial applications. While single-species GSM models have traditionally been employed to optimize strains like Escherichia coli and Lactococcus lactis, the integration of these models into community-based approaches is gaining momentum. Herein, we present a pipeline for community metabolic modeling with a user-friendly GUI, applying it to analyze interactions between Methylococcus capsulatus, a biotechnologically important methanotroph, and Escherichia coli W3110 under oxygen- and nitrogen-limited conditions. We constructed models with unmodified and homoserine-producing E. coli strains using the pipeline implemented in the original BioUML platform. The E. coli strain primarily utilized acetate from M. capsulatus under oxygen limitation. However, homoserine produced by E. coli significantly reduced acetate secretion and the community growth rate. This homoserine was taken up by M. capsulatus, converted to threonine, and further exchanged as amino acids. In nitrogen-limited modeling conditions, nitrate and ammonium exchanges supported the nitrogen needs, while carbon metabolism shifted to fumarate and malate, enhancing E. coli TCA cycle activity in both cases, with and without modifications. The presence of homoserine altered cross-feeding dynamics, boosting amino acid exchanges and increasing pyruvate availability for M. capsulatus. These findings suggest that homoserine production by E. coli optimizes resource use and has potential for enhancing microbial consortia productivity.
Collapse
Affiliation(s)
| | | | | | - Ilya R. Akberdin
- Department of Computational Biology, Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius 354340, Russia; (M.A.E.); (M.A.K.); (F.A.K.)
| |
Collapse
|
5
|
Arbatskiy M, Balandin D, Akberdin I, Churov A. A Systems Biology Approach Towards a Comprehensive Understanding of Ferroptosis. Int J Mol Sci 2024; 25:11782. [PMID: 39519341 PMCID: PMC11546516 DOI: 10.3390/ijms252111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Ferroptosis is a regulated cell death process characterized by iron ion catalysis and reactive oxygen species, leading to lipid peroxidation. This mechanism plays a crucial role in age-related diseases, including cancer and cardiovascular and neurological disorders. To better mimic iron-induced cell death, predict the effects of various elements, and identify drugs capable of regulating ferroptosis, it is essential to develop precise models of this process. Such drugs can be tested on cellular models. Systems biology offers a powerful approach to studying biological processes through modeling, which involves accumulating and analyzing comprehensive research data. Once a model is created, it allows for examining the system's response to various stimuli. Our goal is to develop a modular framework for ferroptosis, enabling the prediction and screening of compounds with geroprotective and antiferroptotic effects. For modeling and analysis, we utilized BioUML (Biological Universal Modeling Language), which supports key standards in systems biology, modular and visual modeling, rapid simulation, parameter estimation, and a variety of numerical methods. This combination fulfills the requirements for modeling complex biological systems. The integrated modular model was validated on diverse datasets, including original experimental data. This framework encompasses essential molecular genetic processes such as the Fenton reaction, iron metabolism, lipid synthesis, and the antioxidant system. We identified structural relationships between molecular agents within each module and compared them to our proposed system for regulating the initiation and progression of ferroptosis. Our research highlights that no current models comprehensively cover all regulatory mechanisms of ferroptosis. By integrating data on ferroptosis modules into an integrated modular model, we can enhance our understanding of its mechanisms and assist in the discovery of new treatment targets for age-related diseases. A computational model of ferroptosis was developed based on a modular modeling approach and included 73 differential equations and 93 species.
Collapse
Affiliation(s)
- Mikhail Arbatskiy
- Russian Clinical Research Center of Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia; (D.B.); (A.C.)
| | - Dmitriy Balandin
- Russian Clinical Research Center of Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia; (D.B.); (A.C.)
| | - Ilya Akberdin
- Department of Computational Biology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Alexey Churov
- Russian Clinical Research Center of Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia; (D.B.); (A.C.)
| |
Collapse
|
6
|
He L, Lidstrom ME. Utilisation of low methane concentrations by methanotrophs. Adv Microb Physiol 2024; 85:57-96. [PMID: 39059823 DOI: 10.1016/bs.ampbs.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The growing urgency regarding climate change points to methane as a key greenhouse gas for slowing global warming to allow other mitigation measures to take effect. One approach to both decreasing methane emissions and removing methane from air is aerobic methanotrophic bacteria, those bacteria that grow on methane as sole carbon and energy source and require O2. A subset of these methanotrophs is able to grow on methane levels of 1000 parts per million (ppm) and below, and these present an opportunity for developing both environmental- and bioreactor-based methane treatment systems. However, relatively little is known about the traits of such methanotrophs that allow them to grow on low methane concentrations. This review assesses current information regarding how methanotrophs grow on low methane concentrations in the context of developing treatment strategies that could be applied for both decreasing methane emissions and removing methane from air.
Collapse
Affiliation(s)
- Lian He
- Department of Chemical Engineering, University of Washington, Seattle, WA United States
| | - Mary E Lidstrom
- Department of Chemical Engineering, University of Washington, Seattle, WA United States; Department of Microbiology, University of Washington, Seattle, WA United States.
| |
Collapse
|
7
|
Lim SE, Cho S, Choi Y, Na JG, Lee J. High production of ectoine from methane in genetically engineered Methylomicrobium alcaliphilum 20Z by preventing ectoine degradation. Microb Cell Fact 2024; 23:127. [PMID: 38698430 PMCID: PMC11067125 DOI: 10.1186/s12934-024-02404-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Methane is a greenhouse gas with a significant potential to contribute to global warming. The biological conversion of methane to ectoine using methanotrophs represents an environmentally and economically beneficial technology, combining the reduction of methane that would otherwise be combusted and released into the atmosphere with the production of value-added products. RESULTS In this study, high ectoine production was achieved using genetically engineered Methylomicrobium alcaliphilum 20Z, a methanotrophic ectoine-producing bacterium, by knocking out doeA, which encodes a putative ectoine hydrolase, resulting in complete inhibition of ectoine degradation. Ectoine was confirmed to be degraded by doeA to N-α-acetyl-L-2,4-diaminobutyrate under nitrogen depletion conditions. Optimal copper and nitrogen concentrations enhanced biomass and ectoine production, respectively. Under optimal fed-batch fermentation conditions, ectoine production proportionate with biomass production was achieved, resulting in 1.0 g/L of ectoine with 16 g/L of biomass. Upon applying a hyperosmotic shock after high-cell-density culture, 1.5 g/L of ectoine was obtained without further cell growth from methane. CONCLUSIONS This study suggests the optimization of a method for the high production of ectoine from methane by preventing ectoine degradation. To our knowledge, the final titer of ectoine obtained by M. alcaliphilum 20ZDP3 was the highest in the ectoine production from methane to date. This is the first study to propose ectoine production from methane applying high cell density culture by preventing ectoine degradation.
Collapse
Affiliation(s)
- Sang Eun Lim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Sukhyeong Cho
- C1 Gas Refinery R&D Center, Sogang University, Seoul, Republic of Korea
| | - Yejin Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
- C1 Gas Refinery R&D Center, Sogang University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Tucci FJ, Rosenzweig AC. Direct Methane Oxidation by Copper- and Iron-Dependent Methane Monooxygenases. Chem Rev 2024; 124:1288-1320. [PMID: 38305159 PMCID: PMC10923174 DOI: 10.1021/acs.chemrev.3c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Methane is a potent greenhouse gas that contributes significantly to climate change and is primarily regulated in Nature by methanotrophic bacteria, which consume methane gas as their source of energy and carbon, first by oxidizing it to methanol. The direct oxidation of methane to methanol is a chemically difficult transformation, accomplished in methanotrophs by complex methane monooxygenase (MMO) enzyme systems. These enzymes use iron or copper metallocofactors and have been the subject of detailed investigation. While the structure, function, and active site architecture of the copper-dependent particulate methane monooxygenase (pMMO) have been investigated extensively, its putative quaternary interactions, regulation, requisite cofactors, and mechanism remain enigmatic. The iron-dependent soluble methane monooxygenase (sMMO) has been characterized biochemically, structurally, spectroscopically, and, for the most part, mechanistically. Here, we review the history of MMO research, focusing on recent developments and providing an outlook for future directions of the field. Engineered biological catalysis systems and bioinspired synthetic catalysts may continue to emerge along with a deeper understanding of the molecular mechanisms of biological methane oxidation. Harnessing the power of these enzymes will necessitate combined efforts in biochemistry, structural biology, inorganic chemistry, microbiology, computational biology, and engineering.
Collapse
Affiliation(s)
- Frank J Tucci
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Wutkowska M, Tláskal V, Bordel S, Stein LY, Nweze JA, Daebeler A. Leveraging genome-scale metabolic models to understand aerobic methanotrophs. THE ISME JOURNAL 2024; 18:wrae102. [PMID: 38861460 PMCID: PMC11195481 DOI: 10.1093/ismejo/wrae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Genome-scale metabolic models (GEMs) are valuable tools serving systems biology and metabolic engineering. However, GEMs are still an underestimated tool in informing microbial ecology. Since their first application for aerobic gammaproteobacterial methane oxidizers less than a decade ago, GEMs have substantially increased our understanding of the metabolism of methanotrophs, a microbial guild of high relevance for the natural and biotechnological mitigation of methane efflux to the atmosphere. Particularly, GEMs helped to elucidate critical metabolic and regulatory pathways of several methanotrophic strains, predicted microbial responses to environmental perturbations, and were used to model metabolic interactions in cocultures. Here, we conducted a systematic review of GEMs exploring aerobic methanotrophy, summarizing recent advances, pointing out weaknesses, and drawing out probable future uses of GEMs to improve our understanding of the ecology of methane oxidizers. We also focus on their potential to unravel causes and consequences when studying interactions of methane-oxidizing bacteria with other methanotrophs or members of microbial communities in general. This review aims to bridge the gap between applied sciences and microbial ecology research on methane oxidizers as model organisms and to provide an outlook for future studies.
Collapse
Affiliation(s)
- Magdalena Wutkowska
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, 370 05 České Budějovice, Czech Republic
| | - Vojtěch Tláskal
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, 370 05 České Budějovice, Czech Republic
| | - Sergio Bordel
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid 47011, Spain
- Institute of Sustainable Processes, Valladolid 47011, Spain
| | - Lisa Y Stein
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Justus Amuche Nweze
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, 370 05 České Budějovice, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka 410001, Nigeria
| | - Anne Daebeler
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
10
|
Kulyashov MA, Kolmykov SK, Khlebodarova TM, Akberdin IR. State-of the-Art Constraint-Based Modeling of Microbial Metabolism: From Basics to Context-Specific Models with a Focus on Methanotrophs. Microorganisms 2023; 11:2987. [PMID: 38138131 PMCID: PMC10745598 DOI: 10.3390/microorganisms11122987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Methanotrophy is the ability of an organism to capture and utilize the greenhouse gas, methane, as a source of energy-rich carbon. Over the years, significant progress has been made in understanding of mechanisms for methane utilization, mostly in bacterial systems, including the key metabolic pathways, regulation and the impact of various factors (iron, copper, calcium, lanthanum, and tungsten) on cell growth and methane bioconversion. The implementation of -omics approaches provided vast amount of heterogeneous data that require the adaptation or development of computational tools for a system-wide interrogative analysis of methanotrophy. The genome-scale mathematical modeling of its metabolism has been envisioned as one of the most productive strategies for the integration of muti-scale data to better understand methane metabolism and enable its biotechnological implementation. Herein, we provide an overview of various computational strategies implemented for methanotrophic systems. We highlight functional capabilities as well as limitations of the most popular web resources for the reconstruction, modification and optimization of the genome-scale metabolic models for methane-utilizing bacteria.
Collapse
Affiliation(s)
- Mikhail A. Kulyashov
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.A.K.); (S.K.K.); (T.M.K.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Semyon K. Kolmykov
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.A.K.); (S.K.K.); (T.M.K.)
| | - Tamara M. Khlebodarova
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.A.K.); (S.K.K.); (T.M.K.)
- Department of Systems Biology, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Ilya R. Akberdin
- Department of Computational Biology, Scientific Center for Information Technologies and Artificial Intelligence, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.A.K.); (S.K.K.); (T.M.K.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
11
|
Sims L, Wright C, Crombie AT, Dawson R, Lockwood C, Le Brun NE, Lehtovirta‐Morley L, Murrell JC. Whole-cell studies of substrate and inhibitor specificity of isoprene monooxygenase and related enzymes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:809-819. [PMID: 37935632 PMCID: PMC10667655 DOI: 10.1111/1758-2229.13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023]
Abstract
Co-oxidation of a range of alkenes, dienes, and aromatic compounds by whole cells of the isoprene-degrading bacterium Rhodococcus sp. AD45 expressing isoprene monooxygenase was investigated, revealing a relatively broad substrate specificity for this soluble diiron centre monooxygenase. A range of 1-alkynes (C2 -C8 ) were tested as potential inhibitors. Acetylene, a potent inhibitor of the related enzyme soluble methane monooxygenase, had little inhibitory effect, whereas 1-octyne was a potent inhibitor of isoprene monooxygenase, indicating that 1-octyne could potentially be used as a specific inhibitor to differentiate between isoprene consumption by bona fide isoprene degraders and co-oxidation of isoprene by other oxygenase-containing bacteria, such as methanotrophs, in environmental samples. The isoprene oxidation kinetics of a variety of monooxygenase-expressing bacteria were also investigated, revealing that alkene monooxygenase from Xanthobacter and soluble methane monooxygenases from Methylococcus and Methylocella, but not particulate methane monooxygenases from Methylococcus or Methylomicrobium, could co-oxidise isoprene at appreciable rates. Interestingly the ammonia monooxygenase from the nitrifier Nitrosomonas europaea could also co-oxidise isoprene at relatively high rates, suggesting that co-oxidation of isoprene by additional groups of bacteria, under the right conditions, might occur in the environment.
Collapse
Affiliation(s)
- Leanne Sims
- School of Environmental SciencesUniversity of East AngliaNorwichUK
- Present address:
Quadram Institute BiosciencesNorwich Research ParkNorwichUK
| | - Chloe Wright
- School of Environmental SciencesUniversity of East AngliaNorwichUK
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Andrew T. Crombie
- School of Environmental SciencesUniversity of East AngliaNorwichUK
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Robin Dawson
- School of Environmental SciencesUniversity of East AngliaNorwichUK
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Colin Lockwood
- School of Environmental SciencesUniversity of East AngliaNorwichUK
- School of ChemistryUniversity of East AngliaNorwichUK
| | | | | | - J. Colin Murrell
- School of Environmental SciencesUniversity of East AngliaNorwichUK
| |
Collapse
|
12
|
Tikhonova EN, Suleimanov RZ, Oshkin IY, Konopkin AA, Fedoruk DV, Pimenov NV, Dedysh SN. Growing in Saltwater: Biotechnological Potential of Novel Methylotuvimicrobium- and Methylomarinum-like Methanotrophic Bacteria. Microorganisms 2023; 11:2257. [PMID: 37764101 PMCID: PMC10538026 DOI: 10.3390/microorganisms11092257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Methanotrophic bacteria that possess a unique ability of using methane as a sole source of carbon and energy have attracted considerable attention as potential producers of a single-cell protein. So far, this biotechnology implied using freshwater methanotrophs, although many regions of the world have limited freshwater resources. This study aimed at searching for novel methanotrophs capable of fast growth in saltwater comparable in composition with seawater. A methane-oxidizing microbial consortium containing Methylomarinum- and Methylotuvimicrobium-like methanotrophs was enriched from sediment from the river Chernavka (water pH 7.5, total salt content 30 g L-1), a tributary river of the hypersaline Lake Elton, southern Russia. This microbial consortium, designated Ch1, demonstrated stable growth on natural gas in a bioreactor in media with a total salt content of 23 to 35.9 g L-1 at a dilution rate of 0.19-0.21 h-1. The highest biomass yield of 5.8 g cell dry weight (CDW)/L with a protein content of 63% was obtained during continuous cultivation of the consortium Ch1 in a medium with a total salt content of 29 g L-1. Isolation attempts resulted in obtaining a pure culture of methanotrophic bacteria, strain Ch1-1. The 16S rRNA gene sequence of strain Ch1-1 displayed 97.09-97.24% similarity to the corresponding gene fragments of characterized representatives of Methylomarinum vadi, methanotrophs isolated from marine habitats. The genome of strain Ch1-1 was 4.8 Mb in size and encoded 3 rRNA operons, and about 4400 proteins. The genome contained the gene cluster coding for ectoine biosynthesis, which explains the ability of strain Ch1-1 to tolerate high salt concentration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Svetlana N. Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (E.N.T.); (R.Z.S.); (I.Y.O.); (A.A.K.); (D.V.F.); (N.V.P.)
| |
Collapse
|
13
|
He L, Groom JD, Wilson EH, Fernandez J, Konopka MC, Beck DAC, Lidstrom ME. A methanotrophic bacterium to enable methane removal for climate mitigation. Proc Natl Acad Sci U S A 2023; 120:e2310046120. [PMID: 37603746 PMCID: PMC10466089 DOI: 10.1073/pnas.2310046120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/19/2023] [Indexed: 08/23/2023] Open
Abstract
The rapid increase of the potent greenhouse gas methane in the atmosphere creates great urgency to develop and deploy technologies for methane mitigation. One approach to removing methane is to use bacteria for which methane is their carbon and energy source (methanotrophs). Such bacteria naturally convert methane to CO2 and biomass, a value-added product and a cobenefit of methane removal. Typically, methanotrophs grow best at around 5,000 to 10,000 ppm methane, but methane in the atmosphere is 1.9 ppm. Air above emission sites such as landfills, anaerobic digestor effluents, rice paddy effluents, and oil and gas wells contains elevated methane in the 500 ppm range. If such sites are targeted for methane removal, technology harnessing aerobic methanotroph metabolism has the potential to become economically and environmentally viable. The first step in developing such methane removal technology is to identify methanotrophs with enhanced ability to grow and consume methane at 500 ppm and lower. We report here that some existing methanotrophic strains grow well at 500 ppm methane, and one of them, Methylotuvimicrobium buryatense 5GB1C, consumes such low methane at enhanced rates compared to previously published values. Analyses of bioreactor-based performance and RNAseq-based transcriptomics suggest that this ability to utilize low methane is based at least in part on extremely low non-growth-associated maintenance energy and on high methane specific affinity. This bacterium is a candidate to develop technology for methane removal at emission sites. If appropriately scaled, such technology has the potential to slow global warming by 2050.
Collapse
Affiliation(s)
- Lian He
- Department of Chemical Engineering, University of Washington, Seattle, WA98195
| | - Joseph D. Groom
- Department of Chemical Engineering, University of Washington, Seattle, WA98195
| | - Erin H. Wilson
- School of Computer Science & Engineering, University of Washington, Seattle, WA98195
| | | | | | - David A. C. Beck
- Department of Chemical Engineering, University of Washington, Seattle, WA98195
- eScience Institute, University of Washington, Seattle, WA98195
| | - Mary E. Lidstrom
- Department of Chemical Engineering, University of Washington, Seattle, WA98195
- Department of Microbiology, University of Washington, Seattle, WA98195
| |
Collapse
|
14
|
Weng C, Peng X, Han Y. From methane to value-added bioproducts: microbial metabolism, enzymes, and metabolic engineering. ADVANCES IN APPLIED MICROBIOLOGY 2023; 124:119-146. [PMID: 37597946 DOI: 10.1016/bs.aambs.2023.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Methane is abundant in nature, and excessive emissions will cause the greenhouse effect. Methane is also an ideal carbon and energy feedstock for biosynthesis. In the review, the microorganisms, metabolism, and enzymes for methane utilization, and the advances of conversion to value-added bioproducts were summarized. First, the physiological characteristics, classification, and methane oxidation process of methanotrophs were introduced. The metabolic pathways for methane utilization and key intermediate metabolites of native and synthetic methanotrophs were summarized. Second, the enzymatic properties, crystal structures, and catalytic mechanisms of methane-oxidizing and metabolizing enzymes in methanotrophs were described. Third, challenges and prospects in metabolic pathways and enzymatic catalysis for methane utilization and conversion to value-added bioproducts were discussed. Finally, metabolic engineering of microorganisms for methane biooxidation and bioproducts synthesis based on different pathways were summarized. Understanding the metabolism and challenges of microbial methane utilization will provide insights into possible strategies for efficient methane-based synthesis.
Collapse
Affiliation(s)
- Caihong Weng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xiaowei Peng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P.R. China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, P.R. China.
| |
Collapse
|
15
|
Insights into methanotroph carbon flux pave the way for methane biocatalysis. Trends Biotechnol 2023; 41:298-300. [PMID: 36710132 DOI: 10.1016/j.tibtech.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/29/2023]
Abstract
Methanotrophic bacteria are used industrially as catalysts for the bioconversion of methane (CH4) to valuable products. A landmark study by Kalyuzhnaya et al. identified the primary metabolic route for CH4 flux to central metabolic intermediates and alternative fermentative products in an industrially promising methanotroph, leading to a systems-level understanding of methanotrophy.
Collapse
|
16
|
Khmelenina VN, But SY, Rozova ON, Oshkin IY, Pimenov NV, Dedysh SN. Genome Editing in Methanotrophic Bacteria: Potential Targets and Available Tools. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722602196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
17
|
Hoang Trung Chau T, Duc Nguyen A, Lee EY. Engineering type I methanotrophic bacteria as novel platform for sustainable production of 3-hydroxybutyrate and biodegradable polyhydroxybutyrate from methane and xylose. BIORESOURCE TECHNOLOGY 2022; 363:127898. [PMID: 36108944 DOI: 10.1016/j.biortech.2022.127898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Methylotuvimicrobium alcaliphilum20Z recombinant strain co-utilizing methane and xylose from anthropogenic activities and lignocellulose biomassis a promising cell factory platform. In this study, the production of (R)-3-hydroxybutyrate and poly (3-hydroxybutyrate) inM. alcaliphilum20Z was demonstrated. The production of (R)-3-hydroxybutyrate was optimized by introducing additional thioesterase, and a tunable genetic module. The final recombinant strain produced the highest titer of 334.52 ± 2 mg/L (R)-3-hydroxybutyrate (yield of 1,853 ± 429 mg/g dry cell weight). The poly (3-hydroxybutyrate) yielded 1.29 ± 0.08% (w/w) from methane and xylose in one-stage cultivation. Moreover, the study demonstrated the importance of pathway reversibility as an effective design strategy for balancing the driving force and intermediate accumulation. This is the first demonstration of the production ofbiodegradablepoly (3-hydroxybutyrate) from methane in type I methanotrophs, which is a key step toward sustainable biomanufacturing and carbon-neutral society.
Collapse
Affiliation(s)
- Tin Hoang Trung Chau
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Anh Duc Nguyen
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea.
| |
Collapse
|
18
|
Wegat V, Fabarius JT, Sieber V. Synthetic methylotrophic yeasts for the sustainable fuel and chemical production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:113. [PMID: 36273178 PMCID: PMC9587593 DOI: 10.1186/s13068-022-02210-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/25/2022] [Indexed: 11/13/2022]
Abstract
Global energy-related emissions, in particular carbon dioxide, are rapidly increasing. Without immediate and strong reductions across all sectors, limiting global warming to 1.5 °C and thus mitigating climate change is beyond reach. In addition to the expansion of renewable energies and the increase in energy efficiency, the so-called Carbon Capture and Utilization technologies represent an innovative approach for closing the carbon cycle and establishing a circular economy. One option is to combine CO2 capture with microbial C1 fermentation. C1-molecules, such as methanol or formate are considered as attractive alternative feedstock for biotechnological processes due to their sustainable production using only CO2, water and renewable energy. Native methylotrophic microorganisms can utilize these feedstock for the production of value-added compounds. Currently, constraints exist regarding the understanding of methylotrophic metabolism and the available genetic engineering tools are limited. For this reason, the development of synthetic methylotrophic cell factories based on the integration of natural or artificial methanol assimilation pathways in biotechnologically relevant microorganisms is receiving special attention. Yeasts like Saccharomyces cerevisiae and Yarrowia lipolytica are capable of producing important products from sugar-based feedstock and the switch to produce these in the future from methanol is important in order to realize a CO2-based economy that is independent from land use. Here, we review historical biotechnological applications, the metabolism and the characteristics of methylotrophic yeasts. Various studies demonstrated the production of a broad set of promising products from fine chemicals to bulk chemicals by applying methylotrophic yeasts. Regarding synthetic methylotrophy, the deep understanding of the methylotrophic metabolism serves as the basis for microbial strain engineering and paves the way towards a CO2-based circular bioeconomy. We highlight design aspects of synthetic methylotrophy and discuss the resulting chances and challenges using non-conventional yeasts as host organisms. We conclude that the road towards synthetic methylotrophic yeasts can only be achieved through a combination of methods (e.g., metabolic engineering and adaptive laboratory evolution). Furthermore, we presume that the installation of metabolic regeneration cycles such as supporting carbon re-entry towards the pentose phosphate pathway from C1-metabolism is a pivotal target for synthetic methylotrophy.
Collapse
Affiliation(s)
- Vanessa Wegat
- grid.469831.10000 0000 9186 607XFraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing branch Biocat, Schulgasse 11a, 94315 Straubing, Germany ,grid.6936.a0000000123222966Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315 Straubing, Germany
| | - Jonathan T. Fabarius
- grid.469831.10000 0000 9186 607XFraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing branch Biocat, Schulgasse 11a, 94315 Straubing, Germany
| | - Volker Sieber
- grid.469831.10000 0000 9186 607XFraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing branch Biocat, Schulgasse 11a, 94315 Straubing, Germany ,grid.6936.a0000000123222966Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315 Straubing, Germany
| |
Collapse
|
19
|
Integrative Genome-Scale Metabolic Modeling Reveals Versatile Metabolic Strategies for Methane Utilization in Methylomicrobium album BG8. mSystems 2022; 7:e0007322. [PMID: 35258342 PMCID: PMC9040813 DOI: 10.1128/msystems.00073-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Methylomicrobium album BG8 is an aerobic methanotrophic bacterium with promising features as a microbial cell factory for the conversion of methane to value-added chemicals. However, the lack of a genome-scale metabolic model (GEM) of M. album BG8 has hindered the development of systems biology and metabolic engineering of this methanotroph. To fill this gap, a high-quality GEM was constructed to facilitate a system-level understanding of the biochemistry of M. album BG8. Flux balance analysis, constrained with time-series data derived from experiments with various levels of methane, oxygen, and biomass, was used to investigate the metabolic states that promote the production of biomass and the excretion of carbon dioxide, formate, and acetate. The experimental and modeling results indicated that M. album BG8 requires a ratio of ∼1.5:1 between the oxygen- and methane-specific uptake rates for optimal growth. Integrative modeling revealed that at ratios of >2:1 oxygen-to-methane uptake flux, carbon dioxide and formate were the preferred excreted compounds, while at ratios of <1.5:1 acetate accounted for a larger fraction of the total excreted flux. Our results showed a coupling between biomass production and the excretion of carbon dioxide that was linked to the ratio between the oxygen- and methane-specific uptake rates. In contrast, acetate excretion was experimentally detected during exponential growth only when the initial biomass concentration was increased. A relatively lower growth rate was also observed when acetate was produced in the exponential phase, suggesting a trade-off between biomass and acetate production. IMPORTANCE A genome-scale metabolic model (GEM) is an integrative platform that enables the incorporation of a wide range of experimental data. It is used to reveal system-level metabolism and, thus, clarify the link between the genotype and phenotype. The lack of a GEM for Methylomicrobium album BG8, an aerobic methane-oxidizing bacterium, has hindered its use in environmental and industrial biotechnology applications. The diverse metabolic states indicated by the GEM developed in this study demonstrate the versatility in the methane metabolic processes used by this strain. The integrative GEM presented here will aid the implementation of the design-build-test-learn paradigm in the metabolic engineering of M. album BG8. This advance will facilitate the development of a robust methane bioconversion platform and help to mitigate methane emissions from environmental systems.
Collapse
|
20
|
Awasthi D, Tang YH, Amer B, Baidoo EEK, Gin J, Chen Y, Petzold CJ, Kalyuzhnaya M, Singer SW. OUP accepted manuscript. J Ind Microbiol Biotechnol 2022; 49:6521446. [PMID: 35134957 PMCID: PMC9118986 DOI: 10.1093/jimb/kuac002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/19/2022] [Indexed: 11/15/2022]
Abstract
Rhamnolipids (RLs) are well-studied biosurfactants naturally produced by pathogenic strains of Pseudomonas aeruginosa. Current methods to produce RLs in native and heterologous hosts have focused on carbohydrates as production substrate; however, methane (CH4) provides an intriguing alternative as a substrate for RL production because it is low cost and may mitigate greenhouse gas emissions. Here, we demonstrate RL production from CH4 by Methylotuvimicrobium alcaliphilum DSM19304. RLs are inhibitory to M. alcaliphilum growth (<0.05 g/l). Adaptive laboratory evolution was performed by growing M. alcaliphilum in increasing concentrations of RLs, producing a strain that grew in the presence of 5 g/l of RLs. Metabolomics and proteomics of the adapted strain grown on CH4 in the absence of RLs revealed metabolic changes, increase in fatty acid production and secretion, alterations in gluconeogenesis, and increased secretion of lactate and osmolyte products compared with the parent strain. Expression of plasmid-borne RL production genes in the parent M. alcaliphilum strain resulted in cessation of growth and cell death. In contrast, the adapted strain transformed with the RL production genes showed no growth inhibition and produced up to 1 μM of RLs, a 600-fold increase compared with the parent strain, solely from CH4. This work has promise for developing technologies to produce fatty acid-derived bioproducts, including biosurfactants, from CH4.
Collapse
Affiliation(s)
- Deepika Awasthi
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yung-Hsu Tang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bashar Amer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Edward E K Baidoo
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jennifer Gin
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yan Chen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher J Petzold
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Marina Kalyuzhnaya
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Steven W Singer
- Correspondence should be addressed to: Steven W. Singer. Tel: 510-486-5556; Fax: 510-486-4252; E-mail:
| |
Collapse
|
21
|
Systems Metabolic Engineering of Methanotrophic Bacteria for Biological Conversion of Methane to Value-Added Compounds. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:91-126. [DOI: 10.1007/10_2021_184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Pérez V, Moltó JL, Lebrero R, Muñoz R. Ectoine Production from Biogas in Waste Treatment Facilities: A Techno-Economic and Sensitivity Analysis. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:17371-17380. [PMID: 34976443 PMCID: PMC8715504 DOI: 10.1021/acssuschemeng.1c06772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The capacity of haloalkaliphilic methanotrophic bacteria to synthesize ectoine from CH4-biogas represents an opportunity for waste treatment plants to improve their economic revenues and align their processes to the incoming circular economy directives. A techno-economic and sensitivity analysis for the bioconversion of biogas into 10 t ectoine·y-1 was conducted in two stages: (I) bioconversion of CH4 into ectoine in a bubble column bioreactor and (II) ectoine purification via ion exchange chromatography. The techno-economic analysis showed high investment (4.2 M€) and operational costs (1.4 M€·y-1). However, the high margin between the ectoine market value (600-1000 €·kg-1) and the estimated ectoine production costs (214 €·kg-1) resulted in a high profitability for the process, with a net present value evaluated at 20 years (NPV20) of 33.6 M€. The cost sensitivity analysis conducted revealed a great influence of equipment and consumable costs on the ectoine production costs. In contrast to alternative biogas valorization into heat and electricity or into low added-value bioproducts, biogas bioconversion into ectoine exhibited high robustness toward changes in energy, water, transportation, and labor costs. The worst- and best-case scenarios evaluated showed ectoine break-even prices ranging from 158 to 275 €·kg-1, ∼3-6 times lower than the current industrial ectoine market value.
Collapse
Affiliation(s)
- Víctor Pérez
- Institute
of Sustainable Processes, University of
Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
- Department
of Chemical Engineering and Environmental Technology, School of Industrial
Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Jose Luis Moltó
- Activatec
Ltd, Biocity, Pennyfoot
St, NG11GFNottingham, United Kingdom
| | - Raquel Lebrero
- Institute
of Sustainable Processes, University of
Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
- Department
of Chemical Engineering and Environmental Technology, School of Industrial
Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute
of Sustainable Processes, University of
Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
- Department
of Chemical Engineering and Environmental Technology, School of Industrial
Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| |
Collapse
|
23
|
Carmona-Martínez AA, Marcos-Rodrigo E, Bordel S, Marín D, Herrero-Lobo R, García-Encina PA, Muñoz R. Elucidating the key environmental parameters during the production of ectoines from biogas by mixed methanotrophic consortia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113462. [PMID: 34365180 DOI: 10.1016/j.jenvman.2021.113462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/06/2021] [Accepted: 07/31/2021] [Indexed: 05/12/2023]
Abstract
Anaerobic digestion (AD) is a robust biotechnology for the valorisation of organic waste into biogas. However, the rapid decrease in renewable electricity prices requires alternative uses of biogas. In this context, the engineering of innovative platforms for the bio-production of chemicals from CH4 has recently emerged. The extremolyte and osmoprotectant ectoine, with a market price of ~1000€/Kg, is the industrial flagship of CH4-based bio-chemicals. This work aimed at optimizing the accumulation of ectoines using mixed microbial consortia enriched from saline environments (a salt lagoon and a salt river) and activated sludge, and biogas as feedstock. The influence of NaCl (0, 3, 6, 9 and 12 %) and Na2WO4 (0, 35 and 70 μg L-1) concentrations and incubation temperature (15, 25 and 35 °C) on the stoichiometry and kinetics of the methanotrophic consortia was investigated. Consortia enriched from activated sludge at 15 °C accumulated the highest yields of ectoine and hydroxyectoine at 6 % NaCl (105.0 ± 27.2 and 24.2 ± 5.4 mgextremolyte gbiomass-1, respectively). The consortia enriched from the salt lagoon accumulated the highest yield of ectoine and hydroxyectoine at 9 % NaCl (56.6 ± 2.5 and 51.0 ± 2.0 mgextremolyte gbiomass-1, respectively) at 25 °C. The supplementation of tungsten to the cultivation medium did not impact on the accumulation of ectoines in any of the consortia. A molecular characterization of the enrichments revealed a relative abundance of ectoine-accumulating methanotrophs of 7-16 %, with Methylomicrobium buryatense and Methylomicrobium japanense as the main players in the bioconversion of methane into ectoine.
Collapse
Affiliation(s)
- Alessandro A Carmona-Martínez
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain
| | - Eva Marcos-Rodrigo
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain
| | - Sergio Bordel
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain
| | - David Marín
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain
| | - Raquel Herrero-Lobo
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain
| | - Pedro A García-Encina
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain.
| |
Collapse
|
24
|
Le HTQ, Nguyen AD, Park YR, Lee EY. Sustainable biosynthesis of chemicals from methane and glycerol via reconstruction of multi-carbon utilizing pathway in obligate methanotrophic bacteria. Microb Biotechnol 2021; 14:2552-2565. [PMID: 33830652 PMCID: PMC8601198 DOI: 10.1111/1751-7915.13809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 01/26/2023] Open
Abstract
Obligate methanotrophic bacteria can utilize methane, an inexpensive carbon feedstock, as a sole energy and carbon substrate, thus are considered as the only nature-provided biocatalyst for sustainable biomanufacturing of fuels and chemicals from methane. To address the limitation of native C1 metabolism of obligate type I methanotrophs, we proposed a novel platform strain that can utilize methane and multi-carbon substrates, such as glycerol, simultaneously to boost growth rates and chemical production in Methylotuvimicrobium alcaliphilum 20Z. To demonstrate the uses of this concept, we reconstructed a 2,3-butanediol biosynthetic pathway and achieved a fourfold higher titer of 2,3-butanediol production by co-utilizing methane and glycerol compared with that of methanotrophic growth. In addition, we reported the creation of a methanotrophic biocatalyst for one-step bioconversion of methane to methanol in which glycerol was used for cell growth, and methane was mainly used for methanol production. After the deletion of genes encoding methanol dehydrogenase (MDH), 11.6 mM methanol was obtained after 72 h using living cells in the absence of any chemical inhibitors of MDH and exogenous NADH source. A further improvement of this bioconversion was attained by using resting cells with a significantly increased titre of 76 mM methanol after 3.5 h with the supply of 40 mM formate. The work presented here provides a novel framework for a variety of approaches in methane-based biomanufacturing.
Collapse
Affiliation(s)
- Hoa Thi Quynh Le
- Department of Chemical Engineering (Integrated Engineering)Kyung Hee University17104Yongin‐siGyeonggi‐doSouth Korea
| | - Anh Duc Nguyen
- Department of Chemical Engineering (Integrated Engineering)Kyung Hee University17104Yongin‐siGyeonggi‐doSouth Korea
| | - Ye Rim Park
- Department of Chemical Engineering (Integrated Engineering)Kyung Hee University17104Yongin‐siGyeonggi‐doSouth Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (Integrated Engineering)Kyung Hee University17104Yongin‐siGyeonggi‐doSouth Korea
| |
Collapse
|
25
|
Selection of methanotrophic platform for methanol production using methane and biogas. J Biosci Bioeng 2021; 132:460-468. [PMID: 34462232 DOI: 10.1016/j.jbiosc.2021.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022]
Abstract
To develop biotechnological process for methane to methanol conversion, selection of a suitable methanotrophic platform is an important aspect. Systematic approach based on literature and public databases was developed to select representative methanotrophs Methylotuvimicrobium alcaliphilum, Methylomonas methanica, Methylosinus trichosporium and Methylocella silvestris. Selected methanotrophs were further investigated for methanol tolerance and methanol production on pure methane as well as biogas along with key enzyme activities involved in methane utilization. Among selected methanotrophs M. alcaliphilum showed maximum methanol tolerance of 6% v/v along with maximum methanol production of 307.90 mg/L and 247.37 mg/L on pure methane and biogas respectively. Activity of methane monooxygenase and formate dehydrogenase enzymes in M.alcaliphilum was significantly higher up to 98.40 nmol/min/mg cells and 0.87 U/mg protein, respectively. Biotransformation trials in 14 L fermentor resulted in increased methanol production up to 418 and 331.20 mg/L, with yield coefficient 0.83 and 0.71 mg methanol/mg of pure methane and biogas respectively. The systematic selection resulted in haloalkaliphilic strain M. alcaliphilum as one of the potential methanotroph for bio-methanol production.
Collapse
|
26
|
Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RubisCO) Is Essential for Growth of the Methanotroph Methylococcus capsulatus Strain Bath. Appl Environ Microbiol 2021; 87:e0088121. [PMID: 34288705 PMCID: PMC8388818 DOI: 10.1128/aem.00881-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) enzyme found in plants, algae, and an array of autotrophic bacteria is also encoded by a subset of methanotrophs, but its role in these microbes has largely remained elusive. In this study, we showed that CO2 was requisite for RubisCO-encoding Methylococcus capsulatus strain Bath growth in a bioreactor with continuous influent and effluent gas flow. RNA sequencing identified active transcription of several carboxylating enzymes, including key enzymes of the Calvin and serine cycles, that could mediate CO2 assimilation during cultivation with both CH4 and CO2 as carbon sources. Marker exchange mutagenesis of M. capsulatus Bath genes encoding key enzymes of potential CO2-assimilating metabolic pathways indicated that a complete serine cycle is not required, whereas RubisCO is essential for growth of this bacterium. 13CO2 tracer analysis showed that CH4 and CO2 enter overlapping anaplerotic pathways and implicated RubisCO as the primary enzyme mediating CO2 assimilation in M. capsulatus Bath. Notably, we quantified the relative abundance of 3-phosphoglycerate and ribulose-1,5-bisphosphate 13C isotopes, which supported that RubisCO-produced 3-phosphoglycerate is primarily converted to ribulose-1-5-bisphosphate via the oxidative pentose phosphate pathway in M. capsulatus Bath. Collectively, our data establish that RubisCO and CO2 play essential roles in M. capsulatus Bath metabolism. This study expands the known capacity of methanotrophs to fix CO2 via RubisCO, which may play a more pivotal role in the Earth's biogeochemical carbon cycling and greenhouse gas regulation than previously recognized. Further, M. capsulatus Bath and other CO2-assimilating methanotrophs represent excellent candidates for use in the bioconversion of biogas waste streams that consist of both CH4 and CO2. IMPORTANCE The importance of RubisCO and CO2 in M. capsulatus Bath metabolism is unclear. In this study, we demonstrated that both CO2 and RubisCO are essential for M. capsulatus Bath growth. 13CO2 tracing experiments supported that RubisCO mediates CO2 fixation and that a noncanonical Calvin cycle is active in this organism. Our study provides insights into the expanding knowledge of methanotroph metabolism and implicates dually CH4/CO2-utilizing bacteria as more important players in the biogeochemical carbon cycle than previously appreciated. In addition, M. capsulatus and other methanotrophs with CO2 assimilation capacity represent candidate organisms for the development of biotechnologies to mitigate the two most abundant greenhouse gases, CH4 and CO2.
Collapse
|
27
|
Lazic M, Sugden S, Sauvageau D, Stein LY. Metabolome profiles of the alphaproteobacterial methanotroph Methylocystis sp. Rockwell in response to carbon and nitrogen source. FEMS Microbiol Lett 2021; 368:6055661. [PMID: 33378457 DOI: 10.1093/femsle/fnaa219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/28/2020] [Indexed: 01/23/2023] Open
Abstract
Methanotrophs use methane as a sole carbon source and thus play a critical role in its global consumption. Intensified interest in methanotrophs for their low-cost production of value-added products and large-scale industrialization has led to investigations of strain-to-strain variation in parameters for growth optimization and metabolic regulation. In this study, Methylocystis sp. Rockwell was grown with methane or methanol as a carbon source and ammonium or nitrate as a nitrogen source. The intracellular metabolomes and production of polyhydroxybutyrate, a bioplastic precursor, were compared among treatments to determine how the different combinations of carbon and nitrogen sources affected metabolite production. The methane-ammonium condition resulted in the highest growth, followed by the methane-nitrate, methanol-nitrate and methanol-ammonium conditions. Overall, the methane-ammonium and methane-nitrate conditions directed metabolism toward energy-conserving pathways, while methanol-ammonium and methanol-nitrate directed the metabolic response toward starvation pathways. Polyhydroxybutyrate was produced at greater abundances in methanol-grown cells, independent of the nitrogen source. Together, the results revealed how Methylocystis sp. Rockwell altered its metabolism with different combinations of carbon and nitrogen source, with implications for production of industrially relevant metabolites.
Collapse
Affiliation(s)
- Marina Lazic
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Scott Sugden
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
28
|
Karthikeyan OP, Smith TJ, Dandare SU, Parwin KS, Singh H, Loh HX, Cunningham MR, Williams PN, Nichol T, Subramanian A, Ramasamy K, Kumaresan D. Metal(loid) speciation and transformation by aerobic methanotrophs. MICROBIOME 2021; 9:156. [PMID: 34229757 PMCID: PMC8262016 DOI: 10.1186/s40168-021-01112-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/09/2021] [Indexed: 05/06/2023]
Abstract
Manufacturing and resource industries are the key drivers for economic growth with a huge environmental cost (e.g. discharge of industrial effluents and post-mining substrates). Pollutants from waste streams, either organic or inorganic (e.g. heavy metals), are prone to interact with their physical environment that not only affects the ecosystem health but also the livelihood of local communities. Unlike organic pollutants, heavy metals or trace metals (e.g. chromium, mercury) are non-biodegradable, bioaccumulate through food-web interactions and are likely to have a long-term impact on ecosystem health. Microorganisms provide varied ecosystem services including climate regulation, purification of groundwater, rehabilitation of contaminated sites by detoxifying pollutants. Recent studies have highlighted the potential of methanotrophs, a group of bacteria that can use methane as a sole carbon and energy source, to transform toxic metal (loids) such as chromium, mercury and selenium. In this review, we synthesise recent advances in the role of essential metals (e.g. copper) for methanotroph activity, uptake mechanisms alongside their potential to transform toxic heavy metal (loids). Case studies are presented on chromium, selenium and mercury pollution from the tanneries, coal burning and artisanal gold mining, respectively, which are particular problems in the developing economy that we propose may be suitable for remediation by methanotrophs. Video Abstract.
Collapse
Affiliation(s)
- Obulisamy Parthiba Karthikeyan
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI USA
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX USA
| | - Thomas J. Smith
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Shamsudeen Umar Dandare
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Kamaludeen Sara Parwin
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, India
| | - Heetasmin Singh
- Department of Chemistry, University of Guyana, Georgetown, Guyana
| | - Hui Xin Loh
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Mark R Cunningham
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Paul Nicholas Williams
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Tim Nichol
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | | | | | - Deepak Kumaresan
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| |
Collapse
|
29
|
Transcriptomic and Metabolomic Responses to Carbon and Nitrogen Sources in Methylomicrobium album BG8. Appl Environ Microbiol 2021; 87:e0038521. [PMID: 33893121 DOI: 10.1128/aem.00385-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanotrophs use methane as their sole carbon and energy source and represent an attractive platform for converting single-carbon feedstocks into value-added compounds. Optimizing these species for biotechnological applications involves choosing an optimal growth substrate based on an understanding of cellular responses to different nutrients. Although many studies of methanotrophs have examined growth rate, yield, and central carbon flux in cultures grown with different carbon and nitrogen sources, few studies have examined more global cellular responses to different media. Here, we evaluated global transcriptomic and metabolomic profiles of Methylomicrobium album BG8 when grown with methane or methanol as the carbon source and nitrate or ammonium as the nitrogen source. We identified five key physiological changes during growth on methanol: M. album BG8 cultures upregulated transcripts for the Entner-Doudoroff and pentose phosphate pathways for sugar catabolism, produced more ribosomes, remodeled the phospholipid membrane, activated various stress response systems, and upregulated glutathione-dependent formaldehyde detoxification. When using ammonium, M. album BG8 upregulated hydroxylamine dehydrogenase (haoAB) and overall central metabolic activity, whereas when using nitrate, cultures upregulated genes for nitrate assimilation and conversion. Overall, we identified several nutrient source-specific responses that could provide a valuable basis for future research on the biotechnological optimization of these species. IMPORTANCE Methanotrophs are gaining increasing interest for their biotechnological potential to convert single-carbon compounds into value-added products such as industrial chemicals, fuels, and bioplastics. Optimizing these species for biotechnological applications requires a detailed understanding of how cellular activity and metabolism vary across different growth substrates. Although each of the two most commonly used carbon sources (methane or methanol) and nitrogen sources (ammonium or nitrate) in methanotroph growth media have well-described advantages and disadvantages in an industrial context, their effects on global cellular activity remain poorly characterized. Here, we comprehensively describe the transcriptomic and metabolomic changes that characterize the growth of an industrially promising methanotroph strain on multiple combinations of carbon and nitrogen sources. Our results represent a more holistic evaluation of cellular activity than previous studies of core metabolic pathways and provide a valuable basis for the future biotechnological optimization of these species.
Collapse
|
30
|
Nguyen AD, Pham DN, Chau THT, Lee EY. Enhancing Sesquiterpenoid Production from Methane via Synergy of the Methylerythritol Phosphate Pathway and a Short-Cut Route to 1-Deoxy-D-xylulose 5-Phosphate in Methanotrophic Bacteria. Microorganisms 2021; 9:microorganisms9061236. [PMID: 34200225 PMCID: PMC8227265 DOI: 10.3390/microorganisms9061236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/29/2022] Open
Abstract
Sesquiterpenoids are one of the most diverse classes of isoprenoids which exhibit numerous potentials in industrial biotechnology. The methanotrophs-based methane bioconversion is a promising approach for sustainable production of chemicals and fuels from methane. With intrinsic high carbon flux though the ribulose monophosphate cycle in Methylotuvimicrobium alcaliphilum 20Z, we demonstrated here that employing a short-cut route from ribulose 5-phosphate to 1-deoxy-d-xylulose 5-phosphate (DXP) could enable a more efficient isoprenoid production via the methylerythritol 4-phosphate (MEP) pathway, using α-humulene as a model compound. An additional 2.8-fold increase in α-humulene production yield was achieved by the fusion of the nDXP enzyme and DXP reductase. Additionally, we utilized these engineering strategies for the production of another sesquiterpenoid, α-bisabolene. The synergy of the nDXP and MEP pathways improved the α-bisabolene titer up to 12.24 ± 0.43 mg/gDCW, twofold greater than that of the initial strain. This study expanded the suite of sesquiterpenoids that can be produced from methane and demonstrated the synergistic uses of the nDXP and MEP pathways for improving sesquiterpenoid production in methanotrophic bacteria.
Collapse
Affiliation(s)
| | | | | | - Eun Yeol Lee
- Correspondence: ; Tel.: +82-31-201-3839; Fax: +82-31-204-8114
| |
Collapse
|
31
|
Nguyen DTN, Lee OK, Nguyen TT, Lee EY. Type II methanotrophs: A promising microbial cell-factory platform for bioconversion of methane to chemicals. Biotechnol Adv 2021; 47:107700. [PMID: 33548453 DOI: 10.1016/j.biotechadv.2021.107700] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/04/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Methane, the predominant element in natural gas and biogas, represents a promising alternative to carbon feedstocks in the biotechnological industry due to its low cost and high abundance. The bioconversion of methane to value-added products can enhance the value of gas and mitigate greenhouse gas emissions. Methanotrophs, methane-utilizing bacteria, can make a significant contribution to the production of various valuable biofuels and chemicals from methane. Type II methanotrophs in comparison with Type I methanotrophs have distinct advantages, including high acetyl-CoA flux and the co-incorporation of two important greenhouse gases (methane and CO2), making it a potential microbial cell-factory platform for methane-derived biomanufacturing. Herein, we review the most recent advances in Type II methanotrophs related to multi-omics studies and metabolic engineering. Representative examples and prospects of metabolic engineering strategies for the production of suitable products are also discussed.
Collapse
Affiliation(s)
- Diep Thi Ngoc Nguyen
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Ok Kyung Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Thu Thi Nguyen
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
32
|
Genome-scale revealing the central metabolic network of the fast growing methanotroph Methylomonas sp. ZR1. World J Microbiol Biotechnol 2021; 37:29. [PMID: 33452942 DOI: 10.1007/s11274-021-02995-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Methylomonas sp. ZR1 was an isolated new methanotrophs that could utilize methane and methanol growing fast and synthesizing value added compounds such as lycopene. In this study, the genomic study integrated with the comparative transcriptome analysis were taken to understanding the metabolic characteristic of ZR1 grown on methane and methanol at normal and high temperature regime. Complete Embden-Meyerhof-Parnas pathway (EMP), Entner-Doudoroff pathway (ED), Pentose Phosphate Pathway (PP) and Tricarboxy Acid Cycle (TCA) were found to be operated in ZR1. In addition, the energy saving ppi-dependent EMP enzyme, coupled with the complete and efficient central carbon metabolic network might be responsible for its fast growing nature. Transcript level analysis of the central carbon metabolism indicated that formaldehyde metabolism was a key nod that may be in charge of the carbon conversion efficiency (CCE) divergent of ZR1 grown on methanol and methane. Flexible nitrogen and carotene metabolism pattern were also investigated in ZR1. Nitrogenase genes in ZR1 were found to be highly expressed with methane even in the presence of sufficient nitrate. It appears that, higher lycopene production in ZR1 grown on methane might be attributed to the higher proportion of transcript level of C40 to C30 metabolic gene. Higher transcript level of exopolysaccharides metabolic gene and stress responding proteins indicated that ZR1 was confronted with severer growth stress with methanol than with methane. Additionally, lower transcript level of the TCA cycle, the dramatic high expression level of the nitric oxide reductase and stress responding protein, revealed the imbalance of the central carbon and nitrogen metabolic status, which would result in the worse growth of ZR1 with methanol at 30 °C.
Collapse
|
33
|
The Entner-Doudoroff Pathway Is an Essential Metabolic Route for Methylotuvimicrobium buryatense 5GB1C. Appl Environ Microbiol 2021; 87:AEM.02481-20. [PMID: 33218997 DOI: 10.1128/aem.02481-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/11/2020] [Indexed: 11/20/2022] Open
Abstract
Methylotuvimicrobium buryatense 5GB1C, a fast-growing gammaproteobacterial methanotroph, is equipped with two glycolytic pathways, the Entner-Doudoroff (ED) pathway and the Embden-Meyerhof-Parnas (EMP) pathway. Metabolic flux analysis and 13C-labeling experiments have shown the EMP pathway is the principal glycolytic route in M. buryatense 5GB1C, while the ED pathway appears to be metabolically and energetically insignificant. However, it has not been possible to obtain a null mutant in the edd-eda genes encoding the two unique enzymatic reactions in the ED pathway, suggesting the ED pathway may be essential for M. buryatense 5GB1C growth. In this study, the inducible P BAD promoter was used to manipulate gene expression of edd-eda, and in addition, the expression of these two genes was separated from that of a downstream gltA gene. The resulting strain shows arabinose-dependent growth that correlates with ED pathway activity, with normal growth achieved in the presence of ∼0.1 g/liter arabinose. Flux balance analysis shows that M. buryatense 5GB1C with a strong ED pathway has a reduced energy budget, thereby limiting the mutant growth at a high concentration of arabinose. Collectively, our study demonstrates that the ED pathway is essential for M. buryatense 5GB1C. However, no known mechanism can directly explain the essentiality of the ED pathway, and thus, it may have a yet unknown regulatory role required for sustaining a healthy and functional metabolism in this bacterium.IMPORTANCE The gammaproteobacterial methanotrophs possess a unique central metabolic architecture where methane and other reduced C1 carbon sources are assimilated through the ribulose monophosphate cycle. Although efforts have been made to better understand methanotrophic metabolism in these bacteria via experimental and computational approaches, many questions remain unanswered. One of these is the essentiality of the ED pathway for M. buryatense 5GB1C, as current results appear contradictory. By creating a construct with edd-eda and gltA genes controlled by P BAD and P J23101 , respectively, we demonstrated the essentiality of the ED pathway for this obligate methanotroph. It is also demonstrated that these genetic tools are applicable to M. buryatense 5GB1C and that expression of the target genes can be tightly controlled across an extensive range. Our study adds to the expanding knowledge of methanotrophic metabolism and practical approaches to genetic manipulation for obligate methanotrophs.
Collapse
|
34
|
Badr K, Whelan W, He QP, Wang J. Fast and easy quantitative characterization of methanotroph-photoautotroph cocultures. Biotechnol Bioeng 2020; 118:703-714. [PMID: 33064298 DOI: 10.1002/bit.27603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 11/08/2022]
Abstract
Recent research has demonstrated that synthetic methanotroph-photoautotroph cocultures offer a highly promising route to convert biogas into value-added products. However, there is a lack of techniques for fast and accurate characterization of cocultures, such as determining the individual biomass concentration of each organism in real-time. To address this unsolved challenge, we propose an experimental-computational protocol for fast, easy, and accurate quantitative characterization of the methanotroph-photoautotroph cocultures. Besides determining the individual biomass concentration of each organism in the coculture, the protocol can also obtain the individual consumption and production rates of O2 and CO2 for the methanotroph and photoautotroph, respectively. The accuracy and effectiveness of the proposed protocol was demonstrated using two model coculture pairs, Methylomicrobium alcaliphilum 20ZR-Synechococcus sp. PCC7002 that prefers high pH high salt condition, and Methylococcus capsulatus-Chlorella sorokiniana that prefers low salt and neutral pH medium. The performance of the proposed protocol was compared with a flow cytometry-based cell counting approach. The experimental results show that the proposed protocol is much easier to carry out and delivers faster and more accurate results in measuring individual biomass concentration than the cell counting approach without requiring any special equipment.
Collapse
Affiliation(s)
- Kiumars Badr
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| | - William Whelan
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| | - Q Peter He
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| | - Jin Wang
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
35
|
Stone K, Hilliard M, Badr K, Bradford A, He QP, Wang J. Comparative study of oxygen-limited and methane-limited growth phenotypes of Methylomicrobium buryatense 5GB1. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Nguyen AD, Kim D, Lee EY. Unlocking the biosynthesis of sesquiterpenoids from methane via the methylerythritol phosphate pathway in methanotrophic bacteria, using α-humulene as a model compound. Metab Eng 2020; 61:69-78. [PMID: 32387228 DOI: 10.1016/j.ymben.2020.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/21/2020] [Accepted: 04/25/2020] [Indexed: 11/22/2022]
Abstract
Isoprenoids are an abundant and diverse class of natural products with various applications in the pharmaceutical, cosmetics and biofuel industries. A methanotroph-based biorefinery is an attractive scenario for the production of a variety of value-added compounds from methane, because methane is a promising alternative feedstock for industrial biomanufacturing. In this study, we metabolically engineered Methylotuvimicrobium alcaliphilum 20Z for de novo synthesis of a sesquiterpenoid from methane, using α-humulene as a model compound, via optimization of the native methylerythritol phosphate (MEP) pathway. Expression of codon-optimized α-humulene synthase from Zingiber zerumbet in M. alcaliphilum 20Z resulted in an initial yield of 0.04 mg/g dry cell weight. Overexpressing key enzymes (IspA, IspG, and Dxs) for debottlenecking of the MEP pathway increased α-humulene production 5.2-fold compared with the initial strain. Subsequently, redirecting the carbon flux through the Embden-Meyerhof-Parnas pathway resulted in an additional 3-fold increase in α-humulene production. Additionally, a genome-scale model using flux scanning based on enforced objective flux method was used to identify potential overexpression targets to increase flux towards isoprenoid production. Several target reactions from cofactor synthesis pathways were probed and evaluated for their effects on α-humulene synthesis, resulting in α-humulene yield up to 0.75 mg/g DCW with 18.8-fold enhancement from initial yield. This study first demonstrates production of a sesquiterpenoid from methane using methanotrophs as the biocatalyst and proposes potential strategies to enhance production of sesquiterpenoid and related isoprenoid products in engineered methanotrophic bacteria.
Collapse
Affiliation(s)
- Anh Duc Nguyen
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, South Korea.
| |
Collapse
|
37
|
Bordel S, Pérez R, Rodríguez E, Cantera S, Fernández-González N, Martínez MA, Muñoz R. Halotolerance mechanisms of the methanotroph Methylomicrobium alcaliphilum. Biotechnol Bioeng 2020; 117:3459-3474. [PMID: 32672837 DOI: 10.1002/bit.27506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/18/2020] [Accepted: 07/15/2020] [Indexed: 11/12/2022]
Abstract
Methylomicrobium alcaliphilum is an alkaliphilic and halotolerant methanotroph. The physiological responses of M. alcaliphilum to high NaCl concentrations, were studied using RNA sequencing and metabolic modeling. This study revealed that M. alcaliphilum possesses an unusual respiratory chain, in which complex I is replaced by a Na+ extruding NQR complex (highly upregulated under high salinity conditions) and a Na+ driven adenosine triphosphate (ATP) synthase coexists with a conventional H+ driven ATP synthase. A thermodynamic and metabolic model showing the interplay between these different components is presented. Ectoine is the main osmoprotector used by the cells. Ectoine synthesis is activated by the transcription of an ect operon that contains five genes, including the ectoine hydroxylase coding ectD gene. Enzymatic tests revealed that the product of ectD does not have catalytic activity. A new Genome Scale Metabolic Model for M. alcaliphilum revealed a higher flux in the oxidative branch of the pentose phosphate pathway leading to NADPH production and contributing to resistance to oxidative stress.
Collapse
Affiliation(s)
- Sergio Bordel
- Department of Chemical Engineering and Environmental Technology, School of Insdustrial Engineering, University of Valladolid, Valladolid, Spain.,Institute of Sustainable Processes, Valladolid, Spain
| | - Rebeca Pérez
- Department of Chemical Engineering and Environmental Technology, School of Insdustrial Engineering, University of Valladolid, Valladolid, Spain.,Institute of Sustainable Processes, Valladolid, Spain
| | - Elisa Rodríguez
- Department of Chemical Engineering and Environmental Technology, School of Insdustrial Engineering, University of Valladolid, Valladolid, Spain.,Institute of Sustainable Processes, Valladolid, Spain
| | - Sara Cantera
- Laboratory of Microbiology, Wageningen University and Research Center, Wageningen, The Netherlands
| | - Nuria Fernández-González
- Department of Chemical Engineering and Environmental Technology, School of Insdustrial Engineering, University of Valladolid, Valladolid, Spain.,Institute of Sustainable Processes, Valladolid, Spain
| | - María A Martínez
- Institute of Sustainable Processes, Valladolid, Spain.,PROIMI Planta Piloto de Procesos Industriales Microbiológicos, CONICET, San Miguel de Tucumán, Argentina.,Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, School of Insdustrial Engineering, University of Valladolid, Valladolid, Spain.,Institute of Sustainable Processes, Valladolid, Spain
| |
Collapse
|
38
|
Bordel S, Crombie AT, Muñoz R, Murrell JC. Genome Scale Metabolic Model of the versatile methanotroph Methylocella silvestris. Microb Cell Fact 2020; 19:144. [PMID: 32677952 PMCID: PMC7364539 DOI: 10.1186/s12934-020-01395-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/07/2020] [Indexed: 12/29/2022] Open
Abstract
Background Methylocella silvestris is a facultative aerobic methanotrophic bacterium which uses not only methane, but also other alkanes such as ethane and propane, as carbon and energy sources. Its high metabolic versatility, together with the availability of tools for its genetic engineering, make it a very promising platform for metabolic engineering and industrial biotechnology using natural gas as substrate. Results The first Genome Scale Metabolic Model for M. silvestris is presented. The model has been used to predict the ability of M. silvestris to grow on 12 different substrates, the growth phenotype of two deletion mutants (ΔICL and ΔMS), and biomass yield on methane and ethanol. The model, together with phenotypic characterization of the deletion mutants, revealed that M. silvestris uses the glyoxylate shuttle for the assimilation of C1 and C2 substrates, which is unique in contrast to published reports of other methanotrophs. Two alternative pathways for propane metabolism have been identified and validated experimentally using enzyme activity tests and constructing a deletion mutant (Δ1641), which enabled the identification of acetol as one of the intermediates of propane assimilation via 2-propanol. The model was also used to integrate proteomic data and to identify key enzymes responsible for the adaptation of M. silvestris to different substrates. Conclusions The model has been used to elucidate key metabolic features of M. silvestris, such as its use of the glyoxylate shuttle for the assimilation of one and two carbon compounds and the existence of two parallel metabolic pathways for propane assimilation. This model, together with the fact that tools for its genetic engineering already exist, paves the way for the use of M. silvestris as a platform for metabolic engineering and industrial exploitation of methanotrophs.
Collapse
Affiliation(s)
- Sergio Bordel
- Department of Chemical Engineering and Environmental Technology, School of Insdustrial Engineering, University of Valladolid, Dr. Mergelina s/n, 47011, Valladolid, Spain. .,Institute of Sustainable Processes, Dr. Mergelina s/n, 47011, Valladolid, Spain.
| | - Andrew T Crombie
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, School of Insdustrial Engineering, University of Valladolid, Dr. Mergelina s/n, 47011, Valladolid, Spain.,Institute of Sustainable Processes, Dr. Mergelina s/n, 47011, Valladolid, Spain
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
39
|
Islam MM, Le T, Daggumati SR, Saha R. Investigation of microbial community interactions between Lake Washington methanotrophs using -------genome-scale metabolic modeling. PeerJ 2020; 8:e9464. [PMID: 32655999 PMCID: PMC7333651 DOI: 10.7717/peerj.9464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/10/2020] [Indexed: 11/21/2022] Open
Abstract
Background The role of methane in global warming has become paramount to the environment and the human society, especially in the past few decades. Methane cycling microbial communities play an important role in the global methane cycle, which is why the characterization of these communities is critical to understand and manipulate their behavior. Methanotrophs are a major player in these communities and are able to oxidize methane as their primary carbon source. Results Lake Washington is a freshwater lake characterized by a methane-oxygen countergradient that contains a methane cycling microbial community. Methanotrophs are a major part of this community involved in assimilating methane from lake water. Two significant methanotrophic species in this community are Methylobacter and Methylomonas. In this work, these methanotrophs are computationally studied via developing highly curated genome-scale metabolic models. Each model was then integrated to form a community model with a multi-level optimization framework. The competitive and mutualistic metabolic interactions among Methylobacter and Methylomonas were also characterized. The community model was next tested under carbon, oxygen, and nitrogen limited conditions in addition to a nutrient-rich condition to observe the systematic shifts in the internal metabolic pathways and extracellular metabolite exchanges. Each condition showed variations in the methane oxidation pathway, pyruvate metabolism, and the TCA cycle as well as the excretion of formaldehyde and carbon di-oxide in the community. Finally, the community model was simulated under fixed ratios of these two members to reflect the opposing behavior in the two-member synthetic community and in sediment-incubated communities. The community simulations predicted a noticeable switch in intracellular carbon metabolism and formaldehyde transfer between community members in sediment-incubated vs. synthetic condition. Conclusion In this work, we attempted to predict the response of a simplified methane cycling microbial community from Lake Washington to varying environments and also provide an insight into the difference of dynamics in sediment-incubated microcosm community and synthetic co-cultures. Overall, this study lays the ground for in silico systems-level studies of freshwater lake ecosystems, which can drive future efforts of understanding, engineering, and modifying these communities for dealing with global warming issues.
Collapse
Affiliation(s)
- Mohammad Mazharul Islam
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Tony Le
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Shardhat R Daggumati
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| |
Collapse
|
40
|
Nguyen AD, Nam G, Kim D, Lee EY. Metabolic role of pyrophosphate-linked phosphofructokinase pfk for C1 assimilation in Methylotuvimicrobium alcaliphilum 20Z. Microb Cell Fact 2020; 19:131. [PMID: 32546161 PMCID: PMC7298851 DOI: 10.1186/s12934-020-01382-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/30/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Methanotrophs is a promising biocatalyst in biotechnological applications with their ability to utilize single carbon (C1) feedstock to produce high-value compounds. Understanding the behavior of biological networks of methanotrophic bacteria in different parameters is vital to systems biology and metabolic engineering. Interestingly, methanotrophic bacteria possess the pyrophosphate-dependent 6-phosphofructokinase (PPi-PFK) instead of the ATP-dependent 6-phosphofructokinase, indicating their potentials to serve as promising model for investigation the role of inorganic pyrophosphate (PPi) and PPi-dependent glycolysis in bacteria. Gene knockout experiments along with global-omics approaches can be used for studying gene functions as well as unraveling regulatory networks that rely on the gene product. RESULTS In this study, we performed gene knockout and RNA-seq experiments in Methylotuvimicrobium alcaliphilum 20Z to investigate the functional roles of PPi-PFK in C1 metabolism when cells were grown on methane and methanol, highlighting its metabolic importance in C1 assimilation in M. alcaliphilum 20Z. We further conducted adaptive laboratory evolution (ALE) to investigate regulatory architecture in pfk knockout strain. Whole-genome resequencing and RNA-seq approaches were performed to characterize the genetic and metabolic responses of adaptation to pfk knockout. A number of mutations, as well as gene expression profiles, were identified in pfk ALE strain to overcome insufficient C1 assimilation pathway which limits the growth in the unevolved strain. CONCLUSIONS This study first revealed the regulatory roles of PPi-PFK on C1 metabolism and then provided novel insights into mechanism of adaptation to the loss of this major metabolic enzyme as well as an improved basis for future strain design in type I methanotrophs.
Collapse
Affiliation(s)
- Anh Duc Nguyen
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - Gayoung Nam
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, South Korea.
| |
Collapse
|
41
|
Naizabekov S, Lee EY. Genome-Scale Metabolic Model Reconstruction and in Silico Investigations of Methane Metabolism in Methylosinus trichosporium OB3b. Microorganisms 2020; 8:microorganisms8030437. [PMID: 32244934 PMCID: PMC7144005 DOI: 10.3390/microorganisms8030437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 01/09/2023] Open
Abstract
Methylosinus trichosporium OB3b is an obligate aerobic methane-utilizing alpha-proteobacterium. Since its isolation, M. trichosporium OB3b has been established as a model organism to study methane metabolism in type II methanotrophs. M. trichosporium OB3b utilizes soluble and particulate methane monooxygenase (sMMO and pMMO respectively) for methane oxidation. While the source of electrons is known for sMMO, there is less consensus regarding electron donor to pMMO. To investigate this and other questions regarding methane metabolism, the genome-scale metabolic model for M. trichosporium OB3b (model ID: iMsOB3b) was reconstructed. The model accurately predicted oxygen: methane molar uptake ratios and specific growth rates on nitrate-supplemented medium with methane as carbon and energy source. The redox-arm mechanism which links methane oxidation with complex I of electron transport chain has been found to be the most optimal mode of electron transfer. The model was also qualitatively validated on ammonium-supplemented medium indicating its potential to accurately predict methane metabolism in different environmental conditions. Finally, in silico investigations regarding flux distribution in central carbon metabolism of M. trichosporium OB3b were performed. Overall, iMsOB3b can be used as an organism-specific knowledgebase and a platform for hypothesis-driven theoretical investigations of methane metabolism.
Collapse
|
42
|
Metabolic engineering of type II methanotroph, Methylosinus trichosporium OB3b, for production of 3-hydroxypropionic acid from methane via a malonyl-CoA reductase-dependent pathway. Metab Eng 2020; 59:142-150. [PMID: 32061966 DOI: 10.1016/j.ymben.2020.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/07/2020] [Accepted: 02/09/2020] [Indexed: 12/21/2022]
Abstract
We engineered a type II methanotroph, Methylosinus trichosporium OB3b, for 3-hydroxypropionic acid (3HP) production by reconstructing malonyl-CoA pathway through heterologous expression of Chloroflexus aurantiacus malonyl-CoA reductase (MCR), a bifunctional enzyme. Two strategies were designed and implemented to increase the malonyl-CoA pool and thus, increase in 3HP production. First, we engineered the supply of malonyl-CoA precursors by overexpressing endogenous acetyl-CoA carboxylase (ACC), substantially enhancing the production of 3HP. Overexpression of biotin protein ligase (BPL) and malic enzyme (NADP+-ME) led to a ∼22.7% and ∼34.5% increase, respectively, in 3HP titer in ACC-overexpressing cells. Also, the acetyl-CoA carboxylation bypass route was reconstructed to improve 3HP productivity. Co-expression of methylmalonyl-CoA carboxyltransferase (MMC) of Propionibacterium freudenreichii and phosphoenolpyruvate carboxylase (PEPC), which provides the MMC precursor, further improved the 3HP titer. The highest 3HP production of 49 mg/L in the OB3b-MCRMP strain overexpressing MCR, MMC and PEPC resulted in a 2.4-fold improvement of titer compared with that in the only MCR-overexpressing strain. Finally, we could obtain 60.59 mg/L of 3HP in 42 h using the OB3b-MCRMP strain through bioreactor operation, with a 6.36-fold increase of volumetric productivity compared than that in the flask cultures. This work demonstrates metabolic engineering of type II methanotrophs, opening the door for using type II methanotrophs as cell factories for biochemical production along with mitigation of greenhouse gases.
Collapse
|
43
|
Cho S, Ha S, Kim HS, Han JH, Kim H, Yeon YJ, Na JG, Lee J. Stimulation of cell growth by addition of tungsten in batch culture of a methanotrophic bacterium, Methylomicrobium alcaliphilum 20Z on methane and methanol. J Biotechnol 2020; 309:81-84. [PMID: 31899249 DOI: 10.1016/j.jbiotec.2019.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/12/2019] [Accepted: 12/31/2019] [Indexed: 11/15/2022]
Abstract
It is carried out for researches to convert methane, the second most potent greenhouse gas, to high-value chemicals and fuels by using methanotrophs. In this study, we observed that cell growth of Methylomicrobium alcaliphilum 20Z in the batch cultures on methane or methanol was stimulated by the addition of tungsten (W) without formate accumulation. Not only biomass yield but also the total products yield (biomass and formate) on carbon basis increased up to 11.50-fold and 1.28-fold respectively in W-added medium. Furthermore, a significant decrease in CO2 yield from formate was observed in the W-added cells, which indicates that W might have affected the activity of certain enzymes involved in carbon assimilation as well as formate dehydrogenase (FDH). The results of this study suggest that M. alcaliphilum 20Z is a promising model system for studying the physiology of the aerobic methanotroph and for enabling its industrial use for methane conversion through high cell density cultivation.
Collapse
Affiliation(s)
- Sukhyeong Cho
- C1 Gas Refinery R&D Center, Sogang University, Seoul, Republic of Korea
| | - Seonyoung Ha
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Hye Su Kim
- C1 Gas Refinery R&D Center, Sogang University, Seoul, Republic of Korea
| | - Jin Hee Han
- C1 Gas Refinery R&D Center, Sogang University, Seoul, Republic of Korea
| | - Hyeonsoo Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Young Joo Yeon
- Department of Biochemical Engineering, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Jeong Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Jinwon Lee
- C1 Gas Refinery R&D Center, Sogang University, Seoul, Republic of Korea; Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
| |
Collapse
|
44
|
Cantera S, Phandanouvong-Lozano V, Pascual C, García-Encina PA, Lebrero R, Hay A, Muñoz R. A systematic comparison of ectoine production from upgraded biogas using Methylomicrobium alcaliphilum and a mixed haloalkaliphilic consortium. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 102:773-781. [PMID: 31812092 DOI: 10.1016/j.wasman.2019.11.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 05/12/2023]
Abstract
Biogas is the byproduct of anaerobic digestion with the highest valorization potential, however its full exploitation is limited by the lack of tax incentives and the inherent presence of pollutants. The development of technologies for biogas conversion into added-value products is crucial in order to ensure the competitiveness of this bioresource. This study constitutes the first proof of concept of upgraded biogas bioconversion into the high profit margin product ectoine. Ectoine represents the most expensive product synthesized by microorganisms with a retail value of 1000 $ kg-1 and a yearly increasing demand that currently entails a total market opportunity of 15000 M€. First, the production of ectoine from upgraded biogas was assessed in batch bioreactors. The presence of H2S did not exert a negative effect on the growth of the haloalkaliphilic ectoine producers, and ectoine yields up to 49 mg g biomass-1 were obtained. A second experiment conducted in continuous bubble column bioreactors confirmed the feasibility of the process under continuous mode (with ectoine yields of 109 mg g biomass-1). Finally, this study revealed that the removal of toxic compounds (i.e. medium dilution rate of 0.5 day-1) and process operation with a consortium composed of methylotrophic/non-methylotrophic ectoine producers enhanced upgraded biogas bioconversion. This research discloses the basis for the application of this innovative technology and could boost the economic performance of anaerobic digestion.
Collapse
Affiliation(s)
- Sara Cantera
- Laboratory of Microbiology, Wageningen University and Research Center, The Netherlands
| | | | - Celia Pascual
- Department of Chemical Engineering and Environmental Technology, Universidad de Valladolid, Dr. Mergelina, s/n, Valladolid, Spain; Institute of Sustainable Processes, Universidad de Valladolid, Spain
| | - Pedro A García-Encina
- Department of Chemical Engineering and Environmental Technology, Universidad de Valladolid, Dr. Mergelina, s/n, Valladolid, Spain; Institute of Sustainable Processes, Universidad de Valladolid, Spain
| | - Raquel Lebrero
- Department of Chemical Engineering and Environmental Technology, Universidad de Valladolid, Dr. Mergelina, s/n, Valladolid, Spain; Institute of Sustainable Processes, Universidad de Valladolid, Spain
| | - Anthony Hay
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, Universidad de Valladolid, Dr. Mergelina, s/n, Valladolid, Spain; Institute of Sustainable Processes, Universidad de Valladolid, Spain.
| |
Collapse
|
45
|
Hu L, Yang Y, Yan X, Zhang T, Xiang J, Gao Z, Chen Y, Yang S, Fei Q. Molecular Mechanism Associated With the Impact of Methane/Oxygen Gas Supply Ratios on Cell Growth of Methylomicrobium buryatense 5GB1 Through RNA-Seq. Front Bioeng Biotechnol 2020; 8:263. [PMID: 32318556 PMCID: PMC7154130 DOI: 10.3389/fbioe.2020.00263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/13/2020] [Indexed: 11/13/2022] Open
Abstract
The methane (CH4)/oxygen (O2) gas supply ratios significantly affect the cell growth and metabolic pathways of aerobic obligate methanotrophs. However, few studies have explored the CH4/O2 ratios of the inlet gas, especially for the CH4 concentrations within the explosion range (5∼15% of CH4 in air). This study thoroughly investigated the molecular mechanisms associated with the impact of different CH4/O2 ratios on cell growth of a model type I methanotroph Methylomicrobium buryatense 5GB1 cultured at five different CH4/O2 supply molar ratios from 0.28 to 5.24, corresponding to CH4 content in gas mixture from 5% to 50%, using RNA-Seq transcriptomics approach. In the batch cultivation, the highest growth rate of 0.287 h-1 was achieved when the CH4/O2 supply molar ratio was 0.93 (15% CH4 in air), and it is crucial to keep the availability of carbon and oxygen levels balanced for optimal growth. At this ratio, genes related to methane metabolism, phosphate uptake system, and nitrogen fixation were significantly upregulated. The results indicated that the optimal CH4/O2 ratio prompted cell growth by increasing genes involved in metabolic pathways of carbon, nitrogen and phosphate utilization in M. buryatense 5GB1. Our findings provided an effective gas supply strategy for methanotrophs, which could enhance the production of key intermediates and enzymes to improve the performance of bioconversion processes using CH4 as the only carbon and energy source. This research also helps identify genes associated with the optimal CH4/O2 ratio for balancing energy metabolism and carbon flux, which could be candidate targets for future metabolic engineering practice.
Collapse
Affiliation(s)
- Lizhen Hu
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tianqing Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Jing Xiang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Zixi Gao
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Yunhao Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China
- *Correspondence: Shihui Yang,
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi’an Jiaotong University, Xi’an, China
- Qiang Fei,
| |
Collapse
|
46
|
Quantifying Methane and Methanol Metabolism of " Methylotuvimicrobium buryatense" 5GB1C under Substrate Limitation. mSystems 2019; 4:4/6/e00748-19. [PMID: 31822604 PMCID: PMC6906744 DOI: 10.1128/msystems.00748-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Methanotrophic metabolism has been under investigation for decades using biochemical and genetic approaches. Recently, a further step has been taken toward understanding methanotrophic metabolism in a quantitative manner by means of flux balance analysis (FBA), a mathematical approach that predicts fluxes constrained by mass balance and a few experimental measurements. However, no study has previously been undertaken to experimentally quantitate the complete methanotrophic central metabolism. The significance of this study is to fill such a gap by performing 13C INST-MFA on a fast-growing methanotroph. Our quantitative insights into the methanotrophic carbon and energy metabolism will pave the way for future FBA studies and set the stage for rational design of methanotrophic strains for industrial applications. Further, the experimental strategies can be applied to other methane or methanol utilizers, and the results will offer a unique and quantitative perspective of diverse methylotrophic metabolism. Methanotrophic bacteria are a group of prokaryotes capable of using methane as their sole carbon and energy source. Although efforts have been made to simulate and elucidate their metabolism via computational approaches or 13C tracer analysis, major gaps still exist in our understanding of methanotrophic metabolism at the systems level. Particularly, direct measurements of system-wide fluxes are required to understand metabolic network function. Here, we quantified the central metabolic fluxes of a type I methanotroph, “Methylotuvimicrobium buryatense” 5GB1C, formerly Methylomicrobium buryatense 5GB1C, via 13C isotopically nonstationary metabolic flux analysis (INST-MFA). We performed labeling experiments on chemostat cultures by switching substrates from 12C to 13C input. Following the switch, we measured dynamic changes of labeling patterns and intracellular pool sizes of several intermediates, which were later used for data fitting and flux calculations. Through computational optimizations, we quantified methane and methanol metabolism at two growth rates (0.1 h−1 and 0.05 h−1). The resulting flux maps reveal a core consensus central metabolic flux phenotype across different growth conditions: a strong ribulose monophosphate cycle, a preference for the Embden-Meyerhof-Parnas pathway as the primary glycolytic pathway, and a tricarboxylic acid cycle showing small yet significant fluxes. This central metabolic consistency is further supported by a good linear correlation between fluxes at the two growth rates. Specific differences between methane and methanol growth observed previously are maintained under substrate limitation, albeit with smaller changes. The substrate oxidation and glycolysis pathways together contribute over 80% of total energy production, while other pathways play less important roles. IMPORTANCE Methanotrophic metabolism has been under investigation for decades using biochemical and genetic approaches. Recently, a further step has been taken toward understanding methanotrophic metabolism in a quantitative manner by means of flux balance analysis (FBA), a mathematical approach that predicts fluxes constrained by mass balance and a few experimental measurements. However, no study has previously been undertaken to experimentally quantitate the complete methanotrophic central metabolism. The significance of this study is to fill such a gap by performing 13C INST-MFA on a fast-growing methanotroph. Our quantitative insights into the methanotrophic carbon and energy metabolism will pave the way for future FBA studies and set the stage for rational design of methanotrophic strains for industrial applications. Further, the experimental strategies can be applied to other methane or methanol utilizers, and the results will offer a unique and quantitative perspective of diverse methylotrophic metabolism.
Collapse
|
47
|
Bioproduction of Isoprenoids and Other Secondary Metabolites Using Methanotrophic Bacteria as an Alternative Microbial Cell Factory Option: Current Stage and Future Aspects. Catalysts 2019. [DOI: 10.3390/catal9110883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Methane is a promising carbon feedstock for industrial biomanufacturing because of its low price and high abundance. Recent advances in metabolic engineering and systems biology in methanotrophs have made it possible to produce a variety of value-added compounds from methane, including secondary metabolites. Isoprenoids are one of the largest family of secondary metabolites and have many useful industrial applications. In this review, we highlight the current efforts invested to methanotrophs for the production of isoprenoids and other secondary metabolites, including riboflavin and ectoine. The future outlook for improving secondary metabolites production (especially of isoprenoids) using metabolic engineering of methanotrophs is also discussed.
Collapse
|
48
|
Nguyen AD, Park JY, Hwang IY, Hamilton R, Kalyuzhnaya MG, Kim D, Lee EY. Genome-scale evaluation of core one-carbon metabolism in gammaproteobacterial methanotrophs grown on methane and methanol. Metab Eng 2019; 57:1-12. [PMID: 31626985 DOI: 10.1016/j.ymben.2019.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/18/2019] [Accepted: 10/14/2019] [Indexed: 11/29/2022]
Abstract
Methylotuvimicrobium alcaliphilum 20Z is a promising platform strain for bioconversion of one-carbon (C1) substrates into value-added products. To carry out robust metabolic engineering with methylotrophic bacteria and to implement C1 conversion machinery in non-native hosts, systems-level evaluation and understanding of central C1 metabolism in methanotrophs under various conditions is pivotal but yet elusive. In this study, a genome-scale integrated approach was used to provide in-depth knowledge on the metabolic pathways of M. alcaliphilum 20Z grown on methane and methanol. Systems assessment of core carbon metabolism indicated the methanol assimilation pathway is mostly coupled with the efficient Embden-Meyerhof-Parnas (EMP) pathway along with the serine cycle. In addition, an incomplete TCA cycle operated in M. alcaliphilum 20Z on methanol, which might only supply precursors for de novo synthesis but not reducing powers. Instead, it appears that the direct formaldehyde oxidation pathway supply energy for the whole metabolic system. Additionally, a comparative transcriptomic analysis in multiple gammaproteobacterial methanotrophs also revealed the transcriptional responses of central metabolism on carbon substrate change. These findings provided a systems-level understanding of carbon metabolism and new opportunities for strain design to produce relevant products from different C1-feedstocks.
Collapse
Affiliation(s)
- Anh Duc Nguyen
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - Joon Young Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - In Yeub Hwang
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - Richard Hamilton
- Biology Department, San Diego State University, San Diego, CA, 92182-4614, United States
| | - Marina G Kalyuzhnaya
- Biology Department, San Diego State University, San Diego, CA, 92182-4614, United States
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, South Korea.
| |
Collapse
|
49
|
Kabimoldayev I, Nguyen AD, Yang L, Park S, Lee EY, Kim D. Basics of genome-scale metabolic modeling and applications on C1-utilization. FEMS Microbiol Lett 2019; 365:5106816. [PMID: 30256945 DOI: 10.1093/femsle/fny241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/23/2018] [Indexed: 12/11/2022] Open
Abstract
It is fundamental to understand the relationship between genotype and phenotype in biology. This requires comprehensive knowledge of metabolic pathways, genetic information and well-defined mathematic modeling. Integration of knowledge on metabolism with mathematical modeling results in genome-scale metabolic models which have proven useful to investigate bacterial metabolism and to engineer bacterial strains capable of producing value-added biochemical. Single carbon substrates such as methane and carbon monoxide have drawn interests and they assumed one of next-generation feedstocks because of their high abundance and low price. The methylotroph and acetogen-based biorefineries hold promises for bioconversion of C1 substrates into biofuels and high value compounds. As an effort on expanding our knowledge on C1 utilization approaches, in silico computational framework of C1-metabolism in methylotrophic and acetogenic bacteria has been developed. In this review, genome-scale metabolic models for C1-utilizing bacteria and well-established analysis tools are presented for potential uses for study of C1 metabolism at the genome scale and its application in metabolic engineering.
Collapse
Affiliation(s)
- Ilyas Kabimoldayev
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, South Korea
| | - Anh Duc Nguyen
- Department of Chemical Engineering, Kyung Hee University, Yongin 17104, South Korea
| | - Laurence Yang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,The Novo Nordisk Foundation Center for Biosustainabiliy, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Sunghoon Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin 17104, South Korea
| | - Donghyuk Kim
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, South Korea.,School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
50
|
Metabolic engineering of the type I methanotroph Methylomonas sp. DH-1 for production of succinate from methane. Metab Eng 2019; 54:170-179. [DOI: 10.1016/j.ymben.2019.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/21/2019] [Accepted: 03/31/2019] [Indexed: 12/20/2022]
|