1
|
Maupilé L, Chaib J, Boualem A, Bendahmane A. Parthenocarpy, a pollination-independent fruit set mechanism to ensure yield stability. TRENDS IN PLANT SCIENCE 2024; 29:1254-1265. [PMID: 39034223 DOI: 10.1016/j.tplants.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
Fruit development is essential for flowering plants' reproduction and a significant food source. Climate change threatens fruit yields due to its impact on pollination and fertilization processes, especially vulnerable to extreme temperatures, insufficient light, and pollinator decline. Parthenocarpy, the development of fruit without fertilization, offers a solution, ensuring yield stability in adverse conditions and enhancing fruit quality. Parthenocarpic fruits not only secure agricultural production but also exhibit improved texture, appearance, and shelf life, making them desirable for food processing and other applications. Recent research unveils the molecular mechanisms behind parthenocarpy, implicating transcription factors (TFs), noncoding RNAs, and phytohormones such as auxin, gibberellin (GA), and cytokinin (CK). Here we review recent findings, construct regulatory models, and identify areas for further research.
Collapse
Affiliation(s)
- Lea Maupilé
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; Vilmorin & Cie, Route d'Ennezat, 63720 Chappes, France
| | - Jamila Chaib
- Vilmorin & Cie, Paraje La Reserva, 04725 La Mojonera, Spain
| | - Adnane Boualem
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France.
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France; Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France.
| |
Collapse
|
2
|
Li BJ, Bao RX, Shi YN, Grierson D, Chen KS. Auxin response factors: important keys for understanding regulatory mechanisms of fleshy fruit development and ripening. HORTICULTURE RESEARCH 2024; 11:uhae209. [PMID: 39372288 PMCID: PMC11450211 DOI: 10.1093/hr/uhae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/18/2024] [Indexed: 10/08/2024]
Abstract
Auxin response transcription factors (ARFs) form a large gene family, many of whose members operate at the final step of the auxin signaling pathway. ARFs participate directly in many aspects of plant growth and development. Here we summarize recent advances in understanding the roles of ARFs in regulating aspects of fleshy fruit development and ripening. ARFs play a crucial role in regulating fruit size, color, nutrients, texture, yield, and other properties that ultimately influence the ripening and quality of important crops such as tomato, apple, strawberry, and peach. ARFs impact these processes acting as positive, negative, or bidirectional regulators via phytohormone-dependent or -independent mechanisms. In the phytohormone-dependent pathway, ARFs act as a central hub linking interactions with multiple phytohormones generating diverse effects. The three domains within ARFs, namely the DNA-binding domain, the middle region, and the carboxy-terminal dimerization domain, exhibit distinct yet overlapping functions, contributing to a range of mechanisms mediated by ARFs. These findings not only provide a profound understanding of ARF functions, but also raise new questions. Further exploration can lead to a more comprehensive understanding of the regulatory mechanisms of fleshy fruit development and ripening mediated by ARFs.
Collapse
Affiliation(s)
- Bai-Jun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, No.100, East Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Ruo-Xuan Bao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, No.100, East Daxue Road, Xixiangtang District, Nanning, Guangxi 530004, China
| | - Yan-Na Shi
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou 310058, China
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Donald Grierson
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou, 310058, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Kun-Song Chen
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou 310058, China
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, No. 866, Yuhangtang Road, Xihu District, Hangzhou 310058, China
| |
Collapse
|
3
|
Cardarelli M, Ceccarelli AV, El Nakhel C, Rouphael Y, Salehi H, Ganugi P, Zhang L, Luigi L, Pii Y, Choi S, Kim HJ, Colla G. Foliar applications of a Malvaceae-derived protein hydrolysate and its fractions differentially modulate yield and functional traits of tomato under optimal and suboptimal nitrogen application. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7603-7616. [PMID: 38804737 DOI: 10.1002/jsfa.13596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/04/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Protein hydrolysates (PHs) can enhance plant nitrogen nutrition and improve the quality of vegetables, depending on their bioactive compounds. A tomato greenhouse experiment was conducted under both optimal (14 mM) and suboptimal (2 mM) nitrogen (N-NO3) conditions. Tomatoes were treated with a new Malvaceae-derived PH (MDPH) and its molecular fractions (MDPH1, >10 kDa; MDPH2, 1-10 kDa and MDPH3, <1 kDa). RESULTS Under optimal N conditions, the plants increased biomass and fruit yield, and showed a higher photosynthetic pigment content in leaves in comparison with suboptimal N, whereas under N-limiting conditions, an increase in dry matter, soluble solid content (SSC) and lycopene, a reduction in firmness, and changes in organic acid and phenolic compounds were observed. With 14 mM N-NO3, MDPH3 stimulated an increase in dry weight and increased yield components and lycopene in the fruit. The MDPH2 fraction also resulted in increased lycopene accumulation in fruit under 14 mM N-NO3. At a low N level, the PH fractions showed distinct effects compared with the whole MDPH and the control, with an increase in biomass for MDPH1 and MDPH2 and a higher pigment content for MDPH3. Regardless of N availability, all the fractions affected fruit quality by increasing SSC, whereas MDPH2 and MDPH3 modified organic acid content and showed a higher concentration of flavonols, lignans, and stilbenes. CONCLUSION The molecular weight of the peptides modifies the effect of PHs on plant performance, with different behavior depending on the level of N fertilization, confirming the effectiveness of fractioning processes. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Christophe El Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Hajar Salehi
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Catholic University of the Sacred Heart, Piacenza, Italy
| | - Paola Ganugi
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Catholic University of the Sacred Heart, Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Catholic University of the Sacred Heart, Piacenza, Italy
| | - Lucini Luigi
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Catholic University of the Sacred Heart, Piacenza, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen/Bolzano, Bolzano, Italy
| | - Seunghyun Choi
- Texas A&M AgriLife Research and Extension Center at Uvalde, Uvalde, TX, USA
| | - Hye-Ji Kim
- Agri-tech and Food Innovation Department, Urban Food Solutions Division, Singapore Food Agency, Singapore, Singapore
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
4
|
Guan H, Yang X, Lin Y, Xie B, Zhang X, Ma C, Xia R, Chen R, Hao Y. The hormone regulatory mechanism underlying parthenocarpic fruit formation in tomato. FRONTIERS IN PLANT SCIENCE 2024; 15:1404980. [PMID: 39119498 PMCID: PMC11306060 DOI: 10.3389/fpls.2024.1404980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Parthenocarpic fruits, known for their superior taste and reliable yields in adverse conditions, develop without the need for fertilization or pollination. Exploring the physiological and molecular mechanisms behind parthenocarpic fruit development holds both theoretical and practical significance, making it a crucial area of study. This review examines how plant hormones and MADS-box transcription factors control parthenocarpic fruit formation. It delves into various aspects of plant hormones-including auxin, gibberellic acid, cytokinins, ethylene, and abscisic acid-ranging from external application to biosynthesis, metabolism, signaling pathways, and their interplay in influencing parthenocarpic fruit development. The review also explores the involvement of MADS family gene functions in these processes. Lastly, we highlight existing knowledge gaps and propose directions for future research on parthenocarpy.
Collapse
Affiliation(s)
- Hongling Guan
- College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Xiaolong Yang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yuxiang Lin
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Baoxing Xie
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xinyue Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Chongjian Ma
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Rui Xia
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yanwei Hao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Zhang S, Chen Z, Zhao J, Diao S, Tian L, Zhao Y, Li F, Zhu GP. Interfamily Grafted Hybrids Vitis vinifera/ Schisandra chinensis Resulted in Transcriptomic, Phenotypic, and Metabolic Changes. PLANTS (BASEL, SWITZERLAND) 2024; 13:1676. [PMID: 38931108 PMCID: PMC11207768 DOI: 10.3390/plants13121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Long-distance transfer of genetic material and metabolites between rootstock and scions is well documented in homo-grafted hybrids but has rarely been reported in genetically-distant grafts where the rootstock and scion belong to different families. In this study, we grafted Vitis vinifera scions onto Schisandra chinensis stocks and obtained 20 vegetative hybrids, Vitis vinifera/Schisandra chinensis (Vs). After 25 years of growth, we found that the phenotypes of the leaves, internodes, and fruits of the Vs hybrids above the graft union resembled an intermediate phenotype between V. vinifera and S. chinensis, and the new traits were stable when propagated vegetatively. We further analyzed genetic differences between Vv plants and Vs hybrids using high-throughput sequencing, while metabolomes were analyzed by liquid chromatography-mass spectrometry (LC-MS). We found a total of 2113 differentially expressed genes (DEGs). GO annotation and KEGG pathway enrichment analysis showed that these DEGs enriched mainly in oxidation-reduction and metabolic processes. Seventy-nine differentially expressed miRNAs (DEMs) containing 27 known miRNAs and 52 novel miRNAs were identified. A degradation analysis detected 840 target genes corresponding to 252 miRNAs, of which 12 DEMs and their corresponding target gene expression levels were mostly negatively correlated. Furthermore, 1188 differential metabolic compounds were identified. In particular, in Vs hybrids, the abundance of the metabolites schizandrin and gomisin as the main medicinal ingredients in S. chinensis were down-regulated and up-regulated, respectively. Our data demonstrated the effects of interfamily grafts on the phenotype, transcript profile and metabolites of the scion, and also provided new insight into the genetic, phenotypic, and metabolic plasticity associated with genetically distant grafted hybrids.
Collapse
Affiliation(s)
- Shulin Zhang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China (Z.C.)
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China (F.L.)
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China;
| | - Zhuo Chen
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China (Z.C.)
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China (F.L.)
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China;
| | - Junhui Zhao
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China (Z.C.)
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming 650223, China
| | - Songfeng Diao
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China (F.L.)
| | - Li Tian
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China;
| | - Ying Zhao
- Guangxi Subtropical Crops Research Institute, Nanning 530001, China;
| | - Fangdong Li
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China (F.L.)
| | - Gao-Pu Zhu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China (Z.C.)
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China (F.L.)
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China;
| |
Collapse
|
6
|
Hu J, Wang J, Muhammad T, Yang T, Li N, Yang H, Yu Q, Wang B. Integrative Analysis of Metabolome and Transcriptome of Carotenoid Biosynthesis Reveals the Mechanism of Fruit Color Change in Tomato ( Solanum lycopersicum). Int J Mol Sci 2024; 25:6493. [PMID: 38928199 PMCID: PMC11204166 DOI: 10.3390/ijms25126493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Tomato fruit ripening is accompanied by carotenoid accumulation and color changes. To elucidate the regulatory mechanisms underlying carotenoid synthesis during fruit ripening, a combined transcriptomic and metabolomic analysis was conducted on red-fruited tomato (WP190) and orange-fruited tomato (ZH108). A total of twenty-nine (29) different carotenoid compounds were identified in tomato fruits at six different stages. The abundance of the majority of the carotenoids was enhanced significantly with fruit ripening, with higher levels of lycopene; (E/Z)-lycopene; and α-, β- and γ-carotenoids detected in the fruits of WP190 at 50 and 60 days post anthesis (DPA). Transcriptome analysis revealed that the fruits of two varieties exhibited the highest number of differentially expressed genes (DEGs) at 50 DPA, and a module of co-expressed genes related to the fruit carotenoid content was established by WGCNA. qRT-PCR analysis validated the transcriptome result with a significantly elevated transcript level of lycopene biosynthesis genes (including SlPSY2, SlZCIS, SlPDS, SlZDS and SlCRTSO2) observed in WP190 at 50 DPA in comparison to ZH108. In addition, during the ripening process, the expression of ethylene biosynthesis (SlACSs and SlACOs) and signaling (SlEIN3 and SlERF1) genes was also increased, and these mechanisms may regulate carotenoid accumulation and fruit ripening in tomato. Differential expression of several key genes in the fruit of two tomato varieties at different stages regulates the accumulation of carotenoids and leads to differences in color between the two varieties of tomato. The results of this study provide a comprehensive understanding of carotenoid accumulation and ethylene biosynthesis and signal transduction pathway regulatory mechanisms during tomato fruit development.
Collapse
Affiliation(s)
- Jiahui Hu
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Juan Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Tayeb Muhammad
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Tao Yang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Ning Li
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Haitao Yang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Qinghui Yu
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| | - Baike Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China; (J.W.)
| |
Collapse
|
7
|
Liu L, Yahaya BS, Li J, Wu F. Enigmatic role of auxin response factors in plant growth and stress tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1398818. [PMID: 38903418 PMCID: PMC11188990 DOI: 10.3389/fpls.2024.1398818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Abiotic and biotic stresses globally constrain plant growth and impede the optimization of crop productivity. The phytohormone auxin is involved in nearly every aspect of plant development. Auxin acts as a chemical messenger that influences gene expression through a short nuclear pathway, mediated by a family of specific DNA-binding transcription factors known as Auxin Response Factors (ARFs). ARFs thus act as effectors of auxin response and translate chemical signals into the regulation of auxin responsive genes. Since the initial discovery of the first ARF in Arabidopsis, advancements in genetics, biochemistry, genomics, and structural biology have facilitated the development of models elucidating ARF action and their contributions to generating specific auxin responses. Yet, significant gaps persist in our understanding of ARF transcription factors despite these endeavors. Unraveling the functional roles of ARFs in regulating stress response, alongside elucidating their genetic and molecular mechanisms, is still in its nascent phase. Here, we review recent research outcomes on ARFs, detailing their involvement in regulating leaf, flower, and root organogenesis and development, as well as stress responses and their corresponding regulatory mechanisms: including gene expression patterns, functional characterization, transcriptional, post-transcriptional and post- translational regulation across diverse stress conditions. Furthermore, we delineate unresolved questions and forthcoming challenges in ARF research.
Collapse
Affiliation(s)
- Ling Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Baba Salifu Yahaya
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| | - Jing Li
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| |
Collapse
|
8
|
Tan C, Nie W, Liu Y, Wang Y, Yuan Y, Liu J, Chang E, Xiao W, Jia Z. Physiological response and molecular mechanism of Quercus variabilis under cadmium stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108724. [PMID: 38744084 DOI: 10.1016/j.plaphy.2024.108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Heavy metal pollution is a global environmental problem, and Quercus variabilis has a stronger tolerance to Cd stress than do other species. We aimed to explore the physiological response and molecular mechanisms of Q. variabilis to Cd stress. In this study, the antioxidant enzyme activities of leaves were determined, while the photosynthetic parameters of leaves were measured using Handy PEA, and ion fluxes and DEGs in the roots were investigated using noninvasive microtest technology (NMT) and RNA sequencing techniques, respectively. Cd stress at different concentrations and for different durations affected the uptake patterns of Cd2+ and H+ by Q. variabilis and affected the photosynthetic efficiency of leaves. Moreover, there was a positive relationship between antioxidant enzyme (CAT and POD) activity and Cd concentration. Transcriptome analysis revealed that many genes, including genes related to the cell wall, glutathione metabolism, ion uptake and transport, were significantly upregulated in response to cadmium stress in Q. variabilis roots. WGCNA showed that these DEGs could be divided into eight modules. The turquoise and blue modules exhibited the strongest correlations, and the most significantly enriched pathways were the phytohormone signaling pathway and the phenylpropanoid biosynthesis pathway, respectively. These findings suggest that Q. variabilis can bolster plant tolerance by modulating signal transduction and increasing the synthesis of compounds, such as lignin, under Cd stress. In summary, Q. variabilis can adapt to Cd stress by increasing the activity of antioxidant enzymes, and regulating the fluxes of Cd2+ and H+ ions and the expression of Cd stress-related genes.
Collapse
Affiliation(s)
- Cancan Tan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institution, Chinese Academy of Forestry, Beijing, 100091, China; State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wen Nie
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institution, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yifu Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institution, Chinese Academy of Forestry, Beijing, 100091, China
| | - Ya Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yanchao Yuan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institution, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jianfeng Liu
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Ermei Chang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wenfa Xiao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institution, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zirui Jia
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China; Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
9
|
Asins MJ, Carbonell EA. Meta-QTL and Candidate Gene Analyses of Agronomic Salt Tolerance and Related Traits in an RIL Population Derived from Solanum pimpinellifolium. Int J Mol Sci 2024; 25:6055. [PMID: 38892245 PMCID: PMC11172916 DOI: 10.3390/ijms25116055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Breeding salt-tolerant crops is necessary to reduce food insecurity. Prebreeding populations are fundamental for uncovering tolerance alleles from wild germplasm. To obtain a physiological interpretation of the agronomic salt tolerance and better criteria to identify candidate genes, quantitative trait loci (QTLs) governing productivity-related traits in a population of recombinant inbred lines (RIL) derived from S. pimpinellifolium were reanalyzed using an SNP-saturated linkage map and clustered using QTL meta-analysis to synthesize QTL information. A total of 60 out of 85 QTLs were grouped into 12 productivity MQTLs. Ten of them were found to overlap with other tomato yield QTLs that were found using various mapping populations and cultivation conditions. The MQTL compositions showed that fruit yield was genetically associated with leaf water content. Additionally, leaf Cl- and K+ contents were related to tomato productivity under control and salinity conditions, respectively. More than one functional candidate was frequently found, explaining most productivity MQTLs, indicating that the co-regulation of more than one gene within those MQTLs might explain the clustering of agronomic and physiological QTLs. Moreover, MQTL1.2, MQTL3 and MQTL6 point to the root as the main organ involved in increasing productivity under salinity through the wild allele, suggesting that adequate rootstock/scion combinations could have a clear agronomic advantage under salinity.
Collapse
Affiliation(s)
- Maria J. Asins
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Valencia, Spain
| | | |
Collapse
|
10
|
Divya D, Robin AHK, Cho LH, Kim D, Lee DJ, Kim CK, Chung MY. Genome-wide characterization and expression profiling of E2F/DP gene family members in response to abiotic stress in tomato (Solanum lycopersicum L.). BMC PLANT BIOLOGY 2024; 24:436. [PMID: 38773361 PMCID: PMC11110339 DOI: 10.1186/s12870-024-05107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/05/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND E2F/DP (Eukaryotic 2 transcription factor/dimerization partner) family proteins play an essential function in the cell cycle development of higher organisms. E2F/DP family genes have been reported only in a few plant species. However, comprehensive genome-wide characterization analysis of the E2F/DP gene family of Solanum lycopersicum has not been reported so far. RESULTS This study identified eight nonredundant SlE2F/DP genes that were classified into seven groups in the phylogenetic analysis. All eight genes had a single E2F-TDP domain and few genes had additional domains. Two segmental duplication gene pairs were observed within tomato, in addition to cis-regulatory elements, miRNA target sites and phosphorylation sites which play an important role in plant development and stress response in tomato. To explore the three-dimensional (3D) models and gene ontology (GO) annotations of SlE2F/DP proteins, we pointed to their putative transporter activity and their interaction with several putative ligands. The localization of SlE2F/DP-GFP fused proteins in the nucleus and endoplasmic reticulum suggested that they may act in other biological functions. Expression studies revealed the differential expression pattern of most of the SlE2F/DP genes in various organs. Moreover, the expression of E2F/DP genes against abiotic stress, particularly SlE2F/DP2 and/or SlE2F/DP7, was upregulated in response to heat, salt, cold and ABA treatment. Furthermore, the co-expression analysis of SlE2F/DP genes with multiple metabolic pathways was co-expressed with defence genes, transcription factors and so on, suggested their crucial role in various biological processes. CONCLUSIONS Overall, our findings provide a way to understand the structure and function of SlE2F/DP genes; it might be helpful to improve fruit development and tolerance against abiotic stress through marker-assisted selection or transgenic approaches.
Collapse
Affiliation(s)
- Dhanasekar Divya
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-950, Republic of Korea
| | - Arif Hasan Khan Robin
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Lae-Hyeon Cho
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang-si, Gyeongsangnam-do, 50463, Republic of Korea
| | - Dohyeon Kim
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang-si, Gyeongsangnam-do, 50463, Republic of Korea
| | - Do-Jin Lee
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-950, Republic of Korea
| | - Chang-Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Mi-Young Chung
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-950, Republic of Korea.
| |
Collapse
|
11
|
Zhang J, Dong T, Hu Z, Li J, Zhu M, Chen G. A SEPALLATA MADS-Box Transcription Factor, SlMBP21, Functions as a Negative Regulator of Flower Number and Fruit Yields in Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:1421. [PMID: 38794491 PMCID: PMC11125064 DOI: 10.3390/plants13101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
MADS-box transcription factors act as the crucial regulators in plant organ differentiation. Crop yields are highly influenced by the flower number and fruit growth. However, flower identification is a very complex biological process, which involves many cascade regulations. The molecular mechanisms underlying the genetic regulation of flower identification in cultivated plants, such as tomato, are intricate and require further exploration. In this study, we investigated the vital function of a SEPALLATA (SEP) MADS-box gene, SlMBP21, in tomato sympodial inflorescence meristem (SIM) development for the conversion from SIMs to floral meristems (FMs). SlMBP21 transcripts were primarily accumulated in young inflorescence meristem, flowers, sepals, and abscission zones. The Ailsa Craig (AC++) tomato plants with suppressed SlMBP21 mRNA levels using RNAi exhibited a large increase in flower number and fruit yields in addition to enlarged sepals and inhibited abscission zone development. Scanning electron microscopy (SEM) revealed that the maturation of inflorescence meristems (IMs) was repressed in SlMBP21-RNAi lines. RNA-seq and qRT-PCR analyses showed that numerous genes related to the flower development, plant hormone signal transduction, cell cycle, and cell proliferation et al. were dramatically changed in SlMBP21-RNAi lines. Yeast two-hybrid assay exhibited that SlMBP21 can respectively interact with SlCMB1, SFT, JOINTLESS, and MC, which play key roles in inflorescence meristems or FM development. In summary, our data demonstrate that SlMBP21 functions as a key regulator in SIM development and the conversion from SIMs to FMs, through interacting with other regulatory proteins to control the expression of related genes.
Collapse
Affiliation(s)
- Jianling Zhang
- Laboratory of Plant Germplasm Resources Innovation and Utilization, School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221008, China; (T.D.); (M.Z.)
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Z.H.); (J.L.)
| | - Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Z.H.); (J.L.)
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221008, China; (T.D.); (M.Z.)
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Z.H.); (J.L.)
| |
Collapse
|
12
|
Picarella ME, Ruiu F, Selleri L, Presa S, Mizzotti C, Masiero S, Colombo L, Soressi GP, Granell A, Mazzucato A. Genetic and molecular mechanisms underlying the parthenocarpic fruit mutation in tomato. FRONTIERS IN PLANT SCIENCE 2024; 15:1329949. [PMID: 38601310 PMCID: PMC11004453 DOI: 10.3389/fpls.2024.1329949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
Parthenocarpy allows fruit set independently of fertilization. In parthenocarpic-prone tomato genotypes, fruit set can be achieved under pollen-limiting environmental conditions and in sterile mutants. Parthenocarpy is also regarded as a quality-related trait, when seedlessness is associated with positive fruit quality aspects. Among the different sources of genetic parthenocarpy described in tomato, the parthenocarpic fruit (pat) mutation is of particular interest because of its strong expressivity, high fruit set, and enhanced fruit quality. The complexity of the pat "syndrome" associates a strong competence for parthenocarpy with a complex floral phenotype involving stamen and ovule developmental aberrations. To understand the genetic basis of the phenotype, we mapped the pat locus within a 0.19-cM window of Chr3, comprising nine coding loci. A non-tolerated missense mutation found in the 14th exon of Solyc03g120910, the tomato ortholog of the Arabidopsis HD-Zip III transcription factor HB15 (SlHB15), cosegregated with the pat phenotype. The role of SlHB15 in tomato reproductive development was supported by its expression in developing ovules. The link between pat and SlHB15 was validated by complementation and knock out experiments by co-suppression and CRISPR/Cas9 approaches. Comparing the phenotypes of pat and those of Arabidopsis HB15 mutants, we argued that the gene plays similar functions in species with fleshy and dry fruits, supporting a conserved mechanism of fruit set regulation in plants.
Collapse
Affiliation(s)
- Maurizio E. Picarella
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| | - Fabrizio Ruiu
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| | - Luigi Selleri
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| | - Silvia Presa
- Departamento de Biotecnología de Cultivos, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) – Universitat Politécnica de Valéncia (UPV), Valencia, Spain
| | - Chiara Mizzotti
- Dipartimento di Bioscienze (DBS), Università degli Studi di Milano, Milano, Italy
| | - Simona Masiero
- Dipartimento di Bioscienze (DBS), Università degli Studi di Milano, Milano, Italy
| | - Lucia Colombo
- Dipartimento di Bioscienze (DBS), Università degli Studi di Milano, Milano, Italy
| | - Gian Piero Soressi
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| | - Antonio Granell
- Departamento de Biotecnología de Cultivos, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) – Universitat Politécnica de Valéncia (UPV), Valencia, Spain
| | - Andrea Mazzucato
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| |
Collapse
|
13
|
Hua B, Wu J, Han X, Bian X, Xu Z, Sun C, Wang R, Zhang W, Liang F, Zhang H, Li S, Li Z, Wu S. Auxin homeostasis is maintained by sly-miR167-SlARF8A/B-SlGH3.4 feedback module in the development of locular and placental tissues of tomato fruits. THE NEW PHYTOLOGIST 2024; 241:1177-1192. [PMID: 37985404 DOI: 10.1111/nph.19391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 10/20/2023] [Indexed: 11/22/2023]
Abstract
The locular gel, produced by the placenta, is important for fruit flavor and seed development in tomato. However, the mechanism underlying locule and placenta development is not fully understood yet. Here, we show that two SlARF transcription factors, SlARF8B and SlARF8A (SlARF8A/B), promote the development of locular and placenta tissues. The expression of both SlARF8A and SlARF8B is repressed by sly-microRNA167 (sly-miR167), allowing for the activation of auxin downstream genes. In slarf8a, slarf8b, and slarf8a/b mutants, the auxin (IAA) levels are decreased, whereas the levels of inactive IAA conjugates including IAA-Ala, IAA-Asp, and IAA-Glu are increased. We further find that SlARF8B directly inhibits the expression of SlGH3.4, an acyl acid amino synthetase that conjugates the amino acids to IAA. Disruption of such auxin balance by the increased expression of SlGH3.4 or SlGH3.2 results in defective locular and placental tissues. Taken together, our findings reveal an important regulatory module constituted by sly-miR167-SlARF8A/B-SlGH3.4 during the development of locular and placenta tissues of tomato fruits.
Collapse
Affiliation(s)
- Bing Hua
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Junqing Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoqian Han
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinxin Bian
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhijing Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Sun
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Renyin Wang
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenyan Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Fei Liang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Huimin Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Shuang Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Shuang Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
14
|
Zhang L, Xu Y, Li Y, Zheng S, Zhao Z, Chen M, Yang H, Yi H, Wu J. Transcription factor CsMYB77 negatively regulates fruit ripening and fruit size in citrus. PLANT PHYSIOLOGY 2024; 194:867-883. [PMID: 37935634 DOI: 10.1093/plphys/kiad592] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
MYB family transcription factors (TFs) play essential roles in various biological processes, yet their involvement in regulating fruit ripening and fruit size in citrus remains poorly understood. In this study, we have established that the R2R3-MYB TF, CsMYB77, exerts a negative regulatory influence on fruit ripening in both citrus and tomato (Solanum lycopersicum), while also playing a role in modulating fruit size in citrus. The overexpression of CsMYB77 in tomato and Hongkong kumquat (Fortunella hindsii) led to notably delayed fruit ripening phenotypes. Moreover, the fruit size of Hongkong kumquat transgenic lines was largely reduced. Based on DNA affinity purification sequencing and verified interaction assays, SEVEN IN ABSENTIA OF ARABIDOPSIS THALIANA4 (SINAT4) and PIN-FORMED PROTEIN5 (PIN5) were identified as downstream target genes of CsMYB77. CsMYB77 inhibited the expression of SINAT4 to modulate abscisic acid (ABA) signaling, which delayed fruit ripening in transgenic tomato and Hongkong kumquat lines. The expression of PIN5 was activated by CsMYB77, which promoted free indole-3-acetic acid decline and modulated auxin signaling in the fruits of transgenic Hongkong kumquat lines. Taken together, our findings revealed a fruit development and ripening regulation module (MYB77-SINAT4/PIN5-ABA/auxin) in citrus, which enriches the understanding of the molecular regulatory network underlying fruit ripening and size.
Collapse
Affiliation(s)
- Li Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yang Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yanting Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Saisai Zheng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhenmei Zhao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Meiling Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Haijian Yang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, PR China
| | - Hualin Yi
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Juxun Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
15
|
Wang T, Long C, Chang M, Wu Y, Su S, Wei J, Jiang S, Wang X, He J, Xing D, He Y, Ran Y, Li W. Genome-wide identification of the B3 transcription factor family in pepper (Capsicum annuum) and expression patterns during fruit ripening. Sci Rep 2024; 14:2226. [PMID: 38278802 PMCID: PMC10817905 DOI: 10.1038/s41598-023-51080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/30/2023] [Indexed: 01/28/2024] Open
Abstract
In plants, B3 transcription factors play important roles in a variety of aspects of their growth and development. While the B3 transcription factor has been extensively identified and studied in numerous species, there is limited knowledge regarding its B3 superfamily in pepper. Through the utilization of genome-wide sequence analysis, we identified a total of 106 B3 genes from pepper (Capsicum annuum), they are categorized into four subfamilies: RAV, ARF, LAV, and REM. Chromosome distribution, genetic structure, motif, and cis-acting element of the pepper B3 protein were analyzed. Conserved gene structure and motifs outside the B3 domain provided strong evidence for phylogenetic relationships, allowing potential functions to be deduced by comparison with homologous genes from Arabidopsis. According to the high-throughput transcriptome sequencing analysis, expression patterns differ during different phases of fruit development in the majority of the 106 B3 pepper genes. By using qRT-PCR analysis, similar expression patterns in fruits from various time periods were discovered. In addition, further analysis of the CaRAV4 gene showed that its expression level decreased with fruit ripening and located in the nucleus. B3 transcription factors have been genome-wide characterized in a variety of crops, but the present study is the first genome-wide analysis of the B3 superfamily in pepper. More importantly, although B3 transcription factors play key regulatory roles in fruit development, it is uncertain whether B3 transcription factors are involved in the regulation of the fruit development and ripening process in pepper and their specific regulatory mechanisms because the molecular mechanisms of the process have not been fully explained. The results of the study provide a foundation and new insights into the potential regulatory functions and molecular mechanisms of B3 genes in the development and ripening process of pepper fruits, and provide a solid theoretical foundation for the enhancement of the quality of peppers and their selection and breeding of high-yield varieties.
Collapse
Affiliation(s)
- Tao Wang
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- Vegetable Research Institute, Guizhou University, Guiyang, 550025, China
- Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province, Guiyang, 550025, China
| | - Cha Long
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- Vegetable Research Institute, Guizhou University, Guiyang, 550025, China
- Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province, Guiyang, 550025, China
| | - Meixia Chang
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Yuan Wu
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Shixian Su
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Jingjiang Wei
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- Vegetable Research Institute, Guizhou University, Guiyang, 550025, China
| | - Suyan Jiang
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Xiujun Wang
- College of Brewing and Food Engineering, Guizhou University, Guiyang, 550025, China
| | - Jianwen He
- Pepper Research Institute of Guizhou Province, Guiyang, 550006, China
| | - Dan Xing
- Pepper Research Institute of Guizhou Province, Guiyang, 550006, China
| | - Yangbo He
- Agriculture Development and Research Institute of Guizhou Province, Guiyang, 550006, China
| | - Yaoqi Ran
- Agriculture Development and Research Institute of Guizhou Province, Guiyang, 550006, China
| | - Wei Li
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
- Vegetable Research Institute, Guizhou University, Guiyang, 550025, China.
- Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province, Guiyang, 550025, China.
| |
Collapse
|
16
|
Baranov D, Dolgov S, Timerbaev V. New Advances in the Study of Regulation of Tomato Flowering-Related Genes Using Biotechnological Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:359. [PMID: 38337892 PMCID: PMC10856997 DOI: 10.3390/plants13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
The tomato is a convenient object for studying reproductive processes, which has become a classic. Such complex processes as flowering and fruit setting require an understanding of the fundamental principles of molecular interaction, the structures of genes and proteins, the construction of signaling pathways for transcription regulation, including the synchronous actions of cis-regulatory elements (promoter and enhancer), trans-regulatory elements (transcription factors and regulatory RNAs), and transposable elements and epigenetic regulators (DNA methylation and acetylation, chromatin structure). Here, we discuss the current state of research on tomatoes (2017-2023) devoted to studying the function of genes that regulate flowering and signal regulation systems using genome-editing technologies, RNA interference gene silencing, and gene overexpression, including heterologous expression. Although the central candidate genes for these regulatory components have been identified, a complete picture of their relationship has yet to be formed. Therefore, this review summarizes the latest achievements related to studying the processes of flowering and fruit set. This work attempts to display the gene interaction scheme to better understand the events under consideration.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Sergey Dolgov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
17
|
Baranov D, Timerbaev V. Recent Advances in Studying the Regulation of Fruit Ripening in Tomato Using Genetic Engineering Approaches. Int J Mol Sci 2024; 25:760. [PMID: 38255834 PMCID: PMC10815249 DOI: 10.3390/ijms25020760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Tomato (Solanum lycopersicum L.) is one of the most commercially essential vegetable crops cultivated worldwide. In addition to the nutritional value, tomato is an excellent model for studying climacteric fruits' ripening processes. Despite this, the available natural pool of genes that allows expanding phenotypic diversity is limited, and the difficulties of crossing using classical selection methods when stacking traits increase proportionally with each additional feature. Modern methods of the genetic engineering of tomatoes have extensive potential applications, such as enhancing the expression of existing gene(s), integrating artificial and heterologous gene(s), pointing changes in target gene sequences while keeping allelic combinations characteristic of successful commercial varieties, and many others. However, it is necessary to understand the fundamental principles of the gene molecular regulation involved in tomato fruit ripening for its successful use in creating new varieties. Although the candidate genes mediate ripening have been identified, a complete picture of their relationship has yet to be formed. This review summarizes the latest (2017-2023) achievements related to studying the ripening processes of tomato fruits. This work attempts to systematize the results of various research articles and display the interaction pattern of genes regulating the process of tomato fruit ripening.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
18
|
Hu K, Dai Q, Ajayo BS, Wang H, Hu Y, Li Y, Huang H, Liu H, Liu Y, Wang Y, Gao L, Xie Y. Insights into ZmWAKL in maize kernel development: genome-wide investigation and GA-mediated transcription. BMC Genomics 2023; 24:760. [PMID: 38082218 PMCID: PMC10712088 DOI: 10.1186/s12864-023-09849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The functional roles of the Wall Associated Kinase (WAK) and Wall Associated Kinase Like (WAKL) families in cellular expansion and developmental processes have been well-established. However, the molecular regulation of these kinases in maize development is limited due to the absence of comprehensive genome-wide studies. RESULTS Through an in-depth analysis, we identified 58 maize WAKL genes, and classified them into three distinct phylogenetic clusters. Moreover, structural prediction analysis showed functional conservation among WAKLs across maize. Promoter analysis uncovered the existence of cis-acting elements associated with the transcriptional regulation of ZmWAKL genes by Gibberellic acid (GA). To further elucidate the role of WAKL genes in maize kernels, we focused on three highly expressed genes, viz ZmWAKL38, ZmWAKL42 and ZmWAKL52. Co-expression analyses revealed that their expression patterns exhibited a remarkable correlation with GA-responsive transcription factors (TF) TF5, TF6, and TF8, which displayed preferential expression in kernels. RT-qPCR analysis validated the upregulation of ZmWAKL38, ZmWAKL42, ZmWAKL52, TF5, TF6, and TF8 following GA treatment. Additionally, ZmWAKL52 showed significant increase of transcription in the present of TF8, with ZmWAKL52 localizing in both the plasma membrane and cell wall. TF5 positively regulated ZmWAKL38, while TF6 positively regulated ZmWAKL42. CONCLUSIONS Collectively, these findings provide novel insights into the characterization and regulatory mechanisms of specific ZmWAKL genes involved in maize kernel development, offering prospects for their utilization in maize breeding programs.
Collapse
Affiliation(s)
- Kun Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Sinograin Chengdu Storage Research Institute Co.Ltd, Chengdu, 610091, China
| | - Qiao Dai
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Babatope Samuel Ajayo
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Wang
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yufeng Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yangping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huanhuan Huang
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hanmei Liu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yinghong Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yayun Wang
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lei Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ying Xie
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
19
|
Wójcikowska B, Belaidi S, Robert HS. Game of thrones among AUXIN RESPONSE FACTORs-over 30 years of MONOPTEROS research. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6904-6921. [PMID: 37450945 PMCID: PMC10690734 DOI: 10.1093/jxb/erad272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
For many years, research has been carried out with the aim of understanding the mechanism of auxin action, its biosynthesis, catabolism, perception, and transport. One central interest is the auxin-dependent gene expression regulation mechanism involving AUXIN RESPONSE FACTOR (ARF) transcription factors and their repressors, the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins. Numerous studies have been focused on MONOPTEROS (MP)/ARF5, an activator of auxin-dependent gene expression with a crucial impact on plant development. This review summarizes over 30 years of research on MP/ARF5. We indicate the available analytical tools to study MP/ARF5 and point out the known mechanism of MP/ARF5-dependent regulation of gene expression during various developmental processes, namely embryogenesis, leaf formation, vascularization, and shoot and root meristem formation. However, many questions remain about the auxin dose-dependent regulation of gene transcription by MP/ARF5 and its isoforms in plant cells, the composition of the MP/ARF5 protein complex, and, finally, all the genes under its direct control. In addition, information on post-translational modifications of MP/ARF5 protein is marginal, and knowledge about their consequences on MP/ARF5 function is limited. Moreover, the epigenetic factors and other regulators that act upstream of MP/ARF5 are poorly understood. Their identification will be a challenge in the coming years.
Collapse
Affiliation(s)
- Barbara Wójcikowska
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Institute of Biology, Biotechnology, and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Samia Belaidi
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hélène S Robert
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
20
|
He X, Solis CA, Chavan SG, Maier C, Wang Y, Liang W, Klause N, Ghannoum O, Cazzonelli CI, Tissue DT, Chen ZH. Novel transcriptome networks are associated with adaptation of capsicum fruit development to a light-blocking glasshouse film. FRONTIERS IN PLANT SCIENCE 2023; 14:1280314. [PMID: 38023880 PMCID: PMC10658010 DOI: 10.3389/fpls.2023.1280314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Light-blocking films (LBFs) can contribute to significant energy savings for protected cropping via altering light transmitting, such as UVA, photosynthetically active radiation, blue and red spectra affecting photosynthesis, and capsicum yield. Here, we investigated the effects of LBF on orange color capsicum (O06614, Capsicum annuum L.) fruit transcriptome at 35 (mature green) and 65 (mature ripe) days after pollination (DAP) relative to untreated control in a high-technology glasshouse. The results of targeted metabolites showed that LBF significantly promotes the percentage of lutein but decreased the percentage of zeaxanthin and neoxanthin only at 35 DAP. At 35 DAP, fruits were less impacted by LBF treatment (versus control) with a total of 1,192 differentially expressed genes (DEGs) compared with that at 65 DAP with 2,654 DEGs. Response to stress and response to light stimulus in biological process of Gene Ontology were found in 65-DAP fruits under LBF vs. control, and clustering analysis revealed a predominant role of light receptors and phytohormone signaling transduction as well as starch and sucrose metabolism in LBF adaptation. The light-signaling DEGs, UV light receptor UVR8, transcription factors phytochrome-interacting factor 4 (PIF4), and an E3 ubiquitin ligase (COP1) were significantly downregulated at 65 DAP. Moreover, key DEGs in starch and sucrose metabolism (SUS, SUC, and INV), carotenoid synthesis (PSY2 and BCH1), ascorbic acid biosynthesis (VTC2, AAO, and GME), abscisic acid (ABA) signaling (NCED3, ABA2, AO4, and PYL2/4), and phenylpropanoid biosynthesis (PAL and DFR) are important for the adaptation of 65-DAP fruits to LBF. Our results provide new candidate genes for improving quality traits of low-light adaptation of capsicum in protected cropping.
Collapse
Affiliation(s)
- Xin He
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Celymar A. Solis
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Sachin G. Chavan
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Chelsea Maier
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Yuanyuan Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weiguang Liang
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Norbert Klause
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Oula Ghannoum
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Christopher I. Cazzonelli
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - David T. Tissue
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Global Centre for Land Based Innovation, Western Sydney University, Richmond, NSW, Australia
| | - Zhong-Hua Chen
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- School of Science, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
21
|
Zuccarelli R, Rodríguez-Ruiz M, Silva FO, Gomes LDL, Lopes-Oliveira PJ, Zsögön A, Andrade SCS, Demarco D, Corpas FJ, Peres LEP, Rossi M, Freschi L. Loss of S-nitrosoglutathione reductase disturbs phytohormone homeostasis and regulates shoot side branching and fruit growth in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6349-6368. [PMID: 37157899 DOI: 10.1093/jxb/erad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
S-Nitrosoglutathione plays a central role in nitric oxide (NO) homeostasis, and S-nitrosoglutathione reductase (GSNOR) regulates the cellular levels of S-nitrosoglutathione across kingdoms. Here, we investigated the role of endogenous NO in shaping shoot architecture and controlling fruit set and growth in tomato (Solanum lycopersicum). SlGSNOR silencing promoted shoot side branching and led to reduced fruit size, negatively impacting fruit yield. Greatly intensified in slgsnor knockout plants, these phenotypical changes were virtually unaffected by SlGSNOR overexpression. Silencing or knocking out of SlGSNOR intensified protein tyrosine nitration and S-nitrosation and led to aberrant auxin production and signaling in leaf primordia and fruit-setting ovaries, besides restricting the shoot basipetal polar auxin transport stream. SlGSNOR deficiency triggered extensive transcriptional reprogramming at early fruit development, reducing pericarp cell proliferation due to restrictions on auxin, gibberellin, and cytokinin production and signaling. Abnormal chloroplast development and carbon metabolism were also detected in early-developing NO-overaccumulating fruits, possibly limiting energy supply and building blocks for fruit growth. These findings provide new insights into the mechanisms by which endogenous NO fine-tunes the delicate hormonal network controlling shoot architecture, fruit set, and post-anthesis fruit development, emphasizing the relevance of NO-auxin interaction for plant development and productivity.
Collapse
Affiliation(s)
- Rafael Zuccarelli
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Marta Rodríguez-Ruiz
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Fernanda O Silva
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Letícia D L Gomes
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Patrícia J Lopes-Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Sónia C S Andrade
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Diego Demarco
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Lázaro E P Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, 13418-900, Piracicaba, SP, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
22
|
Ezura K, Nomura Y, Ariizumi T. Molecular, hormonal, and metabolic mechanisms of fruit set, the ovary-to-fruit transition, in horticultural crops. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6254-6268. [PMID: 37279328 DOI: 10.1093/jxb/erad214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Fruit set is the process by which the ovary develops into a fruit and is an important factor in determining fruit yield. Fruit set is induced by two hormones, auxin and gibberellin, and the activation of their signaling pathways, partly by suppressing various negative regulators. Many studies have investigated the structural changes and gene networks in the ovary during fruit set, revealing the cytological and molecular mechanisms. In tomato (Solanum lycopersicum), SlIAA9 and SlDELLA/PROCERA act as auxin and gibberellin signaling repressors, respectively, and are important regulators of the activity of transcription factors and downstream gene expression involved in fruit set. Upon pollination, SlIAA9 and SlDELLA are degraded, which subsequently activates downstream cascades and mainly contributes to active cell division and cell elongation, respectively, in ovaries during fruit setting. According to current knowledge, the gibberellin pathway functions as the most downstream signal in fruit set induction, and therefore its role in fruit set has been extensively explored. Furthermore, multi-omics analysis has revealed the detailed dynamics of gene expression and metabolites downstream of gibberellins, highlighting the rapid activation of central carbon metabolism. This review will outline the relevant mechanisms at the molecular and metabolic levels during fruit set, particularly focusing on tomato.
Collapse
Affiliation(s)
- Kentaro Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Research Fellow of Japan Society for Promotion of Science (JSPS), Kojimachi, Tokyo 102-0083, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yukako Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
23
|
Sun J, Zhang X, Fu C, Ahmad N, Zhao C, Hou L, Naeem M, Pan J, Wang X, Zhao S. Genome-wide identification and expression analysis of GA20ox and GA3ox genes during pod development in peanut. PeerJ 2023; 11:e16279. [PMID: 37908413 PMCID: PMC10615029 DOI: 10.7717/peerj.16279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023] Open
Abstract
Background Gibberellins (GAs) play important roles in regulating peanut growth and development. GA20ox and GA3ox are key enzymes involved in GA biosynthesis. These enzymes encoded by a multigene family belong to the 2OG-Fe (II) oxygenase superfamily. To date, no genome-wide comparative analysis of peanut AhGA20ox and AhGA3ox-encoding genes has been performed, and the roles of these genes in peanut pod development are not clear. Methods A whole-genome analysis of AhGA20ox and AhGA3ox gene families in peanut was carried out using bioinformatic tools. The expression of these genes at different stage of pod development was analyzed using qRT-PCR. Results In this study, a total of 15 AhGA20ox and five AhGA3ox genes were identified in peanut genome, which were distributed on 14 chromosomes. Phylogenetic analysis divided the GA20oxs and GA3oxs into three groups, but AhGA20oxs and AhGA3oxs in two groups. The conserved pattern of gene structure, cis-elements, and protein motifs further confirmed their evolutionary relationship in peanut. AhGA20ox and AhGA3ox genes were differential expressed at different stages of pod development. The strong expression of AhGA20ox1/AhGA20ox4, AhGA20ox12/AhGA20ox15, AhGA3ox1 and AhGA3ox4/AhGA3ox5 in S1-stage indicated that these genes could have a key role in controlling peg elongation. Furthermore, AhGA20ox and AhGA3ox also showed diverse expression patterns in different peanut tissues including leaves, main stems, flowers and inflorescences. Noticeably, AhGA20ox9/AhGA20ox11 and AhGA3o4/AhGA3ox5 were highly expressed in the main stem, whereas the AhGA3ox1 and AhGA20ox10 were strongly expressed in the inflorescence. The expression levels of AhGA20ox2/AhGA20ox3, AhGA20ox5/AhGA20ox6, AhGA20ox7/AhGA20ox8, AhGA20ox13/AhGA20ox14 and AhGA3ox2/AhGA3ox3 were high in the flowers, suggesting their involvement in flower development. These results provide a basis for deciphering the roles of AhGA20ox and AhGA3ox in peanut growth and development, especially in pod development.
Collapse
Affiliation(s)
- Jie Sun
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiaoqian Zhang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chun Fu
- Weifang Academy of Agricultural Sciences, Weifang, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Lei Hou
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaowen Pan
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Xingjun Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Shuzhen Zhao
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
- College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
24
|
Tian S, Zhang Z, Qin G, Xu Y. Parthenocarpy in Cucurbitaceae: Advances for Economic and Environmental Sustainability. PLANTS (BASEL, SWITZERLAND) 2023; 12:3462. [PMID: 37836203 PMCID: PMC10574560 DOI: 10.3390/plants12193462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Parthenocarpy is an important agricultural trait that not only produces seedless fruits, but also increases the rate of the fruit set under adverse environmental conditions. The study of parthenocarpy in Cucurbitaceae crops has considerable implications for cultivar improvement. This article provides a comprehensive review of relevant studies on the parthenocarpic traits of several major Cucurbitaceae crops and offers a perspective on future developments and research directions.
Collapse
Affiliation(s)
- Shouwei Tian
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Zeliang Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yong Xu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| |
Collapse
|
25
|
Hu Y, Yu Z, Gao X, Liu G, Zhang Y, Šmarda P, Guo Q. Genetic diversity, population structure, and genome-wide association analysis of ginkgo cultivars. HORTICULTURE RESEARCH 2023; 10:uhad136. [PMID: 37564270 PMCID: PMC10410194 DOI: 10.1093/hr/uhad136] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/02/2023] [Indexed: 08/12/2023]
Abstract
Ginkgo biloba is an economically valuable tree worldwide. The species has nearly become extinct during the Quaternary, which has likely resulted in reduction of its genetic variability. The genetic variability is now conserved in few natural populations in China and a number of cultivars that are, however, derived from a few ancient trees, helping the species survive in China through medieval times. Despite the recent interest in ginkgo, however, detailed knowledge of its genetic diversity, conserved in cultivated trees and cultivars, has remained poor. This limits efficient conservation of its diversity as well as efficient use of the existing germplasm resources. Here we performed genotyping-by-sequencing (GBS) on 102 cultivated germplasms of ginkgo collected to explore their genetic structure, kinship, and inbreeding prediction. For the first time in ginkgo, a genome-wide association analysis study (GWAS) was used to attempt gene mapping of seed traits. The results showed that most of the germplasms did not show any obvious genetic relationship. The size of the ginkgo germplasm population expanded significantly around 1500 years ago during the Sui and Tang dynasties. Classification of seed cultivars based on a phylogenetic perspective does not support the current classification criteria based on phenotype. Twenty-four candidate genes were localized after performing GWAS on the seed traits. Overall, this study reveals the genetic basis of ginkgo seed traits and provides insights into its cultivation history. These findings will facilitate the conservation and utilization of the domesticated germplasms of this living fossil plant.
Collapse
Affiliation(s)
- Yaping Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoyan Yu
- Coconut Research Institute of Chinese Academy of Tropical Agricultural Science, Wenchang, Hainan 571339, China
| | - Xiaoge Gao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Ganping Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yun Zhang
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Petr Šmarda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Koltlářská 2, Brno 61137, Czech Republic
| | - Qirong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
26
|
El Mamoun I, Bouzroud S, Zouine M, Smouni A. The Knockdown of AUXIN RESPONSE FACTOR 2 Confers Enhanced Tolerance to Salt and Drought Stresses in Tomato ( Solanum lycopersicum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2804. [PMID: 37570958 PMCID: PMC10420960 DOI: 10.3390/plants12152804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Auxin response factors (ARFs) act as key elements of the auxin-signaling pathway and play important roles in the process of a plant's growth, development, and response to environmental conditions. We studied the implication of the SlARF2 gene in the tomato response to salt (150 mM of NaCl) and drought (15% PEG 20000) stresses. The functional characterization of SlARF2 knockdown tomato mutants revealed that the downregulation of this gene enhanced primary root length and root branching and reduced plant wilting. At the physiological level, the arf2 mutant line displayed higher chlorophyll, soluble sugars, proline, and relative water contents as well as lower stomatal conductance and a decreased malondialdehyde content. Moreover, SlARF2 knockdown tomato mutants demonstrated higher activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) under salt and drought stresses than the wild type. Indeed, the stress tolerance of the arf2 mutant was also reflected by the upregulation of stress-related genes involved in ROS scavenging and plant defense, including SOD, CAT, dehydration-responsive element-binding protein, and early responsive to dehydration, which can ultimately result in a better resistance to salt and drought stresses. Furthermore, the transcriptional levels of the Δ1-pyrroline-5-carboxylate synthase (P5CS) gene were upregulated in the arf2 mutant after stress, in correlation with the higher levels of proline. Taken together, our findings reveal that SlARF2 is implicated in salt and drought tolerance in tomato and provides some considerable elements for improving the abiotic stress tolerance and increasing the crop yields of tomato.
Collapse
Affiliation(s)
- Ibtihaj El Mamoun
- Laboratoire de Biotechnologie et de Physiologie Végétales, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10000, Morocco;
- Laboratoire de Recherche en Sciences Végétales, UMR5546, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse Paul Sabatier (UPS), Toulouse-INP, 31320 Auzeville-Tolosane, France
| | - Sarah Bouzroud
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10000, Morocco;
| | - Mohamed Zouine
- Laboratoire de Recherche en Sciences Végétales, UMR5546, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse Paul Sabatier (UPS), Toulouse-INP, 31320 Auzeville-Tolosane, France
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et de Physiologie Végétales, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10000, Morocco;
| |
Collapse
|
27
|
Tran LT, Sugimoto K, Kasozi M, Mitalo OW, Ezura H. Pollination, pollen tube growth, and fertilization independently contribute to fruit set and development in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1205816. [PMID: 37416886 PMCID: PMC10319911 DOI: 10.3389/fpls.2023.1205816] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023]
Abstract
In flowering plants, pollination, pollen tube growth, and fertilization are regarded as the first hierarchical processes of producing offspring. However, their independent contributions to fruit set and development remain unclear. In this study, we examined the effect of three different types of pollen, intact pollen (IP), soft X-ray-treated pollen (XP) and dead pollen (DP), on pollen tube growth, fruit development and gene expression in "Micro-Tom" tomato. Normal germination and pollen tube growth were observed in flowers pollinated with IP; pollen tubes started to penetrate the ovary at 9 h after pollination, and full penetration was achieved after 24 h (IP24h), resulting in ~94% fruit set. At earlier time points (3 and 6 h after pollination; IP3h and IP6h, respectively), pollen tubes were still in the style, and no fruit set was observed. Flowers pollinated with XP followed by style removal after 24 h (XP24h) also demonstrated regular pollen tubes and produced parthenocarpic fruits with ~78% fruit set. As expected, DP could not germinate and failed to activate fruit formation. Histological analysis of the ovary at 2 days after anthesis (DAA) revealed that IP and XP comparably increased cell layers and cell size; however, mature fruits derived from XP were significantly smaller than those derived from IP. Furthermore, there was a high correlation between seed number and fruit size in fruit derived from IP, illustrating the crucial role of fertilization in the latter stages of fruit development. RNA-Seq analysis was carried out in ovaries derived from IP6h, IP24h, XP24h and DP24h in comparison with emasculated and unpollinated ovaries (E) at 2 DAA. The results revealed that 65 genes were differentially expressed (DE) in IP6h ovaries; these genes were closely associated with cell cycle dormancy release pathways. Conversely, 5062 and 4383 DE genes were obtained in IP24h and XP24h ovaries, respectively; top enriched terms were mostly associated with cell division and expansion in addition to the 'plant hormone signal transduction' pathway. These findings indicate that full penetration of pollen tubes can initiate fruit set and development independently of fertilization, most likely by activating the expression of genes regulating cell division and expansion.
Collapse
Affiliation(s)
- Long T. Tran
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Koichi Sugimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Centre, University of Tsukuba, Tsukuba, Japan
| | - Michael Kasozi
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Oscar W. Mitalo
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Centre, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
28
|
Peng Z, Li H, Liu G, Jia W, Fu D. NAC transcription factor NOR-like1 regulates tomato fruit size. PLANTA 2023; 258:9. [PMID: 37256357 DOI: 10.1007/s00425-023-04166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/24/2023] [Indexed: 06/01/2023]
Abstract
MAIN CONCLUSION NOR-like1 regulates tomato fruit size by targeting SlARF9, SlGRAS2, SlFW3.2, and SlFW11.3 genes involved in cell division and cell expansion. Fruit size is an important agricultural character that determines the yield of crops. Here, we found that NAC transcription factor NOR-like1 regulated fruit size by regulating cell layer number and cell area in tomato. Over-expressing NOR-like1 gene in tomato reduced fruit weight and size, whereas the knock-out of NOR-like1 increased fruit weight and size. At the molecular level, NOR-like1 binds to the promoter of SlGRAS2, SlFW3.2, and SlFW11.3 to repress their transcription, while it also binds to the promoter of ARF9 to activate its transcription. Overall, these results expand the biological function of NOR-like1 and deepen our understanding of the transcriptional network that regulates tomato fruit size.
Collapse
Affiliation(s)
- Zhenzhen Peng
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hongli Li
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Gangshuai Liu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wen Jia
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Daqi Fu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
29
|
Hu J, Li X, Sun TP. Four class A AUXIN RESPONSE FACTORs promote tomato fruit growth despite suppressing fruit set. NATURE PLANTS 2023; 9:706-719. [PMID: 37037878 DOI: 10.1038/s41477-023-01396-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 03/14/2023] [Indexed: 05/23/2023]
Abstract
In flowering plants, auxin produced in seeds after fertilization promotes fruit initiation. The application of auxin to unpollinated ovaries can also induce parthenocarpy (seedless fruit production). Previous studies have shown that auxin signalling components SlIAA9 and SlARF7 (a class A AUXIN RESPONSE FACTOR (ARF)) are key repressors of fruit initiation in tomato (Solanum lycopersicum). A similar repressive role of class A ARFs in fruit set has also been observed in other plant species. However, evidence is lacking for a role of any class A ARF in promoting fruit development as predicted in the current auxin signalling model. Here we generated higher-order tomato mutants of four class A SlARFs (SlARF5, SlARF7, SlARF8A and SlARF8B) and uncovered their precise combinatorial roles that lead to suppressing and promoting fruit development. All four class A SlARFs together with SlIAA9 inhibited fruit initiation but promoted subsequent fruit growth. Transgenic tomato lines expressing truncated SlARF8A/8B lacking the IAA9-interacting PB1 domain displayed strong parthenocarpy, further confirming the promoting role of SlARF8A/8B in fruit growth. Altering the doses of these four SlARFs led to biphasic fruit growth responses, showing their versatile dual roles as both negative and positive regulators. RNA-seq and chromatin immunoprecipitation-quantitative PCR analyses further identified SlARF8A/8B target genes, including those encoding MADS-BOX transcription factors (AG1, MADS2 and AGL6) that are key repressors of fruit set. These results support the idea that SlIAA9/SlARFs directly regulate the transcription of these MADS-BOX genes to inhibit fruit set. Our study reveals the previously unknown dual function of four class A SlARFs in tomato fruit development and illuminates the complex combinatorial effects of multiple ARFs in controlling auxin-mediated fruit set and fruit growth.
Collapse
Affiliation(s)
- Jianhong Hu
- Department of Biology, Duke University, Durham, NC, USA
| | - Xiao Li
- Department of Biology, Duke University, Durham, NC, USA
- School of Grassland Science, Beijing Forestry University, Beijing, P. R. China
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
30
|
Seedlessness Trait and Genome Editing—A Review. Int J Mol Sci 2023; 24:ijms24065660. [PMID: 36982733 PMCID: PMC10057249 DOI: 10.3390/ijms24065660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Parthenocarpy and stenospermocarpy are the two mechanisms underlying the seedless fruit set program. Seedless fruit occurs naturally and can be produced using hormone application, crossbreeding, or ploidy breeding. However, the two types of breeding are time-consuming and sometimes ineffective due to interspecies hybridization barriers or the absence of appropriate parental genotypes to use in the breeding process. The genetic engineering approach provides a better prospect, which can be explored based on an understanding of the genetic causes underlying the seedlessness trait. For instance, CRISPR/Cas is a comprehensive and precise technology. The prerequisite for using the strategy to induce seedlessness is identifying the crucial master gene or transcription factor liable for seed formation/development. In this review, we primarily explored the seedlessness mechanisms and identified the potential candidate genes underlying seed development. We also discussed the CRISPR/Cas-mediated genome editing approaches and their improvements.
Collapse
|
31
|
Edris S, Abulfaraj AA, Makki RM, Abo-Aba S, Algandaby MM, Sabir J, Jansen RK, El Domyati FM, Bahieldin A. Early Fruit Development Regulation-Related Genes Concordantly Expressed with TCP Transcription Factors in Tomato (Solanum lycopersicum). Curr Issues Mol Biol 2023; 45:2372-2380. [PMID: 36975523 PMCID: PMC10099719 DOI: 10.3390/cimb45030153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/14/2023] Open
Abstract
The tomato (Solanum lycopersicum L.) is considered one of the most important vegetable crops globally, both agronomically and economically; however, its fruit development regulation network is still unclear. The transcription factors serve as master regulators, activating many genes and/or metabolic pathways throughout the entire plant life cycle. In this study, we identified the transcription factors that are coordinated with TCP gene family regulation in early fruit development by making use of the high-throughput sequencing of RNA (RNAseq) technique. A total of 23 TCP-encoding genes were found to be regulated at various stages during the growth of the fruit. The expression patterns of five TCPs were consistent with those of other transcription factors and genes. There are two unique subgroups of this larger family: class I and class II TCPs. Others were directly associated with the growth and/or ripening of fruit, while others were involved in the production of the hormone auxin. Moreover, it was discovered that TCP18 had an expression pattern that was similar to that of the ethylene-responsive transcription factor 4 (ERF4). Tomato fruit set and overall development are under the direction of a gene called auxin response factor 5 (ARF5). TCP15 revealed an expression that was in sync with this gene. This study provides insight into the potential processes that help in acquiring superior fruit qualities by accelerating fruit growth and ripening.
Collapse
Affiliation(s)
- Sherif Edris
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
- R&D Department, Al Borg Diagnostics, Jeddah 23514, Saudi Arabia
- Correspondence: ; Tel.: +966-59-366-2384
| | - Aala A. Abulfaraj
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Rania M. Makki
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salah Abo-Aba
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- National Research Centre, Department of Microbial Genetics, Genetic Engineering and Biotechnology Division, Giza 12622, Egypt
| | - Mardi M. Algandaby
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jamal Sabir
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Robert K. Jansen
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Fotouh M. El Domyati
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| |
Collapse
|
32
|
Mubarok S, Jadid N, Widiastuti A, Derajat Matra D, Budiarto R, Lestari FW, Nuraini A, Suminar E, Pradana Nur Rahmat B, Ezura H. Parthenocarpic tomato mutants, iaa9-3 and iaa9-5, show plant adaptability and fruiting ability under heat-stress conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1090774. [PMID: 36938002 PMCID: PMC10014533 DOI: 10.3389/fpls.2023.1090774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Fruit set is one of the main problems that arise in tomato plants under heat-stress conditions, which disrupt pollen development, resulting in decreased pollen fertility. Parthenocarpic tomatoes can be used to increase plant productivity during failure of the fertilisation process under heat-stress conditions. The aim of this study were to identify the plant adaptability and fruiting capability of ?iaa9-3 and iaa9-5 tomato mutants under heat-stress conditions. The iaa9-3 and iaa9-5 and wild-type Micro-Tom (WT-MT) plants were cultivated under two temperature conditions: normal and heat-stress conditions during plant growth. The results showed that under the heat-stress condition, iaa9-3 and iaa9-5 showed delayed flowering time, increased number of flowers, and increased fruit set and produced normal-sized fruit. However, WT-MT cannot produce fruits under heat stress. The mutants can grow under heat-stress conditions, as indicated by the lower electrolyte leakage and H2O2 concentration and higher antioxidant activities compared with WT-MT under heat-stress conditions. These results suggest that iaa9-3 and iaa9-5 can be valuable genetic resources for the development of tomatoes in high-temperature environmental conditions.
Collapse
Affiliation(s)
- Syariful Mubarok
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang, Indonesia
| | - Nurul Jadid
- Department of Biology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Ani Widiastuti
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Deden Derajat Matra
- Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor, Indonesia
| | - Rahmat Budiarto
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang, Indonesia
| | | | - Anne Nuraini
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang, Indonesia
| | - Erni Suminar
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang, Indonesia
| | - Bayu Pradana Nur Rahmat
- Master Graduate Program of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang, Indonesia
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
33
|
Li Y, Han S, Qi Y. Advances in structure and function of auxin response factor in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:617-632. [PMID: 36263892 DOI: 10.1111/jipb.13392] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Auxin is a crucial phytohormone that has various effects on the regulators of plant growth and development. Auxin signal transduction is mainly controlled by two gene families: auxin response factor (ARF) and auxin/indole-3-acetic acid (Aux/IAA). ARFs are plant-specific transcription factors that bind directly to auxin response elements in the promoters of auxin-responsive genes. ARF proteins contain three conserved regions: a conserved N-terminal B3 DNA-binding domain, a variable intermediate middle region domain that functions in activation or repression, and a C-terminal domain including the Phox and Bem1p region for dimerization, similar to the III and IV elements of Aux/IAA, which facilitate protein-protein interaction through homodimerization of ARF proteins or heterodimerization of ARF and Aux/IAA proteins. In the two decades following the identification of the first ARF, 23 ARF members have been identified and characterized in Arabidopsis. Using whole-genome sequencing, 22, 25, 23, 25, and 36 ARF genes have been identified in tomato, rice, wheat, sorghum, and maize, respectively, in addition to which the related biofunctions of some ARFs have been reported. ARFs play crucial roles in regulating the growth and development of roots, leaves, flowers, fruits, seeds, responses to biotic and abiotic stresses, and phytohormone signal crosstalk. In this review, we summarize the research progress on the structures and functions of ARFs in Arabidopsis, tomato, and cereal crops, to provide clues for future basic research on phytohormone signaling and the molecular design breeding of crops.
Collapse
Affiliation(s)
- Yonghui Li
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Shaqila Han
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Yanhua Qi
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
34
|
Fahad M, Altaf MT, Jamil A, Basit A, Aslam MM, Liaqat W, Shah MN, Ullah I, Mohamed HI. Functional characterization of transcriptional activator gene SIARRI in tomato reveals its role in fruit growth and ripening. Transgenic Res 2023; 32:77-93. [PMID: 36806962 DOI: 10.1007/s11248-023-00337-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023]
Abstract
Auxins regulate several characteristics of plant development and growth. Here, we characterized a new transcriptional activator SIARRI which binds specific DNA sequences and was revealed in Arabidopsis (ARR1). SIARRI acts as a two-component response regulator and its Arabidopsis homologous gene is AT3G16857. It belongs to the subfamily of type-B response regulators in the cytokinin signaling pathway. The study aimed to characterize the transgenic Micro-Tom plants by the overexpression of Solanum lycopersicum two-component response regulator ARR1. Overexpression of SIARRI results in a pleiotropic phenotype during fruit development and ripening. This study indicates that SIARRI is a primary regulator of leaf morphology and fruit development. Moreover, overexpressed plants showed variations in growth related to auxin as well as shorter hypocotyl elongation, enlarged leaf vascularization, and decreased apical dominance. The qRT-PCR investigation revealed that expression was downregulated at the breaker stage and high at Br+6 at various stages of fruit growth and ripening. In contrast to the fruit color, lycopene and β-carotene concentrations in red-yellow overexpression line fruits were reduced significantly, and also slightly reduced in some red fruits. The quantity of β-carotene in the transgenic fruits was lower than that of lycopene. This study showed that this gene might be a new transcriptional activator in fruit development and ripening. Furthermore, this study will provide new insights into tomato fruit ripening.
Collapse
Affiliation(s)
- Muhammad Fahad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Tanveer Altaf
- Department of Plant Protection, Faculty of Agricultural Sciences and Technology, Sivas University of Science and Technology, 58140, Sivas, Turkey
| | - Amna Jamil
- Department of Horticulture, MNS University of Agriculture, Multan, 60000, Pakistan
| | - Abdul Basit
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Muhammad Mudassir Aslam
- Department of Plant Breeding and Genetics, University College of Agriculture, Bahauddin Zakariya University, Multan, Pakistan
| | - Waqas Liaqat
- Department of Field Crops, Faculty of Agriculture, Institute of Natural and Applied Sciences, Çukurova University, 01330, Adana, Turkey
| | - Muhammad Nadeem Shah
- North Florida Research and Education Centre (NFREC), University of Florida, 155 Research Road, Quincy, FL, 32351, USA
| | - Izhar Ullah
- Department of Horticulture, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
| |
Collapse
|
35
|
Sacco Botto C, Matić S, Moine A, Chitarra W, Nerva L, D’Errico C, Pagliarani C, Noris E. Tomato Yellow Leaf Curl Sardinia Virus Increases Drought Tolerance of Tomato. Int J Mol Sci 2023; 24:2893. [PMID: 36769211 PMCID: PMC9918285 DOI: 10.3390/ijms24032893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Drought stress is one of the major physiological stress factors that adversely affect agricultural production, altering critical features of plant growth and metabolism. Plants can be subjected simultaneously to abiotic and biotic stresses, such as drought and viral infections. Rewarding effects provided by viruses on the ability of host plants to endure abiotic stresses have been reported. Recently, begomoviruses causing the tomato yellow leaf curl disease in tomatoes were shown to increase heat and drought tolerance. However, biological bases underlying the induced drought tolerance need further elucidation, particularly in the case of tomato plants. In this work, tomato plants infected by the tomato yellow leaf curl Sardinia virus (TYLCSV) were subjected to severe drought stress, followed by recovery. Morphological traits, water potential, and hormone contents were measured in leaves together with molecular analysis of stress-responsive and hormone metabolism-related genes. Wilting symptoms appeared three days later in TYLCSV-infected plants compared to healthy controls and post-rehydration recovery was faster (2 vs. 4 days, respectively). Our study contributes new insights into the impact of viruses on the plant's adaptability to environmental stresses. On a broader perspective, such information could have important practical implications for managing the effects of climate change on agroecosystems.
Collapse
Affiliation(s)
- Camilla Sacco Botto
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
- Department of Agriculture, Forestry and Food Science DISAFA, Turin University, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Slavica Matić
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| | - Amedeo Moine
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
- Council for Agricultural Research and Economics Centre of Viticultural and Enology Research (CREA-VE), Viale XXVIII Aprile 26, 31015 Conegliano, Italy
| | - Luca Nerva
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
- Council for Agricultural Research and Economics Centre of Viticultural and Enology Research (CREA-VE), Viale XXVIII Aprile 26, 31015 Conegliano, Italy
| | - Chiara D’Errico
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Turin, Italy
| |
Collapse
|
36
|
Muñiz García MN, Cortelezzi JI, Capiati DA. The protein phosphatase 2A catalytic subunit StPP2Ac2b is involved in the control of potato tuber sprouting and source-sink balance in tubers and sprouts. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6784-6799. [PMID: 35925650 DOI: 10.1093/jxb/erac326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Sprouting negatively affects the quality of stored potato tubers. Understanding the molecular mechanisms that control this process is important for the development of potato varieties with desired sprouting characteristics. Serine/threonine protein phosphatase type 2A (PP2A) has been implicated in several developmental programs and stress responses in plants. PP2A comprises a catalytic (PP2Ac), a scaffolding (A), and a regulatory (B) subunit. In cultivated potato, six PP2Ac isoforms were identified, named StPP2Ac1, 2a, 2b, 3, 4, and 5. In this study we evaluated the sprouting behavior of potato tubers overexpressing the catalytic subunit 2b (StPP2Ac2b-OE). The onset of sprouting and initial sprout elongation is significantly delayed in StPP2Ac2b-OE tubers; however, sprout growth is accelerated during the late stages of development, due to a high degree of branching. StPP2Ac2b-OE tubers also exhibit a pronounced loss of apical dominance. These developmental characteristics are accompanied by changes in carbohydrate metabolism and response to gibberellic acid, and a differential balance between abscisic acid, gibberellic acid, cytokinins, and auxin. Overexpression of StPP2Ac2b alters the source-sink balance, increasing the source capacity of the tuber, and the sink strength of the sprout to support its accelerated growth.
Collapse
Affiliation(s)
- María N Muñiz García
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular 'Dr. Héctor Torres', Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Vuelta de Obligado, Buenos Aires, Argentina
| | - Juan I Cortelezzi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular 'Dr. Héctor Torres', Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Vuelta de Obligado, Buenos Aires, Argentina
| | - Daniela A Capiati
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular 'Dr. Héctor Torres', Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Vuelta de Obligado, Buenos Aires, Argentina
| |
Collapse
|
37
|
Yi SN, Mao JX, Zhang XY, Li XM, Zhang ZH, Li H. FveARF2 negatively regulates fruit ripening and quality in strawberry. FRONTIERS IN PLANT SCIENCE 2022; 13:1023739. [PMID: 36388474 PMCID: PMC9660248 DOI: 10.3389/fpls.2022.1023739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Auxin response factors (ARFs) are transcription factors that play important roles in plants. ARF2 is a member of the ARF family and participates in many plant growth and developmental processes. However, the role of ARF2 in strawberry fruit quality remains unclear. In this study, FveARF2 was isolated from the woodland strawberry 'Ruegen' using reverse transcription-polymerase chain reaction (RT-PCR), which showed that FveARF2 expression levels were higher in the stem than in other organs of the 'Ruegen' strawberry. Moreover, FaARF2 was higher in the white fruit stage of cultivated strawberry fruit than in other stage. Subcellular localization analysis showed that FveARF2 is located in the nucleus, while transcriptional activation assays showed that FveARF2 inhibited transcription in yeast. Silencing FveARF2 in cultivated strawberry fruit revealed earlier coloration and higher soluble solid, sugar, and anthocyanin content in the transgenic fruit than in the control fruit, overexpression of FveARF2 in strawberry fruit delayed ripening and lower soluble solid, sugar, and anthocyanin content compared to the control fruit. Gene expression analysis indicated that the transcription levels of the fruit ripening genes FaSUT1, FaOMT, and FaCHS increased in FveARF2-RNAi fruit and decreased in FveARF2-OE fruit, when compared with the control. Furthermore, yeast one-hybrid (Y1H) and GUS activity experiments showed that FveARF2 can directly bind to the AuxRE (TGTCTC) element in the FaSUT1, FaOMT, and FaCHS promoters in vitro and in vivo. Potassium ion supplementation improved the quality of strawberry fruit, while silencing FveARF2 increased potassium ion content in transgenic fruit. The Y1H and GUS activity experiments also confirmed that FveARF2 could directly bind to the promoter of FveKT12, a potassium transporter gene, and inhibited its expression. Taken together, we found that FveARF2 can negatively regulate strawberry fruit ripening and quality, which provides new insight for further study of the molecular mechanism of strawberry fruit ripening.
Collapse
Affiliation(s)
- Shan-na Yi
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jian-xin Mao
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xin-yu Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Xiao-ming Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhi-hong Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - He Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
38
|
Zhang Y, Yu J, Xu X, Wang R, Liu Y, Huang S, Wei H, Wei Z. Molecular Mechanisms of Diverse Auxin Responses during Plant Growth and Development. Int J Mol Sci 2022; 23:ijms232012495. [PMID: 36293351 PMCID: PMC9604407 DOI: 10.3390/ijms232012495] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
The plant hormone auxin acts as a signaling molecule to regulate numerous developmental processes throughout all stages of plant growth. Understanding how auxin regulates various physiological and developmental processes has been a hot topic and an intriguing field. Recent studies have unveiled more molecular details into how diverse auxin responses function in every aspect of plant growth and development. In this review, we systematically summarized and classified the molecular mechanisms of diverse auxin responses, and comprehensively elaborated the characteristics and multilevel regulation mechanisms of the canonical transcriptional auxin response. On this basis, we described the characteristics and differences between different auxin responses. We also presented some auxin response genes that have been genetically modified in plant species and how their changes impact various traits of interest. Finally, we summarized some important aspects and unsolved questions of auxin responses that need to be focused on or addressed in future research. This review will help to gain an overall understanding of and some insights into the diverse molecular mechanisms of auxin responses in plant growth and development that are instrumental in harnessing genetic resources in molecular breeding of extant plant species.
Collapse
Affiliation(s)
- Yang Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiuyue Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shan Huang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Zhigang Wei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
- Correspondence: or
| |
Collapse
|
39
|
Roles of Auxin in the Growth, Development, and Stress Tolerance of Horticultural Plants. Cells 2022; 11:cells11172761. [PMID: 36078168 PMCID: PMC9454831 DOI: 10.3390/cells11172761] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Auxin, a plant hormone, regulates virtually every aspect of plant growth and development. Many current studies on auxin focus on the model plant Arabidopsis thaliana, or on field crops, such as rice and wheat. There are relatively few studies on what role auxin plays in various physiological processes of a range of horticultural plants. In this paper, recent studies on the role of auxin in horticultural plant growth, development, and stress response are reviewed to provide novel insights for horticultural researchers and cultivators to improve the quality and application of horticultural crops.
Collapse
|
40
|
Huang W, Hu N, Xiao Z, Qiu Y, Yang Y, Yang J, Mao X, Wang Y, Li Z, Guo H. A molecular framework of ethylene-mediated fruit growth and ripening processes in tomato. THE PLANT CELL 2022; 34:3280-3300. [PMID: 35604102 PMCID: PMC9421474 DOI: 10.1093/plcell/koac146] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/22/2022] [Indexed: 05/08/2023]
Abstract
Although the role of ethylene in tomato (Solanum lycopersicum) fruit ripening has been intensively studied, its role in tomato fruit growth remains poorly understood. In addition, the relationship between ethylene and the developmental factors NON-RIPENING (NOR) and RIPENING INHIBITOR (RIN) during ripening is under debate. Here, we carried out comprehensive genetic analyses of genome-edited mutants of tomato ETHYLENE INSENSITIVE 2 (SlEIN2), four EIN3-like genes (SlEIL1-4), and three EIN3 BINDING F-box protein genes (SlEBF1-3). Both slein2-1 and the high-order sleil mutant (sleil1 sleil2 sleil3/SlEIL3 sleil4) showed reduced fruit size, mainly due to decreased auxin biosynthesis. During fruit maturation, slein2 mutants displayed the complete cessation of ripening, which was partially rescued by slebf1 but not slebf2 or slebf3. We also discovered that ethylene directly activates the expression of the developmental genes NOR, RIN, and FRUITFULL1 (FUL1) via SlEIL proteins. Indeed, overexpressing these genes partially rescued the ripening defects of slein2-1. Finally, the signal intensity of the ethylene burst during fruit maturation was intimately connected with the progression of full ripeness. Collectively, our work uncovers a critical role of ethylene in fruit growth and supports a molecular framework of ripening control in which the developmental factors NOR, RIN, and FUL1 act downstream of ethylene signaling.
Collapse
Affiliation(s)
- Wei Huang
- Department of Biology,Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Nan Hu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhina Xiao
- Department of Biology,Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yuping Qiu
- Department of Biology,Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yan Yang
- Department of Biology,Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Jie Yang
- Department of Biology,Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xin Mao
- Department of Biology,Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yichuan Wang
- Department of Biology,Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | | |
Collapse
|
41
|
Lee MB, Shekasteband R, Hutton SF, Lee TG. A mutant allele of the flowering promoting factor 1 gene at the tomato BRACHYTIC locus reduces plant height with high quality fruit. PLANT DIRECT 2022; 6:e422. [PMID: 35949955 PMCID: PMC9352537 DOI: 10.1002/pld3.422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 05/07/2023]
Abstract
Reduced plant height due to shortened stems is beneficial for improving crop yield potential, better resilience to biotic/abiotic stresses, and rapid crop producer adoption of the agronomic and management practices. Breeding tomato plants with a reduced height, however, poses a particular challenge because this trait is often associated with a significant fruit size (weight) reduction. The tomato BRACHYTIC (BR) locus controls plant height. Genetic mapping and genome assembly revealed three flowering promoting factor 1 (FPF1) genes located within the BR mapping interval, and a complete coding sequence deletion of the telomere proximal FPF1 (Solyc01g066980) was found in the br allele but not in BR. The knock-out of Solyc01g066980 in BR large-fruited fresh-market tomato reduced the height and fruit yield, but the ability to produce large size fruits was retained. However, concurrent yield evaluation of a pair of sister lines with or without the br allele revealed that artificial selection contributes to commercially acceptable yield potential in br tomatoes. A network analysis of gene-expression patterns across genotypes, tissues, and the gibberellic acid (GA) treatment revealed that member(s) of the FPF1 family may play a role in the suppression of the GA biosynthesis in roots and provided a framework for identifying the responsible molecular signaling pathways in br-mediated phenotypic changes. Lastly, mutations of br homologs also resulted in reduced height. These results shed light on the genetic and physiological mechanisms by which the br allele alters tomato architecture.
Collapse
Affiliation(s)
- Man Bo Lee
- Gulf Coast Research and Education CenterUniversity of FloridaWimaumaFloridaUSA
| | - Reza Shekasteband
- Department of Horticultural ScienceNorth Carolina State University, Mountain Horticultural Crops Research & Extension CenterMills RiverNorth CarolinaUSA
| | - Samuel F. Hutton
- Gulf Coast Research and Education CenterUniversity of FloridaWimaumaFloridaUSA
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFloridaUSA
- Plant Breeders Working GroupUniversity of FloridaGainesvilleFloridaUSA
| | - Tong Geon Lee
- Gulf Coast Research and Education CenterUniversity of FloridaWimaumaFloridaUSA
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFloridaUSA
- Plant Breeders Working GroupUniversity of FloridaGainesvilleFloridaUSA
- Plant Molecular and Cellular Biology Graduate ProgramUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
42
|
Pagliarani C, Moine A, Chitarra W, Nerva L, Catoni M, Tavazza R, Matić S, Vallino M, Secchi F, Noris E. The C4 protein of tomato yellow leaf curl Sardinia virus primes drought tolerance in tomato through morphological adjustments. HORTICULTURE RESEARCH 2022; 9:uhac164. [PMID: 36324645 PMCID: PMC9613725 DOI: 10.1093/hr/uhac164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/20/2022] [Indexed: 06/16/2023]
Abstract
Viruses can interfere with the ability of plants to overcome abiotic stresses, indicating the existence of common molecular networks that regulate stress responses. A begomovirus causing the tomato yellow leaf curl disease was recently shown to enhance heat tolerance in tomato and drought tolerance in tomato and Nicotiana benthamiana and experimental evidence suggested that the virus-encoded protein C4 is the main trigger of drought responses. However, the physiological and molecular events underlying C4-induced drought tolerance need further elucidation. In this study, transgenic tomato plants expressing the tomato yellow leaf curl Sardinia virus (TYLCSV) C4 protein were subjected to severe drought stress, followed by recovery. Morphometric parameters, water potential, gas exchanges, and hormone contents in leaves were measured, in combination with molecular analysis of candidate genes involved in stress response and hormone metabolism. Collected data proved that the expression of TYLCSV C4 positively affected the ability of transgenic plants to tolerate water stress, by delaying the onset of stress-related features, improving the plant water use efficiency and facilitating a rapid post-rehydration recovery. In addition, we demonstrated that specific anatomical and hydraulic traits, rather than biochemical signals, are the keynote of the C4-associated stress resilience. Our results provide novel insights into the biology underpinning drought tolerance in TYLCSV C4-expressing tomato plants, paving the way for further deepening the mechanism through which such proteins tune the plant-virus interaction.
Collapse
Affiliation(s)
- Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
| | - Amedeo Moine
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
- Council for Agricultural Research and Economics Centre of Viticultural and Enology Research (CREA-VE). Viale XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | - Luca Nerva
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
- Council for Agricultural Research and Economics Centre of Viticultural and Enology Research (CREA-VE). Viale XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | - Marco Catoni
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Raffaela Tavazza
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), C.R. Casaccia, Rome, Italy
| | | | - Marta Vallino
- Institute for Sustainable Plant Protection, National Research Council, Strada delle Cacce 73, 10135 Torino, Italy
| | - Francesca Secchi
- Department of Agricultural, Forest and Food Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | | |
Collapse
|
43
|
Batista-Silva W, Carvalho de Oliveira A, Martins AO, Siqueira JA, Rodrigues-Salvador A, Omena-Garcia RP, Medeiros DB, Peres LEP, Ribeiro DM, Zsögön A, Fernie AR, Nunes-Nesi A, Araújo WL. Reduced auxin signalling through the cyclophilin gene DIAGEOTROPICA impacts tomato fruit development and metabolism during ripening. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4113-4128. [PMID: 35383842 DOI: 10.1093/jxb/erac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Auxin is an important hormone playing crucial roles during fruit growth and ripening; however, the metabolic impact of changes in auxin signalling during tomato (Solanum lycopersicum L.) ripening remains unclear. Here, we investigated the significance of changes in auxin signalling during different stages of fruit development by analysing changes in tomato fruit quality and primary metabolism using mutants with either lower or higher auxin sensitivity [diageotropica (dgt) and entire mutants, respectively]. Altered auxin sensitivity modifies metabolism, through direct impacts on fruit respiration and fruit growth. We verified that the dgt mutant plants exhibit reductions in fruit set, total fruit dry weight, fruit size, number of seeds per fruit, and fresh weight loss during post-harvest. Sugar accumulation was associated with delayed fruit ripening in dgt, probably connected with reduced ethylene levels and respiration, coupled with a lower rate of starch degradation. In contrast, despite exhibiting parthenocarpy, increased auxin perception (entire) did not alter fruit ripening, leading to only minor changes in primary metabolism. By performing a comprehensive analysis, our results connect auxin signalling and metabolic changes during tomato fruit development, indicating that reduced auxin signalling led to extensive changes in sugar concentration and starch metabolism during tomato fruit ripening.
Collapse
Affiliation(s)
- Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - João Antonio Siqueira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Rebeca P Omena-Garcia
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - David Barbosa Medeiros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Lázaro Eustáquio Pereira Peres
- Departmento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Dimas Mendes Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
44
|
Genome–Wide Identification and Functional Characterization of Auxin Response Factor (ARF) Genes in Eggplant. Int J Mol Sci 2022; 23:ijms23116219. [PMID: 35682898 PMCID: PMC9181582 DOI: 10.3390/ijms23116219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 01/04/2023] Open
Abstract
Auxin response factors (ARFs) are important plant transcription factors that are differentially expressed in response to auxin and various abiotic stresses. ARFs play important roles in mediating plant growth and stress responses; however, these factors have not been studied in eggplants. In this study, genome–wide identification and the functional analysis of the ARF gene family in eggplants (Solanum melongena L.) were performed. A total of 20 ARF (SmARF) genes were identified and phylogenetically classified into three groups. Our analysis revealed four functional domains and 10 motifs in these proteins. Subcellular localization showed that the SmARFs localized in the nucleus. To investigate the biological functions of the SmARFs under 2,4–D and salt stress treatments, quantitative real–time RT–PCR (qRT–PCR) was conducted. Most SmARF genes exhibited changes in expression in response to 2,4–D treatments in the flowers, especially SmARF4 and 7B. All SmARF genes quickly responded to salt stress, except SmARF17 and 19 in leaves, SmARF1A and 7B in roots, and SmARF2A, SmARF7B, and SmARF16B in stems. These results helped to elucidate the role of ARFs in auxin signaling under 2,4–D and salt stress in eggplants.
Collapse
|
45
|
Li X, Zhang X, Shi T, Chen M, Jia C, Wang J, Hou Z, Han J, Bian S. Identification of ARF family in blueberry and its potential involvement of fruit development and pH stress response. BMC Genomics 2022; 23:329. [PMID: 35477362 PMCID: PMC9047364 DOI: 10.1186/s12864-022-08556-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background Auxin responsive factor (ARF) family is one of core components in auxin signalling pathway, which governs diverse developmental processes and stress responses. Blueberry is an economically important berry-bearing crop and prefers to acidic soil. However, the understandings of ARF family has not yet been reported in blueberry. Results In the present study, 60 ARF genes (VcARF) were identified in blueberry, and they showed diverse gene structures and motif compositions among the groups and similar within each group in the phylogenetic tree. Noticeably, 9 digenic, 5 trigenic and 6 tetragenic VcARF pairs exhibited more than 95% identity to each other. Computational analysis indicated that 23 VcARFs harbored the miRNA responsive element (MRE) of miR160 or miR167 like other plant ARF genes. Interestingly, the MRE of miR156d/h-3p was observed in the 5’UTR of 3 VcARFs, suggesting a potentially novel post-transcriptional control. Furthermore, the transcript accumulations of VcARFs were investigated during fruit development, and three categories of transcript profiles were observed, implying different functional roles. Meanwhile, the expressions of VcARFs to different pH conditions (pH4.5 and pH6.5) were surveyed in pH-sensitive and tolerant blueberry species, and a number of VcARFs showed different transcript accumulations. More importantly, distinct transcriptional response to pH stress (pH6.5) were observed for several VcARFs (such as VcARF6s and VcARF19-3/19–4) between pH-sensitive and tolerant species, suggesting their potential roles in adaption to pH stress. Conclusions Sixty VcARF genes were identified and characterized, and their transcript profiles were surveyed during fruit development and in response to pH stress. These findings will contribute to future research for eliciting the functional roles of VcARFs and regulatory mechanisms, especially fruit development and adaption to pH stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08556-y.
Collapse
Affiliation(s)
- Xuyan Li
- College of Plant Science, Jilin University, Changchun, China
| | - Xiaoyi Zhang
- College of Plant Science, Jilin University, Changchun, China
| | - Tianran Shi
- College of Plant Science, Jilin University, Changchun, China
| | - Min Chen
- College of Plant Science, Jilin University, Changchun, China
| | - Chengguo Jia
- College of Plant Science, Jilin University, Changchun, China
| | - Jingying Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Zhixia Hou
- Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Research & Development Center of Blueberry, Beijing, 100083, China
| | - Junyou Han
- College of Plant Science, Jilin University, Changchun, China.
| | - Shaomin Bian
- College of Plant Science, Jilin University, Changchun, China.
| |
Collapse
|
46
|
Transcriptomic, Hormonomic and Metabolomic Analyses Highlighted the Common Modules Related to Photosynthesis, Sugar Metabolism and Cell Division in Parthenocarpic Tomato Fruits during Early Fruit Set. Cells 2022; 11:cells11091420. [PMID: 35563726 PMCID: PMC9102895 DOI: 10.3390/cells11091420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/09/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Parthenocarpy, the pollination-independent fruit set, can raise the productivity of the fruit set even under adverse factors during the reproductive phase. The application of plant hormones stimulates parthenocarpy, but artificial hormones incur extra financial and labour costs to farmers and can induce the formation of deformed fruit. This study examines the performance of parthenocarpic mutants having no transcription factors of SlIAA9 and SlTAP3 and sldella that do not have the protein-coding gene, SlDELLA, in tomato (cv. Micro-Tom). At 0 day after the flowering (DAF) stage and DAFs after pollination, the sliaa9 mutant demonstrated increased pistil development compared to the other two mutants and wild type (WT). In contrast to WT and the other mutants, the sliaa9 mutant with pollination efficiently stimulated the build-up of auxin and GAs after flowering. Alterations in both transcript and metabolite profiles existed for WT with and without pollination, while the three mutants without pollination demonstrated the comparable metabolomic status of pollinated WT. Network analysis showed key modules linked to photosynthesis, sugar metabolism and cell proliferation. Equivalent modules were noticed in the famous parthenocarpic cultivars ‘Severianin’, particularly for emasculated samples. Our discovery indicates that controlling the genes and metabolites proffers future breeding policies for tomatoes.
Collapse
|
47
|
Peng Z, Zhao C, Li S, Guo Y, Xu H, Hu G, Liu Z, Chen X, Chen J, Lin S, Su W, Yang X. Integration of genomics, transcriptomics and metabolomics identifies candidate loci underlying fruit weight in loquat. HORTICULTURE RESEARCH 2022; 9:uhac037. [PMID: 35137085 PMCID: PMC9071381 DOI: 10.1093/hr/uhac037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 05/05/2023]
Abstract
Fruit weight is an integral part of fruit-quality traits and directly influences commodity values and economic returns of fruit crops. Despite its importance, the molecular mechanisms underlying fruit weight remain understudied, especially for perennial fruit tree crops such as cultivated loquat (Eriobotrya japonica Lindl.). Auxin is known to regulate fruit development, whereas its role and metabolism in fruit development remain obscure in loquat. In this study, we applied a multi-omics approach, integrating whole-genome resequencing-based quantitative trait locus (QTL) mapping with an F1 population, population genomics analysis using germplasm accessions, transcriptome analysis, and metabolic profiling to identify the genomic regions potentially associated with fruit weight in loquat. We identified three major loci associated with fruit weight, supported by both QTL mapping and comparative genomic analysis between small- and big-fruited loquat cultivars. Comparison between two genotypes with contrasting fruit weight performance through transcriptomic and metabolic profiling revealed an important role of auxin in regulating fruit development, especially at the fruit enlarging stage. The multi-omics approach identified two homologs of ETHYLENE INSENSITIVE 4 (EjEIN4) and TORNADO 1 (EjTRN1) as promising candidates controlling fruit weight. Moreover, three single nucleotide polymorphism (SNP) markers were closely associated with fruit weight. Results from this study provided insights from multiple perspectives into the genetic and metabolic controls of fruit weight in loquat. The candidate genomic regions, genes, and sequence variants will facilitate understanding the molecular basis of fruit weight and lay a foundation for future breeding and manipulation of fruit weight in loquat.
Collapse
Affiliation(s)
- Ze Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Chongbin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuqing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yihan Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hongxia Xu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zongli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiuping Chen
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
| | - Junwei Chen
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Shunquan Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wenbing Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
| | - Xianghui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture and Rural Affairs), College of Horticulture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
48
|
Auxin Response Factors Are Ubiquitous in Plant Growth and Development, and Involved in Crosstalk between Plant Hormones: A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031360] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Auxin response factors (ARFs) are an important family of transcription factors involved in the exertion of auxin in plants and play a key role in regulating the growth and development of plant nutritional and reproductive organs such as roots, stems, leaves, flowers, fruits, and seeds. Foods of plant origin occupy an important place in the nutritional structure of the human diet, and the main edible parts of different plants vary. In this paper, we review recent research reports on ARFs and summarize its role in the regulation of leaf, flower, root, and fruit growth, as well as other important life activities. We also present the challenges and opportunities that ARFs will present in the future. It will be important to deepen our understanding of the mechanisms by which ARFs interact with other proteins or genes. In addition, it is worth considering that more technical tools should be put into the study of ARFs and that the research should be oriented towards solving practical problems. In the future, it is expected that the nutrition and function of plant-derived foods can be improved through gene editing and other means.
Collapse
|
49
|
He H, Yamamuro C. Interplays between auxin and GA signaling coordinate early fruit development. HORTICULTURE RESEARCH 2022; 9:uhab078. [PMID: 35043212 PMCID: PMC8955447 DOI: 10.1093/hr/uhab078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 05/25/2023]
Abstract
Phytohormones and their interactions are critical for fruit development and, are key topics in horticulture research. Auxin, together with gibberellic acid (GA), promotes cell division and expansion, thus subsequently regulates fruit development and enlargement after fertilization. Auxin and GA related mutants show parthenocarpy (fruit formation without fertilization of ovule) in many plant species, indicating that these hormones and possibly their interactions play a key role in the regulation of fruit initiation and development. Recent studies have shown clear molecular and genetic evidence that ARF/IAA and DELLA protein interact each other and regulate both auxin and GA signaling pathways in response to auxin and GA during fruit growth in horticultural plants, tomato (the most studied freshy fruit) and strawberry (the model of Rosaceae). These recent findings provide new insights into the mechanisms by which plant hormones auxin and GA regulate fruit development.
Collapse
Affiliation(s)
- Hai He
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Chizuko Yamamuro
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| |
Collapse
|
50
|
Sharif R, Su L, Chen X, Qi X. Hormonal interactions underlying parthenocarpic fruit formation in horticultural crops. HORTICULTURE RESEARCH 2022; 9:6497882. [PMID: 35031797 PMCID: PMC8788353 DOI: 10.1093/hr/uhab024] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 05/22/2023]
Abstract
In some horticultural crops, such as Cucurbitaceae, Solanaceae, and Rosaceae species, fruit set and development can occur without the fertilization of ovules, a process known as parthenocarpy. Parthenocarpy is an important agricultural trait that can not only mitigate fruit yield losses caused by environmental stresses but can also induce the development of seedless fruit, which is a desirable trait for consumers. In the present review, the induction of parthenocarpic fruit by the application of hormones such as auxins (2,4 dichlorophenoxyacetic acid; naphthaleneacetic acid), cytokinins (forchlorfenuron; 6-benzylaminopurine), gibberellic acids, and brassinosteroids is first presented. Then, the molecular mechanisms of parthenocarpic fruit formation, mainly related to plant hormones, are presented. Auxins, gibberellic acids, and cytokinins are categorized as primary players in initiating fruit set. Other hormones, such as ethylene, brassinosteroids, and melatonin, also participate in parthenocarpic fruit formation. Additionally, synergistic and antagonistic crosstalk between these hormones is crucial for deciding the fate of fruit set. Finally, we highlight knowledge gaps and suggest future directions of research on parthenocarpic fruit formation in horticultural crops.
Collapse
Affiliation(s)
- Rahat Sharif
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | - Li Su
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| | - Xuehao Chen
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
- Corresponding authors. E-mail: ,
| | - Xiaohua Qi
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu 225009, China
| |
Collapse
|