1
|
Mushtaq S, Kim S, Bibi I, Park JA, Yang JU, Park H, Kim JY. Bioaccumulation and in vivo tracking of radiolabeled 4-nonylphenol in mice. RSC Adv 2024; 14:8578-8582. [PMID: 38487519 PMCID: PMC10938378 DOI: 10.1039/d3ra08743c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/07/2024] [Indexed: 03/17/2024] Open
Abstract
4-Nonylphenol (4NP) is concerning due to its growing presence and endocrine-disrupting nature, raising concerns about its impact on health. In this study 124I-labeled 4NP was synthesized for in vivo tracing. Positron emission tomography imaging and biodistribution studies showed significant accumulation in various tissues after oral or intraperitoneal administration, emphasizing its intricate distribution and potential long-term effects, crucial for future risk assessments.
Collapse
Affiliation(s)
- Sajid Mushtaq
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences 75 Nowon-ro, Nowon-gu Seoul 01812 Republic of Korea +82-2-970-1977 +82-2-970-1660
- Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences P. O. Nilore Islamabad 45650 Pakistan
| | - Soyeon Kim
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences 75 Nowon-ro, Nowon-gu Seoul 01812 Republic of Korea +82-2-970-1977 +82-2-970-1660
| | - Iqra Bibi
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences 75 Nowon-ro, Nowon-gu Seoul 01812 Republic of Korea +82-2-970-1977 +82-2-970-1660
- Korea National University of Science and Technology 217 Gajeong-ro, Yuseong-gu Daejeon 3411 Republic of Korea
| | - Ji Ae Park
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences 75 Nowon-ro, Nowon-gu Seoul 01812 Republic of Korea +82-2-970-1977 +82-2-970-1660
- Korea National University of Science and Technology 217 Gajeong-ro, Yuseong-gu Daejeon 3411 Republic of Korea
| | - Ji-Ung Yang
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences 75 Nowon-ro, Nowon-gu Seoul 01812 Republic of Korea +82-2-970-1977 +82-2-970-1660
| | - Hyun Park
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences 75 Nowon-ro, Nowon-gu Seoul 01812 Republic of Korea +82-2-970-1977 +82-2-970-1660
| | - Jung Young Kim
- Division of Applied RI, Korea Institute of Radiological & Medical Sciences 75 Nowon-ro, Nowon-gu Seoul 01812 Republic of Korea +82-2-970-1977 +82-2-970-1660
| |
Collapse
|
2
|
Zhao Y, Ji J, Wu Y, Chen S, Xu M, Cao X, Liu H, Wang Z, Bi H, Guan G, Tang R, Tao H, Zhang H. Nonylphenol and its derivatives: Environmental distribution, treatment strategy, management and future perspectives. CHEMOSPHERE 2024; 352:141377. [PMID: 38346514 DOI: 10.1016/j.chemosphere.2024.141377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
In recent years, emerging pollutants, including nonylphenol (NP) and nonylphenol ethoxylate (NPE), have become a prominent topic. These substances are also classified as persistent organic pollutants. NP significantly affects the hormone secretion of organisms and exhibits neurotoxicity, which can affect the human hippocampus. Therefore, various countries are paying increased attention to NP regulation. NPEs are precursors of NPs and are widely used in the manufacture of various detergents and lubricants. NPEs can easily decompose into NPs, which possess strong biological and environmental toxicity. This review primarily addresses the distribution, toxicity mechanisms and performance, degradation technologies, management policies, and green alternative reagents of NPs and NPEs. Traditional treatment measures have been unable to completely remove NP from wastewater. With the progressively tightening management and regulatory policies, identifying proficient and convenient treatment methods and a sustainable substitute reagent with comparable product effectiveness is crucial.
Collapse
Affiliation(s)
- Yuqing Zhao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Jie Ji
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Yao Wu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Shiqi Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Mengyao Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xiang Cao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Hanlin Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zheng Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Hengyao Bi
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Guian Guan
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Ruixi Tang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Hong Tao
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - He Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China.
| |
Collapse
|
3
|
LIU H, SUN Z, LIU QS, ZHOU Q, JIANG G. [Synthetic phenolic compounds perturb lipid metabolism and induce obesogenic effects]. Se Pu 2024; 42:131-141. [PMID: 38374593 PMCID: PMC10877482 DOI: 10.3724/sp.j.1123.2023.12018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Indexed: 02/21/2024] Open
Abstract
Given continuous development in society and the economy, obesity has become a global epidemic, arousing great concern. In addition to genetic and dietary factors, exposure to environmental chemicals is associated with the occurrence and development of obesity. Current research has indicated that some chemicals with endocrine-disrupting effects can affect lipid metabolism in vivo, causing elevated lipid storage. These chemicals are called "environmental obesogens". Synthetic phenolic compounds (SPCs) are widely used in industrial and daily products, such as plastic products, disinfectants, pesticides, food additives, and so on. The exposure routes of SPCs to the human body may include food and water consumption, direct skin contact, etc. Their unintended exposure could cause harmful effects on human health. As a type of endocrine disruptor, SPCs interfere with adipogenesis and lipid metabolism, exhibiting the characteristics of environmental obesogens. Because SPCs have similar phenolic structures, gathering information on their influences on lipid metabolism would be helpful to understand their structure-related effects. In this review, three commonly used research methods for screening environmental obesogens, including in vitro testing for molecular interactions, cell adipogenic differentiation models, and in vivo studies on lipid metabolism, are summarized, and the advantages and disadvantages of these methods are compared and discussed. Based on both in vitro and in vivo data, three types of SPCs, including bisphenol A (BPA) and its analogues, alkylphenols (APs), and synthetic phenolic antioxidants (SPAs), are systematically discussed in terms of their ability to disrupt adipogenesis and lipid metabolism by focusing on adipose and hepatic tissues, among others. Common findings on the effects of these SPCs on adipocyte differentiation, lipid storage, hepatic lipid accumulation, and liver steatosis are described. The underlying toxicological mechanisms are also discussed from the aspects of nuclear receptor transactivation, inflammation and oxidative stress regulation, intestinal microenvironment alteration, epigenetic modification, and some other signaling pathways. Future research to increase public knowledge on the obesogenic effects of emerging chemicals of concern is encouraged.
Collapse
|
4
|
Xu Y, Park SH, Gye MC. Head dysgenesis and disruption of cranial neural crest stem cells behaviour by 4-octylphenol in fire-bellied toad Bombina orientalis embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122697. [PMID: 37804908 DOI: 10.1016/j.envpol.2023.122697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/18/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
Alkylphenolic endocrine disruptors (Eds) have been known to affect development of the descendants of multipotent neural crest cells (NCCs) in amphibian embryos. To unravel the mechanism of head dysgenesis induced by alkylphenols in amphibians, the effect of 4-octylphenol (OP) on the differentiation of cranial NCCs in developing embryos and tadpoles, ex vivo NC explant, and isolated NCCs was examined in fire-bellied toad Bombina orientalis with 0, 1, 2, 5, 10, 25 and 50 μM concentrations. Following OP treatment, head cartilages were frequently absent together with the decreased col2a1 mRNA level in tadpoles. While the lipid hydroperoxide (LPO), endoplasmic reticulum stress (ERS), apoptosis, and DNA fragmentation were significantly increased in stage 22 neulurae and heads of stage 45 tadpoles. In stage 22 neulurae, OP decreased sox9 mRNA, the master transcription factor for chondrogenic differentiation and increased undifferentiated NCC markers. The ectopic NCCs were found in endoderm while mesodermal SOX10(+) cells were decreased. In cranial NCCs isolated from stage 22 embryos, OP treatment decreased cellular survival and increased apoptosis, epithelial-mesenchymal transition (EMT) and cell migration. In chondrogenic induced cranial NC explants, OP treatment decreased SOX9(+) chondrocytes and cartilage development. Together, OP potentiated oxidative damage, apoptosis, EMT, and ectopic migration of NCCs. Considering that tissue differentiation requires stem cells to activate the molecular mechanism of differentiation at the correct location during embryonic development, these changes caused by OP may inhibit sox9-dependent chondrogenic differentiation of cranial NCCs, leading to head dysgenesis in B. orientalis embryos. Therefore, developing multipotent NCCs could be an important target of OP, provides new direction for the estimation of the risk of EDs exposure in human and wildlife animals.
Collapse
Affiliation(s)
- Yang Xu
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seung Hyun Park
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Myung Chan Gye
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
5
|
Ribeiro CM, de Oliveira FCB, Pereira SA, Moraes ACRO, Beserra BTS, Dias JC, da Silva NG, Lacerda MG, Milton FA, Neves FDAR, Coelho MS, Amato AA. The effect of long-term exposure to nonylphenol at environmentally relevant levels on mouse liver and adipose tissue. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104216. [PMID: 37437749 DOI: 10.1016/j.etap.2023.104216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Exposure to the xenoestrogen nonylphenol (NP) during critical windows of development leads to metabolic abnormalities in adult life. However, less is known about NP exposure outside the developmental period on metabolic outcomes. We investigated the effect of prolonged exposure to NP after sexual maturity and at environmentally relevant concentrations below the 'no observable adverse effects level' (0.5 and 2.5 mg/kg/d). Male Swiss mice fed a normal-fat diet exposed to 2.5 mg/kg/d NP showed reduced weight gain and hepatic fat content. In male and female C57BL/6 mice fed a high-fat diet, NP exposure modified the mRNA levels of estrogen receptor α (Esr1) and adipose lineage markers in a sexually dimorphic and adipose depot-dependent pattern. Moreover, in primary female but not male stromal vascular cells from C57BL/6 mouse inguinal WAT induced to differentiate into adipocytes, NP upregulated Fabp4 expression. Low-level exposure to NP outside critical developmental windows may affect the metabolic phenotype distinctly. DATA AVAILABILITY STATEMENT: All data not included in the manuscript, such as raw results, are available upon request and should be addressed to AAA.
Collapse
Affiliation(s)
- Carolina Martins Ribeiro
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | | | - Sidney Alcantara Pereira
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | | | - Bruna Teles Soares Beserra
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Jamison Cordeiro Dias
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | | | - Mariella Guimarães Lacerda
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Flora Aparecida Milton
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | | | - Michella Soares Coelho
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| | - Angelica Amorim Amato
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|
6
|
De la Parra-Guerra AC, Acevedo-Barrios R. Studies of Endocrine Disruptors: Nonylphenol and Isomers in Biological Models. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023. [PMID: 37057841 DOI: 10.1002/etc.5633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/23/2023]
Abstract
Certain emerging pollutants are among the most widely used chemicals globally, causing widespread concern in relation to their use in products devoted to cleaniness and asepsis. Nonylphenol ethoxylate (NPEOn) is one such contaminant, along with its degradation product, nonylphenol, an active ingredient presents in nonionic surfactants used as herbicides, cosmetics, paints, plastics, disinfectants, and detergents. These chemicals and their metabolites are commonly found in environmental matrices. Nonylphenol and NPEOn, used, are particularly concerning, given their role as endocrine disruptors chemical and possible neurotoxic effects recorded in several biological models, primarily aquatic organisms. Limiting and detecting these compounds remain of paramount importance. The objective of the present review was to evaluate the toxic effects of nonylphenol and NPEOn in different biological models. Environ Toxicol Chem 2023;00:1-12. © 2023 SETAC.
Collapse
Affiliation(s)
- Ana C De la Parra-Guerra
- Department of Natural and Exact Sciences, Universidad de La Costa, Barranquilla, Colombia
- Biodiversity Research Group, Faculty of Basic Sciences, Universidad del Atlántico, Barranquilla, Colombia
| | - Rosa Acevedo-Barrios
- Grupo de Investigación en Estudios Químicos y Biológicos, Facultad de Ciencias Básicas, Universidad Tecnológica de Bolívar, Cartagena, Colombia
| |
Collapse
|
7
|
Wang C, Zheng J, Wang S, Zhou A, Kong X, Zhao B, Li H, Yue X. Efficient elimination of nonylphenol and 4-tert-octylphenol by weak electrical stimulated anaerobic microbial processes. CHEMOSPHERE 2023; 320:138085. [PMID: 36758818 DOI: 10.1016/j.chemosphere.2023.138085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/06/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The investigation into the degradation of alkylphenol pollutants (APs) has become a hotspot due to their harmful effects on the environment and human health. In this study, microbial electrolysis cells (MECs) were used to degrade nonylphenol (NP) and 4-tert-octylphenol (4-tert-OP). The study found that the degradation rates of NP and 4-tert-OP for a 6-day period were 83.6% and 96.3%, respectively, which were 30.53% and 26.7% higher than those of the group without applied voltage. The double layer area in the degradation of 4-tert-OP was larger than that of NP, and the resistance exhibited by 4-tert-OP (87.47 Ω) in MEC was lower than that of NP (99.42 Ω). Meanwhile, NP had a greater effect on the bioenzyme activity than 4-tert-OP. GC-MS analysis showed that the degradation pathways of both pollutants mainly included oxidation and hydroxylation reactions. Furthermore, the microbial community analysis indicated that the main functional bacteria in NP degradation were Citrobacter, Desulfovibrio and Advenella, and those in 4-tert-OP degradation were Stenotrophomonas, Chryseobacterium, Dokdonella, and the key microbiomes underlying the cooperative relationship. The biotoxicity test indicated that the toxicity of residual substances was significantly reduced. Therefore, the MEC system is efficient and environmentally friendly and has broad application prospects in phenol refractory organics.
Collapse
Affiliation(s)
- Cuicui Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Jierong Zheng
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Sufang Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xin Kong
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Bowei Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Houfen Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| |
Collapse
|
8
|
Gupta HP, Fatima MU, Pandey R, Ravi Ram K. Adult exposure of atrazine alone or in combination with carbohydrate diet hastens the onset/progression of type 2 diabetes in Drosophila. Life Sci 2023; 316:121370. [PMID: 36640902 DOI: 10.1016/j.lfs.2023.121370] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/19/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023]
Abstract
AIM The combined impact of traditional and non-traditional risk factors of type 2 diabetes (T2D) on the development and progression of insulin resistance and associated complications is poorly understood. Therefore, we assessed the effect of moderately rich sugar diet coupled with environmental chemical exposure on the development and progression of T2D using Drosophila as a model organism. MAIN METHODS We reared newly eclosed Drosophila males on a diet containing atrazine (20 μg/ml; non-traditional risk factor) and/or moderately high sucrose (0.5 M/1 M; to mimic binge eating, Traditional risk factor) for 20-30 days. Subsequently, we assessed diabetic parameters, oxidative stress parameters and also the abundance of advanced glycation end products (AGEs) along with their receptor (RAGE) in these flies. For diabetic cardiomyopathy, we examined the pericardin (tissue fibrosis marker) level in Drosophila heart. KEY FINDINGS Flies reared on 20 μg/ml atrazine alone showed T2D hallmarks at 30 days. In contrast, flies reared on 0.5 M sucrose+ 20 μg/ml atrazine showed insulin resistance characterized by hyperglycemia and increased Drosophila insulin-like peptides along with reduced insulin signaling at 20 days, similar to those reared on high sucrose diet. In addition, both groups had high levels of oxidative stress and showed starvation response (converting triglycerides into fatty acids). Alarmingly, flies fed with sucrose+atrazine for 20 and 30 days had elevated pericardin in heart tissues, indicating early onset of diabetic complications such as cardiomyopathy. SIGNIFICANCE Lifestyle-chemical exposure synergistically impairs glucose metabolism, affects organisms' redox state and leads to the early onset of T2D and associated complications like cardiomyopathy.
Collapse
Affiliation(s)
- Himanshu Pawankumar Gupta
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Mirat-Ul Fatima
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Rukmani Pandey
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India; Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Kristipati Ravi Ram
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
9
|
Zhang S, Liu H, Du X, Chen X, Petlulu P, Tian Z, Shi L, Zhang B, Yuan S, Guo X, Wang Y, Guo H, Zhang H. A new identity of microcystins: Environmental endocrine disruptors? An evidence-based review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158262. [PMID: 36029820 DOI: 10.1016/j.scitotenv.2022.158262] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Microcystins (MCs) are widely distributed cyanobacterial toxins in eutrophic waters. At present, the endocrine-disrupting effects of MCs have been extensively studied, but whether MCs can be classified as environmental endocrine disruptors (EDCs) is still unclear. This review is aimed to evaluate the rationality for MCs as to be classified as EDCs based on the available evidence. It has been identified that MCs meet eight of ten key characteristics of chemicals that can be classified as EDCs. MCs interfere with the six processes, including synthesis, release, circulation, metabolism, binding and action of natural hormones in the body. Also, they are fit two other characteristics of EDC: altering the fate of producing/responding cells and epigenetic modification. Further evidence indicates that the endocrine-disrupting effect of MCs may be an important cause of adverse health outcomes such as metabolic disorders, reproductive disorders and effects on the growth and development of offspring. Generally, MCs have endocrine-disrupting properties, suggesting that it is reasonable for them to be considered EDCs. This is of great importance in understanding and evaluating the harm done by MCs on humans.
Collapse
Affiliation(s)
- Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China; Quality Control Department, Ninth Hospital of Xi'an, Shanxi, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | | | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Bingyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shumeng Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xing Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongshui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
10
|
Qiannan-Di, Qianqian-Jiang, Jiahui-Sun, Haowei-Fu, Qian-Xu. LncRNA PVT1 mediates the progression of liver necroptosis via ZBP1 promoter methylation under nonylphenol exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157185. [PMID: 35803419 DOI: 10.1016/j.scitotenv.2022.157185] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Nonylphenol (NP) is one of the most toxic and ubiquitously present endocrine disrupting compounds. Numerous studies have shown that NP exposure induces liver injury, but the interactions between epigenetic factors and necroptosis in this context have not been examined. In this study, rats received daily NP administration (15, 45, and 135 mg/kg/day) via oral gavage over a 28-day period. The upregulation of lncRNA PVT1 was associated with the elevated expression of necroptosis-related proteins (ZBP1, RIPK3, MLKL, and p-MLKL). Moreover, similar effects were also observed after NP exposure in BRL-3A cells. LncRNA PVT1 was predominantly expressed in the nucleus, and ASO was chosen to knock down lncRNA PVT1 in BRL-3A cells. Experimental techniques such as RNA immunoprecipitation, chromatin immunoprecipitation, and co-immunoprecipitation were used to verify direct binding interactions among lncRNA PVT1, EZH2, DNMT1, and ZBP1. The evidence obtained indicated that lncRNA PVT1 could bind to DNMT1 via EZH2 and increase methylation at the ZBP1 promoter, thereby promoting necroptosis. Meanwhile, the demethylation of the highly expressed gene TET1 also promoted ZBP1 upregulation, inducing necroptosis. Taken together, these findings provide valuable insights into the potential molecular mechanisms underlying liver injury in response to NP exposure. Hence, they lay a mechanistic foundation for the evaluation of NP biosafety.
Collapse
|
11
|
Xenobiotic-Induced Aggravation of Metabolic-Associated Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23031062. [PMID: 35162986 PMCID: PMC8834714 DOI: 10.3390/ijms23031062] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 01/09/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), which is often linked to obesity, encompasses a large spectrum of hepatic lesions, including simple fatty liver, steatohepatitis, cirrhosis and hepatocellular carcinoma. Besides nutritional and genetic factors, different xenobiotics such as pharmaceuticals and environmental toxicants are suspected to aggravate MAFLD in obese individuals. More specifically, pre-existing fatty liver or steatohepatitis may worsen, or fatty liver may progress faster to steatohepatitis in treated patients, or exposed individuals. The mechanisms whereby xenobiotics can aggravate MAFLD are still poorly understood and are currently under deep investigations. Nevertheless, previous studies pointed to the role of different metabolic pathways and cellular events such as activation of de novo lipogenesis and mitochondrial dysfunction, mostly associated with reactive oxygen species overproduction. This review presents the available data gathered with some prototypic compounds with a focus on corticosteroids and rosiglitazone for pharmaceuticals as well as bisphenol A and perfluorooctanoic acid for endocrine disruptors. Although not typically considered as a xenobiotic, ethanol is also discussed because its abuse has dire consequences on obese liver.
Collapse
|
12
|
Shan D, Wang J, Di Q, Jiang Q, Xu Q. Steatosis induced by nonylphenol in HepG2 cells and the intervention effect of curcumin. Food Funct 2021; 13:327-343. [PMID: 34904613 DOI: 10.1039/d1fo02481g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has increasingly become a serious public health problem. There is growing evidence that nonylphenol (NP) exposure may cause steatosis, but the underlying mechanism is not fully understood. Curcumin (CUR) improves NAFLD-related lipid metabolism disorders and oxidative stress, but its preventive and therapeutic effects on NP-induced steatosis have not been reported. The objective of this investigation was to determine the capability and potential mechanism of NP to induce steatosis in vitro and the intervention of curcumin. HepG2 cells were treated with 0 μM, 20 μM, 30 μM, 40 μM NP for 24 h. Lipid droplets accumulated significantly in HepG2 cells after NP treatment, and the concentration of triglyceride (TG) and total cholesterol (T-CHO) increased significantly. Simultaneously, lipogenesis gene expression was up-regulated significantly, fatty acid oxidation (FAO) gene expression was significantly down-regulated, and reactive oxygen species (ROS) were overproduced. Meanwhile, the expression of p-AMPK/AMPK in the AMPK/mTOR signaling pathway was significantly down-regulated and the expression of p-mTOR/mTOR was markedly up-regulated. However, blocking ROS production with N-acetyl-L-cysteine (NAC) can reverse these phenomena. In addition, our study found that curcumin effectively ameliorated the effects of NP-induced steatosis. Our study indicates that NP can induce steatosis in HepG2 cells, and may be implicated in inhibiting the ROS-dependent AMPK/mTOR pathway, and that curcumin ameliorates the NAFLD-like changes induced by NP in HepG2 cells.
Collapse
Affiliation(s)
- Dandan Shan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Jinming Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Qiannan Di
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Qianqian Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
13
|
Fu X, He J, Zheng D, Yang X, Wang P, Tuo F, Wang L, Li S, Xu J, Yu J. Association of endocrine disrupting chemicals levels in serum, environmental risk factors, and hepatic function among 5- to 14-year-old children. Toxicology 2021; 465:153011. [PMID: 34715266 DOI: 10.1016/j.tox.2021.153011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) might increase the risk of childhood diseases by disrupting hormone-mediated processes that are critical for growth and development during childhood, however, the association among the exposure level of EDCs such as Nonylphenol (NP), Bisphenol A (BPA), Dimethyl phthalate (DMP) in children and environmental risk factors, as well as hepatic function has not been elaborated. This study aimed to discuss this interesting relationship among NP, BPA, DMP concentrations in serum, environmental risk factors, hepatic function of 5- to 14-year-old children in industrial zone, residential zone and suburb in northern district of Guizhou Province, China. In Zunyi city, 1006 children participated in cross-sectional health assessments from July to August 2018, and their parents completed identical questionnaires on the environmental risk factors of EDCs exposure to mothers and children. Serum NP, BPA and DMP concentrations were measured by high performance liquid chromatography (HPLC). Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), AST/ALT, total bilirubin (TBIL), direct bilirubin (DBIL) and indirect bilirubin (IBIL) were detected with automatic biochemical analyzer. The median concentrations of serum NP, BPA, and DMP in the participants were 45.85 ng/mL, 26.31 ng/mL and 31.62 ng/mL, respectively, which were higher than the environmental concentration limits of the U.S. National Environmental Protection Agency (EPA). Hair gels used during pregnancy, types of domestic drinking water, nail polish and cosmetics used by children were significantly positive correlated with serum NP concentration (P < 0.05). Gender, feeding pattern, plastic water cup used during pregnancy, hair spray and perfume use for children, duration of children birth, materials for baby bottle or cup and ways to plastic products were significantly positively correlated with serum BPA concentration (P < 0.05). Gender, perms used during pregnancy, hair spray and perfume use for children, using plastic lunch box during pregnancy, duration of children birth, exposure to pesticides, parents' occupations were significantly positively correlated with serum DMP concentrations (P < 0.05). Serum NP (β = 0.296, P = 0.036) and DMP (β = 0.316, P = 0.026) concentrations and TBIL level were significantly positively correlated. Serum NP concentration and the levels of IBIL (β = 0.382, P = 0.006) are significantly positively correlated. Cosmetics used during pregnancy significantly increased AST level (β = 2.641, P = 0.021). There was a positive correlation between the frequency of hair spray and perfume use for children and the AST (β = 4.241, P = 0.022). NP, BPA and DMP, which were commonly detected in the serum of children aged 5-14 years old in Zunyi City, Northern Guizhou Province, China, were closely related to the environmental risk factors of exposure environment during pregnancy, infancy and school age. Exposure to NP, BPA and DMP would have negative effects on hepatic function, and these effects showed differences in gender and geographical location. Notably,The relationships were more evident in girls than in boys.
Collapse
Affiliation(s)
- Xiangjun Fu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie He
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Deliang Zheng
- Department of Laboratory Medicine, Honghuagang District People's Hospital, Zunyi, Guizhou, 563000, PR China
| | - Xuefeng Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, 563000, PR China
| | - Pan Wang
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, PR China
| | - FangXu Tuo
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Lin Wang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Shixu Li
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| |
Collapse
|
14
|
Zhang Q, Wu S, Xiao Q, Kang C, Hu H, Hou X, Wei X, Hao W. Effects of 4-nonylphenol on adipogenesis in 3T3-L1 preadipocytes and C3H/10T1/2 mesenchymal stem cells. J Appl Toxicol 2021; 42:588-599. [PMID: 34553387 DOI: 10.1002/jat.4241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 11/06/2022]
Abstract
Obesogens are a subset of endocrine disruptor chemicals (EDCs) that cause obesity. The typical EDC 4-nonylphenol (4-NP) has been identified as an obesogen. However, the in vitro effects of 4-NP on adipogenesis remain unclear. In this study, 3T3-L1 preadipocytes and C3H/10T1/2 mesenchymal stem cells (MSCs) were used to investigate the influence of 4-NP on adipogenesis. The differentiation protocols for 3T3-L1 preadipocytes and C3H/10T1/2 MSCs took 8 and 12 days, respectively, beginning at Day 0. In differentiated 3T3-L1 preadipocytes, 20 μM 4-NP decreased cell viability on Days 4 and 8. Exposure to 4-NP inhibited triglyceride (TG) accumulation and adipogenic marker expression on Days 0-8, but the inhibitory effects were weaker on Days 2-8. The protein expression of pSTAT3 or STAT3 decreased on Days 0-8 and 2-8. Conversely, 4-NP promoted TG accumulation and the adipogenic marker expression in C3H/10T1/2 adipocytes. The opposing effects were attributed to physiological differences between the two cell lines. The 3T3-L1 preadipocytes are dependent on mitotic clonal expansion (MCE) to drive differentiation, while C3H/10T1/2MSCs and human preadipocytes are not. Additionally, 4-NP downregulated β-catenin expression in C3H/10T1/2 adipocytes. Accordingly, we hypothesized that 4-NP promotes adipogenesis. The role of the canonical Wnt pathway in the promotion of adipogenesis by 4-NP requires further validation. This study provides new insights into the mechanisms and appropriate risk management of 4-NP.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Toxicology, School of Public Health, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Shuang Wu
- Department of Toxicology, School of Public Health, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Chenping Kang
- Department of Toxicology, School of Public Health, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Hong Hu
- Department of Toxicology, School of Public Health, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Xiaohong Hou
- Department of Toxicology, School of Public Health, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, China
| |
Collapse
|
15
|
Elsyade R, El Sawaf E, Gaber D. Hazards of Chronic Exposure to Nonylphenol: Concomitant Effect on Non-alcoholic Fatty Liver Disease in Male Albino Rats. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND: Chronic exposure to environmental endocrine disruptors like nonylphenol (NP), has been shown in previous studies to predispose to non-alcoholic fatty liver disease.
METHODS: In this work, forty adult male albino rats were divided into four groups, a high sucrose-high-fat diet (HSHFD) group, a group receiving 20 μg/kg/day of NP, an NP + HSHFD group, and a control group. The rats were sacrificed on day 60 after anesthetization.
RESULTS: Biochemical tests indicated that serum transaminases (alanine aminotransferase, aspartate aminotransferase) were significantly increased in the NP + HSHFD group. Lipid metabolism was most disrupted in the NP + HSHFD with a highly significant increase (p < 0.001) of serum cholesterol, triglyceride, and low-density lipoprotein cholesterol compared to other groups. Heme oxygenase 1 showed the highest expression in the NP + HSHFD group, with a highly significant difference in comparison with the other groups (p < 0.001). Histopathological studies revealed fatty changes and dilatation in the central vein in the HSHFD group. Lymphoid cell aggregates were detected in the NP group. Massive inflammation and degeneration were revealed in the NP + HSHFD group. There was also marked expression of the apoptotic protein caspase-3 in the NP + HSHFD group.
CONCLUSION: In conclusion, exposure to a 20 μg/kg/day of NP induced oxidative stress leading to non-alcoholic steatohepatitis.
Collapse
|
16
|
Boyacioglu M, Gules O, Sahiner HS. Protective Effect of Sodium Selenite on 4-Nonylphenol-Induced Hepatotoxicity and Nephrotoxicity in Rats. Biol Trace Elem Res 2021; 199:3001-3012. [PMID: 33026593 DOI: 10.1007/s12011-020-02418-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
This study was aimed at evaluating the protective effect of sodium selenite (SS) on DNA integrity, antioxidant/oxidant status, and histological changes on 4-nonylphenol (4-NP)-induced toxicity in liver and kidney tissues of rats. Twenty-four adult male Sprague Dawley rats were divided into 4 groups as control, SS, 4-NP, and SS+4-NP group. Control group was untreated. The SS group was supplemented with SS (0.5 mg/kg/day) and the 4-NP group was given 4-NP (125 mg/kg/day). The rats in the SS+4-NP group received SS followed by 4-NP 1 h later at the abovementioned doses. The treatments were administered by oral gavage for 48 days. DNA damage was analyzed by comet assay in lymphocytes. Oxidative stress parameters were measured, and histological evaluation was performed in liver and kidney tissues. Results showed that SS administration significantly decreased % Tail DNA and Mean Tail Moment in SS+4-NP group as compared with 4-NP group. Catalase activity in liver was significantly lower in 4-NP group only. SS treatment significantly increased the glutathione level and decreased high malondialdehyde level in tissues of the SS+4-NP group as compared with 4-NP group. Dilation of central vein, ballooning degeneration, vacuolar degeneration, and deterioration in the structure of remark cords in 4-NP-administered were alleviated in rats that received SS supplementation before administration of 4-NP. Moreover, glycogen intensity in hepatocytes and the wall of central vein increased in the SS+4-NP group. In addition, the SS supplementation in the SS+4-NP group decreased glomerular degeneration as well as the width of cavum glomeruli and congestion intensity in the kidney. These results indicate that SS may have a protective effect against 4-NP-induced hepato-nephrotoxicity in rats.
Collapse
Affiliation(s)
- Murat Boyacioglu
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, 09016, Isıklı, Aydın, Turkey.
| | - Ozay Gules
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyon, Turkey
| | - Hande Sultan Sahiner
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, 09016, Isıklı, Aydın, Turkey
| |
Collapse
|
17
|
One Week of CDAHFD Induces Steatohepatitis and Mitochondrial Dysfunction with Oxidative Stress in Liver. Int J Mol Sci 2021; 22:ijms22115851. [PMID: 34072586 PMCID: PMC8198552 DOI: 10.3390/ijms22115851] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) has been rapidly increasing worldwide. A choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) has been used to create a mouse model of nonalcoholic steatohepatitis (NASH). There are some reports on the effects on mice of being fed a CDAHFD for long periods of 1 to 3 months. However, the effect of this diet over a short period is unknown. Therefore, we examined the effect of 1-week CDAHFD feeding on the mouse liver. Feeding a CDAHFD diet for only 1-week induced lipid droplet deposition in the liver with increasing activity of liver-derived enzymes in the plasma. On the other hand, it did not induce fibrosis or cirrhosis. Additionally, it was demonstrated that CDAHFD significantly impaired mitochondrial respiration with severe oxidative stress to the liver, which is associated with a decreasing mitochondrial DNA copy number and complex proteins. In the gene expression analysis of the liver, inflammatory and oxidative stress markers were significantly increased by CDAHFD. These results demonstrated that 1 week of feeding CDAHFD to mice induces steatohepatitis with mitochondrial dysfunction and severe oxidative stress, without fibrosis, which can partially mimic the early stage of NASH in humans.
Collapse
|
18
|
Cano R, Pérez JL, Dávila LA, Ortega Á, Gómez Y, Valero-Cedeño NJ, Parra H, Manzano A, Véliz Castro TI, Albornoz MPD, Cano G, Rojas-Quintero J, Chacín M, Bermúdez V. Role of Endocrine-Disrupting Chemicals in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: A Comprehensive Review. Int J Mol Sci 2021; 22:4807. [PMID: 34062716 PMCID: PMC8125512 DOI: 10.3390/ijms22094807] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the most common liver disorder, affecting around 25% of the population worldwide. It is a complex disease spectrum, closely linked with other conditions such as obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome, which may increase liver-related mortality. In light of this, numerous efforts have been carried out in recent years in order to clarify its pathogenesis and create new prevention strategies. Currently, the essential role of environmental pollutants in NAFLD development is recognized. Particularly, endocrine-disrupting chemicals (EDCs) have a notable influence. EDCs can be classified as natural (phytoestrogens, genistein, and coumestrol) or synthetic, and the latter ones can be further subdivided into industrial (dioxins, polychlorinated biphenyls, and alkylphenols), agricultural (pesticides, insecticides, herbicides, and fungicides), residential (phthalates, polybrominated biphenyls, and bisphenol A), and pharmaceutical (parabens). Several experimental models have proposed a mechanism involving this group of substances with the disruption of hepatic metabolism, which promotes NAFLD. These include an imbalance between lipid influx/efflux in the liver, mitochondrial dysfunction, liver inflammation, and epigenetic reprogramming. It can be concluded that exposure to EDCs might play a crucial role in NAFLD initiation and evolution. However, further investigations supporting these effects in humans are required.
Collapse
Affiliation(s)
- Raquel Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - José L. Pérez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Lissé Angarita Dávila
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Sede Concepción 4260000, Chile;
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Yosselin Gómez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Nereida Josefina Valero-Cedeño
- Carrera de Laboratorio Clínico, Facultad de Ciencias de la Salud, Universidad Estatal del Sur de Manabí, Jipijapa E482, Ecuador; (N.J.V.-C.); (T.I.V.C.)
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Alexander Manzano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Teresa Isabel Véliz Castro
- Carrera de Laboratorio Clínico, Facultad de Ciencias de la Salud, Universidad Estatal del Sur de Manabí, Jipijapa E482, Ecuador; (N.J.V.-C.); (T.I.V.C.)
| | - María P. Díaz Albornoz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (R.C.); (J.L.P.); (Á.O.); (Y.G.); (H.P.); (A.M.); (M.P.D.A.)
| | - Gabriel Cano
- Insitute für Pharmazie, Freie Universitänt Berlin, Königin-Louise-Strabe 2-4, 14195 Berlin, Germany;
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Maricarmen Chacín
- Facultad de Ciencias de la Salud. Barranquilla, Universidad Simón Bolívar, Barranquilla 55-132, Colombia;
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud. Barranquilla, Universidad Simón Bolívar, Barranquilla 55-132, Colombia;
| |
Collapse
|
19
|
Xu Y, Jang JH, Gye MC. 4-Octylphenol induces developmental abnormalities and interferes the differentiation of neural crest cells in Xenopus laevis embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116560. [PMID: 33524650 DOI: 10.1016/j.envpol.2021.116560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Developmental toxicity of 4-octylphenol (OP), an estrogenic endocrine disruptor was verified using frog embryo teratogenesis assay Xenopus. LC50, EC50Malformtion and EC50Melanocyte-dysgenesis of OP were 9.9, 10.5, and 2.4 μM, respectively. In tadpoles, despite the low teratogenic index, 2 μM OP significantly inhibited head cartilage development and tail malformation. The total length of tadpole was significantly increased at 5 μM and decreased at 10 μM OP. In OP-treated tadpoles, head cartilages were frequently missed and col2a1 mRNA was decreased at 2 μM, indicating a chondrogenic defect in developing head. In the head skin of 1 μM OP-treated tadpoles, number of melanocytes and melanogenic pathway genes expression were significantly decreased. In the head-neck junction of stage 22 embryos, OP increased foxd3 and sox10 mRNA and SOX10(+) neural crest cells (NCCs) in somite mesoderm and endoderm, indicating the inhibition of chondrogenic differentiation, ectopic migration to endoderm, and undifferentiation of NCCs by OP. Together, OP-induced head dysplasia and inhibition of melanogenesis may be attributable to deregulation of neural crest cells in embryos. In tadpoles, OP at 1 μM significantly increased lipid hydroperoxide and induced spliced xbp1 mRNA, an IRE1 pathway endoplasmic reticulum stress (ERS) marker and p-eIF2α protein, a PERK pathway ERS marker. OP at 10 μM induced CHOP mRNA, pro-apoptotic genes expression, DNA fragmentation, and cleaved caspase-3, suggesting that OP differentially induced ERS and apoptosis according to the concentration in embryos. In 5-10 μM OP-treated stage 22 embryos and stage 45 tadpole heads, Ki67 was significantly increased, suggesting the apoptosis-induced proliferation of embryonic cells in the OP-treated embryos. Together, OP should be managed as a developmental toxicant altering the behavior of NCCs in vertebrates.
Collapse
Affiliation(s)
- Yang Xu
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Ji Hyun Jang
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Myung Chan Gye
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
20
|
Sun Z, Cao H, Liu QS, Liang Y, Fiedler H, Zhang J, Zhou Q, Jiang G. 4-Hexylphenol influences adipogenic differentiation and hepatic lipid accumulation in vitro. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115635. [PMID: 33045592 DOI: 10.1016/j.envpol.2020.115635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Finding the potential environmental obesogens is crucial to explain the prevalence of obesity and the related pathologies. Increasing evidence has showed that many chemicals with endocrine disrupting effects can disturb lipid metabolism. Whether 4-hexylphenol (4-HP), a widely-used surfactant and a potential endocrine disrupting chemical (EDC), is associated to influence adipogenesis and hepatic lipid accumulation remained to be elucidated. In this study, both the 3T3-L1 differentiation model and oleic acid (OA)-treated HepG2 cells were used to investigate the effects of 4-HP on lipid metabolism, and the underlying estrogen receptor (ER)-involved mechanism was explored using MVLN assay, molecular docking simulation and the antagonist test. The results based on lipid droplet staining and triglyceride accumulation assay showed that 4-HP treatment promoted the adipogenic differentiation of 3T3-L1 cells and increased hepatic cellular OA accumulation in exposure concentration-dependent manners. The study on the elaborated transcription networks indicated that 4-HP activated peroxisome proliferator-activated receptor γ (PPARγ) as well as the subsequent adipogenic gene program in 3T3-L1 cells. This chemical also induced the increase of OA uptake and decreases of de novo lipogenesis and fatty acid oxidation in HepG2 cells. The agonistic activity of 4-HP in triggering ER-mediated pathway was shown to correlate with its perturbation in lipid metabolism, as evidenced by the enhanced development of mature lipid-laden adipocytes and suppression of excessive hepatic lipid accumulation upon its co-treatment with ER antagonist. Altogether, these findings provide new insights into the potential health impacts of 4-HP exposure as it may relate to obesity and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiming Cao
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Heidelore Fiedler
- Örebro University, School of Science and Technology, MTM Research Centre, SE-701 82, Örebro, Sweden
| | - Jianqing Zhang
- Department of POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Yu J, Tuo F, Luo Y, Yang Y, Xu J. Toxic effects of perinatal maternal exposure to nonylphenol on lung inflammation in male offspring rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139238. [PMID: 32512292 DOI: 10.1016/j.scitotenv.2020.139238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/03/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
The incidence of asthma and its related allergic diseases has increased dramatically over the last decade. Asthma is a complex disease caused by genetic and environmental factors. Nonylphenol (NP), a typical endocrine disrupting chemical (EDC), is a major current focus in asthma research. Pregnant Sprague-Dawley rats (n = 8-10 per group) were given a consecutive daily dose of NP (25, 50, or 100 mg/kg/day) or an equivalent volume of vehicle by gavage from gestational day 7 until postnatal day (PND) 21. Exposure to 100 mg/kg NP increased the body mass of the offspring on PND 43. Perinatal exposure to NP in maternal rats led to a dose-dependent increase of NP level in the lung tissue of the offspring. The numbers of lymphocytes and neutrophils in bronchoalveolar lavage fluid were significantly higher in the 100 mg/kg NP group than those in the control. Histopathological examination of the lung showed that exposure to high dose NP resulted in a slightly thickened bronchiolar smooth muscles with inflammatory cell infiltration. In the cytoplasm of type II epithelial cells, osmiophilic lamellar bodies were observed, with emptied lamellar bodies. NP significantly increased the expressions of high mobility group box 1 protein (HMGB1) mRNA and nuclear factor κB (NF-κB) mRNA in the lung tissue of the offspring in a dose dependent manner. Similarly, the expressions of HMGB1, NF-κBp65 and estrogen receptor-β (ER-β) proteins increased with an increase of NP dose. NP content was positively correlated with the expressions of HMGB1 and NF-κB mRNA as well as HMGB1, NF-κBp65, and ER-β proteins in the lung tissue of offspring. Perinatal exposure to NP from the maternal rats might induce airway inflammation in the offspring, which may be due to NP-induced infiltration of inflammatory cells into the airway, and pathological alterations in airway structure as well as abnormal expression patterns of inflammation-related genes, proteins (including HMGB1 and NF-κB) and estrogen receptor β.
Collapse
Affiliation(s)
- Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - FangXu Tuo
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Ya Luo
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Yu Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China.
| |
Collapse
|
22
|
Fu X, Xu J, Zhang R, Yu J. The association between environmental endocrine disruptors and cardiovascular diseases: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2020; 187:109464. [PMID: 32438096 DOI: 10.1016/j.envres.2020.109464] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/15/2020] [Accepted: 03/29/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Except for known cardiovascular risk factors, long-term exposure to environmental endocrine disruptors (EEDs) - a class of exogenous chemicals, or a mixture of chemicals, that can interfere with any aspect of hormone action - has been shown to increase the risk of cardiovascular diseases (CVDs), which are still controversial. OBJECTIVE To conduct a comprehensive systematic review and meta-analysis to estimate the association between EEDs, including nonylphenol (NP), bisphenol A (BPA), polychlorinated biphenyl (PCB), organo-chlorine pesticide (OCP) and phthalate (PAE) exposure and CVD risk. METHODS The heterogeneity between different studies was qualitatively and quantitatively evaluated using Q test and I2 statistical magnitude, respectively. Subgroup analysis was performed using chemical homologs - a previously unused grouping method - to extract data and perform meta-analysis to assess their exposure to CVD. RESULTS Twenty-nine literatures were enrolled with a total sample size of 88891. The results indicated that exposure to PCB138 and PCB153 were the risk factors for CVD morbidity (odds ratio (OR) = 1.35, 95% confidence interval (CI): 1.10-1.66; OR = 1.35, 95% CI: 1.13-1.62). Exposure to organo-chlorine pesticide (OCP) (OR = 1.12, 95% CI: 1.00-1.24), as well as with phthalate (PAE) (OR = 1.11, 95% CI: 1.06-1.17) and BPA (OR = 1.19, 95% CI: 1.03-1.37) were positively associated with CVD risk, respectively. BPA exposure concentration had no correlation with total cholesterol (TC), or low-density lipoprotein (LDL), but exhibited a correlation with gender, waist circumference (WC), high-density lipoprotein (HDL), age, and body mass index (BMI) (standardized mean difference (SMD)) = 1.51; 95% CI: =(1.01-2.25); SMD = 0.16; 95% CI: (0.08-0.23); SMD = -0.19; 95% CI: (-0.27-0.12); SMD = -0.78; 95% CI: (-1.42-0.14); SMD = 0.08; 95% CI: (0.00-0.16). CONCLUSIONS EED exposure is a risk factor for CVD. Long-term exposure to EEDs can influence cardiovascular health in humans. A possible synergistic effect may exist between the homologs. The mechanism of which needs to be further explored and demonstrated by additional prospective cohort studies, results of in vitro and in vivo analyses, as well as indices affecting CVD.
Collapse
Affiliation(s)
- Xiangjun Fu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| | - Renyi Zhang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, PR China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China.
| |
Collapse
|
23
|
Lambert K, Gondeau C, Briolotti P, Scheuermann V, Daujat-Chavanieu M, Aimond F. Biocompatible modified water as a non-pharmaceutical approach to prevent metabolic syndrome features in obesogenic diet-fed mice. Food Chem Toxicol 2020; 141:111403. [PMID: 32387306 DOI: 10.1016/j.fct.2020.111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 10/24/2022]
Abstract
The prevalence of metabolic syndrome (MetS), elevating cardiovascular risks, is increasing worldwide, with no available global therapeutic options. The intake of plain, mineral or biocompatible modified waters was shown to prevent some MetS features. This study was designed to analyze, in mice fed a high fat and sucrose diet (HFSD), the effects on MetS features of the daily intake of a reverse osmosed, weakly remineralized, water (OW) and of an OW dynamized by a physical processing (ODW), compared to tap water (TW). The HFSD was effective at inducing major features of MetS such as obesity, hepatic steatosis and inflammation, blood dyslipidemia, systemic glucose intolerance and muscle insulin resistance. Compared to TW, OW intake decreased hepatic fibrosis and inflammation, and mitigated hepatic steatosis and dyslipidemia. ODW intake further improved skeletal muscle insulin sensitivity and systemic glucose tolerance. This study highlights the deleterious metabolic impacts of the daily intake of TW, in combination with a high energy diet, and its possible involvement in MetS prevalence increase. In addition, it demonstrates that biocompatible modified water may be promising non-pharmaceutical, cost-effective tools for nutritional approaches in the treatment of MetS.
Collapse
Affiliation(s)
- Karen Lambert
- PhyMedExp, Université Montpellier, INSERM, CNRS, France
| | - Claire Gondeau
- IRMB, Université Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | | | | | | | - Franck Aimond
- PhyMedExp, Université Montpellier, INSERM, CNRS, France.
| |
Collapse
|
24
|
Qian Y, Li M, Wang W, Wang H, Zhang Y, Hu Q, Zhao X, Suo H. Effects of
Lactobacillus Casei
YBJ02 on Lipid Metabolism in Hyperlipidemic Mice. J Food Sci 2019; 84:3793-3803. [DOI: 10.1111/1750-3841.14787] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Yu Qian
- Chongqing Collaborative Innovation Center for Functional Food and College of Biological and Chemical EngineeringChongqing Univ. of Education Chongqing 400067 China
| | - Mingyue Li
- College of Food ScienceSouthwest Univ. Chongqing 400715 China
| | - Wei Wang
- Academy of Animal Sciences and Veterinary MedicineQinghai Univ. Xining 810016 Qinghai China
| | - Hongwei Wang
- College of Food ScienceSouthwest Univ. Chongqing 400715 China
| | - Yu Zhang
- College of Food ScienceSouthwest Univ. Chongqing 400715 China
| | - Qiang Hu
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province Leshan 614000 Sichuan China
| | - Xin Zhao
- College of Food ScienceSouthwest Univ. Chongqing 400715 China
| | - Huayi Suo
- College of Food ScienceSouthwest Univ. Chongqing 400715 China
| |
Collapse
|
25
|
Carnevali O, Giorgini E, Canuti D, Mylonas CC, Forner-Piquer I, Maradonna F. Diets contaminated with Bisphenol A and Di-isononyl phtalate modify skeletal muscle composition: A new target for environmental pollutant action. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:250-259. [PMID: 30577020 DOI: 10.1016/j.scitotenv.2018.12.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/02/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
In the last years, an increasing number of studies reported that food pollution represents a significant route of exposure to environmental toxicants, able to cause mild to severe food illnesses and health problems, including hormonal and metabolic diseases. Pollutants can accumulate in organisms and biomagnify along the food web, finally targeting top consumers causing health and economic problems. In this study, adults of gilthead sea bream, Sparus aurata, were fed with diets contaminated with Bisphenol A (BPA) (4 and 4000 μg BPA kg-1 bw day-1) and Di-isononyl phthalate (DiNP) (15 and 1500 μg DiNP kg-1 bw day-1), to evaluate the effects of the contamination on the muscle macromolecular composition and alterations of its texture. The analysis conducted in the muscle using infrared microspectroscopy, molecular biology and biochemical assays, showed, in fish fed BPA contaminated diets, a decrease of unsaturated lipids and an increase of triglycerides and saturated alkyl chains. Conversely, in fish fed DiNP, a decrease of lipid content, caused by a reduction of both saturated and unsaturated chains and triglycerides was measured. Protein content was decreased by both xenobiotics evidencing a novel macromolecular target affected by these environmental contaminants. In addition, in all treated groups, proteins resulted more phosphorylated than in controls. Calpain and cathepsin levels, orchestrating protein turnover, were deregulated by both xenobiotics, evidencing alterations of muscle composition and texture. In conclusion, the results obtained suggest the ability of BPA and DiNP to modify the muscle macromolecular building, advising this tissue as a target of Endocrine-Disrupting Chemicals (EDCs) and providing a set of biomarkers as possible monitoring endpoints to develop novel OEDC test guidelines.
Collapse
Affiliation(s)
- Oliana Carnevali
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Consorzio Interuniversitario, 00136 Roma, Italy
| | - Elisabetta Giorgini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Debora Canuti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, Heraklion, Crete 71003, Greece
| | - Isabel Forner-Piquer
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Francesca Maradonna
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Consorzio Interuniversitario, 00136 Roma, Italy.
| |
Collapse
|
26
|
Sargis RM, Heindel JJ, Padmanabhan V. Interventions to Address Environmental Metabolism-Disrupting Chemicals: Changing the Narrative to Empower Action to Restore Metabolic Health. Front Endocrinol (Lausanne) 2019; 10:33. [PMID: 30778334 PMCID: PMC6369180 DOI: 10.3389/fendo.2019.00033] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/16/2019] [Indexed: 12/17/2022] Open
Abstract
Metabolic disease rates have increased dramatically over the last four decades. Classic understanding of metabolic physiology has attributed these global trends to decreased physical activity and caloric excess; however, these traditional risk factors insufficiently explain the magnitude and rapidity of metabolic health deterioration. Recently, the novel contribution of environmental metabolism-disrupting chemicals (MDCs) to various metabolic diseases (including obesity, diabetes, and non-alcoholic fatty liver disease) is becoming recognized. As this burgeoning body of evidence has matured, various organic and inorganic pollutants of human and natural origin have emerged as metabolic disease risk factors based on population-level and experimental data. Recognition of these heretofore underappreciated metabolic stressors now mandates that efforts to mitigate the devastating consequences of metabolic disease include dedicated efforts to address environmental drivers of disease risk; however, there have not been adequate recommendations to reduce exposures or to mitigate the effects of exposures on disease outcomes. To address this knowledge gap and advance the clinical translation of MDC science, herein discussed are behaviors that increase exposures to MDCs, interventional studies to reduce those exposures, and small-scale clinical trials to reduce the body burden of MDCs. Also, we discuss evidence from cell-based and animal studies that provide insights into MDC mechanisms of action, the influence of modifiable dietary factors on MDC toxicity, and factors that modulate MDC transplacental carriage as well as their impact on metabolic homeostasis. A particular emphasis of this discussion is on critical developmental windows during which short-term MDC exposure can elicit long-term disruptions in metabolic health with potential inter- and transgenerational effects. While data gaps remain and further studies are needed, the current state of evidence regarding interventions to address MDC exposures illuminates approaches to address environmental drivers of metabolic disease risk. It is now incumbent on clinicians and public health agencies to incorporate this knowledge into comprehensive strategies to address the metabolic disease pandemic.
Collapse
Affiliation(s)
- Robert M. Sargis
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jerrold J. Heindel
- Program on Endocrine Disruption Strategies, Commonweal, Bolinas, CA, United States
| | | |
Collapse
|
27
|
Xu W, Yu J, Jiang Z, Yan W, Li S, Luo Y, Xu J. The impact of subchronic low-dose exposure to nonylphenol on depression-like behaviors in high-sucrose and high-fat diet induced rats. Toxicology 2019; 414:27-34. [DOI: 10.1016/j.tox.2019.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/21/2018] [Accepted: 01/05/2019] [Indexed: 01/23/2023]
|
28
|
Chamorro-Garcia R, Blumberg B. Current Research Approaches and Challenges in the Obesogen Field. Front Endocrinol (Lausanne) 2019; 10:167. [PMID: 30967838 PMCID: PMC6438851 DOI: 10.3389/fendo.2019.00167] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/28/2019] [Indexed: 01/02/2023] Open
Abstract
Obesity is a worldwide pandemic that also contributes to the increased incidence of other diseases such as type 2 diabetes. Increased obesity is generally ascribed to positive energy balance. However, recent findings suggest that exposure to endocrine-disrupting chemicals such as obesogens during critical windows of development, may play an important role in the current obesity trends. Several experimental approaches, from in vitro cell cultures to transgenerational in vivo studies, are used to better understand the mechanisms of action of obesogens, each of which contributes to answer different questions. In this review, we discuss current knowledge in the obesogen field and the existing tools developed in research laboratories using tributyltin as a model obesogen. By understanding the advantages and limitations of each of these tools, we will better focus and design experimental approaches that will help expanding the obesogen field with the objective of finding potential therapeutic targets in human populations.
Collapse
Affiliation(s)
- Raquel Chamorro-Garcia
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- *Correspondence: Bruce Blumberg
| |
Collapse
|
29
|
Maradonna F, Carnevali O. Lipid Metabolism Alteration by Endocrine Disruptors in Animal Models: An Overview. Front Endocrinol (Lausanne) 2018; 9:654. [PMID: 30467492 PMCID: PMC6236061 DOI: 10.3389/fendo.2018.00654] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/18/2018] [Indexed: 02/01/2023] Open
Abstract
Exposure to potential Endocrine Disrupting Chemicals (EDCs) pose a documented risk to both wildlife and human health. Many studies so far described declining sperm counts, genital malformations, early puberty onset, highlighting the negative impact on reproduction caused by the exposure to many anthropogenic chemicals. In the last years, increasing evidence suggested that these compounds, other than altering reproduction, affect metabolism and induce the onset of obesity and metabolic disorders. According to the "environmental obesogens" hypothesis, evidence exists that exposure to potential EDCs during critical periods when adipocytes are differentiating, and organs are developing, can induce diseases that manifest later in the life. This review summarizes the effects occurring at the hepatic level in different animal models, describing morphological alterations and changes of molecular pathways elicited by the toxicant exposure. Results currently available demonstrated that these chemicals impair normal metabolic processes via interaction with members of the nuclear receptor superfamily, including steroid hormone receptors, thyroid hormone receptors, retinoid X receptors, peroxisome proliferator-activated receptors, liver X receptors, and farnesoid X receptors. In addition, novel results revealed that EDC exposure can either affect circadian rhythms as well as up-regulate the expression of signals belonging to the endocannabinoid system, in both cases leading to a remarkable increase of lipid accumulation. These results warrant further research and increase the interest toward the identification of new mechanisms for EDC metabolic alterations. The last part of this review article condenses recent evidences on the ability of potential EDCs to cause "transgenerational effects" by a single prenatal or early life exposure. On this regard, there is compelling evidence that epigenetic modifications link developmental environmental insults to adult disease susceptibility. This review will contribute to summarize the mechanisms underlying the insurgence of EDC-induced metabolic alterations as well as to build integrated strategies for their better management. In fact, despite the large number of results obtained so far, there is still a great demand for the development of frameworks that can integrate mechanistic and toxicological/epidemiological observations. This would increase legal and governmental institution awareness on this critical environmental issue responsible for negative consequences in both wild species and human health.
Collapse
Affiliation(s)
- Francesca Maradonna
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
- INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, Rome, Italy
- *Correspondence: Francesca Maradonna
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
- INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, Rome, Italy
- Oliana Carnevali
| |
Collapse
|