1
|
Lu L, Zhao H, Lu Y, Zhang Y, Wang X, Fan C, Li Z, Wu Z. Design and Control of the Magnetically Actuated Micro/Nanorobot Swarm toward Biomedical Applications. Adv Healthc Mater 2024; 13:e2400414. [PMID: 38412402 DOI: 10.1002/adhm.202400414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Recently, magnetically actuated micro/nanorobots hold extensive promises in biomedical applications due to their advantages of noninvasiveness, fuel-free operation, and programmable nature. While effectively promised in various fields such as targeted delivery, most past investigations are mainly displayed in magnetic control of individual micro/nanorobots. Facing practical medical use, the micro/nanorobots are required for the development of swarm control in a closed-loop control manner. This review outlines the recent developments in magnetic micro/nanorobot swarms, including their actuating fundamentals, designs, controls, and biomedical applications. The fundamental principles and interactions involved in the formation of magnetic micro/nanorobot swarms are discussed first. The recent advances in the design of artificial and biohybrid micro/nanorobot swarms, along with the control devices and methods used for swarm manipulation, are presented. Furthermore, biomedical applications that have the potential to achieve clinical application are introduced, such as imaging-guided therapy, targeted delivery, embolization, and biofilm eradication. By addressing the potential challenges discussed toward the end of this review, magnetic micro/nanorobot swarms hold promise for clinical treatments in the future.
Collapse
Affiliation(s)
- Lu Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Hongqiao Zhao
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Yucong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuxuan Zhang
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Xinran Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Chengjuan Fan
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zesheng Li
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhiguang Wu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150001, China
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
2
|
Dreyfus R, Boehler Q, Lyttle S, Gruber P, Lussi J, Chautems C, Gervasoni S, Berberat J, Seibold D, Ochsenbein-Kölble N, Reinehr M, Weisskopf M, Remonda L, Nelson BJ. Dexterous helical magnetic robot for improved endovascular access. Sci Robot 2024; 9:eadh0298. [PMID: 38354258 DOI: 10.1126/scirobotics.adh0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Treating vascular diseases in the brain requires access to the affected region inside the body. This is usually accomplished through a minimally invasive technique that involves the use of long, thin devices, such as wires and tubes, that are manually maneuvered by a clinician within the bloodstream. By pushing, pulling, and twisting, these devices are navigated through the tortuous pathways of the blood vessels. The outcome of the procedure heavily relies on the clinician's skill and the device's ability to navigate to the affected target region in the bloodstream, which is often inhibited by tortuous blood vessels. Sharp turns require high flexibility, but this flexibility inhibits translation of proximal insertion to distal tip advancement. We present a highly dexterous, magnetically steered continuum robot that overcomes pushability limitations through rotation. A helical protrusion on the device's surface engages with the vessel wall and translates rotation to forward motion at every point of contact. An articulating magnetic tip allows for active steerability, enabling navigation from the aortic arch to millimeter-sized arteries of the brain. The effectiveness of the magnetic continuum robot has been demonstrated through successful navigation in models of the human vasculature and in blood vessels of a live pig.
Collapse
Affiliation(s)
- R Dreyfus
- Multi-Scale Robotics Lab, ETH Zurich, Zurich, Switzerland
| | - Q Boehler
- Multi-Scale Robotics Lab, ETH Zurich, Zurich, Switzerland
| | - S Lyttle
- Multi-Scale Robotics Lab, ETH Zurich, Zurich, Switzerland
| | - P Gruber
- Department of Neuroradiology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - J Lussi
- Multi-Scale Robotics Lab, ETH Zurich, Zurich, Switzerland
| | - C Chautems
- Multi-Scale Robotics Lab, ETH Zurich, Zurich, Switzerland
| | - S Gervasoni
- Multi-Scale Robotics Lab, ETH Zurich, Zurich, Switzerland
| | - J Berberat
- Department of Neuroradiology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - D Seibold
- Multi-Scale Robotics Lab, ETH Zurich, Zurich, Switzerland
| | - N Ochsenbein-Kölble
- Department of Obstetrics, University Hospital Zurich, Zurich, Switzerland
- Institute of Pathology and Molecular Pathology, University of Zurich, Zurich, Switzerland
| | - M Reinehr
- University of Zurich, Zurich, Switzerland
| | - M Weisskopf
- Center for Surgical Research, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - L Remonda
- Department of Neuroradiology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - B J Nelson
- Multi-Scale Robotics Lab, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Kirmizitas FC, Rivas D, Mallick S, DePope S, Das S. Magnetic Microrobots as a Platform for Cell Clean Up. ... INTERNATIONAL CONFERENCE ON MANIPULATION AUTOMATION AND ROBOTICS AT SMALL SCALES (MARSS). INTERNATIONAL CONFERENCE ON MANIPULATION AUTOMATION AND ROBOTICS AT SMALL SCALES 2023; 2023:10.1109/marss58567.2023.10294141. [PMID: 39421403 PMCID: PMC11484213 DOI: 10.1109/marss58567.2023.10294141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Mobile magnetic microrobots have been extensively used in a wide range of biomedical applications due to their numerous advantages. Magnetic microrobots in particular have been developed and shown great potential over the past two decades for the manipulation and migration of both single cells and cell aggregates. The efficient clearance of cell aggregates is crucial to prevent uncontrolled cell proliferation, tissue damage, and invasive surgeries, especially for those related to the vascular system. In this work, we showed cellular manipulation and mobility to achieve cellular clean up on Human Liver Cancer (HepG2) cells by using two types of untethered magnetic microrobots that are different in type and size. We performed the cellular clean up in the microchannel, which can demonstrate the closed working environment, and also on a glass slide to present an air-liquid interface. We showed that the microrobots could be able to move a cluster of cells in both conditions which could make them useful for sorting and separation applications. Furthermore, cell viability was assessed by using a trypan blue staining assay on HepG2 cells right after and 24 hours after microrobot actuation.
Collapse
Affiliation(s)
- Fatma Ceren Kirmizitas
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716
| | - David Rivas
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Sudipta Mallick
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Scott DePope
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Sambeeta Das
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
4
|
Zhang C, Ma S, Xu L. Velocity and Out-Step Frequencies for a Micro-Swimmer Based on Spiral Carbon Nanotubes. MICROMACHINES 2023; 14:1320. [PMID: 37512631 PMCID: PMC10385420 DOI: 10.3390/mi14071320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
The existing producing processes of micro spiral swimmers are complex. Here, a microswimmer with a magnetic layer on the surface of the spiral carbon nanotubes is proposed, which has a simple producing process. For the microswimmer, its equations of the velocities and out-step frequency are deduced. Using these equations, the velocities and out-step frequency of the microswimmer and their changes with related parameters are investigated. Results show that its velocities are proportional to the radius and helix angle of the spiral carbon nanotubes, and its out-step frequencies are proportional to magnetic field strength, the helix angle and magnetic layer thicknesses of the spiral carbon nanotubes, and inversely proportional to the fluid viscosity. The out-step frequency of the microswimmer is measured, which is in good agreement with the calculative ones.
Collapse
Affiliation(s)
- Ce Zhang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066000, China
| | - Shiqi Ma
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066000, China
| | - Lizhong Xu
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066000, China
| |
Collapse
|
5
|
Shojaeian M, Caldag HO, Bozkurt A, Yesilyurt S. Fabrication of magnetic helical microribbons made of nickel thin films sandwiched between silicon nitride layers for microswimming applications. NANOTECHNOLOGY 2022; 34:015301. [PMID: 36166982 DOI: 10.1088/1361-6528/ac9530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Helical swimming is adopted by microswimming robots since it is an efficient mechanism and commonly observed among microorganisms swimming at low Reynolds numbers. However, manufacturing of micro-helices made of sub-micron magnetic thin layers is neither straightforward nor well-established, advanced materials and methods are necessary to obtain such structures as reported in the literature. In this paper, a topological patterning method utilizing basic microfabrication methods is presented for the self-assembly of magnetic micro-helices made of a sandwiched nickel thin film (50-150 nm) between two silicon nitride layers. Strain mismatch between the thin films and the geometric anisotropy introduced by the slanted patterns on the top nitride layer result in self-rolled-up helical microribbons. Moreover, inspired by the actual release process during the wet-etching of the microribbon from the substrate, moving boundary conditions are incorporated in a numerical model to simulate the self-rolling of trilayer ribbons. The simulation results are compared and validated by experimental data within 7% error for all cases, including the geometries that do not result in a helical shape. The swimming performance of the magnetized micro-helix is demonstrated inside a capillary glass tube experimentally and cross-validated with a numerical model.
Collapse
Affiliation(s)
- Milad Shojaeian
- Department of Mechatronics Engineering, Sabanci University, 34956 Istanbul, Turkey
| | - Hakan Osman Caldag
- Department of Mathematics, University of York, YO10 5DD, York, United Kingdom
| | - Ayhan Bozkurt
- Electronics Engineering Department, Sabanci University, 34956 Istanbul, Turkey
| | - Serhat Yesilyurt
- Sabanci University Nanotechnology Research and Application Center, 34956, Istanbul, Turkey
| |
Collapse
|
6
|
Dong Y, Wang L, Zhang Z, Ji F, Chan TKF, Yang H, Chan CPL, Yang Z, Chen Z, Chang WT, Chan JYK, Sung JJY, Zhang L. Endoscope-assisted magnetic helical micromachine delivery for biofilm eradication in tympanostomy tube. SCIENCE ADVANCES 2022; 8:eabq8573. [PMID: 36206344 PMCID: PMC9544342 DOI: 10.1126/sciadv.abq8573] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Occlusion of the T-tube (tympanostomy tube) is a common postoperative sequela related to bacterial biofilms. Confronting biofilm-related infections of T-tubes, maneuverable and effective treatments are still challenging presently. Here, we propose an endoscopy-assisted treatment procedure based on the wobbling Fe2O3 helical micromachine (HMM) with peroxidase-mimicking activity. Different from the ideal corkscrew motion, the Fe2O3 HMM applies a wobbling motion in the tube, inducing stronger mechanical force and fluid convections, which not only damages the biofilm occlusion into debris quickly but also enhances the catalytic generation and diffusion of reactive oxygen species (ROS) for killing bacteria cells. Moreover, the treatment procedure, which integrated the delivery, actuation, and retrieval of Fe2O3 HMM, was validated in the T-tube implanted in a human cadaver ex vivo. It enables the visual operation with ease and is gentle to the tympanic membrane and ossicles, which is promising in the clinical application.
Collapse
Affiliation(s)
- Yue Dong
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lu Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Hong Kong SAR, China
| | - Zifeng Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fengtong Ji
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tony K. F. Chan
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Hong Kong SAR, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haojin Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Catherine P. L. Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhengxin Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zigui Chen
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wai Tsz Chang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
- Corresponding author. (L.Z.); (J.Y.K.C.); (W.T.C.)
| | - Jason Y. K. Chan
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Hong Kong SAR, China
- Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
- Corresponding author. (L.Z.); (J.Y.K.C.); (W.T.C.)
| | - Joseph J. Y. Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Hong Kong SAR, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
- Corresponding author. (L.Z.); (J.Y.K.C.); (W.T.C.)
| |
Collapse
|
7
|
Wang T, Ugurlu H, Yan Y, Li M, Li M, Wild AM, Yildiz E, Schneider M, Sheehan D, Hu W, Sitti M. Adaptive wireless millirobotic locomotion into distal vasculature. Nat Commun 2022; 13:4465. [PMID: 35915075 PMCID: PMC9343456 DOI: 10.1038/s41467-022-32059-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Microcatheters have enabled diverse minimally invasive endovascular operations and notable health benefits compared with open surgeries. However, with tortuous routes far from the arterial puncture site, the distal vascular regions remain challenging for safe catheter access. Therefore, we propose a wireless stent-shaped magnetic soft robot to be deployed, actively navigated, used for medical functions, and retrieved in the example M4 segment of the middle cerebral artery. We investigate shape-adaptively controlled locomotion in phantoms emulating the physiological conditions here, where the lumen diameter shrinks from 1.5 mm to 1 mm, the radius of curvature of the tortuous lumen gets as small as 3 mm, the lumen bifurcation angle goes up to 120°, and the pulsatile flow speed reaches up to 26 cm/s. The robot can also withstand the flow when the magnetic actuation is turned off. These locomotion capabilities are confirmed in porcine arteries ex vivo. Furthermore, variants of the robot could release the tissue plasminogen activator on-demand locally for thrombolysis and function as flow diverters, initiating promising therapies towards acute ischemic stroke, aneurysm, arteriovenous malformation, dural arteriovenous fistulas, and brain tumors. These functions should facilitate the robot's usage in new distal endovascular operations.
Collapse
Affiliation(s)
- Tianlu Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Department of Information Technology and Electrical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Halim Ugurlu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Clinic for Neuroradiology, Klinikum Stuttgart, 70174, Stuttgart, Germany
- Department of Biophysics, Aydın Adnan Menderes University, Graduate School of Health Sciences, 09010, Aydın, Turkey
| | - Yingbo Yan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Mingtong Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Meng Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Anna-Maria Wild
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Erdost Yildiz
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Martina Schneider
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Devin Sheehan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Wenqi Hu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
- Department of Information Technology and Electrical Engineering, ETH Zurich, 8092, Zurich, Switzerland.
- School of Medicine and College of Engineering, Koç University, 34450, Istanbul, Turkey.
| |
Collapse
|
8
|
Soft microswimmers: Material capabilities and biomedical applications. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Pozhitkova AV, Kladko DV, Vinnik DA, Taskaev SV, Vinogradov VV. Reprogrammable Soft Swimmers for Minimally Invasive Thrombus Extraction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23896-23908. [PMID: 35537068 DOI: 10.1021/acsami.2c04745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thrombosis-related diseases are the primary cause of death in the world. Despite recent advances in thrombosis treatment methods, their invasive nature remains a crucial factor, which leads to considerable deadly consequences. Soft magnetic robots are attracting widespread interest due to their fast response, remote actuation, and shape reprogrammability and can potentially avoid the side effects of conventional approaches. This paper outlines a new approach to the thrombosis treatment via reprogrammable magnetic soft robots that penetrate, hook, and extract the plasma clots in a vein-mimicking system under applied rotating magnetic fields. We present shape-switching bioinspired soft swimmers, capable of locomotion by different mechanisms in vein-mimicking flow conditions and whose swimming efficiency is similar to animals. Further, we demonstrate the potential of a developed robot for minimally invasive thromboextraction with and without fibrinolytic usage, including hooking the plasma clot for 3.1 ± 1.1 min and extracting it from the vein-mimicking system under the applied magnetic fields. We consider an interesting solution for thrombosis treatment to avoid substantial drawbacks of the existing methods.
Collapse
Affiliation(s)
- Anna V Pozhitkova
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg 197101, Russia
| | - Daniil V Kladko
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg 197101, Russia
| | - Denis A Vinnik
- National Research South Ural State University, Chelyabinsk 454080, Russia
| | - Sergey V Taskaev
- National Research South Ural State University, Chelyabinsk 454080, Russia
- Chelyabinsk State University, Chelyabinsk 454001, Russia
| | - Vladimir V Vinogradov
- International Institute "Solution Chemistry of Advanced Materials and Technology", ITMO University, St. Petersburg 197101, Russia
| |
Collapse
|
10
|
Liu Z, Li M, Dong X, Ren Z, Hu W, Sitti M. Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing. Nat Commun 2022; 13:2016. [PMID: 35440590 PMCID: PMC9019016 DOI: 10.1038/s41467-022-29645-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
Magnetically driven wireless miniature devices have become promising recently in healthcare, information technology, and many other fields. However, they lack advanced fabrication methods to go down to micrometer length scales with heterogeneous functional materials, complex three-dimensional (3D) geometries, and 3D programmable magnetization profiles. To fill this gap, we propose a molding-integrated direct laser writing-based microfabrication approach in this study and showcase its advanced enabling capabilities with various proof-of-concept functional microdevice prototypes. Unique motions and functionalities, such as metachronal coordinated motion, fluid mixing, function reprogramming, geometrical reconfiguring, multiple degrees-of-freedom rotation, and wireless stiffness tuning are exemplary demonstrations of the versatility of this fabrication method. Such facile fabrication strategy can be applied toward building next-generation smart microsystems in healthcare, robotics, metamaterials, microfluidics, and programmable matter.
Collapse
Affiliation(s)
- Zemin Liu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Stuttgart, Germany.,Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Meng Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Stuttgart, Germany
| | - Xiaoguang Dong
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Stuttgart, Germany.,Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Ziyu Ren
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Stuttgart, Germany.,Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Wenqi Hu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Stuttgart, Germany.
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, 70569, Stuttgart, Germany. .,Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland. .,School of Medicine & College of Engineering, Koç University, 34450, Istanbul, Turkey.
| |
Collapse
|
11
|
Li M, Tang Y, Soon RH, Dong B, Hu W, Sitti M. Miniature coiled artificial muscle for wireless soft medical devices. SCIENCE ADVANCES 2022; 8:eabm5616. [PMID: 35275717 PMCID: PMC8916729 DOI: 10.1126/sciadv.abm5616] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Wireless small-scale soft-bodied devices are capable of precise operation inside confined internal spaces, enabling various minimally invasive medical applications. However, such potential is constrained by the small output force and low work capacity of the current miniature soft actuators. To address this challenge, we report a small-scale soft actuator that harnesses the synergetic interactions between the coiled artificial muscle and radio frequency-magnetic heating. This wirelessly controlled actuator exhibits a large output force (~3.1 N) and high work capacity (3.5 J/g). Combining this actuator with different mechanical designs, its tensile and torsional behaviors can be engineered into different functional devices, such as a suture device, a pair of scissors, a driller, and a clamper. In addition, by assuming a spatially varying magnetization profile, a multilinked coiled muscle can have both magnetic field-induced bending and high contractile force. Such an approach could be used in various future untethered miniature medical devices.
Collapse
Affiliation(s)
- Mingtong Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yichao Tang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- School of Mechanical Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Ren Hao Soon
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- School of Mechanical Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Bin Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Wenqi Hu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Corresponding author. (W.H.); (M.S.)
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
- School of Medicine and College of Engineering, Koç University, 34450 Istanbul, Turkey
- Corresponding author. (W.H.); (M.S.)
| |
Collapse
|
12
|
Analysis and Comparison of Electromagnetic Microrobotic Platforms for Biomedical Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Magnetic microrobotics is a promising technology for improving minimally invasive surgery (MIS) with the ambition of enhancing patient care and comfort. The potential benefits include limited incisions, less hemorrhaging and postoperative pain, and faster recovery time. To achieve this, a key issue relies on the design of a proper electromagnetic actuation (EMA) setup which is based on the use of magnetic sources. The magnetic field and its gradient generated by the EMA platform is then used to induce magnetic torque and force for microrobot manipulations inside the human body. Like any control systems, the EMA system must be adapted to the given controlled microrobot and customized for the application. With great research efforts on magnetic manipulating of microrobots, the EMA systems are approaching commercial applications, and their configurations are becoming more suitable to be employed in real medical surgeries. However, most of the proposed designs have not followed any specific rule allowing to take into account the biomedical applications constraints. Through reviewing the different proposed EMA systems in the literature, their various specifications and configurations are comprehensively discussed and analyzed. This study focus on EMA platforms that use electromagnets. From this review and based on the biomedical application specifications, the appropriate EMA system can be determined efficiently.
Collapse
|
13
|
Chen X, Zhang X, Huang Y, Cao L, Liu J. A review of soft manipulator research, applications, and opportunities. J FIELD ROBOT 2021. [DOI: 10.1002/rob.22051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiaoqian Chen
- National Innovation Institute of Defense Technology Academy of Military Sciences Beijing China
| | - Xiang Zhang
- National Innovation Institute of Defense Technology Academy of Military Sciences Beijing China
| | - Yiyong Huang
- National Innovation Institute of Defense Technology Academy of Military Sciences Beijing China
| | - Lu Cao
- National Innovation Institute of Defense Technology Academy of Military Sciences Beijing China
| | - Jinguo Liu
- Shenyang Institute of Automation Chinese Academy of Sciences Shenyang China
| |
Collapse
|
14
|
Dynamic tracking of a magnetic micro-roller using ultrasound phase analysis. Sci Rep 2021; 11:23239. [PMID: 34853369 PMCID: PMC8636564 DOI: 10.1038/s41598-021-02553-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
Microrobots (MRs) have attracted significant interest for their potentialities in diagnosis and non-invasive intervention in hard-to-reach body areas. Fine control of biomedical MRs requires real-time feedback on their position and configuration. Ultrasound (US) imaging stands as a mature and advantageous technology for MRs tracking, but it suffers from disturbances due to low contrast resolution. To overcome these limitations and make US imaging suitable for monitoring and tracking MRs, we propose a US contrast enhancement mechanism for MR visualization in echogenic backgrounds (e.g., tissue). Our technique exploits the specific acoustic phase modulation produced by the MR characteristic motions. By applying this principle, we performed real-time visualization and position tracking of a magnetic MR rolling on a lumen boundary, both in static flow and opposing flow conditions, with an average error of 0.25 body-lengths. Overall, the reported results unveil countless possibilities to exploit the proposed approach as a robust feedback strategy for monitoring and tracking biomedical MRs in-vivo.
Collapse
|
15
|
Gao Y, Wei F, Chao Y, Yao L. Bioinspired soft microrobots actuated by magnetic field. Biomed Microdevices 2021; 23:52. [PMID: 34599405 DOI: 10.1007/s10544-021-00590-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 12/16/2022]
Abstract
In contrast to traditional large-scale robots, which require complicated mechanical joints and material rigidity, microrobots made of soft materials have exhibited amazing features and great potential for extensive applications, such as minimally invasive surgery. However, microrobots are faced with energy supply and control issues due to the miniaturization. Magnetic field actuation emerges as an appropriate approach to tackle with these issues. This review summarizes the latest progress of biomimetic soft microrobots actuated by magnetic field. Starting with an overview of the soft material and magnetic material adopted in the magnetic field actuated soft microrobots, the various fabrication methods and design structures of soft microrobots are summarized. Subsequently, practical and potential applications, such as targeted therapy, surgical operation, and the transportation of microscopic objects, in the fields of biomedicine and environmental remediation are presented. In the end, some current challenges, and the future development trends of magnetic soft microrobots are briefly discussed. This review is expected to offer a helpful guidance for the new researchers of biomimetic soft microrobots actuated by magnetic field.
Collapse
Affiliation(s)
- Yuwen Gao
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China
| | - Fanan Wei
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China.
| | - Yin Chao
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China
| | - Ligang Yao
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China
| |
Collapse
|
16
|
Yang L, Zhang M, Yang H, Yang Z, Zhang L. Hybrid Magnetic Force and Torque Actuation of Miniature Helical Robots Using Mobile Coils to Accelerate Blood Clot Removal. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) 2021:7476-7482. [DOI: 10.1109/iros51168.2021.9636851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Sparks AJ, Smith CM, Allman AB, Senko JL, Meess KM, Ducharme RW, Springer ME, Waqas M, Siddiqui AH. Compliant vascular models 3D printed with the Stratasys J750: a direct characterization of model distensibility using intravascular ultrasound. 3D Print Med 2021; 7:28. [PMID: 34477997 PMCID: PMC8414686 DOI: 10.1186/s41205-021-00114-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 07/03/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The purpose of this study is to evaluate biomechanical accuracy of 3D printed anatomical vessels using a material jetting printer (J750, Stratasys, Rehovot, Israel) by measuring distensibility via intravascular ultrasound. MATERIALS AND METHODS The test samples are 3D printed tubes to simulate arterial vessels (aorta, carotid artery, and coronary artery). Each vessel type is defined by design geometry of the vessel inner diameter and wall thickness. Vessel inner diameters are aorta = 30mm, carotid = 7mm, and coronary = 3mm. Vessel wall thickness are aorta = 3mm, carotid = 1.5mm, and coronary = 1mm. Each vessel type was printed in 3 different material options. Material options are user-selected from the J750 printer software graphical user interface as blood vessel wall anatomy elements in 'compliant', 'slightly compliant', and 'rigid' options. Three replicates of each vessel type were printed in each of the three selected material options, for a total of 27 models. The vessels were connected to a flow loop system where pressure was monitored via a pressure wire and cross-sectional area was measured with intravascular ultrasound (IVUS). Distensibility was calculated by comparing the % difference in cross-sectional area vs. pulse pressure to clinical literature values. Target clinical ranges for normal and diseased population distensibility are 10.3-44 % for the aorta, 5.1-10.1 % for carotid artery, and 0.5-6 % for coronary artery. RESULTS Aorta test vessels had the most clinically representative distensibility when printed in user-selected 'compliant' and 'slightly compliant' material. All aorta test vessels of 'compliant' material (n = 3) and 2 of 3 'slightly compliant' vessels evaluated were within target range. Carotid vessels were most clinically represented in distensibility when printed in 'compliant' and 'slightly compliant' material. For carotid test vessels, 2 of 3 'compliant' material samples and 1 of 3 'slightly compliant' material samples were within target range. Coronary arteries were most clinically represented in distensibility when printed in 'slightly compliant' and 'rigid' material. For coronary test vessels, 1 of 3 'slightly compliant' materials and 3 of 3 'rigid' material samples fell within target range. CONCLUSIONS This study suggests that advancements in materials and 3D printing technology introduced with the J750 Digital Anatomy 3D Printer can enable anatomical models with clinically relevant distensibility.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Muhammad Waqas
- Department of Neurosurgery, University at Buffalo, State University of New York, 100 High Street, Suite B4, Buffalo, NY, 14203, USA
| | - Adnan H Siddiqui
- The Jacobs Institute, Buffalo, New York, USA.
- Department of Neurosurgery, University at Buffalo, State University of New York, 100 High Street, Suite B4, Buffalo, NY, 14203, USA.
- Canon Stroke and Vascular Research Center, University at Buffalo, State University of New York, Buffalo, New York, USA.
| |
Collapse
|
18
|
Nguyen KT, Kim SJ, Min HK, Hoang MC, Go G, Kang B, Kim J, Choi E, Hong A, Park JO, Kim CS. Guide-Wired Helical Microrobot for Percutaneous Revascularization in Chronic Total Occlusion in-Vivo Validation. IEEE Trans Biomed Eng 2021; 68:2490-2498. [PMID: 33351745 DOI: 10.1109/tbme.2020.3046513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE For the revascularization in small vessels such as coronary arteries, we present a guide-wired helical microrobot mimicking the corkscrew motion for mechanical atherectomy that enables autonomous therapeutics and minimizing the radiation exposure to clinicians. METHODS The microrobot is fabricated with a spherical joint and a guidewire. A previously developed external electromagnetic manipulation system capable of high power and frequency is incorporated and an autonomous guidance motion control including driving and steering is implemented in the prototype. We tested the validity of our approach in animal experiments under clinical settings. For the in vivo test, artificial thrombus was fabricated and placed in a small vessel and atherectomy procedures were conducted. RESULTS The devised approach enables us to navigate the helical robot to the target area and successfully unclog the thrombosis in rat models in vivo. CONCLUSION This technology overcomes several limitations associated with a small vessel environment and promises to advance medical microrobotics for real clinical applications while achieving intact operation and minimizing radiation exposures to clinicians. SIGNIFICANCE Advanced microrobot based on multi-discipline technology could be validated in vivo for the first time and that may foster the microrobot application at clinical sites.
Collapse
|
19
|
Navigation of a magnetic micro-robot through a cerebral aneurysm phantom with magnetic particle imaging. Sci Rep 2021; 11:14082. [PMID: 34234207 PMCID: PMC8263782 DOI: 10.1038/s41598-021-93323-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
Cerebral aneurysms are potentially life threatening and nowadays treated by a catheter-guided coiling or by a neurosurgical clipping intervention. Here, we propose a helically shaped magnetic micro-robot, which can be steered by magnetic fields in an untethered manner and could be applied for a novel coiling procedure. This is shown by navigating the micro-robot through an additively manufactured phantom of a human cerebral aneurysm. The magnetic fields are applied with a magnetic particle imaging (MPI) scanner, which allows for the navigation and tomographic visualization by the same machine. With MPI the actuation process can be visualized with a localization accuracy of 0.68 mm and an angiogram can be acquired both without any radiation exposure. First in-vitro phantom experiments are presented, showing an idea of a robot conducted treatment of cerebral aneurysms.
Collapse
|
20
|
Park S, Ko B, Lee H, So H. Rapid manufacturing of micro-drilling devices using FFF-type 3D printing technology. Sci Rep 2021; 11:12179. [PMID: 34108498 PMCID: PMC8190076 DOI: 10.1038/s41598-021-91149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/21/2021] [Indexed: 11/24/2022] Open
Abstract
Micro-drilling devices with different blade shapes were fabricated with a rapid and facile manufacturing process using three-dimensional (3D) printing technology. The 3D-printed casting mold was utilized to customize the continuous shape of the blades without the need for expensive manufacturing tools. A computational fluid dynamics simulation was performed to estimate the pressure differences (fluidic resistance) around each rotating device in a flowing stream. Three types of blades (i.e., 45°, 0°, and helical type) were manufactured and compared to a device without blades (i.e., plain type). As a result, the device with the 45° blades exhibited the best drilling performance. At a rotational speed of 1000 rpm, the average drilling depth of the device with the 45° blades to penetrate artificial thrombus for 90 s was 3.64 mm, which was ~ 2.4 times longer than that of helical blades (1.51 mm). This study demonstrates the feasibility of using 3D printing to fabricate microscale drilling devices with sharp blades for various applications, such as in vivo microsurgery and clogged water supply tube maintenance.
Collapse
Affiliation(s)
- Sangyeun Park
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Byeongjo Ko
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Heewon Lee
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Hongyun So
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763, South Korea. .,Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
21
|
Ren Z, Zhang R, Soon RH, Liu Z, Hu W, Onck PR, Sitti M. Soft-bodied adaptive multimodal locomotion strategies in fluid-filled confined spaces. SCIENCE ADVANCES 2021; 7:eabh2022. [PMID: 34193416 PMCID: PMC8245043 DOI: 10.1126/sciadv.abh2022] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/17/2021] [Indexed: 05/06/2023]
Abstract
Soft-bodied locomotion in fluid-filled confined spaces is critical for future wireless medical robots operating inside vessels, tubes, channels, and cavities of the human body, which are filled with stagnant or flowing biological fluids. However, the active soft-bodied locomotion is challenging to achieve when the robot size is comparable with the cross-sectional dimension of these confined spaces. Here, we propose various control and performance enhancement strategies to let the sheet-shaped soft millirobots achieve multimodal locomotion, including rolling, undulatory crawling, undulatory swimming, and helical surface crawling depending on different fluid-filled confined environments. With these locomotion modes, the sheet-shaped soft robot can navigate through straight or bent gaps with varying sizes, tortuous channels, and tubes with a flowing fluid inside. Such soft robot design along with its control and performance enhancement strategies are promising to be applied in future wireless soft medical robots inside various fluid-filled tight regions of the human body.
Collapse
Affiliation(s)
- Ziyu Ren
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Rongjing Zhang
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
| | - Ren Hao Soon
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Zemin Liu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Wenqi Hu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands.
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
- Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
- School of Medicine and College of Engineering, Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
22
|
Abstract
![]()
Manipulation and navigation of micro
and nanoswimmers in different
fluid environments can be achieved by chemicals, external fields,
or even motile cells. Many researchers have selected magnetic fields
as the active external actuation source based on the advantageous
features of this actuation strategy such as remote and spatiotemporal
control, fuel-free, high degree of reconfigurability, programmability,
recyclability, and versatility. This review introduces fundamental
concepts and advantages of magnetic micro/nanorobots (termed here
as “MagRobots”) as well as basic knowledge of magnetic
fields and magnetic materials, setups for magnetic manipulation, magnetic
field configurations, and symmetry-breaking strategies for effective
movement. These concepts are discussed to describe the interactions
between micro/nanorobots and magnetic fields. Actuation mechanisms
of flagella-inspired MagRobots (i.e., corkscrew-like motion and traveling-wave
locomotion/ciliary stroke motion) and surface walkers (i.e., surface-assisted
motion), applications of magnetic fields in other propulsion approaches,
and magnetic stimulation of micro/nanorobots beyond motion are provided
followed by fabrication techniques for (quasi-)spherical, helical,
flexible, wire-like, and biohybrid MagRobots. Applications of MagRobots
in targeted drug/gene delivery, cell manipulation, minimally invasive
surgery, biopsy, biofilm disruption/eradication, imaging-guided delivery/therapy/surgery,
pollution removal for environmental remediation, and (bio)sensing
are also reviewed. Finally, current challenges and future perspectives
for the development of magnetically powered miniaturized motors are
discussed.
Collapse
Affiliation(s)
- Huaijuan Zhou
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Salvador Pané
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Tannenstrasse 3, 8092 Zurich, Switzerland
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic.,Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan.,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.,Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.,Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno CZ-612 00, Czech Republic
| |
Collapse
|
23
|
Abstract
3D printing (also called "additive manufacturing" or "rapid prototyping") is able to translate computer-aided and designed virtual 3D models into 3D tangible constructs/objects through a layer-by-layer deposition approach. Since its introduction, 3D printing has aroused enormous interest among researchers and engineers to understand the fabrication process and composition-structure-property correlation of printed 3D objects and unleash its great potential for application in a variety of industrial sectors. Because of its unique technological advantages, 3D printing can definitely benefit the field of microrobotics and advance the design and development of functional microrobots in a customized manner. This review aims to present a generic overview of 3D printing for functional microrobots. The most applicable 3D printing techniques, with a focus on laser-based printing, are introduced for the 3D microfabrication of microrobots. 3D-printable materials for fabricating microrobots are reviewed in detail, including photopolymers, photo-crosslinkable hydrogels, and cell-laden hydrogels. The representative applications of 3D-printed microrobots with rational designs heretofore give evidence of how these printed microrobots are being exploited in the medical, environmental, and other relevant fields. A future outlook on the 3D printing of microrobots is also provided.
Collapse
Affiliation(s)
- Jinhua Li
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 16628, Czech Republic.
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 16628, Czech Republic. and Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, CZ-61600, Czech Republic and Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic and Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
24
|
Koleoso M, Feng X, Xue Y, Li Q, Munshi T, Chen X. Micro/nanoscale magnetic robots for biomedical applications. Mater Today Bio 2020; 8:100085. [PMID: 33299981 PMCID: PMC7702192 DOI: 10.1016/j.mtbio.2020.100085] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/15/2022] Open
Abstract
Magnetic small-scale robots are devices of great potential for the biomedical field because of the several benefits of this method of actuation. Recent work on the development of these devices has seen tremendous innovation and refinement toward improved performance for potential clinical applications. This review briefly details recent advancements in small-scale robots used for biomedical applications, covering their design, fabrication, applications, and demonstration of ability, and identifies the gap in studies and the difficulties that have persisted in the optimization of the use of these devices. In addition, alternative biomedical applications are also suggested for some of the technologies that show potential for other functions. This study concludes that although the field of small-scale robot research is highly innovative there is need for more concerted efforts to improve functionality and reliability of these devices particularly in clinical applications. Finally, further suggestions are made toward the achievement of commercialization for these devices.
Collapse
Affiliation(s)
- M. Koleoso
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - X. Feng
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Y. Xue
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Q. Li
- School of Engineering, Institute for Energy Systems, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - T. Munshi
- School of Chemistry, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire, LN6 7TS, UK
| | - X. Chen
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| |
Collapse
|
25
|
Hwang J, Kim JY, Choi H. A review of magnetic actuation systems and magnetically actuated guidewire- and catheter-based microrobots for vascular interventions. INTEL SERV ROBOT 2020. [DOI: 10.1007/s11370-020-00311-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Park JK, Nan K, Luan H, Zheng N, Zhao S, Zhang H, Cheng X, Wang H, Li K, Xie T, Huang Y, Zhang Y, Kim S, Rogers JA. Remotely Triggered Assembly of 3D Mesostructures Through Shape-Memory Effects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1905715. [PMID: 31721341 DOI: 10.1002/adma.201905715] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/12/2019] [Indexed: 06/10/2023]
Abstract
3D structures that incorporate high-performance electronic materials and allow for remote, on-demand 3D shape reconfiguration are of interest for applications that range from ingestible medical devices and microrobotics to tunable optoelectronics. Here, materials and design approaches are introduced for assembly of such systems via controlled mechanical buckling of 2D precursors built on shape-memory polymer (SMP) substrates. The temporary shape fixing and recovery of SMPs, governed by thermomechanical loading, provide deterministic control over the assembly and reconfiguration processes, including a range of mechanical manipulations facilitated by the elastic and highly stretchable properties of the materials. Experimental demonstrations include 3D mesostructures of various geometries and length scales, as well as 3D aquatic platforms that can change trajectories and release small objects on demand. The results create many opportunities for advanced, programmable 3D microsystem technologies.
Collapse
Affiliation(s)
- Jun Kyu Park
- Department of Mechanical Sciences and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kewang Nan
- Department of Mechanical Sciences and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, Harvard University, Cambridge, MA, 02138, USA
| | - Haiwen Luan
- Center for Bio-Integrated Electronics, Department of Mechanical Engineering, Department of Civil and Environmental Engineering, Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ning Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shiwei Zhao
- Department of Mechanical Engineering, Department of Civil and Environmental Engineering, Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- School of Aeronautic Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Hang Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Heling Wang
- Department of Mechanical Engineering, Department of Civil and Environmental Engineering, Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Kan Li
- Department of Mechanical Engineering, Department of Civil and Environmental Engineering, Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yonggang Huang
- Center for Bio-Integrated Electronics, Department of Mechanical Engineering, Department of Civil and Environmental Engineering, Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Seok Kim
- Department of Mechanical Sciences and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - John A Rogers
- Departments of Materials Science and Engineering, Biomedical Engineering, Neurological Surgery, Chemistry, Mechanical Engineering, Electrical Engineering and Computer Science, Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
27
|
Gyak K, Jeon S, Ha L, Kim S, Kim J, Lee K, Choi H, Kim D. Magnetically Actuated SiCN-Based Ceramic Microrobot for Guided Cell Delivery. Adv Healthc Mater 2019; 8:e1900739. [PMID: 31596550 DOI: 10.1002/adhm.201900739] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/18/2019] [Indexed: 01/22/2023]
Abstract
A silicon carbonitride (SICN) ceramic microrobot, biocompatible and magnetically activable, is developed for the delivery of viable cells to defective tissue by sequential steps of microstructuring, magnetization, and cell loading. The ceramic carrier of porous cylindrical framework is fabricated by 3D laser lithography using a photocurable preceramic polymer, chemically modified polyvinylsilazane, and subsequent pyrolysis at 600 °C under an inert atmosphere. Magnetic nanoparticles (MNP) are integrated into the surface-modified ceramic carrier by thiol-ene click reaction. Finally, the microrobot is loaded with fibroblast cells, which can be guided by a rotating external magnetic field. The proposed ceramic microrobot is mechanically durable, adequately controllable with external magnetic field, and quite compatible with mammalian cells.
Collapse
Affiliation(s)
- Ki‐Won Gyak
- Center for Intelligent Microprocess of Pharmaceutical SynthesisDepartment of Chemical EngineeringPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Sungwoong Jeon
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno jungang‐daero, Hyeonpung‐eup, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Laura Ha
- Center for Intelligent Microprocess of Pharmaceutical SynthesisDepartment of Chemical EngineeringPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Sangwon Kim
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno jungang‐daero, Hyeonpung‐eup, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Jin‐young Kim
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno jungang‐daero, Hyeonpung‐eup, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Kwang‐Sup Lee
- Department of Advanced Materials and Chemical EngineeringHannam University Daejeon 34430 South Korea
| | - Hongsoo Choi
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno jungang‐daero, Hyeonpung‐eup, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Dong‐Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical SynthesisDepartment of Chemical EngineeringPohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| |
Collapse
|
28
|
Park J, Jin C, Lee S, Kim J, Choi H. Magnetically Actuated Degradable Microrobots for Actively Controlled Drug Release and Hyperthermia Therapy. Adv Healthc Mater 2019; 8:e1900213. [PMID: 31290597 DOI: 10.1002/adhm.201900213] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/21/2019] [Indexed: 11/07/2022]
Abstract
Microrobots facilitate targeted therapy due to their small size, minimal invasiveness, and precise wireless control. A degradable hyperthermia microrobot (DHM) with a 3D helical structure is developed, enabling actively controlled drug delivery, release, and hyperthermia therapy. The microrobot is made of poly(ethylene glycol) diacrylate (PEGDA) and pentaerythritol triacrylate (PETA) and contains magnetic Fe3 O4 nanoparticles (MNPs) and 5-fluorouracil (5-FU). Its locomotion is remotely and precisely controlled by a rotating magnetic field (RMF) generated by an electromagnetic actuation system. Drug-free DHMs reduce the viability of cancer cells by elevating the temperature under an alternating magnetic field (AMF), a hyperthermic effect. 5-FU is released from the proposed DHMs in normal-, high-burst-, and constant-release modes, controlled by the AMF. Finally, actively controlled drug release from the DHMs in normal- and high-burst-release mode results in a reduction in cell viability. The reduction in cell viability is of greater magnitude in high-burst- than in normal-release mode. In summary, biodegradable DHMs have potential for actively controlled drug release and hyperthermia therapy.
Collapse
Affiliation(s)
- Jongeon Park
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno jungang‐daero, Hyeonpung‐Myeon, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Chaewon Jin
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno jungang‐daero, Hyeonpung‐Myeon, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Seungmin Lee
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno jungang‐daero, Hyeonpung‐Myeon, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Jin‐Young Kim
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno jungang‐daero, Hyeonpung‐Myeon, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Hongsoo Choi
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST) 333, Techno jungang‐daero, Hyeonpung‐Myeon, Dalseong‐Gun Daegu 42988 Republic of Korea
| |
Collapse
|
29
|
Ceylan H, Yasa IC, Kilic U, Hu W, Sitti M. Translational prospects of untethered medical microrobots. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/2516-1091/ab22d5] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Jeon S, Hoshiar AK, Kim S, Lee S, Kim E, Lee S, Kim K, Lee J, Kim JY, Choi H. Improving guidewire-mediated steerability of a magnetically actuated flexible microrobot. MICRO AND NANO SYSTEMS LETTERS 2018. [DOI: 10.1186/s40486-018-0077-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Kafash Hoshiar A, Jeon S, Kim K, Lee S, Kim JY, Choi H. Steering Algorithm for a Flexible Microrobot to Enhance Guidewire Control in a Coronary Angioplasty Application. MICROMACHINES 2018; 9:mi9120617. [PMID: 30477149 PMCID: PMC6315821 DOI: 10.3390/mi9120617] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/09/2018] [Accepted: 11/20/2018] [Indexed: 01/31/2023]
Abstract
Magnetically driven microrobots have been widely studied for various biomedical applications in the past decade. An important application of these biomedical microrobots is heart disease treatment. In intravascular treatments, a particular challenge is the submillimeter-sized guidewire steering; this requires a new microrobotic approach. In this study, a flexible microrobot was fabricated by the replica molding method, which consists of three parts: (1) a flexible polydimethylsiloxane (PDMS) body, (2) two permanent magnets, and (3) a micro-spring connector. A mathematical model was developed to describe the relationship between the magnetic field and the deformation. A system identification approach and an algorithm were proposed for steering. The microrobot was fabricated, and the models for steering were experimentally validated under a magnetic field intensity of 15 mT. Limitations to control were identified, and the microrobot was steered in an arbitrary path using the proposed model. Furthermore, the flexible microrobot was steered using the guidewire within a three-dimensional (3D) transparent phantom of the right coronary artery filled with water, to show the potential application in a realistic environment. The flexible microrobot presented here showed promising results for enhancing guidewire steering in percutaneous coronary intervention (PCI).
Collapse
Affiliation(s)
- Ali Kafash Hoshiar
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu 42988, Korea.
- Department of Robotics Engineering, DGIST, Daegu 42988, Korea.
| | - Sungwoong Jeon
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu 42988, Korea.
- Department of Robotics Engineering, DGIST, Daegu 42988, Korea.
| | - Kangho Kim
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu 42988, Korea.
- Department of Robotics Engineering, DGIST, Daegu 42988, Korea.
| | - Seungmin Lee
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu 42988, Korea.
- Department of Robotics Engineering, DGIST, Daegu 42988, Korea.
| | - Jin-Young Kim
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu 42988, Korea.
- Department of Robotics Engineering, DGIST, Daegu 42988, Korea.
| | - Hongsoo Choi
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu 42988, Korea.
- Department of Robotics Engineering, DGIST, Daegu 42988, Korea.
| |
Collapse
|
32
|
Prilepskii AY, Fakhardo AF, Drozdov AS, Vinogradov VV, Dudanov IP, Shtil AA, Bel'tyukov PP, Shibeko AM, Koltsova EM, Nechipurenko DY, Vinogradov VV. Urokinase-Conjugated Magnetite Nanoparticles as a Promising Drug Delivery System for Targeted Thrombolysis: Synthesis and Preclinical Evaluation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36764-36775. [PMID: 30299938 DOI: 10.1021/acsami.8b14790] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mortality and disabilities as outcomes of cardiovascular diseases are primarily related to blood clotting. Optimization of thrombolytic drugs is aimed at the prevention of side effects (in particular, bleeding) associated with a disbalance between coagulation and anticoagulation caused by systemically administered agents. Minimally invasive and efficient approaches to deliver the thrombolytic agent to the site of clot formation are needed. Herein, we report a novel nanocomposite prepared by heparin-mediated cross-linking of urokinase with magnetite nanoparticles (MNPs@uPA). We showed that heparin within the composition evoked no inhibitory effects on urokinase activity. Importantly, the magneto-control further increased the thrombolytic efficacy of the composition. Using our nanocomposition, we demonstrated efficient lysis of experimental clots in vitro and in animal vessels followed by complete restoration of blood flow. No sustained toxicity or hemorrhagic complications were registered in rats and rabbits after single bolus i.v. injection of therapeutic doses of MNPs@uPA. We conclude that MNPs@uPA is a prototype of easy-to-prepare, inexpensive, biocompatible, and noninvasive thrombolytic nanomedicines potentially useful in the treatment of blood clotting.
Collapse
Affiliation(s)
- Artur Y Prilepskii
- SCAMT Laboratory , ITMO University , Saint Petersburg , 191002 , Russian Federation
| | - Anna F Fakhardo
- SCAMT Laboratory , ITMO University , Saint Petersburg , 191002 , Russian Federation
| | - Andrey S Drozdov
- SCAMT Laboratory , ITMO University , Saint Petersburg , 191002 , Russian Federation
| | - Vasiliy V Vinogradov
- SCAMT Laboratory , ITMO University , Saint Petersburg , 191002 , Russian Federation
| | - Ivan P Dudanov
- SCAMT Laboratory , ITMO University , Saint Petersburg , 191002 , Russian Federation
| | - Alexander A Shtil
- Blokhin National Medical Center of Oncology , Moscow , 115478 , Russian Federation
| | - Petr P Bel'tyukov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology , Saint Petersburg , 192019 , Russian Federation
| | - Alexey M Shibeko
- Center for Theoretical Problems of Physico-Chemical Pharmacology , Russian Academy of Sciences , Moscow , 119334 , Russian Federation
- Dmitry Rogachev National Research and Clinical Center of Pediatric Hematology, Oncology and Immunology , Moscow , 117198 , Russian Federation
| | - Ekaterina M Koltsova
- Center for Theoretical Problems of Physico-Chemical Pharmacology , Russian Academy of Sciences , Moscow , 119334 , Russian Federation
- Dmitry Rogachev National Research and Clinical Center of Pediatric Hematology, Oncology and Immunology , Moscow , 117198 , Russian Federation
| | - Dmitry Y Nechipurenko
- Center for Theoretical Problems of Physico-Chemical Pharmacology , Russian Academy of Sciences , Moscow , 119334 , Russian Federation
- Dmitry Rogachev National Research and Clinical Center of Pediatric Hematology, Oncology and Immunology , Moscow , 117198 , Russian Federation
- Department of Physics , Lomonosov Moscow State University , Moscow , 119234 , Russian Federation
| | | |
Collapse
|