1
|
Macpherson ESB, Hauser FE, Van Nynatten A, Chang BSW, Lovejoy NR. Evolution of rhodopsin in flatfishes (Pleuronectiformes) is associated with depth and migratory behavior. JOURNAL OF FISH BIOLOGY 2024; 105:779-790. [PMID: 38859571 DOI: 10.1111/jfb.15828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/06/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024]
Abstract
Visual signals are involved in many fitness-related tasks and are therefore essential for survival in many species. Aquatic organisms are ideal systems to study visual evolution, as the high diversity of spectral properties in aquatic environments generates great potential for adaptation to different light conditions. Flatfishes are an economically important group, with over 800 described species distributed globally, including halibut, flounder, sole, and turbot. The diversity of flatfish species and wide array of environments they occupy provides an excellent opportunity to understand how this variation translates to molecular adaptation of vision genes. Using models of molecular evolution, we investigated how the light environments inhabited by different flatfish lineages have shaped evolution in the rhodopsin gene, which is responsible for mediating dim-light visual transduction. We found strong evidence for positive selection in rhodopsin, and this was correlated with both migratory behavior and several fundamental aspects of habitat, including depth and freshwater/marine evolutionary transitions. We also identified several mutations that likely affect the wavelength of peak absorbance of rhodopsin, and outline how these shifts in absorbance correlate with the response to the light spectrum present in different habitats. This is the first study of rhodopsin evolution in flatfishes that considers their extensive diversity, and our results highlight how ecologically-driven molecular adaptation has occurred across this group in response to transitions to novel light environments.
Collapse
Affiliation(s)
- Esme S B Macpherson
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Frances E Hauser
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Alexander Van Nynatten
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Nathan R Lovejoy
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Torres-Dowdall J, Karagic N, Prabhukumar F, Meyer A. Differential Regulation of Opsin Gene Expression in Response to Internal and External Stimuli. Genome Biol Evol 2024; 16:evae125. [PMID: 38860496 DOI: 10.1093/gbe/evae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 05/24/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024] Open
Abstract
Determining how internal and external stimuli interact to determine developmental trajectories of traits is a challenge that requires the integration of different subfields of biology. Internal stimuli, such as hormones, control developmental patterns of phenotypic changes, which might be modified by external environmental cues (e.g. plasticity). Thyroid hormone (TH) modulates the timing of opsin gene expression in developing Midas cichlid fish (Amphilophus citrinellus). Moreover, fish reared in red light accelerate this developmental timing compared to fish reared in white light. Hence, we hypothesized that plasticity caused by variation in light conditions has coopted the TH signaling pathway to induce changes in opsin gene expression. We treated Midas cichlids with TH and crossed this treatment with two light conditions, white and red. We observed that not only opsin expression responded similarly to TH and red light but also that, at high TH levels, there is limited capacity for light-induced plasticity. Transcriptomic analysis of the eye showed that genes in the TH pathway were affected by TH, but not by light treatments. Coexpression network analyses further suggested that response to light was independent of the response to TH manipulations. Taken together, our results suggest independent mechanisms mediating development and plasticity during development of opsin gene expression, and that responses to environmental stimuli may vary depending on internal stimuli. This conditional developmental response to external factors depending on internal ones (e.g. hormones) might play a fundamental role in the patterns of phenotypic divergence observed in Midas cichlids and potentially other organisms.
Collapse
Affiliation(s)
- Julián Torres-Dowdall
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Nidal Karagic
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Femina Prabhukumar
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
3
|
Naggert ASEN, Collin GB, Wang J, Krebs MP, Chang B. A mouse model of cone photoreceptor function loss (cpfl9) with degeneration due to a mutation in Gucy2e. Front Mol Neurosci 2023; 15:1080136. [PMID: 36698779 PMCID: PMC9868315 DOI: 10.3389/fnmol.2022.1080136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
During routine screening of mouse strains and stocks by the Eye Mutant Resource at The Jackson Laboratory for genetic mouse models of human ocular disorders, we identified cpfl9, a mouse model with cone photoreceptor function loss. The mice exhibited an early-onset phenotype that was easily recognized by the absence of a cone-mediated b-wave electroretinography response and by a reduction in rod-mediated photoresponses at four weeks of age. By genetic mapping and high-throughput sequencing of a whole exome capture library of cpfl9, a homozygous 25 bp deletion within exon 11 of the Gucy2e gene was identified, which is predicted to result in a frame shift leading to premature termination. The corresponding protein in human, retinal guanylate cyclase 1 (GUCY2D), plays an important role in rod and cone photoreceptor cell function. Loss-of-function mutations in human GUCY2D cause LCA1, one of the most common forms of Leber congenital amaurosis, which results in blindness at birth or in early childhood. The early loss of cone and reduced rod photoreceptor cell function in the cpfl9 mutant is accompanied by a later, progressive loss of cone and rod photoreceptor cells, which may be relevant to understanding disease pathology in a subset of LCA1 patients and in individuals with cone-rod dystrophy caused by recessive GUCY2D variants. cpfl9 mice will be useful for studying the role of Gucy2e in the retina.
Collapse
|
4
|
Lupše N, Kłodawska M, Truhlářová V, Košátko P, Kašpar V, Bitja Nyom AR, Musilova Z. Developmental changes of opsin gene expression in ray-finned fishes (Actinopterygii). Proc Biol Sci 2022; 289:20221855. [DOI: 10.1098/rspb.2022.1855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Fish often change their habitat and trophic preferences during development. Dramatic functional differences between embryos, larvae, juveniles and adults also concern sensory systems, including vision. Here, we focus on the photoreceptors (rod and cone cells) in the retina and their gene expression profiles during development. Using comparative transcriptomics on 63 species, belonging to 23 actinopterygian orders, we report general developmental patterns of opsin expression, mostly suggesting an increased importance of the rod opsin (
RH1
) gene and the long-wavelength-sensitive cone opsin, and a decreasing importance of the shorter wavelength-sensitive cone opsin throughout development. Furthermore, we investigate in detail ontogenetic changes in 14 selected species (from Polypteriformes, Acipenseriformes, Cypriniformes, Aulopiformes and Cichliformes), and we report examples of expanded cone opsin repertoires, cone opsin switches (mostly within
RH2
) and increasing rod : cone ratio as evidenced by the opsin and phototransduction cascade genes. Our findings provide molecular support for developmental stage-specific visual palettes of ray-finned fishes and shifts between, which most likely arose in response to ecological, behavioural and physiological factors.
Collapse
Affiliation(s)
- Nik Lupše
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| | - Monika Kłodawska
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| | - Veronika Truhlářová
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| | - Prokop Košátko
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| | - Vojtěch Kašpar
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Arnold Roger Bitja Nyom
- Department of Management of Fisheries and Aquatic Ecosystems, University of Douala, Douala P.O. Box 7236, Cameroon
- Department of Biological Sciences, University of Ngaoundéré, Ngaoundéré P.O. Box 454, Cameroon
| | - Zuzana Musilova
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| |
Collapse
|
5
|
Bolstad K, Novales Flamarique I. Chromatic organization of retinal photoreceptors during eye migration of Atlantic halibut (Hippoglossus hippoglossus). J Comp Neurol 2022; 531:256-280. [PMID: 36217253 DOI: 10.1002/cne.25423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/08/2022]
Abstract
The retinas of fishes often have single and double cone photoreceptors that are organized in lattice-like mosaics. In flatfishes experiencing eye migration (i.e., the metamorphic process whereby one eye migrates to the other side of the head), the hexagonal lattice of single cones present in the larva undergoes major restructuring resulting in a dominant square mosaic postmetamorphosis consisting of four double cones surrounding each single cone. The expression of different opsin types during eye migration has not been examined despite its importance in understanding photoreceptor plasticity and whether cell fate (in terms of spectral phenotype) could influence square mosaic formation. Here, we probed the retina of Atlantic halibut undergoing eye migration for opsin expression using two antibodies, AHblue and AB5407, that labeled short wavelength sensitive 2 (SWS2) opsin and longer wavelength (predominantly middle wavelength sensitive, RH2) opsins, respectively. Throughout the retina, double and triple cones labeled with AB5407 exclusively, whereas the vast majority of single cones labeled with AHblue. A minority (<5%) of single cones in the square mosaic of the centroventral retina labeled with AB5407. In regions of mosaic transition and near peripheral growth zones, some single cones co-expressed at least two opsins as they labeled with both antibodies. Short wavelength (SWS2 expressing, or S) cones formed a nonrandom mosaic gradient from central to dorsal retina in a region dominated by the larval single cone mosaic. Our results demonstrate the expression of at least two opsins throughout the postmetamorphic retina and suggest opsin switching as a mechanism to create new cone spectral phenotypes. In addition, the S cone gradient at the onset of eye migration may underlie a plastic, cell induction mechanism by which a cone's phenotype determines that of its neighbors and the formation of the square mosaic.
Collapse
Affiliation(s)
- Kennedy Bolstad
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Iñigo Novales Flamarique
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.,Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
6
|
Fogg LG, Cortesi F, Lecchini D, Gache C, Marshall NJ, de Busserolles F. Development of dim-light vision in the nocturnal reef fish family Holocentridae. I: Retinal gene expression. J Exp Biol 2022; 225:jeb244513. [PMID: 35929500 PMCID: PMC9482368 DOI: 10.1242/jeb.244513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/24/2022] [Indexed: 11/20/2022]
Abstract
Developmental changes to the visual systems of animals are often associated with ecological shifts. Reef fishes experience a change in habitat between larval life in the shallow open ocean to juvenile and adult life on the reef. Some species also change their lifestyle over this period and become nocturnal. While these ecological transitions are well documented, little is known about the ontogeny of nocturnal reef fish vision. Here, we used transcriptomics to investigate visual development in 12 representative species from both subfamilies, Holocentrinae (squirrelfishes) and Myripristinae (soldierfishes), in the nocturnal coral reef fish family, Holocentridae. Results revealed that the visual systems of holocentrids are initially well adapted to photopic conditions with pre-settlement larvae having high levels of cone opsin gene expression and a broad cone opsin gene repertoire (8 genes). At reef settlement, holocentrids started to invest more in their scotopic visual system, and compared with adults, showed upregulation of genes involved in cell differentiation/proliferation. By adulthood, holocentrids had well developed scotopic vision with high levels of rod opsin gene expression, reduced cone opsin gene expression and repertoire (1-4 genes) and upregulated phototransduction genes. Finally, although the two subfamilies shared similar ecologies across development, their visual systems diverged after settlement, with Myripristinae investing more in scotopic vision than Holocentrinae. Hence, both ecology and phylogeny are likely to determine the development of the holocentrid visual system.
Collapse
Affiliation(s)
- Lily G. Fogg
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David Lecchini
- PSL Research University, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia
- Laboratoire d'Excellence “CORAIL”, Paris 75006, France
| | - Camille Gache
- PSL Research University, EPHE-UPVD-CNRS, UAR3278 CRIOBE, 98729 Papetoai, Moorea, French Polynesia
- Laboratoire d'Excellence “CORAIL”, Paris 75006, France
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
7
|
Kondrashev SL. Photoreceptors, visual pigments and intraretinal variability in spectral sensitivity in two species of smelts (Pisces, Osmeridae). JOURNAL OF FISH BIOLOGY 2022; 101:584-596. [PMID: 35655413 DOI: 10.1111/jfb.15128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The main goal of this study was to clarify whether the spectral properties of retinal photoreceptors reflect the features of behaviour of closely related fish species cohabiting shallow marine and fresh waters. The spectral sensitivity of photoreceptors was compared between two smelt species, Hypomesus japonicus and Japanese smelt Hypomesus nipponensis. The spectral absorption of the visual pigments was measured using microspectrophotometry. In H. japonicus, a mostly marine species, all photoreceptors contained visual pigments based on retinal and were distributed differently in specific retinal areas. The absorbance maxima (λmax ) of rods and long-wave-sensitive members of double cones throughout the retina amounted to 507 and 573 nm, respectively, but the λmax value of the short-wave-sensitive members of double cones and single cones in the temporal hemiretina showed a significant blue shift compared to the nasal hemiretina: 485 vs. 516 nm and 375 vs. 412 nm, respectively, thus enhancing the short-wave sensitivity of the temporal hemiretina. In H. nipponensis, an euryhaline species, the estimated λmax value of both rods and cones significantly varied between the groups caught in different localities (sea, river or estuary) because of the presence of rhodopsin/porphyropsin mixtures. The long-wavelength shift in rod and cone photoreceptors was observed because of changes in the chromophore complement in closely related but ecologically different species dwelling in freshened bodies of water. Considering the data available in the literature, several putative common opsin genes have been suggested for species under study.
Collapse
Affiliation(s)
- Sergei L Kondrashev
- Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Photoreceptor distributions, visual pigments and the opsin repertoire of Atlantic halibut (Hippoglossus hippoglossus). Sci Rep 2022; 12:8062. [PMID: 35577858 PMCID: PMC9110347 DOI: 10.1038/s41598-022-11998-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/03/2022] [Indexed: 11/15/2022] Open
Abstract
Fishes often have cone photoreceptors organized in lattice-like mosaic formations. In flatfishes, these lattices undergo dramatic changes during metamorphosis whereby a honeycomb mosaic of single cones in the larva is replaced by a square mosaic of single and double cones in the adult. The spatio-temporal dynamics of this transition are not well understood. Here, we describe the photoreceptors and mosaic formations that occur during the larva to juvenile transition of Atlantic halibut from the beginning of eye migration to its completion. To gauge the possibility of colour vision, visual pigments in juveniles were measured by microspectrophotometry and the opsin repertoire explored using bioinformatics. At the start of eye migration, the larva had a heterogeneous retina with honeycomb mosaic in the dorsonasal and ventrotemporal quadrants and a square mosaic in the ventronasal and dorsotemporal quadrants. By the end of metamorphosis, the square mosaic was present throughout the retina except in a centrodorsotemporal area where single, double and triple cones occurred randomly. Six cone visual pigments were found with maximum absorbance (λmax, in nm) in the short [S(431) and S(457)], middle [M(500), M(514) and M(527)], and long [L(550)] wavelengths, and a rod visual pigment with λmax at 491 nm. These pigments only partially matched the opsin repertoire detected by query of the Atlantic halibut genome. We conclude that the Atlantic halibut undergoes a complex re-organization of photoreceptors at metamorphosis resulting in a multi-mosaic retina adapted for a demersal life style.
Collapse
|
9
|
Tosetto L, Williamson JE, White TE, Hart NS. Can the Dynamic Colouration and Patterning of Bluelined Goatfish (Mullidae; Upeneichthys lineatus) Be Perceived by Conspecifics? BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:103-123. [PMID: 34856558 DOI: 10.1159/000519894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Bluelined goatfish (Upeneichthys lineatus) exhibit dynamic body colour changes and transform rapidly from a pale, buff/white, horizontally banded pattern to a conspicuous, vertically striped, red pattern when foraging. This red pattern is potentially an important foraging signal for communication with conspecifics, provided that U. lineatus can detect and discriminate the pattern. Using both physiological and behavioural experiments, we first examined whether U. lineatus possess visual pigments with sensitivity to long ("red") wavelengths of light, and whether they can discriminate the colour red. Microspectrophotometric measurements of retinal photoreceptors showed that while U. lineatuslack visual pigments dedicated to the red part of the spectrum, their pigments likely confer some sensitivity in this spectral band. Behavioural colour discrimination experiments suggested that U. lineatuscan distinguish a red reward stimulus from a grey distractor stimulus of variable brightness. Furthermore, when presented with red stimuli of varying brightness they could mostly discriminate the darker and lighter reds from the grey distractor. We also obtained anatomical estimates of visual acuity, which suggest that U. lineatus can resolve the contrasting bands of conspecifics approximately 7 m away in clear waters. Finally, we measured the spectral reflectance of the red and white colouration on the goatfish body. Visual models suggest that U. lineatus can discriminate both chromatic and achromatic differences in body colouration where longer wavelength light is available. This study demonstrates that U. lineatus have the capacity for colour vision and can likely discriminate colours in the long-wavelength region of the spectrum where the red body pattern reflects light strongly. The ability to see red may therefore provide an advantage in recognising visual signals from conspecifics. This research furthers our understanding of how visual signals have co-evolved with visual abilities, and the role of visual communication in the marine environment.
Collapse
Affiliation(s)
- Louise Tosetto
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jane E Williamson
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| | - Thomas E White
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Nathan S Hart
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Lupše N, Cortesi F, Freese M, Marohn L, Pohlman JD, Wysujack K, Hanel R, Musilova Z. Visual gene expression reveals a cone to rod developmental progression in deep-sea fishes. Mol Biol Evol 2021; 38:5664-5677. [PMID: 34562090 PMCID: PMC8662630 DOI: 10.1093/molbev/msab281] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Vertebrates use cone cells in the retina for colour vision and rod cells to see in dim light. Many deep-sea fishes have adapted to their environment to have only rod cells in the retina, while both rod and cone genes are still preserved in their genomes. As deep-sea fish larvae start their lives in the shallow, and only later submerge to the depth, they have to cope with diverse environmental conditions during ontogeny. Using a comparative transcriptomic approach in 20 deep-sea fish species from eight teleost orders, we report on a developmental cone-to-rod switch. While adults mostly rely on rod opsin (RH1) for vision in dim light, larvae almost exclusively express middle-wavelength-sensitive ("green") cone opsins (RH2) in their retinas. The phototransduction cascade genes follow a similar ontogenetic pattern of cone- followed by rod-specific gene expression in most species, except for the pearleye and sabretooth (Aulopiformes), in which the cone cascade remains dominant throughout development. By inspecting the whole genomes of five deep-sea species (four of them sequenced within this study: Idiacanthus fasciola, Chauliodus sloani; Stomiiformes; Coccorella atlantica, and Scopelarchus michaelsarsi; Aulopiformes), we found that deep-sea fish possess one or two copies of the rod RH1 opsin gene, and up to seven copies of the cone RH2 opsin genes in their genomes, while other cone opsin classes have been mostly lost. Our findings hence provide molecular evidence for a limited opsin gene repertoire and a conserved vertebrate pattern whereby cone photoreceptors develop first and rod photoreceptors are added only at later developmental stages.
Collapse
Affiliation(s)
- Nik Lupše
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| | - Fabio Cortesi
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| | - Marko Freese
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Lasse Marohn
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Jan-Dag Pohlman
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Klaus Wysujack
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Reinhold Hanel
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Zuzana Musilova
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic
| |
Collapse
|
11
|
Musilova Z, Salzburger W, Cortesi F. The Visual Opsin Gene Repertoires of Teleost Fishes: Evolution, Ecology, and Function. Annu Rev Cell Dev Biol 2021; 37:441-468. [PMID: 34351785 DOI: 10.1146/annurev-cellbio-120219-024915] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual opsin genes expressed in the rod and cone photoreceptor cells of the retina are core components of the visual sensory system of vertebrates. Here, we provide an overview of the dynamic evolution of visual opsin genes in the most species-rich group of vertebrates, teleost fishes. The examination of the rich genomic resources now available for this group reveals that fish genomes contain more copies of visual opsin genes than are present in the genomes of amphibians, reptiles, birds, and mammals. The expansion of opsin genes in fishes is due primarily to a combination of ancestral and lineage-specific gene duplications. Following their duplication, the visual opsin genes of fishes repeatedly diversified at the same key spectral-tuning sites, generating arrays of visual pigments sensitive from the ultraviolet to the red spectrum of the light. Species-specific opsin gene repertoires correlate strongly with underwater light habitats, ecology, and color-based sexual selection. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Zuzana Musilova
- Department of Zoology, Charles University, Prague 128 44, Czech Republic;
| | | | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Queensland, Australia;
| |
Collapse
|
12
|
Hiermes M, Marder MB, Reher S, Rick IP, Vitt S, Bakker TCM. Influence of lighting environment on social preferences in sticklebacks from two different photic habitats. II. Shoaling and mate preferences of lab-bred fishes. Curr Zool 2021; 67:309-319. [PMID: 34616923 PMCID: PMC8489012 DOI: 10.1093/cz/zoab033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/06/2021] [Indexed: 11/21/2022] Open
Abstract
Different environmental conditions may lead to diverse morphological, behavioral, and physiological adaptations of different populations of the same species. Lighting conditions, for example, vary vastly especially between aquatic habitats, and have been shown to elicit adaptations. The availability of short-wave ultraviolet (UV) light is especially fluctuating, as UV wavelengths are attenuated strongly depending on water properties. The island of North Uist, Scotland, comprises 2 differential habitat types, tea-stained and clear-water lakes, varying considerably in UV transmission. In previous studies, wild-caught 3-spined stickleback Gasterosteus aculeatus populations (3 populations of each habitat type) were tested with respect to their shoaling and mate preferences for fish viewed under UV-present and UV-absent conditions. The results revealed a habitat-dependent preference of UV cues during shoal choice (tea-stained populations: preference for UV-absent condition in tea-stained water; clear-water populations: no preference in clear-water) but an overall preference for UV-present conditions during mate choice. To assess genetic influences on these behavioral patterns, similar experiments were conducted with lab-bred F1-generations of the same stickleback populations that were raised in a common environment (i.e. standardized clear-water conditions). Offspring of sticklebacks from tea-stained lakes tended to prefer shoals viewed under UV-absent conditions (only in tea-stained water), while sticklebacks from clear-water lakes showed a significant preference for the shoal viewed under UV-present conditions in clear-water but not in tea-stained water. Mate-preference experiments demonstrated that females from the tea-stained lakes significantly preferred and females from the clear-water lakes preferred by trend the male viewed under UV-present conditions in the clear-water treatment. The results for both shoaling- and mate-preference tests were largely similar for wild-caught and lab-bred sticklebacks, thus hinting at a genetic basis for the preference patterns.
Collapse
Affiliation(s)
- Meike Hiermes
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn 53121, Germany
| | - Michael B Marder
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn 53121, Germany
| | - Stephanie Reher
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn 53121, Germany
- Institute of Zoology, Functional Ecology, Universität Hamburg, Martin-Luther-King-Platz 3, Hamburg 20146, Germany
| | - Ingolf P Rick
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn 53121, Germany
- Institute of Zoology, University of Bonn, Meckenheimer Allee 169, Bonn 53115, Germany
| | - Simon Vitt
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn 53121, Germany
| | - Theo C M Bakker
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, Bonn 53121, Germany
| |
Collapse
|
13
|
Carleton KL, Escobar-Camacho D, Stieb SM, Cortesi F, Marshall NJ. Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. J Exp Biol 2020; 223:jeb193334. [PMID: 32327561 PMCID: PMC7188444 DOI: 10.1242/jeb.193334] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Among vertebrates, teleost eye diversity exceeds that found in all other groups. Their spectral sensitivities range from ultraviolet to red, and the number of visual pigments varies from 1 to over 40. This variation is correlated with the different ecologies and life histories of fish species, including their variable aquatic habitats: murky lakes, clear oceans, deep seas and turbulent rivers. These ecotopes often change with the season, but fish may also migrate between ecotopes diurnally, seasonally or ontogenetically. To survive in these variable light habitats, fish visual systems have evolved a suite of mechanisms that modulate spectral sensitivities on a range of timescales. These mechanisms include: (1) optical media that filter light, (2) variations in photoreceptor type and size to vary absorbance and sensitivity, and (3) changes in photoreceptor visual pigments to optimize peak sensitivity. The visual pigment changes can result from changes in chromophore or changes to the opsin. Opsin variation results from changes in opsin sequence, opsin expression or co-expression, and opsin gene duplications and losses. Here, we review visual diversity in a number of teleost groups where the structural and molecular mechanisms underlying their spectral sensitivities have been relatively well determined. Although we document considerable variability, this alone does not imply functional difference per se. We therefore highlight the need for more studies that examine species with known sensitivity differences, emphasizing behavioral experiments to test whether such differences actually matter in the execution of visual tasks that are relevant to the fish.
Collapse
Affiliation(s)
- Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - Sara M Stieb
- Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| | - N Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| |
Collapse
|
14
|
Frau S, Novales Flamarique I, Keeley PW, Reese BE, Muñoz-Cueto JA. Straying from the flatfish retinal plan: Cone photoreceptor patterning in the common sole (Solea solea) and the Senegalese sole (Solea senegalensis). J Comp Neurol 2020; 528:2283-2307. [PMID: 32103501 DOI: 10.1002/cne.24893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 11/09/2022]
Abstract
The retinas of nonmammalian vertebrates have cone photoreceptor mosaics that are often organized as highly patterned lattice-like distributions. In fishes, the two main lattice-like patterns are composed of double cones and single cones that are either assembled as interdigitized squares or as alternating rows. The functional significance of such orderly patterning is unknown. Here, the cone mosaics in two species of Soleidae flatfishes, the common sole and the Senegalese sole, were characterized and compared to those from other fishes to explore variability in cone patterning and how it may relate to visual function. The cone mosaics of the common sole and the Senegalese sole consisted of single, double, and triple cones in formations that differed from the traditional square mosaic pattern reported for other flatfishes in that no evidence of higher order periodicity was present. Furthermore, mean regularity indices for single and double cones were conspicuously lower than those of other fishes with "typical" square and row mosaics, but comparable to those of goldfish, a species with lattice-like periodicity in its cone mosaic. Opsin transcripts detected by quantitative polymerase chain reaction (sws1, sws2, rh2.3, rh2.4, lws, and rh1) were uniformly expressed across the retina of the common sole but, in the Senegalese sole, sws2, rh2.4, and rh1 were more prevalent in the dorsal retina. Microspectrophotometry revealed five visual pigments in the retina of the common sole [S(472), M(523), M(536), L(559), and rod(511)] corresponding to the repertoire of transcripts quantified except for sws1. Overall, these results indicate a loss of cone mosaic patterning in species that are primarily nocturnal or dwell in low light environments as is the case for the common sole and the Senegalese sole. The corollary is that lattice-like patterning of the cone mosaic may improve visual acuity. Ecological and physiological correlates derived from observations across multiple fish taxa that live in low light environments and do not possess lattice-like cone mosaics are congruent with this claim.
Collapse
Affiliation(s)
- Sara Frau
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, The European University of the Seas (SEA-EU), Puerto Real, Spain
| | - Iñigo Novales Flamarique
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.,Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Patrick W Keeley
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
| | - Benjamin E Reese
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA.,Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California, USA
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, The European University of the Seas (SEA-EU), Puerto Real, Spain
| |
Collapse
|
15
|
Kondrashev S, Lamash N. Unusual A1/A2–visual pigment conversion during light/dark adaptation in marine fish. Comp Biochem Physiol A Mol Integr Physiol 2019; 238:110560. [DOI: 10.1016/j.cbpa.2019.110560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/24/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022]
|
16
|
Novales Flamarique I, Sayed Ahmed A, Cheng CL, Molday RS, Devlin RH. Growth hormone regulates opsin expression in the retina of a salmonid fish. J Neuroendocrinol 2019; 31:e12804. [PMID: 31630448 DOI: 10.1111/jne.12804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/07/2019] [Accepted: 10/18/2019] [Indexed: 01/18/2023]
Abstract
Colour vision relies on retinal photoreceptors that express a different predominant visual pigment protein (opsin). In several vertebrates, the primary opsin expressed by a photoreceptor can change throughout ontogeny, although the molecular factors that influence such regulation are poorly understood. One of these factors is thyroid hormone which, together with its receptors, modulates opsin expression in the retinas of multiple vertebrates including rodents and salmonid fishes. In the latter, thyroid hormone induces a switch in opsin expression from SWS1 (ultraviolet light sensitive) to SWS2 (short wavelength or blue light sensitive) in the single cone photoreceptors of the retina. The actions of other hormones on opsin expression have not been investigated. In the present study, we used a transgenic strain of coho salmon (Oncorhynchus kitsutch) with enhanced levels of circulating growth hormone compared to that of wild siblings to assess the effects of this hormone on the SWS1 to SWS2 opsin switch. Transgenic fish showed a developmentally accelerated opsin switch compared to size-matched controls as assessed by immunohistological and in situ hybridisation labelling of photoreceptors and by quantification of transcripts using quantitative polymerase chain reaction. This accelerated switch led to a different spectral sensitivity maximum, under a middle to long wavelength adapting background, from ultraviolet (λmax ~ 380 nm) in controls to short wavelengths (λmax ~ 430 nm) in transgenics, demonstrating altered colour vision. The effects of growth hormone over-expression were independent of circulating levels of thyroid hormone (triiodothyronine), the hormone typically associated with opsin switches in vertebrates.
Collapse
Affiliation(s)
- Inigo Novales Flamarique
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Ahmed Sayed Ahmed
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Christiana L Cheng
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
17
|
Novales Flamarique I. Light exposure during embryonic and yolk-sac alevin development of Chinook salmon Oncorhynchus tshawytscha does not alter the spectral phenotype of photoreceptors. JOURNAL OF FISH BIOLOGY 2019; 95:214-221. [PMID: 30370922 DOI: 10.1111/jfb.13850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Colour vision is mediated by the expression of different visual pigments in photoreceptors of the vertebrate retina. Each visual pigment is a complex of a protein (opsin) and a vitamin A chromophore; alterations to either component affects visual pigment absorbance and, potentially, the visual capabilities of an animal. Many species of fish undergo changes in opsin expression during retinal development. In the case of salmonid fishes the single cone photoreceptors undergo a switch in opsin expression from SWS1 (ultraviolet sensitive) to SWS2 (blue-light sensitive) starting at the yolk-sac alevin stage, around the time when they first experience light. Whether light may initiate this event or produce a plastic response in the various photoreceptors is unknown. In this study, Chinook salmon Oncorhynchus tshawytscha were exposed to light from the embryonic (5 days prior to hatching) into the yolk sac alevin (25 days post hatching) stage and the spectral phenotype of photoreceptors assessed with respect to that of unexposed controls by in situ hybridization with opsin riboprobes. Light exposure did not change the spectral phenotype of photoreceptors, their overall morphology or spatial arrangement. These results concur with those from a variety of fish species and suggest that plasticity in photoreceptor spectral phenotype via changes in opsin expression may not be a widespread occurrence among teleosts.
Collapse
Affiliation(s)
- Inigo Novales Flamarique
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
- Department of Biology, University of Victoria, Victoria, Canada
| |
Collapse
|
18
|
Marshall NJ, Cortesi F, de Busserolles F, Siebeck UE, Cheney KL. Colours and colour vision in reef fishes: Past, present and future research directions. JOURNAL OF FISH BIOLOGY 2019; 95:5-38. [PMID: 30357835 DOI: 10.1111/jfb.13849] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Many fishes, both freshwater or marine, have colour vision that may outperform humans. As a result, to understand the behavioural tasks that vision enables; including mate choice, feeding, agonistic behaviour and camouflage, we need to see the world through a fish's eye. This includes quantifying the variable light environment underwater and its various influences on vision. As well as rapid loss of light with depth, light attenuation underwater limits visual interaction to metres at most and in many instances, less than a metre. We also need to characterize visual sensitivities, fish colours and behaviours relative to both these factors. An increasingly large set of techniques over the past few years, including improved photography, submersible spectrophotometers and genetic sequencing, have taken us from intelligent guesswork to something closer to sensible hypotheses. This contribution to the special edition on the Ecology of Fish Senses under a shifting environment first reviews our knowledge of fish colour vision and visual ecology, past, present and very recent, and then goes on to examine how climate change may impinge on fish visual capability. The review is limited to mostly colour vision and to mostly reef fishes. This ignores a large body of work, both from other marine environments and freshwater systems, but the reef contains examples of many of the challenges to vision from the aquatic environment. It is also a concentrate of life, perhaps the most specious and complex on earth, suffering now catastrophically from the consequences of our lack of action on climate change. A clear course of action to prevent destruction of this habitat is the need to spend more time in it, in the study of it and sharing it with those not fortunate enough to see coral reefs first-hand. Sir David Attenborough on The Great Barrier Reef: "Do we really care so little about the Earth upon which we live that we don't wish to protect one of its greatest wonders from the consequences of our behaviours?"
Collapse
Affiliation(s)
- N Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Fanny de Busserolles
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Uli E Siebeck
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Karen L Cheney
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- School of Biology, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
19
|
Variation in opsin transcript expression explains intraretinal differences in spectral sensitivity of the northern anchovy. Vis Neurosci 2018; 35:E005. [DOI: 10.1017/s0952523818000019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractVertebrate retinal photoreceptors house visual pigments that absorb light to begin the process of vision. The light absorbed by a visual pigment depends on its two molecular components: protein (opsin) and chromophore (a vitamin A derivative). Although an increasing number of studies show intraretinal variability in visual pigment content, it is only for two mammals (human and mouse) and two birds (chicken and pigeon) that such variability has been demonstrated to underlie differences in spectral sensitivity of the animal. Here, we show that the spectral sensitivity of the northern anchovy varies with retinal quadrant and that this variability can be explained by differences in the expression of opsin transcripts. Retinal (vitamin A1) was the only chromophore detected in the retina, ruling out this molecular component as a source of variation in spectral sensitivity. Chromatic adaptation experiments further showed that the dorsal retina had the capacity to mediate color vision. Together with published results for the ventral retina, this study is the first to demonstrate that intraretinal opsin variability in a fish drives corresponding variation in the animal’s spectral sensitivity.
Collapse
|
20
|
Zukoshi R, Savelli I, Novales Flamarique I. Foraging performance of two fishes, the threespine stickleback and the Cumaná guppy, under different light backgrounds. Vision Res 2018; 145:31-38. [DOI: 10.1016/j.visres.2018.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 10/16/2022]
|