1
|
Yang TT, Zhang JR, Xie ZH, Ren ZL, Yan JW, Ni M. Nanopore sequencing of forensic short tandem repeats using QNome of Qitan Technology. Electrophoresis 2024; 45:1535-1545. [PMID: 38884206 DOI: 10.1002/elps.202300270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 06/18/2024]
Abstract
Devices of nanopore sequencing can be highly portable and of low cost. Thus, nanopore sequencing is promising in in-field forensic applications. Previous investigations have demonstrated that nanopore sequencing is feasible for genotyping forensic short tandem repeats (STRs) by using sequencers of Oxford Nanopore Technologies. Recently, Qitan Technology launched a new portable nanopore sequencer and became the second supplier in the world. Here, for the first time, we assess the QNome (QNome-3841) for its accuracy in nanopore sequencing of STRs and compare with MinION (MinION Mk1B). We profile 54 STRs of 21 unrelated individuals and 2800M standard DNA. The overall accuracy for diploid STRs and haploid STRs were 53.5% (378 of 706) and 82.7% (134 of 162), respectively, by using QNome. The accuracies were remarkably lower than those of MinION (diploid STRs, 84.5%; haploid, 90.7%), with a similar amount of sequencing data and identical bioinformatics analysis. Although it was not reliable for diploid STRs typing by using QNome, the haploid STRs were consistently correctly typed. The majority of errors (58.8%) in QNome-based STR typing were one-repeat deviations of repeat units in the error from true allele, related with homopolymers in repeats of STRs.
Collapse
Affiliation(s)
- Ting-Ting Yang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, P. R. China
- Institute of Health Service and Transfusion Medicine, Beijing, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, P. R. China
| | - Jia-Rong Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, P. R. China
- Institute of Health Service and Transfusion Medicine, Beijing, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, P. R. China
| | - Zi-Han Xie
- Institute of Health Service and Transfusion Medicine, Beijing, P. R. China
- School of Life Science, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Zi-Lin Ren
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, P. R. China
- School of Information Science and Technology, and Institution of Computational Biology, Northeast Normal University, Changchun, P. R. China
| | - Jiang-Wei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, P. R. China
| | - Ming Ni
- Institute of Health Service and Transfusion Medicine, Beijing, P. R. China
| |
Collapse
|
2
|
Forry SP, Servetas SL, Kralj JG, Soh K, Hadjithomas M, Cano R, Carlin M, Amorim MGD, Auch B, Bakker MG, Bartelli TF, Bustamante JP, Cassol I, Chalita M, Dias-Neto E, Duca AD, Gohl DM, Kazantseva J, Haruna MT, Menzel P, Moda BS, Neuberger-Castillo L, Nunes DN, Patel IR, Peralta RD, Saliou A, Schwarzer R, Sevilla S, Takenaka IKTM, Wang JR, Knight R, Gevers D, Jackson SA. Variability and bias in microbiome metagenomic sequencing: an interlaboratory study comparing experimental protocols. Sci Rep 2024; 14:9785. [PMID: 38684791 PMCID: PMC11059151 DOI: 10.1038/s41598-024-57981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/24/2024] [Indexed: 05/02/2024] Open
Abstract
Several studies have documented the significant impact of methodological choices in microbiome analyses. The myriad of methodological options available complicate the replication of results and generally limit the comparability of findings between independent studies that use differing techniques and measurement pipelines. Here we describe the Mosaic Standards Challenge (MSC), an international interlaboratory study designed to assess the impact of methodological variables on the results. The MSC did not prescribe methods but rather asked participating labs to analyze 7 shared reference samples (5 × human stool samples and 2 × mock communities) using their standard laboratory methods. To capture the array of methodological variables, each participating lab completed a metadata reporting sheet that included 100 different questions regarding the details of their protocol. The goal of this study was to survey the methodological landscape for microbiome metagenomic sequencing (MGS) analyses and the impact of methodological decisions on metagenomic sequencing results. A total of 44 labs participated in the MSC by submitting results (16S or WGS) along with accompanying metadata; thirty 16S rRNA gene amplicon datasets and 14 WGS datasets were collected. The inclusion of two types of reference materials (human stool and mock communities) enabled analysis of both MGS measurement variability between different protocols using the biologically-relevant stool samples, and MGS bias with respect to ground truth values using the DNA mixtures. Owing to the compositional nature of MGS measurements, analyses were conducted on the ratio of Firmicutes: Bacteroidetes allowing us to directly apply common statistical methods. The resulting analysis demonstrated that protocol choices have significant effects, including both bias of the MGS measurement associated with a particular methodological choices, as well as effects on measurement robustness as observed through the spread of results between labs making similar methodological choices. In the analysis of the DNA mock communities, MGS measurement bias was observed even when there was general consensus among the participating laboratories. This study was the result of a collaborative effort that included academic, commercial, and government labs. In addition to highlighting the impact of different methodological decisions on MGS result comparability, this work also provides insights for consideration in future microbiome measurement study design.
Collapse
Affiliation(s)
- Samuel P Forry
- Complex Microbial Systems Group, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA.
| | - Stephanie L Servetas
- Complex Microbial Systems Group, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Jason G Kralj
- Complex Microbial Systems Group, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Keng Soh
- Novo Nordisk, Copenhagen, Denmark
| | - Michalis Hadjithomas
- LifeMine Therapeutics, Cambridge Discovery Park, 30 Acorn Park Drive, Cambridge, MA, 02140, USA
| | - Raul Cano
- The BioCollective, LLC, 5650 Washington Street, Suite C9, Denver, CO, 80216, USA
| | - Martha Carlin
- The BioCollective, LLC, 5650 Washington Street, Suite C9, Denver, CO, 80216, USA
| | - Maria G de Amorim
- Laboratory of Medical Genomics, A. C. Camargo Cancer Center, Sao Paulo, SP, 01508-010, Brazil
| | - Benjamin Auch
- University of Minnesota Genomics Center, Minneapolis, MN, 55455, USA
| | - Matthew G Bakker
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Thais F Bartelli
- Laboratory of Medical Genomics, A. C. Camargo Cancer Center, Sao Paulo, SP, 01508-010, Brazil
| | - Juan P Bustamante
- Laboratorio de Investigación, Desarrollo y Transferencia de la Facultad de Ingeniería de la Universidad Austral (LIDTUA), CIC-Austral, Pilar, Argentina
- Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática (IBB), CONICET-UNER, Oro Verde, Argentina
- Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Concepción del Uruguay, Argentina
| | - Ignacio Cassol
- Laboratorio de Investigación, Desarrollo y Transferencia de la Facultad de Ingeniería de la Universidad Austral (LIDTUA), CIC-Austral, Pilar, Argentina
| | | | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, A. C. Camargo Cancer Center, Sao Paulo, SP, 01508-010, Brazil
| | | | - Daryl M Gohl
- University of Minnesota Genomics Center, Minneapolis, MN, 55455, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jekaterina Kazantseva
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4, 12618, Tallinn, Estonia
| | - Muyideen T Haruna
- Bioenvironmental Program, Morgan State University, Baltimore, MD, USA
| | - Peter Menzel
- Labor Berlin Charité Vivantes GmbH, Sylter Str. 2, 13353, Berlin, Germany
| | - Bruno S Moda
- Laboratory of Medical Genomics, A. C. Camargo Cancer Center, Sao Paulo, SP, 01508-010, Brazil
- Laboratory of Computational Biology and Bioinformatics, A.C. Camargo Cancer Center, Sao Paulo, SP, 01508-010, Brazil
| | | | - Diana N Nunes
- Laboratory of Medical Genomics, A. C. Camargo Cancer Center, Sao Paulo, SP, 01508-010, Brazil
| | - Isha R Patel
- Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, U. S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Rodrigo D Peralta
- Laboratorio de Investigación, Desarrollo y Transferencia de la Facultad de Ingeniería de la Universidad Austral (LIDTUA), CIC-Austral, Pilar, Argentina
- Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Concepción del Uruguay, Argentina
| | - Adrien Saliou
- OMICS Hub, BIOASTER, Microbiology Research Institute, Lyon, France
| | - Rolf Schwarzer
- Labor Berlin Charité Vivantes GmbH, Sylter Str. 2, 13353, Berlin, Germany
| | - Samantha Sevilla
- Center for Cancer Research, CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Advanced Biomedical Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21701, USA
| | - Isabella K T M Takenaka
- Laboratory of Medical Genomics, A. C. Camargo Cancer Center, Sao Paulo, SP, 01508-010, Brazil
| | - Jeremy R Wang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rob Knight
- Departments of Pediatrics, Bioengineering and Computer Science & Engineering, and Center for Microbiome Innovation, University of California at San Diego, 9500 Gilman Drive, MC 0763, La Jolla, CA, 92093-0763, USA
| | - Dirk Gevers
- Seed Health, 2100 Abbot Kinney Blvd, Venice, CA, 90291-7003, USA
| | - Scott A Jackson
- Complex Microbial Systems Group, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| |
Collapse
|
3
|
Gómez M, Martínez D, Páez-Triana L, Luna N, Ramírez A, Medina J, Cruz-Saavedra L, Hernández C, Castañeda S, Bohórquez Melo R, Suarez LA, Palma-Cuero M, Murcia LM, González Páez L, Estrada Bustos L, Medina MA, Ariza Campo K, Padilla HD, Zamora Flórez A, De las Salas JL, Muñoz M, Ramírez JD. Influence of dengue virus serotypes on the abundance of Aedes aegypti insect-specific viruses (ISVs). J Virol 2024; 98:e0150723. [PMID: 38095414 PMCID: PMC10804971 DOI: 10.1128/jvi.01507-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024] Open
Abstract
A comprehensive understanding of the virome in mosquito vectors is crucial for assessing the potential transmission of viral agents, designing effective vector control strategies, and advancing our knowledge of insect-specific viruses (ISVs). In this study, we utilized Oxford Nanopore Technologies metagenomics to characterize the virome of Aedes aegypti mosquitoes collected in various regions of Colombia, a country hyperendemic for dengue virus (DENV). Analyses were conducted on groups of insects with previous natural DENV infection (DENV-1 and DENV-2 serotypes), as well as mosquito samples that tested negative for virus infection (DENV-negative). Our findings indicate that the Ae. aegypti virome exhibits a similar viral composition at the ISV family and species levels in both DENV-positive and DENV-negative samples across all study sites. However, differences were observed in the relative abundance of viral families such as Phenuiviridae, Partitiviridae, Flaviviridae, Rhabdoviridae, Picornaviridae, Bromoviridae, and Virgaviridae, depending on the serotype of DENV-1 and DENV-2. In addition, ISVs are frequently found in the core virome of Ae. aegypti, such as Phasi Charoen-like phasivirus (PCLV), which was the most prevalent and showed variable abundance in relation to the presence of specific DENV serotypes. Phylogenetic analyses of the L, M, and S segments of the PCLV genome are associated with sequences from different regions of the world but show close clustering with sequences from Brazil and Guadeloupe, indicating a shared evolutionary relationship. The profiling of the Ae. aegypti virome in Colombia presented here improves our understanding of viral diversity within mosquito vectors and provides information that opens the way to possible connections between ISVs and arboviruses. Future studies aimed at deepening our understanding of the mechanisms underlying the interactions between ISVs and DENV serotypes in Ae. aegypti could provide valuable information for the design of effective vector-borne viral disease control and prevention strategies.IMPORTANCEIn this study, we employed a metagenomic approach to characterize the virome of Aedes aegypti mosquitoes, with and without natural DENV infection, in several regions of Colombia. Our findings indicate that the mosquito virome is predominantly composed of insect-specific viruses (ISVs) and that infection with different DENV serotypes (DENV-1 and DENV-2) could lead to alterations in the relative abundance of viral families and species constituting the core virome in Aedes spp. The study also sheds light on the identification of the genome and evolutionary relationships of the Phasi Charoen-like phasivirus in Ae. aegypti in Colombia, a widespread ISV in areas with high DENV incidence.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - David Martínez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Nicolás Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Angie Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Julián Medina
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Ramiro Bohórquez Melo
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Luis Alejandro Suarez
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Mónica Palma-Cuero
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Luz Mila Murcia
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | | | | | | | | | | | | | | | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Department of Pathology, Molecular and Cell-Based Medicine, Molecular Microbiology Laboratory, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
4
|
de Souza LM, de Oliveira ID, Sales FCS, da Costa AC, Campos KR, Abbud A, Guerra JM, Dos Santos Cirqueira Borges C, Takahashi CPFJ, de Araújo LJT. Technical comparison of MinIon and Illumina technologies for genotyping Chikungunya virus in clinical samples. J Genet Eng Biotechnol 2023; 21:88. [PMID: 37642827 PMCID: PMC10465416 DOI: 10.1186/s43141-023-00536-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/27/2023] [Indexed: 08/31/2023]
Abstract
New-generation sequencing (NGS) techniques have brought the opportunity for genomic monitoring of several microorganisms potentially relevant to public health. The establishment of different methods with different mechanisms provides a wide choice, taking into account several aspects. With that in mind, the present aim of the study was to compare basic genomic sequencing metrics that could potentially impact genotyping by nanopores from Oxford Nanopore Technologies and by synthesis from Illumina in clinical samples positive for Chikungunya (CHIKV). Among the metrics studied, running time, read production, and Q score were better represented in Illumina sequencing, while the MinIOn platform showed better response time and greater diversity of generated files. That said, it was possible to establish differences between the studied metrics in addition to verifying that the distinctions in the methods did not impact the identification of the CHIKV virus genotype.
Collapse
Affiliation(s)
- Leandro Menezes de Souza
- Centro de Patologia, Instituto Adolfo Lutz, Sao Paulo, Brazil
- Programa de Pós Graduação em Ciências da Saúde do Instituto de Assistência Médica ao Servidor Público Estadual - IAMSPE, Sao Paulo, Brazil
| | - Isabelle Dias de Oliveira
- Centro de Patologia, Instituto Adolfo Lutz, Sao Paulo, Brazil
- Programa de Pós Graduação em Ciências da Saúde do Instituto de Assistência Médica ao Servidor Público Estadual - IAMSPE, Sao Paulo, Brazil
| | - Flávia Cristina Silva Sales
- Departamento de Moléstias Infecciosas e Parasitárias, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
| | - Antonio Charlys da Costa
- Departamento de Moléstias Infecciosas e Parasitárias, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil
| | | | - Adriano Abbud
- Centro de Respostas Rápidas, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | | | | | | | - Leonardo José Tadeu de Araújo
- Centro de Patologia, Instituto Adolfo Lutz, Sao Paulo, Brazil.
- Programa de Pós Graduação em Ciências da Saúde do Instituto de Assistência Médica ao Servidor Público Estadual - IAMSPE, Sao Paulo, Brazil.
- Departamento de Moléstias Infecciosas e Parasitárias, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, Brazil.
| |
Collapse
|
5
|
Kipp EJ, Lindsey LL, Khoo B, Faulk C, Oliver JD, Larsen PA. Metagenomic surveillance for bacterial tick-borne pathogens using nanopore adaptive sampling. Sci Rep 2023; 13:10991. [PMID: 37419899 PMCID: PMC10328957 DOI: 10.1038/s41598-023-37134-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023] Open
Abstract
Technological and computational advancements in the fields of genomics and bioinformatics are providing exciting new opportunities for pathogen discovery and genomic surveillance. In particular, single-molecule nucleotide sequence data originating from Oxford Nanopore Technologies (ONT) sequencing platforms can be bioinformatically leveraged, in real-time, for enhanced biosurveillance of a vast array of zoonoses. The recently released nanopore adaptive sampling (NAS) strategy facilitates immediate mapping of individual nucleotide molecules to a given reference as each molecule is being sequenced. User-defined thresholds then allow for the retention or rejection of specific molecules, informed by the real-time reference mapping results, as they are physically passing through a given sequencing nanopore. Here, we show how NAS can be used to selectively sequence DNA of multiple bacterial tick-borne pathogens circulating in wild populations of the blacklegged tick vector, Ixodes scapularis.
Collapse
Affiliation(s)
- Evan J Kipp
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, USA.
| | - Laramie L Lindsey
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, USA
| | - Benedict Khoo
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Christopher Faulk
- Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota-Twin Cities, St. Paul, MN, USA
| | - Jonathan D Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Peter A Larsen
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota-Twin Cities, St. Paul, MN, USA
| |
Collapse
|
6
|
Fomsgaard AS, Tahas SA, Spiess K, Polacek C, Fonager J, Belsham GJ. Unbiased Virus Detection in a Danish Zoo Using a Portable Metagenomic Sequencing System. Viruses 2023; 15:1399. [PMID: 37376698 DOI: 10.3390/v15061399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Metagenomic next-generation sequencing (mNGS) is receiving increased attention for the detection of new viruses and infections occurring at the human-animal interface. The ability to actively transport and relocate this technology enables in situ virus identification, which could reduce response time and enhance disease management. In a previous study, we developed a straightforward mNGS procedure that greatly enhances the detection of RNA and DNA viruses in human clinical samples. In this study, we improved the mNGS protocol with transportable battery-driven equipment for the portable, non-targeted detection of RNA and DNA viruses in animals from a large zoological facility, to simulate a field setting for point-of-incidence virus detection. From the resulting metagenomic data, we detected 13 vertebrate viruses from four major virus groups: (+)ssRNA, (+)ssRNA-RT, dsDNA and (+)ssDNA, including avian leukosis virus in domestic chickens (Gallus gallus), enzootic nasal tumour virus in goats (Capra hircus) and several small, circular, Rep-encoding, ssDNA (CRESS DNA) viruses in several mammal species. More significantly, we demonstrate that the mNGS method is able to detect potentially lethal animal viruses, such as elephant endotheliotropic herpesvirus in Asian elephants (Elephas maximus) and the newly described human-associated gemykibivirus 2, a human-to-animal cross-species virus, in a Linnaeus two-toed sloth (Choloepus didactylus) and its enclosure, for the first time.
Collapse
Affiliation(s)
- Anna S Fomsgaard
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, 4 Stigboejlen, 1870 Frederiksberg, Denmark
| | | | - Katja Spiess
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
| | - Charlotta Polacek
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
| | - Jannik Fonager
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
| | - Graham J Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, 4 Stigboejlen, 1870 Frederiksberg, Denmark
| |
Collapse
|
7
|
Ergunay K, Dincer E, Justi SA, Bourke BP, Nelson SP, Liao HM, Timurkan MO, Oguz B, Sahindokuyucu I, Gokcecik OF, Reinbold-Wasson DD, Jiang L, Achee NL, Grieco JP, Linton YM. Impact of nanopore-based metagenome sequencing on tick-borne virus detection. Front Microbiol 2023; 14:1177651. [PMID: 37323891 PMCID: PMC10267750 DOI: 10.3389/fmicb.2023.1177651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction We evaluated metagenomic nanopore sequencing (NS) in field-collected ticks and compared findings from amplification-based assays. Methods Forty tick pools collected in Anatolia, Turkey and screened by broad-range or nested polymerase chain reaction (PCR) for Crimean-Congo Hemorrhagic Fever Virus (CCHFV) and Jingmen tick virus (JMTV) were subjected to NS using a standard, cDNA-based metagenome approach. Results Eleven viruses from seven genera/species were identified. Miviruses Bole tick virus 3 and Xinjiang mivirus 1 were detected in 82.5 and 2.5% of the pools, respectively. Tick phleboviruses were present in 60% of the pools, with four distinct viral variants. JMTV was identified in 60% of the pools, where only 22.5% were PCR-positive. CCHFV sequences characterized as Aigai virus were detected in 50%, where only 15% were detected by PCR. NS produced a statistically significant increase in detection of these viruses. No correlation of total virus, specific virus, or targeted segment read counts was observed between PCR-positive and PCR-negative samples. NS further enabled the initial description of Quaranjavirus sequences in ticks, where human and avian pathogenicity of particular isolates had been previously documented. Discussion NS was observed to surpass broad-range and nested amplification in detection and to generate sufficient genome-wide data for investigating virus diversity. It can be employed for monitoring pathogens in tick vectors or human/animal clinical samples in hot-spot regions for examining zoonotic spillover.
Collapse
Affiliation(s)
- Koray Ergunay
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States
- Department of Medical Microbiology, Virology Unit, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Ender Dincer
- Department of Virology, Faculty of Veterinary Medicine, Dokuz Eylül University, Izmir, Türkiye
| | - Silvia A. Justi
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States
| | - Brian P. Bourke
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States
| | - Suppaluck P. Nelson
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States
| | - Hsiao-Mei Liao
- Naval Medical Research Center (NMRC), Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Mehmet Ozkan Timurkan
- Department of Virology, Faculty of Veterinary Medicine, Ataturk University, Yakutiye, Erzurum, Türkiye
| | - Bekir Oguz
- Department of Parasitology, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Türkiye
| | - Ismail Sahindokuyucu
- Bornova Veterinary Control Institute, Veterinary Control Institute Directorates, Ministry of Agriculture and Forestry, Izmir, Türkiye
| | - Omer Faruk Gokcecik
- Bornova Veterinary Control Institute, Veterinary Control Institute Directorates, Ministry of Agriculture and Forestry, Izmir, Türkiye
| | | | - Le Jiang
- Naval Medical Research Center (NMRC), Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Nicole L. Achee
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - John P. Grieco
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, United States
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
- Department of Entomology, Smithsonian Institution–National Museum of Natural History (NMNH), Washington, DC, United States
| |
Collapse
|
8
|
Chapman R, Jones L, D'Angelo A, Suliman A, Anwar M, Bagby S. Nanopore-Based Metagenomic Sequencing in Respiratory Tract Infection: A Developing Diagnostic Platform. Lung 2023; 201:171-179. [PMID: 37009923 PMCID: PMC10067523 DOI: 10.1007/s00408-023-00612-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 04/04/2023]
Abstract
Respiratory tract infection (RTI) remains a significant cause of morbidity and mortality across the globe. The optimal management of RTI relies upon timely pathogen identification via evaluation of respiratory samples, a process which utilises traditional culture-based methods to identify offending microorganisms. This process can be slow and often prolongs the use of broad-spectrum antimicrobial therapy, whilst also delaying the introduction of targeted therapy as a result. Nanopore sequencing (NPS) of respiratory samples has recently emerged as a potential diagnostic tool in RTI. NPS can identify pathogens and antimicrobial resistance profiles with greater speed and efficiency than traditional sputum culture-based methods. Increased speed to pathogen identification can improve antimicrobial stewardship by reducing the use of broad-spectrum antibiotic therapy, as well as improving overall clinical outcomes. This new technology is becoming more affordable and accessible, with some NPS platforms requiring minimal sample preparation and laboratory infrastructure. However, questions regarding clinical utility and how best to implement NPS technology within RTI diagnostic pathways remain unanswered. In this review, we introduce NPS as a technology and as a diagnostic tool in RTI in various settings, before discussing the advantages and limitations of NPS, and finally what the future might hold for NPS platforms in RTI diagnostics.
Collapse
Affiliation(s)
- Robert Chapman
- Princess Alexandra Hospital, Hamstel Road, Harlow, CM20 1QX, UK.
| | - Luke Jones
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Alberto D'Angelo
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Ahmed Suliman
- Princess Alexandra Hospital, Hamstel Road, Harlow, CM20 1QX, UK
| | - Muhammad Anwar
- Princess Alexandra Hospital, Hamstel Road, Harlow, CM20 1QX, UK
| | - Stefan Bagby
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
9
|
Evolution and emergence of mosquito-borne viruses of medical importance: towards a routine metagenomic surveillance approach. JOURNAL OF TROPICAL ECOLOGY 2023. [DOI: 10.1017/s0266467423000019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Abstract
During the last two decades, the world has witnessed the emergence and re-emergence of arthropod-borne viruses, better known as arboviruses. The close contact between sylvatic, rural and peri-urban vector species and humans has been mainly determined by the environment-modifying human activity. The resulting interactions have led to multiple dead-end host infections and have allowed sylvatic arboviruses to eventually adapt to new vectors and hosts, contributing to the establishment of urban transmission cycles of some viruses with enormous epidemiologic impact. The metagenomic next-generation sequencing (NGS) approach has allowed obtaining unbiased sequence information of millions of DNA and RNA molecules from clinical and environmental samples. Robust bioinformatics tools have enabled the assembly of individual sequence reads into contigs and scaffolds partially or completely representing the genomes of the microorganisms and viruses being present in biological samples of clinical relevance. In this review, we describe the different ecological scenarios for the emergence of viral diseases, the virus adaptation process required for the establishment of a new transmission cycle and the usefulness of NGS and computational methods for the discovery and routine genomic surveillance of mosquito-borne viruses in their ecosystems.
Collapse
|
10
|
Fomsgaard AS, Rasmussen M, Spiess K, Fomsgaard A, Belsham GJ, Fonager J. Improvements in metagenomic virus detection by simple pretreatment methods. JOURNAL OF CLINICAL VIROLOGY PLUS 2022; 2:100120. [PMID: 36945677 PMCID: PMC10024160 DOI: 10.1016/j.jcvp.2022.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 09/26/2022] [Accepted: 10/24/2022] [Indexed: 11/21/2022] Open
Abstract
Early detection of pathogens at the point of care helps reduce the threats to human and animal health from emerging pathogens. Initially, the disease-causing agent will be unknown and needs to be identified; this often requires specific laboratory facilities. Here we describe the development of an unbiased detection assay for RNA and DNA viruses using metagenomic Nanopore sequencing and simple methods that can be transferred into a field setting. Human clinical samples containing the RNA virus SARS-CoV-2 or the DNA viruses human papillomavirus (HPV) and molluscum contagiosum virus (MCV) were used as a test of concept. Firstly, the virus detection potential was optimized by investigating different pretreatments for reducing non-viral nucleic acid components. DNase I pretreatment followed by filtration increased the proportion of SARS-CoV-2 sequenced reads > 500-fold compared with no pretreatments. This was sufficient to achieve virus detection with high confidence and allowed variant identification. Next, we tested individual SARS-CoV-2 samples with various viral loads (measured as CT-values determined by RT-qPCR). Lastly, we tested the assay on clinical samples containing the DNA virus HPV and co-infection with MCV to show the assay's detection potential for DNA viruses. This protocol is fast (same day results). We hope to apply this method in other settings for point of care detection of virus pathogens, thus eliminating the need for transport of infectious samples, cold storage and a specialized laboratory.
Collapse
Affiliation(s)
- Anna S. Fomsgaard
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, 4 Stigboejlen, 1870 Frederiksberg, Denmark
| | - Morten Rasmussen
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
| | - Katja Spiess
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
| | - Anders Fomsgaard
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
| | - Graham J. Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, 4 Stigboejlen, 1870 Frederiksberg, Denmark
| | - Jannik Fonager
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
| |
Collapse
|
11
|
de Vries EM, Cogan NOI, Gubala AJ, Mee PT, O'Riley KJ, Rodoni BC, Lynch SE. Rapid, in-field deployable, avian influenza virus haemagglutinin characterisation tool using MinION technology. Sci Rep 2022; 12:11886. [PMID: 35831457 PMCID: PMC9279447 DOI: 10.1038/s41598-022-16048-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Outbreaks of avian influenza virus (AIV) from wild waterfowl into the poultry industry is of upmost significance and is an ongoing and constant threat to the industry. Accurate surveillance of AIV in wild waterfowl is critical in understanding viral diversity in the natural reservoir. Current surveillance methods for AIV involve collection of samples and transportation to a laboratory for molecular diagnostics. Processing of samples using this approach takes more than three days and may limit testing locations to those with practical access to laboratories. In potential outbreak situations, response times are critical, and delays have implications in terms of the spread of the virus that leads to increased economic cost. This study used nanopore sequencing technology for in-field sequencing and subtype characterisation of AIV strains collected from wild bird faeces and poultry. A custom in-field virus screening and sequencing protocol, including a targeted offline bioinformatic pipeline, was developed to accurately subtype AIV. Due to the lack of optimal diagnostic MinION packages for Australian AIV strains the bioinformatic pipeline was specifically targeted to confidently subtype local strains. The method presented eliminates the transportation of samples, dependence on internet access and delivers critical diagnostic information in a timely manner.
Collapse
Affiliation(s)
- Ellen M de Vries
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia. .,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.
| | - Noel O I Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Aneta J Gubala
- Land Division, Defence Science & Technology Group, Fishermans Bend, VIC, 3207, Australia
| | - Peter T Mee
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Kim J O'Riley
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Brendan C Rodoni
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Stacey E Lynch
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| |
Collapse
|
12
|
Dinçer E, Timurkan MÖ, Oğuz B, Şahindokuyucu İ, Şahan A, Ekinci M, Polat C, Ergünay K. Several Tick-Borne Pathogenic Viruses in Circulation in Anatolia, Turkey. Vector Borne Zoonotic Dis 2022; 22:148-158. [PMID: 35133905 DOI: 10.1089/vbz.2021.0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Introduction: We screened host-collected ticks for tick-borne viruses, including those recently documented as human pathogens. Methods: During 2020-2021, ticks removed form cattle, sheep, dogs, and cats in 11 provinces in 5 geographically distinct regions of Anatolia were identified, pooled, and screened using pan-nairovirus, pan-flavivirus and individual assays for Jingmen tick virus (JMTV), and Tacheng tick virus 1 and 2 (TcTV-1 and TcTV-2). Results: A total of 901 tick specimens, comprising 6 species were included. Rhipicephalus sanguineus complex was the most abundant species (44.1%), followed by Rhipicephalus bursa (38.3%), Haemaphysalis parva (7.2%), and others. The specimens were screened in 158 pools with 12 pools (7.6%) being positive. Crimean-Congo hemorrhagic fever virus (CCHFV) lineage Europe 2 (genotype VI) sequences were detected in R. bursa in five (3.2%) of the pools, with similar prevalences in central and Mediterranean Anatolian provinces. JMTV was identified in four R. bursa and one Rhipicephalus turanicus pools, collected from Mediterranean and southeastern Anatolia, with a CCHFV and JMTV coinfected R. bursa pool. The JMTV segment 1 sequences formed a separate cluster with those from Turkey and the Balkan peninsula in the maximum likelihood analysis. TcTV-2 was detected in two Dermacentor marginatus specimens (1.3%) collected in central Anatolia, with nucleocapsid sequences forming a phylogenetically segregated group among viruses from humans and ticks from China and Kazakhstan. Discussion: CCHFV Europe 2 was initially documented in ticks from central Anatolian locations, where related orthonairoviruses had been previously recorded. Ongoing activity and a wider distribution of JMTV and TcTV-2 were observed. These viruses should be screened as potential etiological agents in human infections associated with tick bites.
Collapse
Affiliation(s)
- Ender Dinçer
- Department of Virology, Faculty of Veterinary Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Mehmet Özkan Timurkan
- Department of Virology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Bekir Oğuz
- Department of Parasitology, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - İsmail Şahindokuyucu
- Bornova Veterinary Control Institute, Veterinary Control Institute Directorates, Ministry of Agriculture and Forestry, Izmir, Turkey
| | - Adem Şahan
- Department of Internal Medicine, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey
| | - Mustafa Ekinci
- Department of Animal Breeding, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Ceylan Polat
- Virology Unit, Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Koray Ergünay
- Virology Unit, Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
13
|
Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol 2021; 39:1348-1365. [PMID: 34750572 PMCID: PMC8988251 DOI: 10.1038/s41587-021-01108-x] [Citation(s) in RCA: 614] [Impact Index Per Article: 153.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
Rapid advances in nanopore technologies for sequencing single long DNA and RNA molecules have led to substantial improvements in accuracy, read length and throughput. These breakthroughs have required extensive development of experimental and bioinformatics methods to fully exploit nanopore long reads for investigations of genomes, transcriptomes, epigenomes and epitranscriptomes. Nanopore sequencing is being applied in genome assembly, full-length transcript detection and base modification detection and in more specialized areas, such as rapid clinical diagnoses and outbreak surveillance. Many opportunities remain for improving data quality and analytical approaches through the development of new nanopores, base-calling methods and experimental protocols tailored to particular applications.
Collapse
Affiliation(s)
- Yunhao Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Yue Zhao
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- Biomedical Informatics Shared Resources, The Ohio State University, Columbus, OH, USA
| | - Audrey Bollas
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Yuru Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Kin Fai Au
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.
- Biomedical Informatics Shared Resources, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
14
|
De Paoli-Iseppi R, Gleeson J, Clark MB. Isoform Age - Splice Isoform Profiling Using Long-Read Technologies. Front Mol Biosci 2021; 8:711733. [PMID: 34409069 PMCID: PMC8364947 DOI: 10.3389/fmolb.2021.711733] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/19/2021] [Indexed: 01/12/2023] Open
Abstract
Alternative splicing (AS) of RNA is a key mechanism that results in the expression of multiple transcript isoforms from single genes and leads to an increase in the complexity of both the transcriptome and proteome. Regulation of AS is critical for the correct functioning of many biological pathways, while disruption of AS can be directly pathogenic in diseases such as cancer or cause risk for complex disorders. Current short-read sequencing technologies achieve high read depth but are limited in their ability to resolve complex isoforms. In this review we examine how long-read sequencing (LRS) technologies can address this challenge by covering the entire RNA sequence in a single read and thereby distinguish isoform changes that could impact RNA regulation or protein function. Coupling LRS with technologies such as single cell sequencing, targeted sequencing and spatial transcriptomics is producing a rapidly expanding suite of technological approaches to profile alternative splicing at the isoform level with unprecedented detail. In addition, integrating LRS with genotype now allows the impact of genetic variation on isoform expression to be determined. Recent results demonstrate the potential of these techniques to elucidate the landscape of splicing, including in tissues such as the brain where AS is particularly prevalent. Finally, we also discuss how AS can impact protein function, potentially leading to novel therapeutic targets for a range of diseases.
Collapse
Affiliation(s)
| | | | - Michael B. Clark
- Centre for Stem Cell Systems, Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
15
|
Haveman NJ, Khodadad CLM, Dixit AR, Louyakis AS, Massa GD, Venkateswaran K, Foster JS. Evaluating the lettuce metatranscriptome with MinION sequencing for future spaceflight food production applications. NPJ Microgravity 2021; 7:22. [PMID: 34140518 PMCID: PMC8211661 DOI: 10.1038/s41526-021-00151-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
Healthy plants are vital for successful, long-duration missions in space, as they provide the crew with life support, food production, and psychological benefits. The microorganisms that associate with plant tissues play a critical role in improving plant health and production. To that end, we developed a methodology to investigate the transcriptional activities of the microbiome of red romaine lettuce, a key salad crop that was grown under International Space Station (ISS)-like conditions. Microbial transcripts enriched from host-microbe total RNA were sequenced using the Oxford Nanopore MinION sequencing platform. Results show that this enrichment approach was highly reproducible and could be an effective approach for the on-site detection of microbial transcriptional activity. Our results demonstrate the feasibility of using metatranscriptomics of enriched microbial RNA as a potential method for on-site monitoring of the transcriptional activity of crop microbiomes, thereby helping to facilitate and maintain plant health for on-orbit space food production.
Collapse
Affiliation(s)
- Natasha J. Haveman
- grid.15276.370000 0004 1936 8091Department of Microbiology and Cell Science, University of Florida, Space Life Science Lab, Merritt Island, FL USA
| | - Christina L. M. Khodadad
- grid.419743.c0000 0001 0845 4769Amentum Services, Inc., LASSO, Kennedy Space Center, Merritt Island, FL USA
| | - Anirudha R. Dixit
- grid.419743.c0000 0001 0845 4769Amentum Services, Inc., LASSO, Kennedy Space Center, Merritt Island, FL USA
| | - Artemis S. Louyakis
- grid.63054.340000 0001 0860 4915Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT USA
| | - Gioia D. Massa
- grid.419743.c0000 0001 0845 4769Space Crop Production Team, Kennedy Space Center, Merritt Island, FL USA
| | - Kasthuri Venkateswaran
- grid.211367.0Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, Pasadena, CA USA
| | - Jamie S. Foster
- grid.15276.370000 0004 1936 8091Department of Microbiology and Cell Science, University of Florida, Space Life Science Lab, Merritt Island, FL USA
| |
Collapse
|
16
|
Ren ZL, Zhang JR, Zhang XM, Liu X, Lin YF, Bai H, Wang MC, Cheng F, Liu JD, Li P, Kong L, Bo XC, Wang SQ, Ni M, Yan JW. Forensic nanopore sequencing of STRs and SNPs using Verogen's ForenSeq DNA Signature Prep Kit and MinION. Int J Legal Med 2021; 135:1685-1693. [PMID: 33950286 PMCID: PMC8098014 DOI: 10.1007/s00414-021-02604-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/14/2021] [Indexed: 11/17/2022]
Abstract
The MinION nanopore sequencing device (Oxford Nanopore Technologies, Oxford, UK) is the smallest commercially available sequencer and can be used outside of conventional laboratories. The use of the MinION for forensic applications, however, is hindered by the high error rate of nanopore sequencing. One approach to solving this problem is to identify forensic genetic markers that can consistently be typed correctly based on nanopore sequencing. In this pilot study, we explored the use of nanopore sequencing for single nucleotide polymorphism (SNP) and short tandem repeat (STR) profiling using Verogen’s (San Diego, CA, USA) ForenSeq DNA Signature Prep Kit. Thirty single-contributor samples and DNA standard material 2800 M were genotyped using the Illumina (San Diego, CA, USA) MiSeq FGx and MinION (with R9.4.1 flow cells) devices. With an optimized cutoff for allelic imbalance, all 94 identity-informative SNP loci could be genotyped reliably using the MinION device, with an overall accuracy of 99.958% (1 error among 2926 genotypes). STR typing was notably error prone, and its accuracy was locus dependent. We developed a custom-made bioinformatics workflow, and finally selected 13 autosomal STRs, 14 Y-STRs, and 4 X-STRs showing high consistency between nanopore and Illumina sequencing among the tested samples. These SNP and STR loci could be candidates for panel design for forensic analysis based on nanopore sequencing.
Collapse
Affiliation(s)
- Zi-Lin Ren
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Jia-Rong Zhang
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Xiao-Meng Zhang
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Xu Liu
- Beijing Center for Physical and Chemical Analysis, Beijing, 100089, People's Republic of China
| | - Yan-Feng Lin
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Hua Bai
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Meng-Chun Wang
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Feng Cheng
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Jin-Ding Liu
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Peng Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Lei Kong
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Xiao-Chen Bo
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Sheng-Qi Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Ming Ni
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Jiang-Wei Yan
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
| |
Collapse
|
17
|
Zamyatin A, Avdeyev P, Liang J, Sharma A, Chen C, Lukyanchikova V, Alexeev N, Tu Z, Alekseyev MA, Sharakhov IV. Chromosome-level genome assemblies of the malaria vectors Anopheles coluzzii and Anopheles arabiensis. Gigascience 2021; 10:giab017. [PMID: 33718948 PMCID: PMC7957348 DOI: 10.1093/gigascience/giab017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/01/2021] [Accepted: 01/23/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Anopheles coluzzii and Anopheles arabiensis belong to the Anopheles gambiae complex and are among the major malaria vectors in sub-Saharan Africa. However, chromosome-level reference genome assemblies are still lacking for these medically important mosquito species. FINDINGS In this study, we produced de novo chromosome-level genome assemblies for A. coluzzii and A. arabiensis using the long-read Oxford Nanopore sequencing technology and the Hi-C scaffolding approach. We obtained 273.4 and 256.8 Mb of the total assemblies for A. coluzzii and A. arabiensis, respectively. Each assembly consists of 3 chromosome-scale scaffolds (X, 2, 3), complete mitochondrion, and unordered contigs identified as autosomal pericentromeric DNA, X pericentromeric DNA, and Y sequences. Comparison of these assemblies with the existing assemblies for these species demonstrated that we obtained improved reference-quality genomes. The new assemblies allowed us to identify genomic coordinates for the breakpoint regions of fixed and polymorphic chromosomal inversions in A. coluzzii and A. arabiensis. CONCLUSION The new chromosome-level assemblies will facilitate functional and population genomic studies in A. coluzzii and A. arabiensis. The presented assembly pipeline will accelerate progress toward creating high-quality genome references for other disease vectors.
Collapse
Affiliation(s)
- Anton Zamyatin
- Computer Technologies Laboratory, ITMO University, Kronverkskiy Prospekt 49-A, Saint Petersburg 197101, Russia
| | - Pavel Avdeyev
- Department of Mathematics, The George Washington University, 801 22nd Street NW, Washington, DC 20052, USA
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, 800 22nd Street NW, Washington, DC 20052, USA
| | - Jiangtao Liang
- Department of Entomology, Virginia Polytechnic Institute and State University, 170 Drillfield Drive, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, 360 West Campus Drive, Blacksburg, VA 24061, USA
| | - Atashi Sharma
- Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, 360 West Campus Drive, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Chujia Chen
- Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, 360 West Campus Drive, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Varvara Lukyanchikova
- Department of Entomology, Virginia Polytechnic Institute and State University, 170 Drillfield Drive, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, 360 West Campus Drive, Blacksburg, VA 24061, USA
- Institute of Cytology and Genetics the Siberian Division of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Nikita Alexeev
- Computer Technologies Laboratory, ITMO University, Kronverkskiy Prospekt 49-A, Saint Petersburg 197101, Russia
| | - Zhijian Tu
- Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, 360 West Campus Drive, Blacksburg, VA 24061, USA
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Max A Alekseyev
- Department of Mathematics, The George Washington University, 801 22nd Street NW, Washington, DC 20052, USA
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, 800 22nd Street NW, Washington, DC 20052, USA
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, 170 Drillfield Drive, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, 360 West Campus Drive, Blacksburg, VA 24061, USA
| |
Collapse
|
18
|
Modernizing the Toolkit for Arthropod Bloodmeal Identification. INSECTS 2021; 12:insects12010037. [PMID: 33418885 PMCID: PMC7825046 DOI: 10.3390/insects12010037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/24/2022]
Abstract
Simple Summary The ability to identify the source of vertebrate blood in mosquitoes, ticks, and other blood-feeding arthropod vectors greatly enhances our knowledge of how vector-borne pathogens are spread. The source of the bloodmeal is identified by analyzing the remnants of blood remaining in the arthropod at the time of capture, though this is often fraught with challenges. This review provides a roadmap and guide for those considering modern techniques for arthropod bloodmeal identification with a focus on progress made in the field over the past decade. We highlight genome regions that can be used to identify the vertebrate source of arthropod bloodmeals as well as technological advances made in other fields that have introduced innovative new ways to identify vertebrate meal source based on unique properties of the DNA sequence, protein signatures, or residual molecules present in the blood. Additionally, engineering progress in miniaturization has led to a number of field-deployable technologies that bring the laboratory directly to the arthropods at the site of collection. Although many of these advancements have helped to address the technical challenges of the past, the challenge of successfully analyzing degraded DNA in bloodmeals remains to be solved. Abstract Understanding vertebrate–vector interactions is vitally important for understanding the transmission dynamics of arthropod-vectored pathogens and depends on the ability to accurately identify the vertebrate source of blood-engorged arthropods in field collections using molecular methods. A decade ago, molecular techniques being applied to arthropod blood meal identification were thoroughly reviewed, but there have been significant advancements in the techniques and technologies available since that time. This review highlights the available diagnostic markers in mitochondrial and nuclear DNA and discusses their benefits and shortcomings for use in molecular identification assays. Advances in real-time PCR, high resolution melting analysis, digital PCR, next generation sequencing, microsphere assays, mass spectrometry, and stable isotope analysis each offer novel approaches and advantages to bloodmeal analysis that have gained traction in the field. New, field-forward technologies and platforms have also come into use that offer promising solutions for point-of-care and remote field deployment for rapid bloodmeal source identification. Some of the lessons learned over the last decade, particularly in the fields of DNA barcoding and sequence analysis, are discussed. Though many advancements have been made, technical challenges remain concerning the prevention of sample degradation both by the arthropod before the sample has been obtained and during storage. This review provides a roadmap and guide for those considering modern techniques for arthropod bloodmeal identification and reviews how advances in molecular technology over the past decade have been applied in this unique biomedical context.
Collapse
|
19
|
In Situ Processing and Efficient Environmental Detection (iSPEED) of tree pests and pathogens using point-of-use real-time PCR. PLoS One 2020; 15:e0226863. [PMID: 32240194 PMCID: PMC7117680 DOI: 10.1371/journal.pone.0226863] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/16/2020] [Indexed: 11/29/2022] Open
Abstract
Global trade and climate change are responsible for a surge in foreign invasive species and emerging pests and pathogens across the world. Early detection and surveillance activities are essential to monitor the environment and prevent or mitigate future ecosystem impacts. Molecular diagnostics by DNA testing has become an integral part of this process. However, for environmental applications, there is a need for cost-effective and efficient point-of-use DNA testing to obtain accurate results from remote sites in real-time. This requires the development of simple and fast sample processing and DNA extraction, room-temperature stable reagents and a portable instrument. We developed a point-of-use real-time Polymerase Chain Reaction system using a crude buffer-based DNA extraction protocol and lyophilized, pre-made, reactions for on-site applications. We demonstrate the use of this approach with pathogens and pests covering a broad spectrum of known undesirable forest enemies: the fungi Sphaerulina musiva, Cronartium ribicola and Cronartium comandrae, the oomycete Phytophthora ramorum and the insect Lymantria dispar. We obtained positive DNA identification from a variety of different tissues, including infected leaves, pathogen spores, or insect legs and antenna. The assays were accurate and yielded no false positive nor negative. The shelf-life of the lyophilized reactions was confirmed after one year at room temperature. Finally, successful tests conducted with portable thermocyclers and disposable instruments demonstrate the suitability of the method, named in Situ Processing and Efficient Environmental Detection (iSPEED), for field testing. This kit fits in a backpack and can be carried to remote locations for accurate and rapid detection of pests and pathogens.
Collapse
|
20
|
Player R, Verratti K, Staab A, Bradburne C, Grady S, Goodwin B, Sozhamannan S. Comparison of the performance of an amplicon sequencing assay based on Oxford Nanopore technology to real-time PCR assays for detecting bacterial biodefense pathogens. BMC Genomics 2020; 21:166. [PMID: 32066372 PMCID: PMC7026984 DOI: 10.1186/s12864-020-6557-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The state-of-the-art in nucleic acid based biodetection continues to be polymerase chain reaction (PCR), and many real-time PCR assays targeting biodefense pathogens for biosurveillance are in widespread use. These assays are predominantly singleplex; i.e. one assay tests for the presence of one target, found in a single organism, one sample at a time. Due to the intrinsic limitations of such tests, there exists a critical need for high-throughput multiplex assays to reduce the time and cost incurred when screening multiple targets, in multiple pathogens, and in multiple samples. Such assays allow users to make an actionable call while maximizing the utility of the small volumes of test samples. Unfortunately, current multiplex real-time PCR assays are limited in the number of targets that can be probed simultaneously due to the availability of fluorescence channels in real-time PCR instruments. RESULTS To address this gap, we developed a pipeline in which the amplicons produced by a 14-plex end-point PCR assay using spiked samples were subsequently sequenced using Nanopore technology. We used bar codes to sequence multiple samples simultaneously, leading to the generation and subsequent analysis of sequence data resulting from a short sequencing run time (< 10 min). We compared the limits of detection (LoD) of real-time PCR assays to Oxford Nanopore Technologies (ONT)-based amplicon sequencing and estimated the sample-to-answer time needed for this approach. Overall, LoDs determined from the first 10 min of sequencing data were at least one to two orders of magnitude lower than real-time PCR. Given enough time, the amplicon sequencing approach is approximately 100 times more sensitive than real-time PCR, with detection of amplicon specific reads even at the lowest tested spiking concentration (around 2.5-50 Colony Forming Units (CFU)/ml). CONCLUSIONS Based on these results, we propose amplicon sequencing assay as a viable alternative to replace the current real-time PCR based singleplex assays for higher throughput biodefense applications. We note, however, that targeted amplicon specific reads were not detectable even at the highest tested spike concentrations (2.5 X 104-5.0 X105 CFU/ml) without an initial amplification step, indicating that PCR is still necessary when utilizing this protocol.
Collapse
Affiliation(s)
- Robert Player
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Kathleen Verratti
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | | | | | - Sarah Grady
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Bruce Goodwin
- Defense Biological Product Assurance Office, JPEO-CBRND Enabling Biotechnologies (JPEO-CBRND-EB), 110 Thomas Johnson Drive, Frederick, MD, 21702, USA
| | - Shanmuga Sozhamannan
- Defense Biological Product Assurance Office, JPEO-CBRND Enabling Biotechnologies (JPEO-CBRND-EB), 110 Thomas Johnson Drive, Frederick, MD, 21702, USA.
- Logistics Management Institute, Tysons, VA, USA.
| |
Collapse
|
21
|
Kiselev D, Matsvay A, Abramov I, Dedkov V, Shipulin G, Khafizov K. Current Trends in Diagnostics of Viral Infections of Unknown Etiology. Viruses 2020; 12:E211. [PMID: 32074965 PMCID: PMC7077230 DOI: 10.3390/v12020211] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022] Open
Abstract
Viruses are evolving at an alarming rate, spreading and inconspicuously adapting to cutting-edge therapies. Therefore, the search for rapid, informative and reliable diagnostic methods is becoming urgent as ever. Conventional clinical tests (PCR, serology, etc.) are being continually optimized, yet provide very limited data. Could high throughput sequencing (HTS) become the future gold standard in molecular diagnostics of viral infections? Compared to conventional clinical tests, HTS is universal and more precise at profiling pathogens. Nevertheless, it has not yet been widely accepted as a diagnostic tool, owing primarily to its high cost and the complexity of sample preparation and data analysis. Those obstacles must be tackled to integrate HTS into daily clinical practice. For this, three objectives are to be achieved: (1) designing and assessing universal protocols for library preparation, (2) assembling purpose-specific pipelines, and (3) building computational infrastructure to suit the needs and financial abilities of modern healthcare centers. Data harvested with HTS could not only augment diagnostics and help to choose the correct therapy, but also facilitate research in epidemiology, genetics and virology. This information, in turn, could significantly aid clinicians in battling viral infections.
Collapse
Affiliation(s)
- Daniel Kiselev
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
- I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Alina Matsvay
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
- Moscow Institute of Physics and Technology, National Research University, 117303 Moscow, Russia
| | - Ivan Abramov
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
| | - Vladimir Dedkov
- Pasteur Institute, Federal Service on Consumers’ Rights Protection and Human Well-Being Surveillance, 197101 Saint-Petersburg, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - German Shipulin
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
| | - Kamil Khafizov
- FSBI “Center of Strategic Planning” of the Ministry of Health, 119435 Moscow, Russia; (D.K.); (A.M.); (I.A.); (G.S.)
- Moscow Institute of Physics and Technology, National Research University, 117303 Moscow, Russia
| |
Collapse
|
22
|
Robinson M, Einav S. Towards Predicting Progression to Severe Dengue. Trends Microbiol 2020; 28:478-486. [PMID: 31982232 DOI: 10.1016/j.tim.2019.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/04/2019] [Accepted: 12/09/2019] [Indexed: 12/30/2022]
Abstract
There is an urgent need for prognostic assays to predict progression to severe dengue infection, which is a major global threat. While the majority of symptomatic dengue patients experience an acute febrile illness, 5-20% progress to severe infection associated with significant morbidity and mortality. Early monitoring and administration of supportive care reduce mortality and clinically usable biomarkers to predict severe dengue are needed. Here, we review recent discoveries of gene sets, anti-dengue antibody properties, and inflammatory markers with potential utility as predictors of disease progression. Upon larger scale validation and development of affordable sample-to-answer technologies, some of these biomarkers may be utilized to develop the first prognostic assay for improving patient care and allocating healthcare resources more effectively in dengue endemic countries.
Collapse
Affiliation(s)
- Makeda Robinson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
23
|
Ergünay K. Revisiting new tick-associated viruses: what comes next? Future Virol 2020. [DOI: 10.2217/fvl-2019-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tick-borne viral infections continue to cause diseases with considerable impact on humans, livestock, companion animals and wildlife. Many lack specific therapeutics and vaccines are available for only a few. Tick-borne viruses will continue to emerge, facilitated by anthroponotic factors related to the modern lifestyle. We persistently identify and are obliged to cope with new examples of emerging tick-borne viral diseases and novel viruses today. Many new strains have been detected in vertebrates and arthropods, some causing severe diseases likely to challenge public and veterinary health. This manuscript aims to provide a narrative overview of recently-described tick-associated viruses, with perspectives on changing paradigms in identification, screening and control.
Collapse
Affiliation(s)
- Koray Ergünay
- Hacettepe University, Faculty of Medicine, Department of Medical Microbiology, Virology Unit, Ankara 06100, Turkey
| |
Collapse
|
24
|
Giraldo PA, Shinozuka H, Spangenberg GC, Cogan NO, Smith KF. Safety Assessment of Genetically Modified Feed: Is There Any Difference From Food? FRONTIERS IN PLANT SCIENCE 2019; 10:1592. [PMID: 31921242 PMCID: PMC6918800 DOI: 10.3389/fpls.2019.01592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Food security is one of major concerns for the growing global population. Modern agricultural biotechnologies, such as genetic modification, are a possible solution through enabling an increase of production, more efficient use of natural resources, and reduced environmental impacts. However, new crop varieties with altered genetic materials may be subjected to safety assessments to fulfil the regulatory requirements, prior to marketing. The aim of the assessment is to evaluate the impact of products from the new crop variety on human, animal, and the environmental health. Although, many studies on the risk assessment of genetically modified (GM) food have been published, little consideration to GM feedstuff has been given, despite that between 70 to 90% of all GM crops and their biomass are used as animal feed. In addition, in some GM plants such as forages that are only used for animal feeds, the assessment of the genetic modification may be of relevance only to livestock feeding. In this article, the regulatory framework of GM crops intended for animal feed is reviewed using the available information on GM food as the baseline. Although, the majority of techniques used for the safety assessment of GM food can be used in GM feed, many plant parts used for livestock feeding are inedible to humans. Therefore, the concentration of novel proteins in different plant tissues and level of exposure to GM feedstuff in the diet of target animals should be considered. A further development of specific methodologies for the assessment of GM crops intended for animal consumption is required, in order to provide a more accurate and standardized assessment to the GM feed safety.
Collapse
Affiliation(s)
- Paula A. Giraldo
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Melbourne, VIC, Australia
- Agriculture Victoria Research, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
| | - Hiroshi Shinozuka
- Agriculture Victoria Research, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
| | - German C. Spangenberg
- Agriculture Victoria Research, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
- School of Applied Systems Biology, La Trobe University, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
| | - Noel O.I. Cogan
- Agriculture Victoria Research, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
- School of Applied Systems Biology, La Trobe University, AgriBio, The Centre for AgriBiosciences, Melbourne, VIC, Australia
| | - Kevin F. Smith
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Melbourne, VIC, Australia
- Agriculture Victoria Research, Hamilton, VIC, Australia
| |
Collapse
|
25
|
Vontas J, Mavridis K. Vector population monitoring tools for insecticide resistance management: Myth or fact? PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 161:54-60. [PMID: 31685197 DOI: 10.1016/j.pestbp.2019.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/10/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Insecticide resistance is a large and growing problem for the control of mosquito disease vectors. The World Health Organization (WHO) established the Global Plan for Insecticide Resistance Management (GPIRM) in 2012. In that context, both classical and molecular tools, as well as entomological databases and decision support platforms have been developed and used for IRM. Despite major advances in the molecular elucidation of resistance mechanisms and the development of diagnostic tools, their impact on disease control programs has been limited. In most cases diagnostic tools provide a retrospective examination of changes imposed by insecticides rather than a prospective analysis to guide vector control strategies. The uncertainty of the predictive value of markers, the assay robustness and the common misconceptions in resistance diagnosis terminology are continuing challenges in monitoring vector resistance. Furthermore, an often logistics, as opposed to systematic scientific evidence, based approach to decision for the use of the very few alternative chemicals in vector control, has reduced the value of resistance monitoring in practice. The current deployment of new insecticidal active ingredients should necessitate the application of companion diagnostics (CDx) and the development of modern ways for interpretation and management of the data by trained programme managers. This will establish their real value for use in decision-making, in line with evidence based choice of chemicals in agriculture and medical applications.
Collapse
Affiliation(s)
- John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13 Heraklion, Crete, Greece; Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Greece.
| | - Konstantinos Mavridis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13 Heraklion, Crete, Greece
| |
Collapse
|
26
|
Noad RJ, Simpson K, Fooks AR, Hewson R, Gilbert SC, Stevens MP, Hosie MJ, Prior J, Kinsey AM, Entrican G, Simpson A, Whitty CJM, Carroll MW. UK vaccines network: Mapping priority pathogens of epidemic potential and vaccine pipeline developments. Vaccine 2019; 37:6241-6247. [PMID: 31522809 PMCID: PMC7127063 DOI: 10.1016/j.vaccine.2019.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 12/27/2022]
Abstract
During the 2013-2016 Ebola outbreak in West Africa an expert panel was established on the instructions of the UK Prime Minister to identify priority pathogens for outbreak diseases that had the potential to cause future epidemics. A total of 13 priority pathogens were identified, which led to the prioritisation of spending in emerging diseases vaccine research and development from the UK. This meeting report summarises the process used to develop the UK pathogen priority list, compares it to lists generated by other organisations (World Health Organisation, National Institutes of Allergy and Infectious Diseases) and summarises clinical progress towards the development of vaccines against priority diseases. There is clear technical progress towards the development of vaccines. However, the availability of these vaccines will be dependent on sustained funding for clinical trials and the preparation of clinically acceptable manufactured material during inter-epidemic periods.
Collapse
Affiliation(s)
- Rob J Noad
- Pathobiology and Population Science, The Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK.
| | - Karl Simpson
- JKS Bioscience Ltd, 2 Midanbury Court, 44 Midanbury Lane, Southampton SO18 4HF, UK.
| | | | - Roger Hewson
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Sarah C Gilbert
- Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| | - Mark P Stevens
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK.
| | - Margaret J Hosie
- MRC-University of Glasgow Centre for Virus Research, College of Veterinary, Medical and Life Sciences, Garscube Estate, Bearsden, Glasgow G61 1QH, UK.
| | - Joann Prior
- CBR Division, Dstl Porton Down, Wiltshire SP3 4DZ, UK.
| | - Anna M Kinsey
- Medical Research Council, One Kemble Street, London WC2B 4AN, UK.
| | - Gary Entrican
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Near Edinburgh, Scotland EH26 0PZ, UK.
| | - Andrew Simpson
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK.
| | | | - Miles W Carroll
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK.
| |
Collapse
|
27
|
Pepin KM, Hopken MW, Shriner SA, Spackman E, Abdo Z, Parrish C, Riley S, Lloyd-Smith JO, Piaggio AJ. Improving risk assessment of the emergence of novel influenza A viruses by incorporating environmental surveillance. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180346. [PMID: 31401963 PMCID: PMC6711309 DOI: 10.1098/rstb.2018.0346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Reassortment is an evolutionary mechanism by which influenza A viruses (IAV) generate genetic novelty. Reassortment is an important driver of host jumps and is widespread according to retrospective surveillance studies. However, predicting the epidemiological risk of reassortant emergence in novel hosts from surveillance data remains challenging. IAV strains persist and co-occur in the environment, promoting co-infection during environmental transmission. These conditions offer opportunity to understand reassortant emergence in reservoir and spillover hosts. Specifically, environmental RNA could provide rich information for understanding the evolutionary ecology of segmented viruses, and transform our ability to quantify epidemiological risk to spillover hosts. However, significant challenges with recovering and interpreting genomic RNA from the environment have impeded progress towards predicting reassortant emergence from environmental surveillance data. We discuss how the fields of genomics, experimental ecology and epidemiological modelling are well positioned to address these challenges. Coupling quantitative disease models and natural transmission studies with new molecular technologies, such as deep-mutational scanning and single-virus sequencing of environmental samples, should dramatically improve our understanding of viral co-occurrence and reassortment. We define observable risk metrics for emerging molecular technologies and propose a conceptual research framework for improving accuracy and efficiency of risk prediction. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.
Collapse
Affiliation(s)
- Kim M. Pepin
- National Wildlife Research Center, USDA-APHIS, Fort Collins, CO 80521, USA
- e-mail:
| | - Matthew W. Hopken
- National Wildlife Research Center, USDA-APHIS, Fort Collins, CO 80521, USA
- Colorado State University, Fort Collins, CO 80523, USA
| | - Susan A. Shriner
- National Wildlife Research Center, USDA-APHIS, Fort Collins, CO 80521, USA
| | - Erica Spackman
- Exotic and Emerging Avian Viral Diseases Research, USDA-ARS, Athens, GA 30605, USA
| | - Zaid Abdo
- Colorado State University, Fort Collins, CO 80523, USA
| | - Colin Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Steven Riley
- MRC Centre for Global Infectious Disease Analysis, Imperial College, London, SW7 2AZ, UK
| | - James O. Lloyd-Smith
- UCLA, Los Angeles, CA 90095, USA
- Department of Ecology and Evolutionary Biology, Fogarty International Center, National Institutes of Health, Bethesda MD 20892, USA
| | | |
Collapse
|
28
|
Edwards HS, Krishnakumar R, Sinha A, Bird SW, Patel KD, Bartsch MS. Real-Time Selective Sequencing with RUBRIC: Read Until with Basecall and Reference-Informed Criteria. Sci Rep 2019; 9:11475. [PMID: 31391493 PMCID: PMC6685950 DOI: 10.1038/s41598-019-47857-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
The Oxford MinION, the first commercial nanopore sequencer, is also the first to implement molecule-by-molecule real-time selective sequencing or “Read Until”. As DNA transits a MinION nanopore, real-time pore current data can be accessed and analyzed to provide active feedback to that pore. Fragments of interest are sequenced by default, while DNA deemed non-informative is rejected by reversing the pore bias to eject the strand, providing a novel means of background depletion and/or target enrichment. In contrast to the previously published pattern-matching Read Until approach, our RUBRIC method is the first example of real-time selective sequencing where on-line basecalling enables alignment against conventional nucleic acid references to provide the basis for sequence/reject decisions. We evaluate RUBRIC performance across a range of optimizable parameters, apply it to mixed human/bacteria and CRISPR/Cas9-cut samples, and present a generalized model for estimating real-time selection performance as a function of sample composition and computing configuration.
Collapse
Affiliation(s)
- Harrison S Edwards
- Exploratory Systems Dept., Sandia National Laboratories, Livermore, CA, USA.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Raga Krishnakumar
- Systems Biology Dept., Sandia National Laboratories, Livermore, CA, USA
| | - Anupama Sinha
- Systems Biology Dept., Sandia National Laboratories, Livermore, CA, USA
| | - Sara W Bird
- Biotechnology & Bioengineering Dept., Sandia National Laboratories, Livermore, CA, USA.,uBiome, San Francisco, CA, USA
| | - Kamlesh D Patel
- Exploratory Systems Dept., Sandia National Laboratories, Livermore, CA, USA.,Purdue Partnerships Dept., Sandia National Laboratories, Albuquerque, NM, USA
| | - Michael S Bartsch
- Exploratory Systems Dept., Sandia National Laboratories, Livermore, CA, USA.
| |
Collapse
|
29
|
Deshpande SV, Reed TM, Sullivan RF, Kerkhof LJ, Beigel KM, Wade MM. Offline Next Generation Metagenomics Sequence Analysis Using MinION Detection Software (MINDS). Genes (Basel) 2019; 10:genes10080578. [PMID: 31366182 PMCID: PMC6723491 DOI: 10.3390/genes10080578] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Field laboratories interested in using the MinION often need the internet to perform sample analysis. Thus, the lack of internet connectivity in resource-limited or remote locations renders downstream analysis problematic, resulting in a lack of sample identification in the field. Due to this dependency, field samples are generally transported back to the lab for analysis where internet availability for downstream analysis is available. These logistics problems and the time lost in sample characterization and identification, pose a significant problem for field scientists. To address this limitation, we have developed a stand-alone data analysis packet using open source tools developed by the Nanopore community that does not depend on internet availability. Like Oxford Nanopore Technologies’ (ONT) cloud-based What’s In My Pot (WIMP) software, we developed the offline MinION Detection Software (MINDS) based on the Centrifuge classification engine for rapid species identification. Several online bioinformatics applications have been developed surrounding ONT’s framework for analysis of long reads. We have developed and evaluated an offline real time classification application pipeline using open source tools developed by the Nanopore community that does not depend on internet availability. Our application has been tested on ATCC’s 20 strain even mix whole cell (ATCC MSA-2002) sample. Using the Rapid Sequencing Kit (SQK-RAD004), we were able to identify all 20 organisms at species level. The analysis was performed in 15 min using a Dell Precision 7720 laptop. Our offline downstream bioinformatics application provides a cost-effective option as well as quick turn-around time when analyzing samples in the field, thus enabling researchers to fully utilize ONT’s MinION portability, ease-of-use, and identification capability in remote locations.
Collapse
Affiliation(s)
- Samir V Deshpande
- Science and Technology Corporation, 111 Bata Blvd, Suite C, Belcamp, MD 21017, USA
| | - Timothy M Reed
- US Army, 20th CBRNE, Aberdeen Proving Ground, MD 21010, USA
| | - Raymond F Sullivan
- US Army, CCDC-Chemical Biological Center, Aberdeen Proving Ground, MD 21010, USA
| | - Lee J Kerkhof
- Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd, New Brunswick, NJ 08901-8521, USA
| | - Keith M Beigel
- US Army, 20th CBRNE, Aberdeen Proving Ground, MD 21010, USA.
| | - Mary M Wade
- US Army, CCDC-Chemical Biological Center, Aberdeen Proving Ground, MD 21010, USA.
| |
Collapse
|
30
|
Hole K, Nfon C. Foot-and-mouth disease virus detection on a handheld real-time polymerase chain reaction platform. Transbound Emerg Dis 2019; 66:1789-1795. [PMID: 31077564 DOI: 10.1111/tbed.13227] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease of livestock that requires rapid control. Early detection is critical but transportation of samples to laboratory delays testing. Sensitive and specific field-deployable assays are therefore desirable. Real-time reverse transcription polymerase chain reaction (RRT-PCR) and RRT-loop-mediated isothermal amplification assays for FMDV on portable platforms have been described but none of these are handheld. In this report, we have evaluated a handheld Biomeme two3™ Real-Time PCR Thermocycler (two3) as a field-deployable platform for FMDV RRT-PCR targeting the 3D gene segment. Two3's performance was compared with the laboratory-based reference assay on the ABI7500 platform. RNA extraction using a rapid Biomeme proprietary sample prep technology (M1) was compared with MagMax RNA extraction. Two3 successfully detected FMDV isolates for six serotypes (O, A, Asia 1, SAT 1, 2 and 3). Serotype C was excluded since it has not been detected in the field since 2004. The limits of detection for serial 10-fold dilutions of cell culture isolates were equal or one log different between two3 and ABI7500. Furthermore, two3 detected FMDV RNA in multiple sample types including serum, vesicular fluid, tissue suspensions, oral fluid, oral and nasal swabs. Two3 also detected FMDV RNA directly in vesicular fluid and other samples without prior RNA extraction. Comparison of the time to first detection of a positive result in serial samples in MagMax RNA extraction/ABI7500 (MgMx/ABI) system vs. M1 RNA extraction/Two3 system revealed similar or slightly better analytical sensitivity for the MgMx/ABI system. Overall, RNA extraction by M1 yielded good results and FMDV RNA detection on two3 was not significantly different from the ABI7500. Therefore, two3 could potentially enable sensitive penside detection of FMDV within an hour using M1-extracted RNA or direct testing of vesicular fluid and swabs without RNA extraction thereby ensuring prompt implementation of appropriate control measures.
Collapse
Affiliation(s)
- Kate Hole
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Charles Nfon
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada.,Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
31
|
Coble AA, Flinders CA, Homyack JA, Penaluna BE, Cronn RC, Weitemier K. eDNA as a tool for identifying freshwater species in sustainable forestry: A critical review and potential future applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:1157-1170. [PMID: 30308887 DOI: 10.1016/j.scitotenv.2018.08.370] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
Environmental DNA (eDNA) is an emerging biological monitoring tool that can aid in assessing the effects of forestry and forest manufacturing activities on biota. Monitoring taxa across broad spatial and temporal scales is necessary to ensure forest management and forest manufacturing activities meet their environmental goals of maintaining biodiversity. Our objectives are to describe potential applications of eDNA across the wood products supply chain extending from regenerating forests, harvesting, and wood transport, to manufacturing facilities, and to review the current state of the science in this context. To meet our second objective, we summarize the taxa examined with targeted (PCR, qPCR or ddPCR) or metagenomic eDNA methods (eDNA metabarcoding), evaluate how estimated species richness compares between traditional field sampling and eDNA metabarcoding approaches, and compare the geographical representation of prior eDNA studies in freshwater ecosystems to global wood baskets. Potential applications of eDNA include evaluating the effects of forestry and forest manufacturing activities on aquatic biota, delineating fish-bearing versus non fish-bearing reaches, evaluating effectiveness of constructed road crossings for freshwater organism passage, and determining the presence of at-risk species. Studies using targeted eDNA approaches focused on fish, amphibians, and invertebrates, while metagenomic studies focused on fish, invertebrates, and microorganisms. Rare, threatened, or endangered species received the least attention in targeted eDNA research, but are arguably of greatest interest to sustainable forestry and forest manufacturing that seek to preserve freshwater biodiversity. Ultimately, using eDNA methods will enable forestry and forest manufacturing managers to have data-driven prioritization for conservation actions for all freshwater species.
Collapse
Affiliation(s)
- Ashley A Coble
- NCASI, 227 NW Third Street, Corvallis, OR 97330, United States of America.
| | | | - Jessica A Homyack
- Weyerhaeuser Company, 505 North Pearl Street, Centralia, WA 98531, United States of America
| | - Brooke E Penaluna
- Pacific Northwest Research Station, US Forest Service, 3200 SW Jefferson Way, Corvallis, OR 97331, United States of America
| | - Richard C Cronn
- Pacific Northwest Research Station, US Forest Service, 3200 SW Jefferson Way, Corvallis, OR 97331, United States of America
| | - Kevin Weitemier
- Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, OR 97331, United States of America
| |
Collapse
|
32
|
Petit MJ, Shah PS. Mapping Arbovirus-Vector Interactions Using Systems Biology Techniques. Front Cell Infect Microbiol 2019; 8:440. [PMID: 30666300 PMCID: PMC6330711 DOI: 10.3389/fcimb.2018.00440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/10/2018] [Indexed: 01/13/2023] Open
Abstract
Studying how arthropod-borne viruses interact with their arthropod vectors is critical to understanding how these viruses replicate and are transmitted. Until recently, these types of studies were limited in scale because of the lack of classical tools available to study virus-host interaction for non-model viruses and non-model organisms. Advances in systems biology "-omics"-based techniques such as next-generation sequencing (NGS) and mass spectrometry can rapidly provide an unbiased view of arbovirus-vector interaction landscapes. In this mini-review, we discuss how arbovirus-vector interaction studies have been advanced by systems biology. We review studies of arbovirus-vector interactions that occur at multiple time and length scales, including intracellular interactions, interactions at the level of the organism, viral and vector populations, and how new techniques can integrate systems-level data across these different scales.
Collapse
Affiliation(s)
- Marine J. Petit
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Priya S. Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
33
|
Fouet C, Kamdem C. Integrated Mosquito Management: Is Precision Control a Luxury or Necessity? Trends Parasitol 2019; 35:85-95. [PMID: 30446394 PMCID: PMC6503858 DOI: 10.1016/j.pt.2018.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 12/23/2022]
Abstract
The versatility of mosquito species that spread emerging arthropod-borne viruses such as Zika has highlighted the urgent need to re-evaluate mosquito-control standards. The prospect of using precise knowledge of the geographic distribution and vector status of local populations to guide targeted interventions has gained renewed attention, but the feasibility and utility of such an approach remain to be investigated. Using the example of mosquito management in the USA, we present ideas for designing, monitoring, and assessing precision vector control tailored to different environmental and epidemiological settings. We emphasize the technical adjustments that could be implemented in mosquito-control districts to enable targeted control while strengthening traditional management.
Collapse
Affiliation(s)
- Caroline Fouet
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Colince Kamdem
- Department of Entomology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
34
|
Khaiboullina S, Uppal T, Martynova E, Rizvanov A, Baranwal M, Verma SC. History of ZIKV Infections in India and Management of Disease Outbreaks. Front Microbiol 2018; 9:2126. [PMID: 30258421 PMCID: PMC6145147 DOI: 10.3389/fmicb.2018.02126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/20/2018] [Indexed: 12/28/2022] Open
Abstract
Zika virus (ZIKV) is an emerging arbovirus infection endemic in multiple countries spread from Asia, Africa to the Americas and Europe. Previously known to cause rare and fairly benign human infections, ZIKV has become a major international public health emergency after being linked to unexpected neurological complications, that includes fetal brain damage/death and microcephaly in babies born to infected mothers and Guillain-Barre syndrome (GBS) in adults. It appears that a single genetic mutation in the ZIKV genome, likely acquired during explosive ZIKV outbreak in French Polynesia (2013), made virus causing mild disease to target fetus brain. The Aedes mosquitoes are found to be the main carrier of ZIKV, passing the virus to humans. Originally isolated from patients in Africa in 1954 (African lineage), virus disseminated to Southeast Asia (Asian lineage), establishing new endemic foci, including one in India. Numerous cases of ZIKV infection have been reported in several locations in India and neighboring countries like Pakistan and Bangladesh since mid of the last century, suggesting that the virus reached this part of Asia soon after it was first discovered in Uganda in 1947. Although, the exact means by which ZIKV was introduced to India remains unknown, it appears that the ZIKV strain circulating in India possibly belongs to the "Asian lineage," which has not yet been associated with microcephaly and other neurological disorders. However, there still exists a threat that the contemporary ZIKV virulent strain from South America, carrying a mutation can return to Asia, posing a potential crisis to newborns and adult patients. Currently there is no specific vaccine or antiviral medication to combat ZIKV infection, thus, vector control and continuous monitoring of potential ZIKV exposure is essential to prevent the devastating consequences similar to the ones experienced in Brazil. However, the major obstacle faced by Indian healthcare agencies is that most cases of ZIKV infection have been reported in rural areas that lack access to rapid diagnosis of infection. In this review, we attempt to present a comprehensive analysis of what is currently known about the ZIKV infection in India and the neighboring countries.
Collapse
Affiliation(s)
- Svetalana Khaiboullina
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV, United States.,Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Kazan Federal University, Kazan, Russia
| | - Timsy Uppal
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV, United States
| | - Ekaterina Martynova
- Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Kazan Federal University, Kazan, Russia
| | - Albert Rizvanov
- Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Kazan Federal University, Kazan, Russia
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Subhash C Verma
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, NV, United States
| |
Collapse
|
35
|
A 2-transcript host cell signature distinguishes viral from bacterial diarrhea and it is influenced by the severity of symptoms. Sci Rep 2018; 8:8043. [PMID: 29795312 PMCID: PMC5966427 DOI: 10.1038/s41598-018-26239-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/08/2018] [Indexed: 02/03/2023] Open
Abstract
Recently, a biomarker signature consisting of 2-transcript host RNAs was proposed for discriminating bacterial from viral infections in febrile children. We evaluated the performance of this signature in a different disease scenario, namely a cohort of Mexican children (n = 174) suffering from acute diarrhea of different infectious etiologies. We first examined the admixed background of the patients, indicating that most of them have a predominantly Native American genetic ancestry with a variable amount of European background (ranging from 0% to 57%). The results confirm that the RNA test can discriminate between viral and bacterial causes of infection (t-test; P-value = 6.94×10−11; AUC = 80%; sensitivity: 68% [95% CI: 55%–79%]; specificity: 84% [95% CI: 78%–90%]), but the strength of the signal differs substantially depending on the causal pathogen, with the stronger signal being that of Shigella (P-value = 3.14 × 10−12; AUC = 89; sensitivity: 70% [95% CI: 57%–83%]; specificity: 100% [95% CI: 100%–100%]). The accuracy of this test improves significantly when excluding mild cases (P-value = 2.13 × 10−6; AUC = 85%; sensitivity: 79% [95% CI: 58%–95%]; specificity: 78% [95% CI: 65%–88%]). The results broaden the scope of previous studies by incorporating different pathogens, variable levels of disease severity, and different ancestral background of patients, and add confirmatory support to the clinical utility of these 2-transcript biomarkers.
Collapse
|
36
|
Brinkmann A, Ergünay K, Radonić A, Kocak Tufan Z, Domingo C, Nitsche A. Development and preliminary evaluation of a multiplexed amplification and next generation sequencing method for viral hemorrhagic fever diagnostics. PLoS Negl Trop Dis 2017; 11:e0006075. [PMID: 29155823 PMCID: PMC5714388 DOI: 10.1371/journal.pntd.0006075] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/04/2017] [Accepted: 10/27/2017] [Indexed: 01/09/2023] Open
Abstract
Background We describe the development and evaluation of a novel method for targeted amplification and Next Generation Sequencing (NGS)-based identification of viral hemorrhagic fever (VHF) agents and assess the feasibility of this approach in diagnostics. Methodology An ultrahigh-multiplex panel was designed with primers to amplify all known variants of VHF-associated viruses and relevant controls. The performance of the panel was evaluated via serially quantified nucleic acids from Yellow fever virus, Rift Valley fever virus, Crimean-Congo hemorrhagic fever (CCHF) virus, Ebola virus, Junin virus and Chikungunya virus in a semiconductor-based sequencing platform. A comparison of direct NGS and targeted amplification-NGS was performed. The panel was further tested via a real-time nanopore sequencing-based platform, using clinical specimens from CCHF patients. Principal findings The multiplex primer panel comprises two pools of 285 and 256 primer pairs for the identification of 46 virus species causing hemorrhagic fevers, encompassing 6,130 genetic variants of the strains involved. In silico validation revealed that the panel detected over 97% of all known genetic variants of the targeted virus species. High levels of specificity and sensitivity were observed for the tested virus strains. Targeted amplification ensured viral read detection in specimens with the lowest virus concentration (1–10 genome equivalents) and enabled significant increases in specific reads over background for all viruses investigated. In clinical specimens, the panel enabled detection of the causative agent and its characterization within 10 minutes of sequencing, with sample-to-result time of less than 3.5 hours. Conclusions Virus enrichment via targeted amplification followed by NGS is an applicable strategy for the diagnosis of VHFs which can be adapted for high-throughput or nanopore sequencing platforms and employed for surveillance or outbreak monitoring. Viral hemorrhagic fever is a severe and potentially lethal disease, characterized by fever, malaise, vomiting, mucosal and gastrointestinal bleeding, and hypotension, in which multiple organ systems are affected. Due to modern transportation and global trade, outbreaks of viral hemorrhagic fevers have the potential to spread rapidly and affect a significant number of susceptible individuals. Thus, urgent and robust diagnostics with an identification of the causative virus is crucial. However, this is challenged by the number and diversity of the viruses associated with hemorrhagic fever. Several viruses classified in Arenaviridae, Filoviridae, and Flaviviridae families and Bunyavirales order may cause symptoms of febrile disease with hemorrhagic symptoms. We have developed and evaluated a novel method that can potentially identify all viruses and their genomic variants known to cause hemorrhagic fever in humans. The method relies on selected amplification of the target viral nucleic acids and subsequent high throughput sequencing technology for strain identification. Computer-based evaluations have revealed very high sensitivity and specificity, provided that the primer design is kept updated. Laboratory tests using several standard hemorrhagic virus strains and patient specimens have demonstrated excellent suitability of the assay in various sequencing platforms, which can achieve a definitive diagnosis in less than 3.5 hours.
Collapse
Affiliation(s)
- Annika Brinkmann
- Highly Pathogenic Viruses, ZBS 1, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Koray Ergünay
- Highly Pathogenic Viruses, ZBS 1, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
- Virology Unit, Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Aleksandar Radonić
- Highly Pathogenic Viruses, ZBS 1, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Zeliha Kocak Tufan
- Department of Infectious Diseases and Clinical Microbiology, Yıldırım Beyazıt University, Ankara, Turkey
| | - Cristina Domingo
- Highly Pathogenic Viruses, ZBS 1, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Andreas Nitsche
- Highly Pathogenic Viruses, ZBS 1, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
- * E-mail:
| |
Collapse
|