1
|
Park KH, Truong TT, Park JH, Park Y, Kim H, Hyun SA, Shim HE, Mallick S, Park HJ, Huh KM, Kang SW. Robust and customizable spheroid culture system for regenerative medicine. Biofabrication 2024; 16:045016. [PMID: 39053497 DOI: 10.1088/1758-5090/ad6795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
Three-dimensional cell spheroids show promise for the reconstruction of native tissues. Herein, we report a sophisticated, uniform, and highly reproducible spheroid culture system for tissue reconstruction. A mesh-integrated culture system was designed to precisely control the uniformity and reproducibility of spheroid formation. Furthermore, we synthesized hexanoyl glycol chitosan, a material with ultralow cell adhesion properties, to further improve spheroid formation efficiency and biological function. Our results demonstrate improved biological function in various types of cells and ability to generate spheroids with complex structures composed of multiple cell types. In conclusion, our spheroid culture system offers a highly effective and widely applicable approach to generating customized spheroids with desired structural and biological features for a variety of biomedical applications.
Collapse
Affiliation(s)
- Kyoung Hwan Park
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Thuy Trang Truong
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jae-Hyun Park
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 11765, Republic of Korea
| | - Yujin Park
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyeok Kim
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 11765, Republic of Korea
| | - Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejoen 34114, Republic of Korea
| | - Hye-Eun Shim
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sudipta Mallick
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hun-Jun Park
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 11765, Republic of Korea
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sun-Woong Kang
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
- Human and Environmental Toxicology Program, University of Science and Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
2
|
Yosprakob T, Shyntar A, Iworima DG, Edelstein-Keshet L. Modeling the Growth and Size Distribution of Human Pluripotent Stem Cell Clusters in Culture. Bull Math Biol 2024; 86:96. [PMID: 38916694 DOI: 10.1007/s11538-024-01325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024]
Abstract
Human pluripotent stem cells (hPSCs) hold promise for regenerative medicine to replace essential cells that die or become dysfunctional. In some cases, these cells can be used to form clusters whose size distribution affects the growth dynamics. We develop models to predict cluster size distributions of hPSCs based on several plausible hypotheses, including (0) exponential growth, (1) surface growth, (2) Logistic growth, and (3) Gompertz growth. We use experimental data to investigate these models. A partial differential equation for the dynamics of the cluster size distribution is used to fit parameters (rates of growth, mortality, etc.). A comparison of the models using their mean squared error and the Akaike Information criterion suggests that Models 1 (surface growth) or 2 (Logistic growth) best describe the data.
Collapse
Affiliation(s)
- Tharana Yosprakob
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1, Canada
| | - Alexandra Shyntar
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1, Canada
| | - Diepiriye G Iworima
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Leah Edelstein-Keshet
- Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada.
| |
Collapse
|
3
|
Xu S, Ma L, Wu T, Tian Y, Wu L. Assessment of cellular senescence potential of PM2.5 using 3D human lung fibroblast spheroids in vitro model. Toxicol Res (Camb) 2024; 13:tfae037. [PMID: 38500513 PMCID: PMC10944558 DOI: 10.1093/toxres/tfae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Background Epidemiological studies demonstrate that particulate matter 2.5 (PM2.5) exposure closely related to chronic respiratory diseases. Cellular senescence plays an important role in many diseases. However, it is not fully clear whether PM2.5 exposure could induce cellular senescence in the human lung. In this study, we generated a three-dimensional (3D) spheroid model using isolated primary human lung fibroblasts (HLFs) to investigate the effects of PM2.5 on cellular senescence at the 3D level. Methods 3D spheroids were exposed to 25-100 μg/ml of PM2.5 in order to evaluate the impact on cellular senescence. SA-β-galactosidase activity, cell proliferation, and the expression of key genes and proteins were detected. Results Exposure of the HLF spheroids to PM2.5 yielded a more sensitive cytotoxicity than 2D HLF cell culture. Importantly, PM2.5 exposure induced the rapid progression of cellular senescence in 3D HLF spheroids, with a dramatically increased SA-β-Gal activity. In exploiting the mechanism underlying the effect of PM2.5 on senescence, we found a significant increase of DNA damage, upregulation of p21 protein levels, and suppression of cell proliferation in PM2.5-treated HLF spheroids. Moreover, PM2.5 exposure created a significant inflammatory response, which may be at least partially associated with the activation of TGF-β1/Smad3 axis and HMGB1 pathway. Conclusions Our results indicate that PM2.5 could induce DNA damage, inflammation, and cellular senescence in 3D HLF spheroids, which may provide a new evidence for PM2.5 toxicity based on a 3D model which has been shown to be more in vivo-like in their phenotype and physiology than 2D cultures.
Collapse
Affiliation(s)
- Shengmin Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Jingkai District, Hefei, Anhui 230601, China
| | - Lin Ma
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Jingkai District, Hefei, Anhui 230601, China
| | - Tao Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Shushan District, Hefei, Anhui 230031, China
| | - Yushan Tian
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, 6 Cuizhu Street, New & High-tech Industry Development District, Zhengzhou, Henan 450001, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Jingkai District, Hefei, Anhui 230601, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Shushan District, Hefei, Anhui 230031, China
| |
Collapse
|
4
|
Roy M, Alix C, Burlaud-Gaillard J, Fouan D, Raoul W, Bouakaz A, Blanchard E, Lecomte T, Viaud-Massuard MC, Sasaki N, Serrière S, Escoffre JM. Delivery of Anticancer Drugs Using Microbubble-Assisted Ultrasound in a 3D Spheroid Model. Mol Pharm 2024; 21:831-844. [PMID: 38174896 DOI: 10.1021/acs.molpharmaceut.3c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Tumor spheroids are promising three-dimensional (3D) in vitro tumor models for the evaluation of drug delivery methods. The design of noninvasive and targeted drug methods is required to improve the intratumoral bioavailability of chemotherapeutic drugs and reduce their adverse off-target effects. Among such methods, microbubble-assisted ultrasound (MB-assisted US) is an innovative modality for noninvasive targeted drug delivery. The aim of the present study is to evaluate the efficacy of this US modality for the delivery of bleomycin, doxorubicin, and irinotecan in colorectal cancer (CRC) spheroids. MB-assisted US permeabilized the CRC spheroids to propidium iodide, which was used as a drug model without affecting their growth and viability. Histological analysis and electron microscopy revealed that MB-assisted US affected only the peripheral layer of the CRC spheroids. The acoustically mediated bleomycin delivery induced a significant decrease in CRC spheroid growth in comparison to spheroids treated with bleomycin alone. However, this US modality did not improve the therapeutic efficacy of doxorubicin and irinotecan on CRC spheroids. In conclusion, this study demonstrates that tumor spheroids are a relevant approach to evaluate the efficacy of MB-assisted US for the delivery of chemotherapeutics.
Collapse
Affiliation(s)
- Marie Roy
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
| | - Corentin Alix
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
| | - Julien Burlaud-Gaillard
- Inserm U1259, Université de Tours et CHRU de Tours & Plateforme IBiSA des Microscopies, PPF ASB, CHRU de Tours, 37032 Tours, France
| | - Damien Fouan
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
| | - William Raoul
- Inserm UMR 1069, Nutrition Croissance et Cancer (N2C), Université de Tours, 37032 Tours, France
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
| | - Emmanuelle Blanchard
- Inserm U1259, Université de Tours et CHRU de Tours & Plateforme IBiSA des Microscopies, PPF ASB, CHRU de Tours, 37032 Tours, France
| | - Thierry Lecomte
- Inserm UMR 1069, Nutrition Croissance et Cancer (N2C), Université de Tours, 37032 Tours, France
- Department of Hepato-Gastroenterology & Digestive Oncology, CHRU de Tours, 37000 Tours, France
| | | | - Noboru Sasaki
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, 060-0818 Sapporo, Japan
| | - Sophie Serrière
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
- Département d'Imagerie Préclinique, Plateforme Scientifique et Technique Analyse des Systèmes Biologiques, Université de Tours, 37032 Tours, France
| | | |
Collapse
|
5
|
Iijima Y, Uenaka N, Morimoto M, Sato D, Hirose S, Sakitani N, Shinohara M, Funamoto K, Hayase G, Yoshino D. Biological characterization of breast cancer spheroid formed by fast fabrication method. IN VITRO MODELS 2024; 3:19-32. [PMID: 39877895 PMCID: PMC11756460 DOI: 10.1007/s44164-024-00066-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2025]
Abstract
Engineered three-dimensional (3D) tissue culture platforms are useful for reproducing and elucidating complex in vivo biological phenomena. Spheroids, 3D aggregates of living cells, are produced based on physicochemical or microfabrication technologies and are commonly used even in cancer pathology research. However, conventional methods have difficulties in constructing 3D structures depending on the cell types, and require specialized techniques/lab know-how to reproducibly control the spheroid size and shape. To overcome these issues, we have developed a fabrication method, which enables anyone to make and mature cancer spheroids using a superhydrophobic microwell made of the monolithic porous materials. Here, we characterize the biological behaviors of the breast cancer spheroids fabricated by our method under normoxic and hypoxic conditions. We found that the fabricated spheroid contracted to a certain size via activation of the actomyosin system. Cell proliferation induced a hypoxic state inside the spheroid (elevated expression of the hypoxia-inducible factor HIF-1α), followed by the formation of a necrotic core and cell escape from the spheroid. In addition, we observed a decrease in cancer spheroid contractility and cell escape from spheroids under hypoxic conditions compared to normoxic conditions, which were related to oxygen concentration-dependent cell motility. The fabricated spheroids perform as 3D tumor tissues in a highly reproducible manner and within a short culture period. Our findings indicate that this fabrication method has a wide range of applications in cancer research, such as elucidating the mechanisms of tumor invasion and metastasis and screening anticancer drugs, as with previous methods. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-024-00066-3.
Collapse
Affiliation(s)
- Yuta Iijima
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588 Japan
- Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588 Japan
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki-Aza-Aoba, Aoba-Ku, Sendai, Miyagi 980-8579 Japan
| | - Norino Uenaka
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588 Japan
| | - Mayu Morimoto
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588 Japan
| | - Daiki Sato
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588 Japan
| | - Satomi Hirose
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki-Aza-Aoba, Aoba-Ku, Sendai, Miyagi 980-8579 Japan
| | - Naoyoshi Sakitani
- Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588 Japan
- Department of Rehabilitation for Movement Functions, National Rehabilitation Center for Persons With Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555 Japan
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, 2217-4 Hayashi-Cho, Takamatsu, Kagawa 761-0395 Japan
| | - Masahiro Shinohara
- Department of Rehabilitation for Movement Functions, National Rehabilitation Center for Persons With Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555 Japan
| | - Kenichi Funamoto
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-12 Aramaki-Aza-Aoba, Aoba-Ku, Sendai, Miyagi 980-8579 Japan
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, Miyagi 980-8577 Japan
| | - Gen Hayase
- International Center for Materials Nanoarchitechtonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 Japan
| | - Daisuke Yoshino
- Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588 Japan
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588 Japan
- Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588 Japan
| |
Collapse
|
6
|
Chen CY, Chen CY. Targeted and Oxygen-Enriched Nanoplatform for Enhanced Photodynamic Therapy: In Vitro 2D Cell and 3D Spheroid Model Evaluation. Macromol Biosci 2023; 23:e2300196. [PMID: 37565670 DOI: 10.1002/mabi.202300196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/05/2023] [Indexed: 08/12/2023]
Abstract
Hypoxic microenvironment and limited penetration of photosensitizers within solid tumors are two crucial factors that restrict photodynamic therapy (PDT) efficacy. Herein, a new fluorinated mixed micelle (M60@PFC-Ce6) is developed as a tumor-penetrating and oxygen-enriching nanoplatform, which consists of chlorin e6 (Ce6) and perfluorocarbons (PFCs) co-loaded into fluorinated micelles to relieve hypoxia conditions as well as folate as targeting ligand that facilitates the selective biodistribution within tumor solids. The incorporation of fluorinated copolymers into mixed micelles exhibits not only a great increase in the oxygen-loading capacity, but also improves the stability of liquid PFCs emulsion within micelles without leakage. M60@PFC-Ce6 shows excellent oxygen delivery capability, good intracellular reactive oxygen species (ROS) generation, and superior phototoxicity in vitro for both 2D monolayer of cells and 3D multicellular spheroid model. These results indicate the enriched oxygen delivery and increased cellular uptake resulting from folate-targeted ability to enhance ROS production and PDT efficacy. The penetration study of M60@PFC-Ce6 into a 3D spheroid confirms that small micellar size and folate-conjugation are beneficial for micelles to penetrate and accumulate within spheroids. Thus, a new nanoplatform with enriched oxygen-carrying amounts, better drug penetration, and stable micellar properties that relieve tumor hypoxia and improve PDT efficacy is provided.
Collapse
Affiliation(s)
- Chieh-Yu Chen
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi County, 62102, Taiwan
| | - Ching-Yi Chen
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi County, 62102, Taiwan
| |
Collapse
|
7
|
Wu Y, Zhao Y, Zhou Y, Islam K, Liu Y. Microfluidic Droplet-Assisted Fabrication of Vessel-Supported Tumors for Preclinical Drug Discovery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15152-15161. [PMID: 36920885 PMCID: PMC10249002 DOI: 10.1021/acsami.2c23305] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/07/2023] [Indexed: 06/11/2023]
Abstract
High-fidelity in vitro tumor models are important for preclinical drug discovery processes. Currently, the most commonly used model for in vitro drug testing remains the two-dimensional (2D) cell monolayer. However, the natural in vivo tumor microenvironment (TME) consists of extracellular matrix (ECM), supporting stromal cells and vasculature. They not only participate in the progression of tumors but also hinder drug delivery and effectiveness on tumor cells. Here, we report an integrated engineering system to generate vessel-supported tumors for preclinical drug screening. First, gelatin-methacryloyl (GelMA) hydrogel was selected to mimic tumor extracellular matrix (ECM). HCT-116 tumor cells were encapsulated into individual micro-GelMA beads with microfluidic droplet technique to mimic tumor-ECM interactions in vitro. Then, normal human lung fibroblasts were mingled with tumor cells to imitate the tumor-stromal interaction. The tumor cells and fibroblasts reconstituted in the individual GelMA microbead and formed a biomimetic heterotypic tumor model with a core-shell structure. Next, the cell-laden beads were consociated into a functional on-chip vessel network platform to restore the tumor-tumor microenvironment (TME) interaction. Afterward, the anticancer drug paclitaxel was tested on the individual and vessel-supported tumor models. It was demonstrated that the blood vessel-associated TME conferred significant additional drug resistance in the drug screening experiment. The reported system is expected to enable the large-scale fabrication of vessel-supported heterotypic tumor models of various cellular compositions. It is believed to be promising for the large-scale fabrication of biomimetic in vitro tumor models and may be valuable for improving the efficiency of preclinical drug discovery processes.
Collapse
Affiliation(s)
- Yue Wu
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yuwen Zhao
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yuyuan Zhou
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Khayrul Islam
- Department
of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yaling Liu
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department
of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
8
|
Zhou Y, Wu Y, Paul R, Qin X, Liu Y. Hierarchical Vessel Network-Supported Tumor Model-on-a-Chip Constructed by Induced Spontaneous Anastomosis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6431-6441. [PMID: 36693007 PMCID: PMC10249001 DOI: 10.1021/acsami.2c19453] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/10/2023] [Indexed: 05/14/2023]
Abstract
The vascular system in living tissues is a highly organized system that consists of vessels with various diameters for nutrient delivery and waste transport. In recent years, many vessel construction methods have been developed for building vascularized on-chip tissue models. These methods usually focused on constructing vessels at a single scale. In this work, a method that can build a hierarchical and perfusable vessel networks was developed. By providing flow stimuli and proper HUVEC concentration, spontaneous anastomosis between endothelialized lumens and the self-assembled capillary network was induced; thus, a perfusable network containing vessels at different scales was achieved. With this simple method, an in vivo-like hierarchical vessel-supported tumor model was prepared and its application in anticancer drug testing was demonstrated. The tumor growth rate was predicted by combining computational fluid dynamics simulation and a tumor growth mathematical model to understand the vessel perfusability effect on tumor growth rate in the hierarchical vessel network. Compared to the tumor model without capillary vessels, the hierarchical vessel-supported tumor shows a significantly higher growth rate and drug delivery efficiency.
Collapse
Affiliation(s)
- Yuyuan Zhou
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania18015, United States
| | - Yue Wu
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania18015, United States
| | - Ratul Paul
- Department
of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, Pennsylvania18015, United States
| | - Xiaochen Qin
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania18015, United States
| | - Yaling Liu
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania18015, United States
- Department
of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, Pennsylvania18015, United States
| |
Collapse
|
9
|
Tevlek A, Kecili S, Ozcelik OS, Kulah H, Tekin HC. Spheroid Engineering in Microfluidic Devices. ACS OMEGA 2023; 8:3630-3649. [PMID: 36743071 PMCID: PMC9893254 DOI: 10.1021/acsomega.2c06052] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/12/2022] [Indexed: 05/27/2023]
Abstract
Two-dimensional (2D) cell culture techniques are commonly employed to investigate biophysical and biochemical cellular responses. However, these culture methods, having monolayer cells, lack cell-cell and cell-extracellular matrix interactions, mimicking the cell microenvironment and multicellular organization. Three-dimensional (3D) cell culture methods enable equal transportation of nutrients, gas, and growth factors among cells and their microenvironment. Therefore, 3D cultures show similar cell proliferation, apoptosis, and differentiation properties to in vivo. A spheroid is defined as self-assembled 3D cell aggregates, and it closely mimics a cell microenvironment in vitro thanks to cell-cell/matrix interactions, which enables its use in several important applications in medical and clinical research. To fabricate a spheroid, conventional methods such as liquid overlay, hanging drop, and so forth are available. However, these labor-intensive methods result in low-throughput fabrication and uncontrollable spheroid sizes. On the other hand, microfluidic methods enable inexpensive and rapid fabrication of spheroids with high precision. Furthermore, fabricated spheroids can also be cultured in microfluidic devices for controllable cell perfusion, simulation of fluid shear effects, and mimicking of the microenvironment-like in vivo conditions. This review focuses on recent microfluidic spheroid fabrication techniques and also organ-on-a-chip applications of spheroids, which are used in different disease modeling and drug development studies.
Collapse
Affiliation(s)
- Atakan Tevlek
- METU
MEMS Research and Application Center, Ankara 06800, Turkey
| | - Seren Kecili
- The
Department of Bioengineering, Izmir Institute
of Technology, Urla, Izmir 35430, Turkey
| | - Ozge S. Ozcelik
- The
Department of Bioengineering, Izmir Institute
of Technology, Urla, Izmir 35430, Turkey
| | - Haluk Kulah
- METU
MEMS Research and Application Center, Ankara 06800, Turkey
- The
Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - H. Cumhur Tekin
- METU
MEMS Research and Application Center, Ankara 06800, Turkey
- The
Department of Bioengineering, Izmir Institute
of Technology, Urla, Izmir 35430, Turkey
| |
Collapse
|
10
|
Roundhill EA, Pantziarka P, Liddle DE, Shaw LA, Albadrani G, Burchill SA. Exploiting the Stemness and Chemoresistance Transcriptome of Ewing Sarcoma to Identify Candidate Therapeutic Targets and Drug-Repurposing Candidates. Cancers (Basel) 2023; 15:cancers15030769. [PMID: 36765727 PMCID: PMC9913297 DOI: 10.3390/cancers15030769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Outcomes for most patients with Ewing sarcoma (ES) have remained unchanged for the last 30 years, emphasising the need for more effective and tolerable treatments. We have hypothesised that using small-molecule inhibitors to kill the self-renewing chemotherapy-resistant cells (Ewing sarcoma cancer stem-like cells; ES-CSCs) responsible for progression and relapse could improve outcomes and minimise treatment-induced morbidities. For the first time, we demonstrate that ABCG1, a potential oncogene in some cancers, is highly expressed in ES-CSCs independently of CD133. Using functional models, transcriptomics and a bespoke in silico drug-repurposing pipeline, we have prioritised a group of tractable small-molecule inhibitors for further preclinical studies. Consistent with the cellular origin of ES, 21 candidate molecular targets of pluripotency, stemness and chemoresistance were identified. Small-molecule inhibitors to 13 of the 21 molecular targets (62%) were identified. POU5F1/OCT4 was the most promising new therapeutic target in Ewing sarcoma, interacting with 10 of the 21 prioritised molecular targets and meriting further study. The majority of small-molecule inhibitors (72%) target one of two drug efflux proteins, p-glycoprotein (n = 168) or MRP1 (n = 13). In summary, we have identified a novel cell surface marker of ES-CSCs and cancer/non-cancer drugs to targets expressed by these cells that are worthy of further preclinical evaluation. If effective in preclinical models, these drugs and drug combinations might be repurposed for clinical evaluation in patients with ES.
Collapse
Affiliation(s)
- Elizabeth Ann Roundhill
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
- Correspondence: (E.A.R.); (S.A.B.)
| | - Pan Pantziarka
- Anticancer Fund, Brusselsesteenweg 11, 1860 Meise, Belgium
| | - Danielle E. Liddle
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Lucy A. Shaw
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Ghadeer Albadrani
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Susan Ann Burchill
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
- Correspondence: (E.A.R.); (S.A.B.)
| |
Collapse
|
11
|
Karaçam S, Tunçer S. Exploiting the Acidic Extracellular pH: Evaluation of Streptococcus salivarius M18 Postbiotics to Target Cancer Cells. Probiotics Antimicrob Proteins 2022; 14:995-1011. [PMID: 34080175 DOI: 10.1007/s12602-021-09806-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Previously, we showed that the growth, antibiotic resistance, and biofilm formation properties of the pathogens Pseudomonas aeruginosa and Klebsiella pneumonia were tremendously inhibited by the cell-free supernatant of the oral probiotic Streptococcus salivarius M18. These anti-pathogenic activities of the supernatant were more efficient under acidic conditions. The present approach takes advantage of the acidic nature of the tumor microenvironment to evaluate the effect of the S. salivarius M18 postbiotics on colon cancer cells. In both two-dimensional (2D) and three-dimensional (3D) cell culture models, S. salivarius M18 cell-free supernatant showed anti-cancer actions in the pH conditions mimicking the acidity of the tumor. The inhibitory effect was more prominent when the colon cancer cells have been treated with the cell-free supernatant obtained from the inulin incubated S. salivarius M18. The results of this study point out the potential of the S. salivarius M18 functional probiotic products to be used for targeting low pH environments including the unique acidic microenvironment of tumors.
Collapse
Affiliation(s)
- Sevinç Karaçam
- Department of Biotechnology, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Sinem Tunçer
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
- Department of Medical Services and Techniques, Vocational School of Health Services, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
| |
Collapse
|
12
|
Jeong Y, Tin A, Irudayaraj J. Flipped Well-Plate Hanging-Drop Technique for Growing Three-Dimensional Tumors. Front Bioeng Biotechnol 2022; 10:898699. [PMID: 35860331 PMCID: PMC9289396 DOI: 10.3389/fbioe.2022.898699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Three-dimensional (3D) tumor culture techniques are gaining popularity as in vitro models of tumoral tissue analogues. Despite the widespread interest, need, and present-day effort, most of the 3D tumor culturing methodologies have not gone beyond the inventors’ laboratories. This, in turn, limits their applicability and standardization. In this study, we introduce a straightforward and user-friendly approach based on standard 96-well plates with basic amenities for growing 3D tumors in a scaffold-free/scaffold-based format. Hanging drop preparation can be easily employed by flipping a universal 96-well plate. The droplets of the medium generated by the well-plate flip (WPF) method can be easily modified to address various mechanisms and processes in cell biology, including cancer. To demonstrate the applicability and practicality of the conceived approach, we utilized human colorectal carcinoma cells (HCT116) to first show the generation of large scaffold-free 3D tumor spheroids over 1.5 mm in diameter in single-well plates. As a proof-of-concept, we also demonstrate matrix-assisted tumor culture techniques in advancing the broader use of 3D culture systems. The conceptualized WPF approach can be adapted for a range of applications in both basic and applied biological/engineering research.
Collapse
Affiliation(s)
- Yoon Jeong
- Department of Bioengineering, University of Illinois at Urbana‐Champaign, Urbana, IL, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ashley Tin
- Department of Computer Science, University of Illinois at Urbana‐Champaign, Urbana, IL, United States
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois at Urbana‐Champaign, Urbana, IL, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Joseph Irudayaraj,
| |
Collapse
|
13
|
Lee M, Paek SM. Microwave-Assisted Synthesis of Reduced Graphene Oxide with Hollow Nanostructure for Application to Lithium-Ion Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1507. [PMID: 35564216 PMCID: PMC9103021 DOI: 10.3390/nano12091507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022]
Abstract
In this study, reduced graphene oxide (RGO) with a hollow nanostructure was successfully synthesized by layer-by-layer self-assembly using electrostatic interactions and van der Waals forces between building blocks, and its lithium storage characteristics were investigated. After 800 cycles at a current density of 1 A/g, the microwave-irradiated RGO hollow spheres (MRGO-HS) maintained a capacity of 626 mA h/g. In addition, when the charge/discharge capacity was measured stepwise in the current density range of 0.1-2 A/g, the discharge capacity of the RGO rapidly decreased to 156 mA h/g even at the current density of 2 A/g, whereas MRGO-HS provided a capacity of 252 mA h/g. Even after the current density was restored at a current density of 0.1 A/g, the MRGO-HS capacity was maintained to be 827 mA h/g at the 100th cycle, which is close to the original reversible capacity. Thus, MRGO-HS provides a higher capacity and better rate capability than those of traditionally synthesized RGO.
Collapse
Affiliation(s)
| | - Seung-Min Paek
- Department of Chemistry, Kyungpook National University, Daegu 41566, Korea;
| |
Collapse
|
14
|
Mammalian Cell Spheroids on Mixed Organic–Inorganic Superhydrophobic Coating. Molecules 2022; 27:molecules27041247. [PMID: 35209035 PMCID: PMC8878059 DOI: 10.3390/molecules27041247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Three-dimensional cell culture has become a reliable method for reproducing in vitro cellular growth in more realistic physiological conditions. The surface hydrophobicity strongly influences the promotion of cell aggregate formation. In particular, for spheroid formation, highly water-repellent coatings seem to be required for the significant effects of the process. In this work, surfaces at different wettability have been compared to observe their influence on the growth and promotion of aggregates of representative mammalian cell lines, both tumoral and non-tumoral (3T3, HaCat and MCF-7 cell lines). The effect of increased hydrophobicity from TCPS to agarose hydrogel to mixed organic–inorganic superhydrophobic (SH) coating has been investigated by optical and fluorescence microscopy, and by 3D confocal profilometry, in a time scale of 24 h. The results show the role of less wettable substrates in inducing the formation of spheroid-like cell aggregates at a higher degree of sphericity for the studied cell lines.
Collapse
|
15
|
Wu Y, Zhou Y, Qin X, Liu Y. From cell spheroids to vascularized cancer organoids: Microfluidic tumor-on-a-chip models for preclinical drug evaluations. BIOMICROFLUIDICS 2021; 15:061503. [PMID: 34804315 PMCID: PMC8589468 DOI: 10.1063/5.0062697] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/16/2021] [Indexed: 05/14/2023]
Abstract
Chemotherapy is one of the most effective cancer treatments. Starting from the discovery of new molecular entities, it usually takes about 10 years and 2 billion U.S. dollars to bring an effective anti-cancer drug from the benchtop to patients. Due to the physiological differences between animal models and humans, more than 90% of drug candidates failed in phase I clinical trials. Thus, a more efficient drug screening system to identify feasible compounds and pre-exclude less promising drug candidates is strongly desired. For their capability to accurately construct in vitro tumor models derived from human cells to reproduce pathological and physiological processes, microfluidic tumor chips are reliable platforms for preclinical drug screening, personalized medicine, and fundamental oncology research. This review summarizes the recent progress of the microfluidic tumor chip and highlights tumor vascularization strategies. In addition, promising imaging modalities for enhancing data acquisition and machine learning-based image analysis methods to accurately quantify the dynamics of tumor spheroids are introduced. It is believed that the microfluidic tumor chip will serve as a high-throughput, biomimetic, and multi-sensor integrated system for efficient preclinical drug evaluation in the future.
Collapse
Affiliation(s)
- Yue Wu
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Yuyuan Zhou
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Xiaochen Qin
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Yaling Liu
- Author to whom correspondence should be addressed:
| |
Collapse
|
16
|
Zhuang P, Chiang YH, Fernanda MS, He M. Using Spheroids as Building Blocks Towards 3D Bioprinting of Tumor Microenvironment. Int J Bioprint 2021; 7:444. [PMID: 34805601 PMCID: PMC8600307 DOI: 10.18063/ijb.v7i4.444] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer still ranks as a leading cause of mortality worldwide. Although considerable efforts have been dedicated to anticancer therapeutics, progress is still slow, partially due to the absence of robust prediction models. Multicellular tumor spheroids, as a major three-dimensional (3D) culture model exhibiting features of avascular tumors, gained great popularity in pathophysiological studies and high throughput drug screening. However, limited control over cellular and structural organization is still the key challenge in achieving in vivo like tissue microenvironment. 3D bioprinting has made great strides toward tissue/organ mimicry, due to its outstanding spatial control through combining both cells and materials, scalability, and reproducibility. Prospectively, harnessing the power from both 3D bioprinting and multicellular spheroids would likely generate more faithful tumor models and advance our understanding on the mechanism of tumor progression. In this review, the emerging concept on using spheroids as a building block in 3D bioprinting for tumor modeling is illustrated. We begin by describing the context of the tumor microenvironment, followed by an introduction of various methodologies for tumor spheroid formation, with their specific merits and drawbacks. Thereafter, we present an overview of existing 3D printed tumor models using spheroids as a focus. We provide a compilation of the contemporary literature sources and summarize the overall advancements in technology and possibilities of using spheroids as building blocks in 3D printed tissue modeling, with a particular emphasis on tumor models. Future outlooks about the wonderous advancements of integrated 3D spheroidal printing conclude this review.
Collapse
Affiliation(s)
- Pei Zhuang
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, 32610, USA
| | - Yi-Hua Chiang
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, 32610, USA
| | | | - Mei He
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, 32610, USA
| |
Collapse
|
17
|
Zamorano M, Castillo RL, Beltran JF, Herrera L, Farias JA, Antileo C, Aguilar-Gallardo C, Pessoa A, Calle Y, Farias JG. Tackling Ischemic Reperfusion Injury With the Aid of Stem Cells and Tissue Engineering. Front Physiol 2021; 12:705256. [PMID: 34603075 PMCID: PMC8484708 DOI: 10.3389/fphys.2021.705256] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/11/2021] [Indexed: 01/14/2023] Open
Abstract
Ischemia is a severe condition in which blood supply, including oxygen (O), to organs and tissues is interrupted and reduced. This is usually due to a clog or blockage in the arteries that feed the affected organ. Reinstatement of blood flow is essential to salvage ischemic tissues, restoring O, and nutrient supply. However, reperfusion itself may lead to major adverse consequences. Ischemia-reperfusion injury is often prompted by the local and systemic inflammatory reaction, as well as oxidative stress, and contributes to organ and tissue damage. In addition, the duration and consecutive ischemia-reperfusion cycles are related to the severity of the damage and could lead to chronic wounds. Clinical pathophysiological conditions associated with reperfusion events, including stroke, myocardial infarction, wounds, lung, renal, liver, and intestinal damage or failure, are concomitant in due process with a disability, morbidity, and mortality. Consequently, preventive or palliative therapies for this injury are in demand. Tissue engineering offers a promising toolset to tackle ischemia-reperfusion injuries. It devises tissue-mimetics by using the following: (1) the unique therapeutic features of stem cells, i.e., self-renewal, differentiability, anti-inflammatory, and immunosuppressants effects; (2) growth factors to drive cell growth, and development; (3) functional biomaterials, to provide defined microarchitecture for cell-cell interactions; (4) bioprocess design tools to emulate the macroscopic environment that interacts with tissues. This strategy allows the production of cell therapeutics capable of addressing ischemia-reperfusion injury (IRI). In addition, it allows the development of physiological-tissue-mimetics to study this condition or to assess the effect of drugs. Thus, it provides a sound platform for a better understanding of the reperfusion condition. This review article presents a synopsis and discusses tissue engineering applications available to treat various types of ischemia-reperfusions, ultimately aiming to highlight possible therapies and to bring closer the gap between preclinical and clinical settings.
Collapse
Affiliation(s)
- Mauricio Zamorano
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | | | - Jorge F Beltran
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Lisandra Herrera
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Joaquín A Farias
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibíñtez, Santiago, Chile
| | - Christian Antileo
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Cristobal Aguilar-Gallardo
- Hematological Transplant and Cell Therapy Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Yolanda Calle
- Department of Life Sciences, Whitelands College, University of Roehampton, London, United Kingdom
| | - Jorge G Farias
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
18
|
Shrestha S, Lekkala VKR, Acharya P, Siddhpura D, Lee MY. Recent advances in microarray 3D bioprinting for high-throughput spheroid and tissue culture and analysis. Essays Biochem 2021; 65:481-489. [PMID: 34296737 PMCID: PMC9270997 DOI: 10.1042/ebc20200150] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/26/2022]
Abstract
Three-dimensional (3D) cell culture in vitro has proven to be more physiologically relevant than two-dimensional (2D) culture of cell monolayers, thus more predictive in assessing efficacy and toxicity of compounds. There have been several 3D cell culture techniques developed, which include spheroid and multicellular tissue cultures. Cell spheroids have been generated from single or multiple cell types cultured in ultralow attachment (ULA) well plates and hanging droplet plates. In general, cell spheroids are formed in a relatively short period of culture, in the absence of extracellular matrices (ECMs), via gravity-driven self-aggregation, thus having limited ability to self-organization in layered structure. On the other hand, multicellular tissue cultures including miniature tissues derived from pluripotent stem cells and adult stem cells (a.k.a. 'organoids') and 3D bioprinted tissue constructs require biomimetic hydrogels or ECMs and show highly ordered structure due to spontaneous self-organization of cells during differentiation and maturation processes. In this short review article, we summarize traditional methods of spheroid and multicellular tissue cultures as well as their technical challenges, and introduce how droplet-based, miniature 3D bioprinting ('microarray 3D bioprinting') can be used to improve assay throughput and reproducibility for high-throughput, predictive screening of compounds. Several platforms including a micropillar chip and a 384-pillar plate developed to facilitate miniature spheroid and tissue cultures via microarray 3D bioprinting are introduced. We excluded microphysiological systems (MPSs) in this article although they are important tissue models to simulate multiorgan interactions.
Collapse
Affiliation(s)
- Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| | - Vinod Kumar Reddy Lekkala
- Department of Biomedical Engineering, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| | - Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| | - Darshita Siddhpura
- Department of Chemical and Biomedical Engineering, Cleveland State University, 2121 Euclid Ave, Cleveland, Ohio 44115, United States
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| |
Collapse
|
19
|
Castro F, Leite Pereira C, Helena Macedo M, Almeida A, José Silveira M, Dias S, Patrícia Cardoso A, José Oliveira M, Sarmento B. Advances on colorectal cancer 3D models: The needed translational technology for nanomedicine screening. Adv Drug Deliv Rev 2021; 175:113824. [PMID: 34090966 DOI: 10.1016/j.addr.2021.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/23/2021] [Accepted: 06/01/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is a heterogeneous and molecularly complex disease, associated with high mortality worldwide, exposing the urgent need for novel therapeutic approaches. Their development and translation to the clinic have been hampered, partially due to the absence of reliable cellular models that resemble key features of the human disease. While traditional 2D models are not able to provide consistent and predictive responses about the in vivo efficiency of the formulation, animal models frequently fail to recapitulate cancer progression and to reproduce adverse effects. On its turn, multicellular 3D systems, by mimicking key genetic, physical and mechanical cues of the tumor microenvironment, constitute a promising tool in cancer research. In addition, they constitute more physiological and relevant environment for anticancer drugs screening and for predicting patient's response towards personalized approaches, bridging the gap between simplified 2D models and unrepresentative animal models. In this review, we provide an overview of CRC 3D models for translational research, with focus on their potential for nanomedicines screening.
Collapse
|
20
|
Kim BS, Cho WW, Gao G, Ahn M, Kim J, Cho DW. Construction of Tissue-Level Cancer-Vascular Model with High-Precision Position Control via In Situ 3D Cell Printing. SMALL METHODS 2021; 5:e2100072. [PMID: 34928000 DOI: 10.1002/smtd.202100072] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/13/2021] [Indexed: 06/14/2023]
Abstract
During tumor progression, the size and location of the tumor are important factors closely associated with the metastatic potential of the cancer as they largely govern tumor hypoxia and angiogenesis. However, despite the achievements of previous studies, these critical factors are poorly studied, mainly due to the lack of a flexible technique that can readily control 3D tumor mimicking constructs and their spatial relations with vasculature. Here, a novel tissue-level platform consisting of a metastatic cancer unit (MCU) and a perfusable vascular endothelium system (VES) is presented using in situ 3D cell printing. Size-tunable and position-controllable 3D cancer spheroids (500-1000 µm) are directly printed within the established bath bioink with a self-driven perfusable vascular channel. The cancer-vascular interactions are generated through controlling the distance between MCU and VES to investigate metastasis-associated changes at adjacent and distal regions. The result shows that MCU in 600 µm diameter includes hypoxia, invasion, and angiogenetic signaling. The further observations demonstrate that the proximity of MCU to VES augments the epithelial-mesenchymal transition (EMT) in MCU and vascular dysfunction/inflammation in VES, corroborating the positional significance in tumor metastasis. The platform with the precise-positioning control enables the recapitulation of patient's detailed metastatic progression, opening the chance for precision cancer medicine.
Collapse
Affiliation(s)
- Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan, Kyungbuk, 50612, Republic of Korea
- POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, Republic of Korea
| | - Won-Woo Cho
- POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, Republic of Korea
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea
| | - Ge Gao
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100091, China
| | - Minjun Ahn
- POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, Republic of Korea
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea
| | - Jongmin Kim
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea
| | - Dong-Woo Cho
- POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, Republic of Korea
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk, 37673, Republic of Korea
| |
Collapse
|
21
|
Chen J, Li S, Wang Z, Pan Y, Wei J, Lu S, Zhang QW, Wang LH, Wang R. Synthesis of an AIEgen functionalized cucurbit[7]uril for subcellular bioimaging and synergistic photodynamic therapy and supramolecular chemotherapy. Chem Sci 2021; 12:7727-7734. [PMID: 34168825 PMCID: PMC8188462 DOI: 10.1039/d1sc01139a] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
Aggregation-induced emission (AIE) based fluorophores (AIEgens) have attracted increasing attention for biomedical applications due to their unique optical properties. Here we report an AIE photosensitizer functionalized CB[7], namely AIECB[7], which could spontaneously self-assemble into nanoaggregates in aqueous solutions. Interestingly, the carbonyl-lace of CB[7] may potentially act as a proton acceptor in an acidic environment to fine-tune the fluorescence and singlet oxygen generation of AIECB[7] nanoaggregates by regulating the inner stacking of AIEgens. Additionally, benefiting from the guest-binding properties of CB[7], oxaliplatin was included into AIECB[7] nanoaggregates for combined photodynamic therapy and supramolecular chemotherapy. To show the modular versatility of this supramolecular system, a hypoxia-activatable prodrug banoxantrone (AQ4N) was loaded into AIECB[7] nanoaggregates, which exhibited synergistic antitumor effects on a multicellular tumor spheroid model (MCTS). This work not only provides AIECB[7] for versatile theranostic applications, but also offers important new insights into the design and development of macrocycle-conjugated AIE materials for diverse biomedical applications.
Collapse
Affiliation(s)
- Jia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa Macau 999078 China
| | - Shengke Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology Nanjing 210094 China
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Zeyu Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa Macau 999078 China
| | - Yating Pan
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Jianwen Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa Macau 999078 China
| | - Siyu Lu
- Green Catalysis Center, College of Chemistry and Molecular Engineering, Zhengzhou University 100 Kexue Road Zhengzhou 450001 China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa Macau 999078 China
| | - Lian-Hui Wang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa Macau 999078 China
| |
Collapse
|
22
|
Yang Y, Xu LP, Zhang X, Wang S. Bioinspired wettable-nonwettable micropatterns for emerging applications. J Mater Chem B 2021; 8:8101-8115. [PMID: 32785360 DOI: 10.1039/d0tb01382j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Superhydrophilic and superhydrophobic surfaces are prevalent in nature and have received tremendous attention due to their importance in both fundamental research and practical applications. With the high interdisciplinary research and great development of microfabrication techniques, artificial wettable-nonwettable micropatterns inspired by the water-collection behavior of desert beetles have been successfully fabricated. A combination of the two extreme states of superhydrophilicity and superhydrophobicity on the same surface precisely, wettable-nonwettable micropatterns possess unique functionalities, such as controllable superwetting, anisotropic wetting, oriented adhesion, and other properties. In this review, we briefly describe the methods for fabricating wettable-nonwettable patterns, including self-assembly, electrodeposition, inkjet printing, and photolithography. We also highlight some of the emerging applications such as water collection, controllable bioadhesion, cell arrays, microreactors, printing techniques, and biosensors combined with various detection methods. Finally, the current challenges and prospects of this renascent and rapidly developing field are proposed and discussed.
Collapse
Affiliation(s)
- Yuemeng Yang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Li-Ping Xu
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China. and School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
23
|
Han SJ, Kwon S, Kim KS. Challenges of applying multicellular tumor spheroids in preclinical phase. Cancer Cell Int 2021; 21:152. [PMID: 33663530 PMCID: PMC7934264 DOI: 10.1186/s12935-021-01853-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
The three-dimensional (3D) multicellular tumor spheroids (MCTs) model is becoming an essential tool in cancer research as it expresses an intermediate complexity between 2D monolayer models and in vivo solid tumors. MCTs closely resemble in vivo solid tumors in many aspects, such as the heterogeneous architecture, internal gradients of signaling factors, nutrients, and oxygenation. MCTs have growth kinetics similar to those of in vivo tumors, and the cells in spheroid mimic the physical interaction of the tumors, such as cell-to-cell and cell-to-extracellular matrix interactions. These similarities provide great potential for studying the biological properties of tumors and a promising platform for drug screening and therapeutic efficacy evaluation. However, MCTs are not well adopted as preclinical tools for studying tumor behavior and therapeutic efficacy up to now. In this review, we addressed the challenges with MCTs application and discussed various efforts to overcome the challenges.
Collapse
Affiliation(s)
- Se Jik Han
- Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, 02447, Korea
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Sangwoo Kwon
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
24
|
Decarli MC, do Amaral RLF, Dos Santos DP, Tofani LB, Katayama E, Rezende RA, Silva JVLD, Swiech K, Suazo CAT, Mota C, Moroni L, Moraes ÂM. Cell spheroids as a versatile research platform: formation mechanisms, high throughput production, characterization and applications. Biofabrication 2021; 13. [PMID: 33592595 DOI: 10.1088/1758-5090/abe6f2] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/16/2021] [Indexed: 11/12/2022]
Abstract
Three-dimensional cell culture has tremendous advantages to closely mimic the in vivo architecture and microenvironment of healthy tissue and organs, as well as of solid tumors. Spheroids are currently the most attractive 3D model to produce uniform reproducible cell structures as well as a potential basis for engineering large tissues and complex organs. In this review we discuss, from an engineering perspective, processes to obtain uniform 3D cell spheroids, comparing dynamic and static cultures and considering aspects such as mass transfer and shear stress. In addition, computational and mathematical modelling of complex cell spheroid systems are discussed. The non-cell-adhesive hydrogel-based method and dynamic cell culture in bioreactors are focused in detail and the myriad of developed spheroid characterization techniques is presented. The main bottlenecks and weaknesses are discussed, especially regarding the analysis of morphological parameters, cell quantification and viability, gene expression profiles, metabolic behavior and high-content analysis. Finally, a vast set of applications of spheroids as tools for in vitro study model systems is examined, including drug screening, tissue formation, pathologies development, tissue engineering and biofabrication, 3D bioprinting and microfluidics, together with their use in high-throughput platforms.
Collapse
Affiliation(s)
- Monize Caiado Decarli
- School of Chemical Engineering/Department of Engineering of Materials and of Bioprocesses, University of Campinas, Av. Albert Einstein, 500 - Bloco A - Cidade Universitária Zeferino Vaz, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-852, BRAZIL
| | - Robson Luis Ferraz do Amaral
- School of Pharmaceutical Sciences of Ribeirão Preto/Department of Pharmaceutical Sciences, University of São Paulo, Avenida do Café, no number, Ribeirão Preto, SP, 14040-903, BRAZIL
| | - Diogo Peres Dos Santos
- Departament of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz (SP-310), km 235, São Carlos, SP, 13565-905, BRAZIL
| | - Larissa Bueno Tofani
- School of Pharmaceutical Sciences of Ribeirão Preto/Department of Pharmaceutical Sciences, University of São Paulo, Avenida do Café, no number, Ribeirão Preto, SP, 14040-903, BRAZIL
| | - Eric Katayama
- Departament of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz (SP-310), km 235, São Carlos, SP, 13565-905, BRAZIL
| | - Rodrigo Alvarenga Rezende
- Centro de Tecnologia da Informacao Renato Archer, Rod. Dom Pedro I (SP-65), km 143,6 - Amarais, Campinas, SP, 13069-901, BRAZIL
| | - Jorge Vicente Lopes da Silva
- Centro de Tecnologia da Informacao Renato Archer, Rod. Dom Pedro I (SP-65), km 143,6 - Amarais, Campinas, SP, 13069-901, BRAZIL
| | - Kamilla Swiech
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirão Preto/Department of Pharmaceutical Sciences, Ribeirao Preto, SP, 14040-903, BRAZIL
| | - Cláudio Alberto Torres Suazo
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz (SP-310), km 235, São Carlos, SP, 13565-905, BRAZIL
| | - Carlos Mota
- Department of Complex Tissue Regeneration (CTR), University of Maastricht , Universiteitssingel, 40, office 3.541A, Maastricht, 6229 ER, NETHERLANDS
| | - Lorenzo Moroni
- Complex Tissue Regeneration, Maastricht University, Universiteitsingel, 40, Maastricht, 6229ER, NETHERLANDS
| | - Ângela Maria Moraes
- School of Chemical Engineering/Department of Engineering of Materials and of Bioprocesses, University of Campinas, Av. Albert Einstein, 500 - Bloco A - Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-852, BRAZIL
| |
Collapse
|
25
|
Maury P, Porcel E, Mau A, Lux F, Tillement O, Mahou P, Schanne-Klein MC, Lacombe S. Rapid Evaluation of Novel Therapeutic Strategies Using a 3D Collagen-Based Tissue-Like Model. Front Bioeng Biotechnol 2021; 9:574035. [PMID: 33681152 PMCID: PMC7929985 DOI: 10.3389/fbioe.2021.574035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/18/2021] [Indexed: 11/25/2022] Open
Abstract
2D cell cultures are commonly used to rapidly evaluate the therapeutic potential of various treatments on living cells. However, the effects of the extracellular matrix (ECM) including the 3D arrangement of cells and the complex physiology of native environment are missing, which makes these models far from in vivo conditions. 3D cell models have emerged in preclinical studies to simulate the impact of the ECM and partially bridge the gap between monolayer cultures and in vivo tissues. To date, the difficulty to handle the existing 3D models, the cost of their production and their poor reproducibility have hindered their use. Here, we present a reproducible and commercially available "3D cell collagen-based model" (3D-CCM) that allows to study the influence of the matrix on nanoagent uptake and radiation effects. The cell density in these samples is homogeneous. The oxygen concentration in the 3D-CCM is tunable, which opens the opportunity to investigate hypoxic effects. In addition, thanks to the intrinsic properties of the collagen, the second harmonic imaging microscopy may be used to probe the whole volume and visualize living cells in real-time. Thus, the architecture and composition of 3D-CCMs as well as the impact of various therapeutic strategies on cells embedded in the ECM is observed directly. Moreover, the disaggregation of the collagen matrix allows recovering of cells without damaging them. It is a major advantage that makes possible single cell analysis and quantification of treatment effects using clonogenic assay. In this work, 3D-CCMs were used to evaluate the correlative efficacies of nanodrug exposure and medical radiation on cells contained in a tumor like sample. A comparison with monolayer cell cultures was performed showing the advantageous outcome and the higher potential of 3D-CCMs. This cheap and easy to handle approach is more ethical than in vivo experiments, thus, giving a fast evaluation of cellular responses to various treatments.
Collapse
Affiliation(s)
- Pauline Maury
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, Orsay, France
| | - Erika Porcel
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, Orsay, France
| | - Adrien Mau
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, Orsay, France
| | - François Lux
- Institut Universitaire de France, Paris, France
- Institut Lumière Matière, Université Claude Bernard Lyon 1, UMR 5306 CNRS-UCBL, Villeurbanne, France
| | - Olivier Tillement
- Institut Lumière Matière, Université Claude Bernard Lyon 1, UMR 5306 CNRS-UCBL, Villeurbanne, France
| | - Pierre Mahou
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Polytechnique de Paris, Palaiseau, France
| | - Marie-Claire Schanne-Klein
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Polytechnique de Paris, Palaiseau, France
| | - Sandrine Lacombe
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, Orsay, France
| |
Collapse
|
26
|
Onbas R, Arslan Yildiz A. Fabrication of Tunable 3D Cellular Structures in High Volume Using Magnetic Levitation Guided Assembly. ACS APPLIED BIO MATERIALS 2021; 4:1794-1802. [PMID: 35014525 DOI: 10.1021/acsabm.0c01523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tunable and reproducible size with high circularity is an important limitation to obtain three-dimensional (3D) cellular structures and spheroids in scaffold free tissue engineering approaches. Here, we present a facile methodology based on magnetic levitation (MagLev) to fabricate 3D cellular structures rapidly and easily in high-volume and low magnetic field. In this study, 3D cellular structures were fabricated using magnetic levitation directed assembly where cells are suspended and self-assembled by contactless magnetic manipulation in the presence of a paramagnetic agent. The effect of cell seeding density, culture time, and paramagnetic agent concentration on the formation of 3D cellular structures was evaluated for NIH/3T3 mouse fibroblast cells. In addition, magnetic levitation guided cellular assembly and 3D tumor spheroid formation was examined for five different cancer cell lines: MCF7 (human epithelial breast adenocarcinoma), MDA-MB-231 (human epithelial breast adenocarcinoma), SH-SY5Y (human bone-marrow neuroblastoma), PC-12 (rat adrenal gland pheochromocytoma), and HeLa (human epithelial cervix adenocarcinoma). Moreover, formation of a 3D coculture model was successfully observed by using MDA-MB-231 dsRED and MDA-MB-231 GFP cells. Taken together, these results indicate that the developed MagLev setup provides an easy and efficient way to fabricate 3D cellular structures and may be a feasible alternative to conventional methodologies for cellular/multicellular studies.
Collapse
Affiliation(s)
- Rabia Onbas
- Department of Bioengineering, Izmir Institute of Technology (IZTECH), 35430 Izmir, Turkey
| | - Ahu Arslan Yildiz
- Department of Bioengineering, Izmir Institute of Technology (IZTECH), 35430 Izmir, Turkey
| |
Collapse
|
27
|
Riss T, Trask OJ. Factors to consider when interrogating 3D culture models with plate readers or automated microscopes. In Vitro Cell Dev Biol Anim 2021; 57:238-256. [PMID: 33564998 PMCID: PMC7946695 DOI: 10.1007/s11626-020-00537-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/02/2020] [Indexed: 11/27/2022]
Abstract
Along with the increased use of more physiologically relevant three-dimensional cell culture models comes the responsibility of researchers to validate new assay methods that measure events in structures that are physically larger and more complex compared to monolayers of cells. It should not be assumed that assays designed using monolayers of cells will work for cells cultured as larger three-dimensional masses. The size and barriers for penetration of molecules through the layers of cells result in a different microenvironment for the cells in the outer layer compared to the center of three-dimensional structures. Diffusion rates for nutrients and oxygen may limit metabolic activity which is often measured as a marker for cell viability. For assays that lyse cells, the penetration of reagents to achieve uniform cell lysis must be considered. For live cell fluorescent imaging assays, the diffusion of fluorescent probes and penetration of photons of light for probe excitation and fluorescent emission must be considered. This review will provide an overview of factors to consider when implementing assays to interrogate three dimensional cell culture models.
Collapse
Affiliation(s)
- Terry Riss
- Promega Corporation, Cell Health, 2800 Woods Hollow Road, Fitchburg, WI, 53711, USA.
| | - O Joseph Trask
- PerkinElmer Inc., Life Sciences and Technology, 940 Winter Street, Waltham, MA, 02451, USA
| |
Collapse
|
28
|
Daunys S, Janonienė A, Januškevičienė I, Paškevičiūtė M, Petrikaitė V. 3D Tumor Spheroid Models for In Vitro Therapeutic Screening of Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:243-270. [PMID: 33543463 DOI: 10.1007/978-3-030-58174-9_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The anticancer activity of compounds and nanoparticles is most often determined in the cell monolayer. However, three-dimensional (3D) systems, such as tumor spheroids, are more representing the natural tumor microenvironment. They have been shown to have higher invasiveness and resistance to cytotoxic agents and radiotherapy compared to cells growing in 2D monolayer. Furthermore, to improve the prediction of clinical efficacy of drugs, in the past decades, even more sophisticated systems, such as multicellular 3D cultures, closely representing natural tumor microenvironment have been developed. Those cultures are formed from either cell lines or patient-derived tumor cells. Such models are very attractive and could improve the selection of tested materials for clinical trials avoiding unnecessary expensive tests in vivo. The microenvironment in tumor spheroids is different, and those differences or the interaction between several cell populations may contribute to different tumor response to the treatment. Also, different types of nanoparticles may have different behavior in 3D models, depending on their nature, physicochemical properties, the presence of targeting ligands on the surface, etc. Therefore, it is very important to understand in which cases which type of tumor spheroid is more suitable for testing specific types of nanoparticles, which conditions should be used, and which analytical method should be applied.
Collapse
Affiliation(s)
- Simonas Daunys
- Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Agnė Janonienė
- Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Indrė Januškevičienė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Miglė Paškevičiūtė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vilma Petrikaitė
- Life Sciences Center, Vilnius University, Vilnius, Lithuania.
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
- Institute of Physiology and Pharmacology, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| |
Collapse
|
29
|
Three-Dimensional Spheroids as In Vitro Preclinical Models for Cancer Research. Pharmaceutics 2020; 12:pharmaceutics12121186. [PMID: 33291351 PMCID: PMC7762220 DOI: 10.3390/pharmaceutics12121186] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Most cancer biologists still rely on conventional two-dimensional (2D) monolayer culture techniques to test in vitro anti-tumor drugs prior to in vivo testing. However, the vast majority of promising preclinical drugs have no or weak efficacy in real patients with tumors, thereby delaying the discovery of successful therapeutics. This is because 2D culture lacks cell–cell contacts and natural tumor microenvironment, important in tumor signaling and drug response, thereby resulting in a reduced malignant phenotype compared to the real tumor. In this sense, three-dimensional (3D) cultures of cancer cells that better recapitulate in vivo cell environments emerged as scientifically accurate and low cost cancer models for preclinical screening and testing of new drug candidates before moving to expensive and time-consuming animal models. Here, we provide a comprehensive overview of 3D tumor systems and highlight the strategies for spheroid construction and evaluation tools of targeted therapies, focusing on their applicability in cancer research. Examples of the applicability of 3D culture for the evaluation of the therapeutic efficacy of nanomedicines are discussed.
Collapse
|
30
|
Lee SW, Jung DJ, Jeong GS. Gaining New Biological and Therapeutic Applications into the Liver with 3D In Vitro Liver Models. Tissue Eng Regen Med 2020; 17:731-745. [PMID: 32207030 PMCID: PMC7710770 DOI: 10.1007/s13770-020-00245-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Three-dimensional (3D) cell cultures with architectural and biomechanical properties similar to those of natural tissue have been the focus for generating liver tissue. Microarchitectural organization is believed to be crucial to hepatic function, and 3D cell culture technologies have enabled the construction of tissue-like microenvironments, thereby leading to remarkable progress in vitro models of human tissue and organs. Recently, to recapitulate the 3D architecture of tissues, spheroids and organoids have become widely accepted as new practical tools for 3D organ modeling. Moreover, the combination of bioengineering approach offers the promise to more accurately model the tissue microenvironment of human organs. Indeed, the employment of sophisticated bioengineered liver models show long-term viability and functional enhancements in biochemical parameters and disease-orient outcome. RESULTS Various 3D in vitro liver models have been proposed as a new generation of liver medicine. Likewise, new biomedical engineering approaches and platforms are available to more accurately replicate the in vivo 3D microarchitectures and functions of living organs. This review aims to highlight the recent 3D in vitro liver model systems, including micropatterning, spheroids, and organoids that are either scaffold-based or scaffold-free systems. Finally, we discuss a number of challenges that will need to be addressed moving forward in the field of liver tissue engineering for biomedical applications. CONCLUSION The ongoing development of biomedical engineering holds great promise for generating a 3D biomimetic liver model that recapitulates the physiological and pathological properties of the liver and has biomedical applications.
Collapse
Affiliation(s)
- Sang Woo Lee
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-Ro 43 Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Da Jung Jung
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-Ro 43 Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Gi Seok Jeong
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-Ro 43 Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine, 88 Olympic-Ro 43 Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
31
|
The effects of size and shape of the ovarian cancer spheroids on the drug resistance and migration. Gynecol Oncol 2020; 159:563-572. [PMID: 32958270 DOI: 10.1016/j.ygyno.2020.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND High fatality in ovarian cancer is attributed to metastasis, propagated by the release of multi-cellular aggregates/spheroids into the peritoneal cavity and their subsequent mesothelial invasion of peritoneal organs. Spheroids are therefore a common and clinically relevant in vitro model for ovarian cancer research. Spheroids in patients vary significantly in size and shape and display enhanced resistance to anti-cancer drugs compared to monolayers. However, there is no consensus on how spheroid size and shape affect drug resistance. Moreover, existing data regarding the influence of epithelial-to-mesenchymal transition (EMT) profile on spheroid shape and migration is inconclusive. METHODS We formed spheroids with OVCAR-3 and OVCAR-8 cells, chosen for their established genetic similarity to the patient tumor samples. We monitored their morphology using confocal microscope with dipping objective and fluorescent microscope. We characterized important EMT biomarkers; E-cadherin, Vimentin and Slug through western blotting in monolayers and spheroids. We treated these spheroids with Taxol and Cisplatin and investigated their migratory profile based on their morphology. RESULTS We report two distinct multicellular structures: loose aggregates (OVCAR-3) and compact spheroids (OVCAR-8). We attribute these different morphologies to the expression of the EMT biomarkers, and their changes upon spheroid formation. Importantly, we did not observe a difference in resistance to the anti-cancer drugs as a function of spheroid size and shape. However, migration capacity of compact spheroid (OVCAR-8) was 15-fold higher compared to that of loose aggregates (OVCAR-3). CONCLUSIONS These results highlight the importance of spheroid size and shape on anti-cancer drug resistance and migration profiles. The results of this study can, therefore, help to elucidate general rules for ovarian cancer studies based on 3D samples.
Collapse
|
32
|
Karimi H, Leszczyński B, Kołodziej T, Kubicz E, Przybyło M, Stępień E. X-ray microtomography as a new approach for imaging and analysis of tumor spheroids. Micron 2020; 137:102917. [PMID: 32693343 DOI: 10.1016/j.micron.2020.102917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/26/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
Three-dimensional (3D) spheroids mimic important properties of tumors and may soon become a reasonable substitute for animal models and human tissue, eliminating numerous problems related to in vivo and ex vivo experiments and pre-clinical drug trials. Currently, various imaging methods including X-ray microtomography (micro-CT), exist but their spatial resolution is limited. Here, we visualized and provided a morphological analysis of spheroid cell cultures using micro-CT and compared it to that of confocal microscopy. An approach is proposed that can potentially open new diagnostic opportunities to determine the morphology of cancer cells cultured in 3D structures instead of using actual tumors. Spheroids were formed from human melanoma cell lines WM266-4 and WM115 seeded at different cell densities using the hanging drop method. Micro-CT analysis of spheroid showed that spheroid size and shape differed depending on the cell line, initial cell number, and duration of culture. The melanoma cell lines used in this study can successfully be cultured as 3D spheroids and used to substitute human and animal models in pre-clinical studies. The micro-CT allows for high-resolution visualization of the spheroids structure.
Collapse
Affiliation(s)
- Hanieh Karimi
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland.
| | - Bartosz Leszczyński
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland.
| | - Tomasz Kołodziej
- Department of Molecular and Interfacial Biophysics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland.
| | - Ewelina Kubicz
- Department of Experimental Particle Physics and Applications, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland.
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland.
| | - Ewa Stępień
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
33
|
Fernandes S, Cassani M, Pagliari S, Filipensky P, Cavalieri F, Forte G. Tumor in 3D: In Vitro Complex Cellular Models to Improve Nanodrugs Cancer Therapy. Curr Med Chem 2020; 27:7234-7255. [PMID: 32586245 DOI: 10.2174/0929867327666200625151134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/18/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023]
Abstract
Nanodrugs represent novel solutions to reshuffle repurposed drugs for cancer therapy. They might offer different therapeutic options by combining targeted drug delivery and imaging in unique platforms. Such nanomaterials are deemed to overcome the limitations of currently available treatments, ultimately improving patients' life quality. However, despite these promises being made for over three decades, the poor clinical translation of nanoparticle- based therapies calls for deeper in vit.. and in vivo investigations. Translational issues arise very early during the development of nanodrugs, where complex and more reliable cell models are often replaced by easily accessible and convenient 2D monocultures. This is particularly true in the field of cancer therapy. In fact, 2D monocultures provide poor information about the real impact of the nanodrugs in a complex living organism, especially given the poor mimicry of the solid Tumors Microenvironment (TME). The dense and complex extracellular matrix (ECM) of solid tumors dramatically restricts nanoparticles efficacy, impairing the successful implementation of nanodrugs in medical applications. Herein, we propose a comprehensive guideline of the 3D cell culture models currently available, including their potential and limitations for the evaluation of nanodrugs activity. Advanced culture techniques, more closely resembling the physiological conditions of the TME, might give a better prediction of the reciprocal interactions between cells and nanoparticles and eventually help reconsider the use of old drugs for new applications.
Collapse
Affiliation(s)
- Soraia Fernandes
- International Clinical Research Center (ICRC) of St Anne’s University Hospital, CZ-65691 Brno, Czech Republic
| | - Marco Cassani
- International Clinical Research Center (ICRC) of St Anne’s University Hospital, CZ-65691 Brno, Czech Republic
| | - Stefania Pagliari
- International Clinical Research Center (ICRC) of St Anne’s University Hospital, CZ-65691 Brno, Czech Republic
| | - Petr Filipensky
- St Anne’s University Hospital, CZ-65691 Brno, Czech Republic
| | - Francesca Cavalieri
- School of Science, RMIT University,
Melbourne, VIC, Australia,Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor
Vergata”, Via Della Ricerca Scientifica, Rome, Italy
| | - Giancarlo Forte
- International Clinical Research Center (ICRC) of St Anne’s University Hospital, CZ-65691 Brno, Czech Republic
| |
Collapse
|
34
|
Menon N, Dang HX, Datla US, Moarefian M, Lawrence CB, Maher CA, Jones CN. Heparin-based hydrogel scaffolding alters the transcriptomic profile and increases the chemoresistance of MDA-MB-231 triple-negative breast cancer cells. Biomater Sci 2020; 8:2786-2796. [PMID: 32091043 PMCID: PMC7497406 DOI: 10.1039/c9bm01481k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/08/2020] [Indexed: 12/30/2022]
Abstract
The tumor microenvironment plays a critical role in the proliferation and chemoresistance of cancer cells. Growth factors (GFs) are known to interact with the extracellular matrix (ECM) via heparin binding sites, and these associations influence cell behavior. In the present study, we demonstrate the ability to define signals presented by the scaffold by pre-mixing growth factors, such as epidermal growth factor, into the heparin-based (HP-B) hydrogel prior to gelation. In the 3D biomimetic microenvironment, breast cancer cells formed spheroids within 24 hours of initial seeding. Despite higher number of proliferating cells in 2D cultures, 3D spheroids exhibited a higher degree of chemoresistance after 72 hours. Further, our RNA sequencing results highlighted the phenotypic changes influenced by solid-phase GF presentation. Wnt/β-catenin and TGF-β signaling were upregulated in the cells grown in the hydrogel, while apoptosis, IL2-STAT5 and PI3K-AKT-mTOR signaling were downregulated. With emerging technologies for precision medicine in cancer, this nature of fine-tuning the microenvironment is paramount for cultivation and downstream characterization of primary cancer cells and rare circulating tumor cells (CTCs), and effective screening of chemotherapeutic agents.
Collapse
Affiliation(s)
- Nidhi Menon
- Graduate Program in Translational Biology
, Medicine and Health
, Virginia Polytechnic Institute and State University
,
Blacksburg
, VA
24061
, USA
.
- Department of Biological Sciences
, Virginia Polytechnic Institute and State University
,
Blacksburg
, VA
24061
, USA
| | - Ha X. Dang
- McDonnell Genome Institute
, Washington University in St. Louis
,
MO
63108
, USA
- Department of Medicine
, Washington University School of Medicine
,
St. Louis
, MO
63108
, USA
- Alvin J. Siteman Cancer Center
, Washington University in St. Louis
,
St. Louis
, MO
63108
, USA
| | - Udaya Sree Datla
- Graduate Program in Translational Biology
, Medicine and Health
, Virginia Polytechnic Institute and State University
,
Blacksburg
, VA
24061
, USA
.
- Department of Biological Sciences
, Virginia Polytechnic Institute and State University
,
Blacksburg
, VA
24061
, USA
| | - Maryam Moarefian
- Department of Mechanical Engineering
, Virginia Polytechnic Institute and State University
,
Blacksburg
, VA
24061
, USA
| | - Christopher B. Lawrence
- Department of Biological Sciences
, Virginia Polytechnic Institute and State University
,
Blacksburg
, VA
24061
, USA
| | - Christopher A. Maher
- McDonnell Genome Institute
, Washington University in St. Louis
,
MO
63108
, USA
- Department of Medicine
, Washington University School of Medicine
,
St. Louis
, MO
63108
, USA
- Alvin J. Siteman Cancer Center
, Washington University in St. Louis
,
St. Louis
, MO
63108
, USA
- Department of Biomedical Engineering
, Washington University in St. Louis
,
MO
63108
, USA
| | - Caroline N. Jones
- Graduate Program in Translational Biology
, Medicine and Health
, Virginia Polytechnic Institute and State University
,
Blacksburg
, VA
24061
, USA
.
- Department of Biological Sciences
, Virginia Polytechnic Institute and State University
,
Blacksburg
, VA
24061
, USA
| |
Collapse
|
35
|
Velez DO, Ranamukhaarachchi SK, Kumar A, Modi RN, Lim EW, Engler AJ, Metallo CM, Fraley SI. 3D collagen architecture regulates cell adhesion through degradability, thereby controlling metabolic and oxidative stress. Integr Biol (Camb) 2020; 11:221-234. [PMID: 31251330 DOI: 10.1093/intbio/zyz019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/08/2019] [Accepted: 05/23/2019] [Indexed: 11/14/2022]
Abstract
The collagen-rich tumor microenvironment plays a critical role in directing the migration behavior of cancer cells. 3D collagen architectures with small pores have been shown to confine cells and induce aggressive collective migration, irrespective of matrix stiffness and density. However, it remains unclear how cells sense collagen architecture and transduce this information to initiate collective migration. Here, we tune collagen architecture and analyze its effect on four core cell-ECM interactions: cytoskeletal polymerization, adhesion, contractility, and matrix degradation. From this comprehensive analysis, we deduce that matrix architecture initially modulates cancer cell adhesion strength, and that this results from architecture-induced changes to matrix degradability. That is, architectures with smaller pores are less degradable, and degradability is required for cancer cell adhesion to 3D fibrilar collagen. The biochemical consequences of this 3D low-attachment state are similar to those induced by suspension culture, including metabolic and oxidative stress. One distinction from suspension culture is the induction of collagen catabolism that occurs in 3D low-attachment conditions. Cells also upregulate Snail1 and Notch signaling in response to 3D low-attachment, which suggests a mechanism for the emergence of collective behaviors.
Collapse
Affiliation(s)
- Daniel O Velez
- Bioengineering Department, University of California San Diego, CA, USA
| | | | - Aditya Kumar
- Bioengineering Department, University of California San Diego, CA, USA
| | - Rishi N Modi
- Bioengineering Department, University of California San Diego, CA, USA
| | - Esther W Lim
- Bioengineering Department, University of California San Diego, CA, USA
| | - Adam J Engler
- Bioengineering Department, University of California San Diego, CA, USA
| | | | - Stephanie I Fraley
- Bioengineering Department, University of California San Diego, CA, USA.,Moore's Cancer Center, University of California San Diego La Jolla, CA, USA
| |
Collapse
|
36
|
Inubushi Y, Tachibana A. Uniform spheroid formation on a laboratory-made, low cell attachment surface consisting of a chitin sheet. Biosci Biotechnol Biochem 2020; 84:997-1000. [PMID: 31928142 DOI: 10.1080/09168451.2020.1714423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We utilized the reaction of chitosan with acetic anhydride to form a chitin gel. This gel was then dried, which formed a chitin sheet. The procedure was extremely easy for a biologist unfamiliar with materials engineering. Spheroids derived from HEK293T cells were formed on the chitin sheet, because the spheroids slightly attached and slowly moved on the chitin sheet.
Collapse
Affiliation(s)
- Yusaku Inubushi
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Akira Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| |
Collapse
|
37
|
Li X, Li N, Chen K, Nagasawa S, Yoshizawa M, Kagami H. Around 90° Contact Angle of Dish Surface Is a Key Factor in Achieving Spontaneous Spheroid Formation. Tissue Eng Part C Methods 2019; 24:578-584. [PMID: 30234440 DOI: 10.1089/ten.tec.2018.0188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Following the discovery of the primary culture of neural stem cells, the spheroid culture has been recognized as one of the selective culture methods for somatic stem cells. Since then, various methods were reported to generate spheroids, which can enrich the potent stem cell population. However, the fundamental factors affecting spheroid formation remain unclear. In this study, we focused on the surface property of the culture dishes, in particular, hydrophobicity. Primary mouse skin culture cells were prepared with conventional two-dimensional culture, and then, the cells were transferred to culture dishes with varying hydrophobicity, which was confirmed with the water contact angles. Of these, a culture dish possessing an almost 90° water contact angle was the only one that successfully exhibited spheroid formation. The spheroid formation was spontaneous, efficient, and stable. Since this outcome was achieved with a conventional culture medium with serum, but without any additives such as epidermal growth factor, basic fibroblast growth factor, and B27, the spheroid formation from this process was not affected by serum and was also not dependent on additives. The results from immunofluorescence and quantitative real-time polymerase chain reaction testing showed the expression of embryonic stem cell markers such as SSEA-1, SOX2, OCT4, and Nanog, which confirmed that the spheroids with this method are comparable to those from other methods. This outcome was reproducible and could be applied not only to skin-derived cells but also to oral mucosa-derived cells, cortical bone-derived cells, and 3T3 cells, also suggesting the generality and robustness of this phenomenon.
Collapse
Affiliation(s)
- Xianqi Li
- 1 Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University , Shiojiri, Japan .,2 Institute of Oral Science, Matsumoto Dental University , Shiojiri, Japan .,3 Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University , Shiojiri, Japan
| | - Ni Li
- 3 Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University , Shiojiri, Japan
| | - Kai Chen
- 3 Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University , Shiojiri, Japan
| | - Sakae Nagasawa
- 4 Department of Dental Material Science, School of Dentistry, Matsumoto Dental University , Shiojiri, Japan
| | - Michiko Yoshizawa
- 1 Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University , Shiojiri, Japan .,3 Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University , Shiojiri, Japan
| | - Hideaki Kagami
- 1 Department of Oral and Maxillofacial Surgery, School of Dentistry, Matsumoto Dental University , Shiojiri, Japan .,2 Institute of Oral Science, Matsumoto Dental University , Shiojiri, Japan .,3 Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University , Shiojiri, Japan .,5 Department of General Medicine, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo , Tokyo, Japan
| |
Collapse
|
38
|
Arandian A, Bagheri Z, Ehtesabi H, Najafi Nobar S, Aminoroaya N, Samimi A, Latifi H. Optical Imaging Approaches to Monitor Static and Dynamic Cell-on-Chip Platforms: A Tutorial Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900737. [PMID: 31087503 DOI: 10.1002/smll.201900737] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/14/2019] [Indexed: 06/09/2023]
Abstract
Miniaturized laboratories on chip platforms play an important role in handling life sciences studies. The platforms may contain static or dynamic biological cells. Examples are a fixed medium of an organ-on-a-chip and individual cells moving in a microfluidic channel, respectively. Due to feasibility of control or investigation and ethical implications of live targets, both static and dynamic cell-on-chip platforms promise various applications in biology. To extract necessary information from the experiments, the demand for direct monitoring is rapidly increasing. Among different microscopy methods, optical imaging is a straightforward choice. Considering light interaction with biological agents, imaging signals may be generated as a result of scattering or emission effects from a sample. Thus, optical imaging techniques could be categorized into scattering-based and emission-based techniques. In this review, various optical imaging approaches used in monitoring static and dynamic platforms are introduced along with their optical systems, advantages, challenges, and applications. This review may help biologists to find a suitable imaging technique for different cell-on-chip studies and might also be useful for the people who are going to develop optical imaging systems in life sciences studies.
Collapse
Affiliation(s)
- Alireza Arandian
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Zeinab Bagheri
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Hamide Ehtesabi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Shima Najafi Nobar
- Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, 1969764499, Iran
| | - Neda Aminoroaya
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Ashkan Samimi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Hamid Latifi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
- Department of Physics, Shahid Beheshti University, Tehran, 1983969411, Iran
| |
Collapse
|
39
|
Shi W, Reid L, Huang Y, Uhl CG, He R, Zhou C, Liu Y. Bi-layer blood vessel mimicking microfluidic platform for antitumor drug screening based on co-culturing 3D tumor spheroids and endothelial layers. BIOMICROFLUIDICS 2019; 13:044108. [PMID: 31372195 PMCID: PMC6669041 DOI: 10.1063/1.5108681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/12/2019] [Indexed: 05/27/2023]
Abstract
Two-dimensional (2D) cell culture is not ideal for traditional drug screening, because 2D culture does not accurately mimic the physiological microenvironment of tumor cells. Thus, a drug-screening system which more closely mimics the microenvironment of in vivo tumors is necessary. Here, we present a biomimicking bilayer microfluidic device that can facilitate antitumor drug screening. The microfluidic device consists of two polydimethylsiloxane (PDMS) pieces with channels which are separated by a semipermeable membrane to allow water, oxygen, and nutrition supply, while preventing cell migration. The channels embedded on the two PDMS pieces overlap each other over a long distance to ensure a larger exchange area to mimic the blood vessel-tumor model. High concentrations of endothelial cells (EC) are first seeded onto the membrane through the apical channel, and after a two-day culture, a confluent EC monolayer forms. Tumor spheroid-laden Matrigel is then seeded into the basal channel. After the Matrigel is cured, the device is ready for drug testing. Paclitaxel is used as the model drug for testing. Confocal microscopy and ImageJ are used to assess the efficacy of different concentrations of paclitaxel, and optical coherence tomography (OCT) is employed to determine the tumor volumetric change after the drug treatment. The results indicate that the proposed bilayer microfluidic device in combination with confocal and OCT optical characterization provide an efficient platform for antitumor drug testing.
Collapse
Affiliation(s)
- Wentao Shi
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Lara Reid
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Yongyang Huang
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Christopher G. Uhl
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Ran He
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | | | - Yaling Liu
- Author to whom correspondence should be addressed:
| |
Collapse
|
40
|
Popova AA, Tronser T, Demir K, Haitz P, Kuodyte K, Starkuviene V, Wajda P, Levkin PA. Facile One Step Formation and Screening of Tumor Spheroids Using Droplet-Microarray Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901299. [PMID: 31058427 DOI: 10.1002/smll.201901299] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 05/10/2023]
Abstract
Tumor spheroids or microtumors are important 3D in vitro tumor models that closely resemble a tumor's in vivo "microenvironment" compared to 2D cell culture. Microtumors are widely applied in the fields of fundamental cancer research, drug discovery, and precision medicine. In precision medicine tumor spheroids derived from patient tumor cells represent a promising system for drug sensitivity and resistance testing. Established and commonly used platforms for routine screenings of cell spheroids, based on microtiter plates of 96- and 384-well formats, require relatively large numbers of cells and compounds, and often lead to the formation of multiple spheroids per well. In this study, an application of the Droplet Microarray platform, based on hydrophilic-superhydrophobic patterning, in combination with the method of hanging droplet, is demonstrated for the formation of highly miniaturized single-spheroid-microarrays. Formation of spheroids from several commonly used cancer cell lines in 100 nL droplets starting with as few as 150 cells per spheroid within 24-48 h is demonstrated. Established methodology carries a potential to be adopted for routine workflows of high-throughput compound screening in 3D cancer spheroids or microtumors, which is crucial for the fields of fundamental cancer research, drug discovery, and precision medicine.
Collapse
Affiliation(s)
- Anna A Popova
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Tina Tronser
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Konstantin Demir
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - P Haitz
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Karolina Kuodyte
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120, Heidelberg, Germany
| | - Vytaute Starkuviene
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120, Heidelberg, Germany
- Institute of Biosciences, Vilnius University Life Sciences Centre, Sauletekio av. 7, 10257, Vilnius, Lithuania
| | - Piotr Wajda
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, D-69120, Heidelberg, Germany
| | - Pavel A Levkin
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Karlsruhe Institute of Technology, Institute of Organic Chemistry, Fritz-Haber Weg 6, 76131, Karlsruhe, Germany
| |
Collapse
|
41
|
Swaminathan S, Hamid Q, Sun W, Clyne AM. Bioprinting of 3D breast epithelial spheroids for human cancer models. Biofabrication 2019; 11:025003. [PMID: 30616234 PMCID: PMC7731635 DOI: 10.1088/1758-5090/aafc49] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
3D human cancer models provide a better platform for drug efficacy studies than conventional 2D culture, since they recapitulate important aspects of the in vivo microenvironment. While biofabrication has advanced model creation, bioprinting generally involves extruding individual cells in a bioink and then waiting for these cells to self-assemble into a hierarchical 3D tissue. This self-assembly is time consuming and requires complex cellular interactions with other cell types, extracellular matrix components, and growth factors. We therefore investigated if we could directly bioprint pre-formed 3D spheroids in alginate-based bioinks to create a model tissue that could be used almost immediately. Human breast epithelial cell lines were bioprinted as individual cells or as pre-formed spheroids, either in monoculture or co-culture with vascular endothelial cells. While individual breast cells only spontaneously formed spheroids in Matrigel-based bioink, pre-formed breast spheroids maintained their viability, architecture, and function after bioprinting. Bioprinted breast spheroids were more resistant to paclitaxel than individually printed breast cells; however, this effect was abrogated by endothelial cell co-culture. This study shows that 3D cellular structure bioprinting has potential to create tissue models that quickly replicate the tumor microenvironment.
Collapse
Affiliation(s)
- Swathi Swaminathan
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, United States of America
| | | | | | | |
Collapse
|