1
|
Chang HH, Wu SB, Tsai CC. A Review of Pathophysiology and Therapeutic Strategies Targeting TGF-β in Graves' Ophthalmopathy. Cells 2024; 13:1493. [PMID: 39273063 PMCID: PMC11393989 DOI: 10.3390/cells13171493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
TGF-β plays a pivotal role in the pathogenesis of GO by promoting orbital tissue remodeling and fibrosis. This process involves the stimulation of orbital fibroblasts, leading to myofibroblast differentiation, increased production of inflammatory mediators, and hyaluronan accumulation. Studies have elucidated TGF-β's role in driving fibrosis and scarring processes through both canonical and non-canonical pathways, particularly resulting in the activation of orbital myofibroblasts and the excessive accumulation of extracellular matrix. Additionally, recent in vitro and in vivo studies have been summarized, highlighting the therapeutic potential of targeting TGF-β signaling pathways, which may offer promising treatment interventions for GO. This review aims to consolidate the current understanding of the multifaceted role of TGF-β in the molecular and cellular pathophysiology in Graves' ophthalmopathy (GO) by exploring its contributions to fibrosis, inflammation, and immune dysregulation. Additionally, the review investigates the therapeutic potential of inhibiting TGF-β signaling pathways as a strategy for treating GO.
Collapse
Affiliation(s)
- Hsin-Ho Chang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Shi-Bei Wu
- Office of Business Development, Technology Commercialization Center, Taipei Medical University, Taipei 110, Taiwan
| | - Chieh-Chih Tsai
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Ophthalmology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
2
|
Lee CE, Kim JY, Yoon JS, Ko J. Role of Inositol-Requiring Enzyme 1 and Autophagy in the Pro-Fibrotic Mechanism Underlying Graves' Orbitopathy. Yonsei Med J 2024; 65:397-405. [PMID: 38910302 PMCID: PMC11199180 DOI: 10.3349/ymj.2023.0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/02/2024] [Accepted: 01/25/2024] [Indexed: 06/25/2024] Open
Abstract
PURPOSE Orbital fibroblasts play key roles in the pathogenesis of Graves' orbitopathy (GO), and previous findings have shown that endoplasmic reticulum (ER) stress and autophagy also contribute to GO. In this study, we investigated the presently unclear roles of inositol-requiring enzyme 1 (IRE1) and related autophagy processes in the pro-fibrotic mechanism of GO. MATERIALS AND METHODS Orbital adipose/connective tissues were obtained from eight GO patients and six normal individuals during surgery. GO fibroblasts were transfected with IRE1 small-interfering RNA and treated with bafilomycin A1 (Baf-A1) to evaluate the inhibitory effects of ER stress and autophagy, and protein-expression levels were analyzed through western blotting after stimulation with transforming growth factor (TGF)-β. RESULTS TGF-β stimulation upregulated IRE1 in GO orbital fibroblasts, whereas silencing IRE1 suppressed fibrosis and autophagy responses. Similarly, Baf-A1, an inhibitor of late-phase autophagy, decreased the expression of pro-fibrotic proteins. CONCLUSION IRE1 mediates autophagy and the pro-fibrotic mechanism of GO, which provides a more comprehensive interpretation of GO pathogenesis and suggests potential therapeutic targets.
Collapse
Affiliation(s)
- Chae Eun Lee
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
- Siloam Eye Hospital, Seoul, Korea
| | - Ji-Young Kim
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - JaeSang Ko
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Lyu S, Liu Q, Yuen HY, Xie H, Yang Y, Yeung KWK, Tang CY, Wang S, Liu Y, Li B, He Y, Zhao X. A differential-targeting core-shell microneedle patch with coordinated and prolonged release of mangiferin and MSC-derived exosomes for scarless skin regeneration. MATERIALS HORIZONS 2024; 11:2667-2684. [PMID: 38669042 DOI: 10.1039/d3mh01910a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Microneedles for skin regeneration are conventionally restricted by uncontrollable multi-drug release, limited types of drugs, and poor wound adhesion. Here, a novel core-shell microneedle patch is developed for scarless skin repair, where the shell is composed of hydrophilic gelatin methacryloyl (GelMA) loaded with mangiferin, an anti-inflammatory small molecule, and the core is composed of hydrophobic poly (lactide-co-propylene glycol-co-lactide) dimethacrylates (PGLADMA) loaded with bioactive macromolecule and human mesenchymal stromal cell (hMSC)-derived exosomes. This material choice provides several benefits: the GelMA shell provides a swelling interface for tissue interlocking and rapid release of mangiferin at an early wound healing stage for anti-inflammation, whereas the PGLADMA core offers long-term encapsulation and release of exosomes (30% release in 3 weeks), promoting sustained angiogenesis and anti-inflammation. Our results demonstrate that the core-shell microneedle possesses anti-inflammatory properties and can induce angiogenesis both in vitro in terms of macrophage polarization and tube formation of human umbilical vein endothelial cells (HUVECs), and in vivo in terms of anti-inflammation, re-epithelization, and vessel formation. Importantly, we also observe reduced scar formation in vivo. Altogether, the degradation dynamics of our hydrophilic/hydrophobic materials enable the design of a core-shell microneedle for differential and prolonged release, promoting scarless skin regeneration, with potential for other therapies of long-term exosome release.
Collapse
Affiliation(s)
- Shang Lyu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China.
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Qi Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China.
| | - Ho-Yin Yuen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China.
| | - Huizhi Xie
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Yuhe Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Kelvin Wai-Kwok Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Chak-Yin Tang
- Department of Industrial & Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
| | - Shuqi Wang
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 641400, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yaxiong Liu
- Jihua Laboratory, Foshan, Guangdong 528000, China
| | - Bin Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China.
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
4
|
Bonadio JD, Bashiri G, Halligan P, Kegel M, Ahmed F, Wang K. Delivery technologies for therapeutic targeting of fibronectin in autoimmunity and fibrosis applications. Adv Drug Deliv Rev 2024; 209:115303. [PMID: 38588958 PMCID: PMC11111362 DOI: 10.1016/j.addr.2024.115303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/29/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Fibronectin (FN) is a critical component of the extracellular matrix (ECM) contributing to various physiological processes, including tissue repair and immune response regulation. FN regulates various cellular functions such as adhesion, proliferation, migration, differentiation, and cytokine release. Alterations in FN expression, deposition, and molecular structure can profoundly impact its interaction with other ECM proteins, growth factors, cells, and associated signaling pathways, thus influencing the progress of diseases such as fibrosis and autoimmune disorders. Therefore, developing therapeutics that directly target FN or its interaction with cells and other ECM components can be an intriguing approach to address autoimmune and fibrosis pathogenesis.
Collapse
Affiliation(s)
- Jacob D Bonadio
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Ghazal Bashiri
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Patrick Halligan
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Michael Kegel
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Fatima Ahmed
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, PA, United States.
| |
Collapse
|
5
|
Fullard N, Wordsworth J, Welsh C, Maltman V, Bascom C, Tasseff R, Isfort R, Costello L, Scanlan RL, Przyborski S, Shanley D. Cell Senescence-Independent Changes of Human Skin Fibroblasts with Age. Cells 2024; 13:659. [PMID: 38667274 PMCID: PMC11048776 DOI: 10.3390/cells13080659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Skin ageing is defined, in part, by collagen depletion and fragmentation that leads to a loss of mechanical tension. This is currently believed to reflect, in part, the accumulation of senescent cells. We compared the expression of genes and proteins for components of the extracellular matrix (ECM) as well as their regulators and found that in vitro senescent cells produced more matrix metalloproteinases (MMPs) than proliferating cells from adult and neonatal donors. This was consistent with previous reports of senescent cells contributing to increased matrix degradation with age; however, cells from adult donors proved significantly less capable of producing new collagen than neonatal or senescent cells, and they showed significantly lower myofibroblast activation as determined by the marker α-SMA. Functionally, adult cells also showed slower migration than neonatal cells. We concluded that the increased collagen degradation of aged fibroblasts might reflect senescence, the reduced collagen production likely reflects senescence-independent processes.
Collapse
Affiliation(s)
- Nicola Fullard
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - James Wordsworth
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (J.W.); (C.W.)
| | - Ciaran Welsh
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (J.W.); (C.W.)
| | - Victoria Maltman
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | | | - Ryan Tasseff
- Proctor & Gamble, Cincinnati, OH 45201, USA (R.I.)
| | | | - Lydia Costello
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Rebekah-Louise Scanlan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (J.W.); (C.W.)
| | | | - Daryl Shanley
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (J.W.); (C.W.)
| |
Collapse
|
6
|
Caven L, Carabeo R. Chlamydial YAP activation in host endocervical epithelial cells mediates pro-fibrotic paracrine stimulation of fibroblasts. mSystems 2023; 8:e0090423. [PMID: 37874141 PMCID: PMC10734534 DOI: 10.1128/msystems.00904-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Chronic or repeated infection of the female upper genital tract by C. trachomatis can lead to severe fibrotic sequelae, including tubal factor infertility and ectopic pregnancy. However, the molecular mechanisms underlying this effect are unclear. In this report, we define a transcriptional program specific to C. trachomatis infection of the upper genital tract, identifying tissue-specific induction of host YAP-a pro-fibrotic transcriptional cofactor-as a potential driver of infection-mediated fibrotic gene expression. Furthermore, we show that infected endocervical epithelial cells stimulate collagen production by fibroblasts and implicate chlamydial induction of YAP in this effect. Our results define a mechanism by which infection mediates tissue-level fibrotic pathology via paracrine signaling and identify YAP as a potential therapeutic target for the prevention of Chlamydia-associated scarring of the female genital tract.
Collapse
Affiliation(s)
- Liam Caven
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Rey Carabeo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
7
|
Jang JH, Park JW, Park KA, Kim YD, Woo KI. Early response to intravenous methylprednisolone therapy for restrictive myopathy in patients with thyroid eye disease. Graefes Arch Clin Exp Ophthalmol 2023; 261:2375-2382. [PMID: 36808229 DOI: 10.1007/s00417-023-06013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
PURPOSE To report the therapeutic efficacy of intravenous methylprednisolone (IVMP) in patients with restrictive myopathy caused by thyroid eye disease (TED). METHODS The present prospective uncontrolled study comprised 28 patients with TED and restrictive myopathy who presented with diplopia that had developed within 6 months before their visit. All patients were treated with IVMP for 12 weeks. Deviation angle, limitation of extraocular muscle (EOM) movement, binocular single vision score, Hess score, clinical activity score (CAS), modified NOSPECS score, exophthalmometric value, and the size of EOMs on computed tomography were evaluated. The patients were divided into two groups: those whose deviation angle had decreased or remained unchanged 6 months after treatment (group 1; n = 17) and those whose deviation angle had increased in that time (group 2; n = 11). RESULTS The mean CAS of the whole cohort significantly decreased from baseline to 1 month and 3 months after treatment (P = 0.03 and P = 0.02, respectively). The mean deviation angle significantly increased from baseline to 1, 3, and 6 months (P = 0.01, P < 0.01, and P < 0.01, respectively). The deviation angle decreased in 10 (36%), remained constant in seven (25%), and increased in 11 (39%) of the 28 patients. When groups 1 and 2 were compared, no single variable was identified as a cause of deviation angle deterioration (P > 0.05). CONCLUSIONS When treating patients with TED who have restrictive myopathy, physicians should be aware that some patients show worsening of the strabismus angle despite inflammation control with IVMP therapy. Uncontrolled fibrosis can result in motility deterioration.
Collapse
Affiliation(s)
- Jae Ho Jang
- Department of Ophthalmology, Dongguk University Gyeongju Hospital, Gyeongju, Gyeongsangbuk-Do, Republic of Korea
| | - Ji Woong Park
- Seoul Eye Clinic, Anyang, Gyeonggi-Do, Republic of Korea
| | - Kyung-Ah Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | | | - Kyung In Woo
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
8
|
Hei X, Lin B, Wu P, Li X, Mao Z, Huang S, Zhang F, Zhou M, Ke Y, Yang H, Huang D. Lutein targeting orbital fibroblasts attenuates fibrotic and inflammatory effects in thyroid-associated ophthalmopathy. Exp Eye Res 2023; 232:109515. [PMID: 37207866 DOI: 10.1016/j.exer.2023.109515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/05/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Lutein (LU) is a carotenoid that has recently been implicated in multiple roles in fibrosis, inflammation, and oxidative stress. Thyroid-associated ophthalmopathy (TAO) is particularly relevant to these pathological changes. We thus aim to probe the potential therapeutic effects of TAO in an in vitro model. We used LU pre-treating OFs derived from patients with TAO or not, then treated with TGF-β1(or IL-1β)to induce fibrosis (or inflammation). We analyzed the different expressions of related genes and proteins, and the molecular mechanism pathway on TAO OFs was screened by RNA sequencing, which is identified in vitro. We found that LU attenuates fibrotic and inflammatory effects in TAO. LU inhibited ACTA2, COL1A1, FN1, and CTGF mRNA expression and suppressed α-SMA, and FN1 protein expression induced by TGF-β1. Besides, LU suppressed OFs migration. Besides, it is shown that LU suppressed inflammation-related genes, such as IL-6, IL-8, CXCL1, and MCP-1. Moreover, LU inhibited oxidative stress induced by IL-1β, which is analyzed by DHE fluorescent probe staining. RNA sequencing suggested ERK/AP-1 pathway may be the molecular mechanism of LU protective effect on TAO, which is identified by RT-qPCR and western-blot. In summary, this study provides the first evidence that LU significantly attenuates the pathogenic manifestations of TAO by inhibiting the expression of fibrotic and inflammation-related genes and ROS produced by OFs. These data suggested that LU may be a potential medicine for TAO.
Collapse
Affiliation(s)
- Xiangqing Hei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bingying Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Pengsen Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xingyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhen Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Siyu Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Fan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Min Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yu Ke
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Danping Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Hua HS, Wen HC, Lee HS, Weng CM, Yuliani FS, Kuo HP, Chen BC, Lin CH. Endothelin-1 induces connective tissue growth factor expression in human lung fibroblasts by disrupting HDAC2/Sin3A/MeCP2 corepressor complex. J Biomed Sci 2023; 30:40. [PMID: 37312162 DOI: 10.1186/s12929-023-00931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/20/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Reduction of histone deacetylase (HDAC) 2 expression and activity may contribute to amplified inflammation in patients with severe asthma. Connective tissue growth factor (CTGF) is a key mediator of airway fibrosis in severe asthma. However, the role of the HDAC2/Sin3A/methyl-CpG-binding protein (MeCP) 2 corepressor complex in the regulation of CTGF expression in lung fibroblasts remains unclear. METHODS The role of the HDAC2/Sin3A/MeCP2 corepressor complex in endothelin (ET)-1-stimulated CTGF production in human lung fibroblasts (WI-38) was investigated. We also evaluated the expression of HDAC2, Sin3A and MeCP2 in the lung of ovalbumin-induced airway fibrosis model. RESULTS HDAC2 suppressed ET-1-induced CTGF expression in WI-38 cells. ET-1 treatment reduced HDAC2 activity and increased H3 acetylation in a time-dependent manner. Furthermore, overexpression of HDAC2 inhibited ET-1-induced H3 acetylation. Inhibition of c-Jun N-terminal kinase, extracellular signal-regulated kinase, or p38 attenuated ET-1-induced H3 acetylation by suppressing HDAC2 phosphorylation and reducing HDAC2 activity. Overexpression of both Sin3A and MeCP2 attenuated ET-1-induced CTGF expression and H3 acetylation. ET-1 induced the disruption of the HDAC2/Sin3A/MeCP2 corepressor complex and then prompted the dissociation of HDAC2, Sin3A, and MeCP2 from the CTGF promoter region. Overexpression of HDAC2, Sin3A, or MeCP2 attenuated ET-1-stimulated AP-1-luciferase activity. Moreover, Sin3A- or MeCP2-suppressed ET-1-induced H3 acetylation and AP-1-luciferase activity were reversed by transfection of HDAC2 siRNA. In an ovalbumin-induced airway fibrosis model, the protein levels of HDAC2 and Sin3A were lower than in the control group; however, no significant difference in MeCP2 expression was observed. The ratio of phospho-HDAC2/HDAC2 and H3 acetylation in the lung tissue were higher in this model than in the control group. Overall, without stimulation, the HDAC2/Sin3A/MeCP2 corepressor complex inhibits CTGF expression by regulating H3 deacetylation in the CTGF promoter region in human lung fibroblasts. With ET-1 stimulation, the HDAC2/Sin3A/MeCP2 corepressor complex is disrupted and dissociated from the CTGF promoter region; this is followed by AP-1 activation and the eventual initiation of CTGF production. CONCLUSIONS The HDAC2/Sin3A/MeCP2 corepressor complex is an endogenous inhibitor of CTGF in lung fibroblasts. Additionally, HDAC2 and Sin3A may be of greater importance than MeCP2 in the pathogenesis of airway fibrosis.
Collapse
Affiliation(s)
- Hung-Sheng Hua
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan
| | - Heng-Ching Wen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan
| | - Hong-Sheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan
- Research Center of Thoracic Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ming Weng
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan
- Research Center of Thoracic Medicine, Taipei Medical University, Taipei, Taiwan
| | - Fara Silvia Yuliani
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Han-Pin Kuo
- Division of Thoracic Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Research Center of Thoracic Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Thoracic Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan.
- Research Center of Thoracic Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan.
- Research Center of Thoracic Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
10
|
Caven L, Carabeo R. Chlamydial YAP activation in host endocervical epithelial cells mediates pro-fibrotic paracrine stimulation of fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542940. [PMID: 37398163 PMCID: PMC10312526 DOI: 10.1101/2023.05.30.542940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Infection of the female genital tract by Chlamydia trachomatis can produce severe fibrotic sequelae, including tubal factor infertility and ectopic pregnancy. While infection demonstrably mediates a pro-fibrotic response in host cells, it remains unclear if intrinsic properties of the upper genital tract exacerbate chlamydial fibrosis. The relatively sterile environment of the upper genital tract is primed for a pro-inflammatory response to infection, potentially enhancing fibrosis - however, subclinical C. trachomatis infections still develop fibrosis-related sequelae. Here, we compare infection-associated and steady-state gene expression of primary human cervical and vaginal epithelial cells. In the former, we observe enhanced baseline expression and infection-mediated induction of fibrosis-associated signal factors (e.g. TGFA , IL6 , IL8 , IL20 ), implying predisposition to Chlamydia -associated pro-fibrotic signaling. Transcription factor enrichment analysis identified regulatory targets of YAP, a transcriptional cofactor induced by infection of cervical epithelial cells, but not vaginal epithelial cells. YAP target genes induced by infection include secreted fibroblast-activating signal factors; therefore, we developed an in vitro model involving coculture of infected endocervical epithelial cells with uninfected fibroblasts. Coculture enhanced fibroblast expression of type I collagen, as well as prompting reproducible (albeit statistically insignificant) induction of α-smooth muscle actin. Fibroblast collagen induction was sensitive to siRNA-mediated YAP knockdown in infected epithelial cells, implicating chlamydial YAP activation in this effect. Collectively, our results present a novel mechanism of fibrosis initiated by Chlamydia, wherein infection-mediated induction of host YAP facilitates pro-fibrotic intercellular communication. Chlamydial YAP activation in cervical epithelial cells is thus a determinant of this tissue's susceptibility to fibrosis. Importance Chronic or repeated infection of the female upper genital tract by C. trachomatis can lead to severe fibrotic sequelae, including tubal factor infertility and ectopic pregnancy. However, the molecular mechanisms underlying this effect are unclear. In this report, we define a transcriptional program specific to C. trachomatis infection of the upper genital tract, identifying tissue-specific induction of host YAP - a pro-fibrotic transcriptional cofactor - as a potential driver of infection-mediated fibrotic gene expression. Further, we show that infected endocervical epithelial cells stimulate collagen production by fibroblasts, and implicate chlamydial induction of YAP in this effect. Our results define a mechanism by which infection mediates tissue-level fibrotic pathology via paracrine signaling, and identify YAP as a potential therapeutic target for prevention of Chlamydia -associated scarring of the female genital tract.
Collapse
|
11
|
Radwan RR, Mohamed HA. Mechanistic approach of the therapeutic potential of mesenchymal stem cells on brain damage in irradiated mice: emphasis on anti-inflammatory and anti-apoptotic effects. Int J Radiat Biol 2023; 99:1463-1472. [PMID: 35647928 DOI: 10.1080/09553002.2022.2084170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/04/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND OBJECTIVES Brain damage which has been induced by radiation generally occurs in radiotherapeutics patients. Stem cell transplantation represents a vital applicant for alleviating neurodegenerative disorders. This work aims at exploring the potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) on brain injury induced by γ radiation in mice and the possible underlying mechanisms were elucidated. MATERIALS AND METHODS Mice were allocated into three groups; Group I (Control), Group II (Irradiated control) where mice submitted to 5 Gy of whole-body γ radiation, Group III (Irradiated + BM-MSCs) where mice were intravenously injected of BM-MSCs at a dose of 106 cells/mice 24 h following irradiation. Animals were sacrificed 28 d following exposure to γ radiation. RESULTS It was observed that BM-MSCs therapy provided a valuable tissue repair as evidenced by a reduction in inflammatory mediators including tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), nuclear factor kappa (NF-κβ), phosphorylated NF-κβ-p65 (P-NF-κβ-p65), interferon-gamma (IFNγ) and monocyte chemoattractant protein-1 (MCP-1) associated with decreased levels of transforming growth factor-β (TGF-β) and vascular endothelial growth factor (VEGF) in brain tissues of irradiated mice. Furthermore, neuronal apoptosis was declined in brain tissues of the BM-MSCs group as remarkable inhibition of caspase-3 and Bax accompanied by elevation of Bcl-2 proteins expression. These results were supported by histopathological investigation. CONCLUSIONS In conclusion, BM-MSCs could display a vital rule in alleviating brain injury in radio-therapeutic patients.
Collapse
Affiliation(s)
- Rasha R Radwan
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Egypt
| | - Heba A Mohamed
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Egypt
| |
Collapse
|
12
|
Transcriptomic profiling of programmed cell death 1 (PD-1) expressing T cells in early rheumatoid arthritis identifies a decreased CD4 + PD-1 + signature post-treatment. Sci Rep 2023; 13:2847. [PMID: 36801909 PMCID: PMC9938264 DOI: 10.1038/s41598-023-29971-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Programmed cell death protein 1 (PD-1)-expressing T cells are expanded in individuals with established rheumatoid arthritis (RA). However, little is known about their functional role in the pathogenesis of early RA. To address this, we investigated the transcriptomic profiles of circulating CD4+ and CD8+ PD-1+ lymphocytes from patients with early RA (n = 5) using fluorescence activated cell sorting in conjunction with total RNA sequencing. Additionally, we assessed for alterations in CD4+PD-1+ gene signatures in previously published synovial tissue (ST) biopsy data (n = 19) (GSE89408, GSE97165) before and after six-months of triple disease modifying anti-rheumatic drug (tDMARD) treatment. Comparisons of gene signatures between CD4+PD-1+ vs. PD-1- cells identified significant upregulation of genes including CXCL13 and MAF, and in pathways including Th1 and Th2, cross talk between dendritic cells and NK cells, B cell development and antigen presentation. Gene signatures from early RA ST before and after six-month tDMARD treatment revealed downregulation of the CD4+PD-1+ signatures following treatment, identifying a mechanism through which tDMARDs exert their effect by influencing T cell populations. Furthermore, we identify factors associated with B cell help that are enhanced in the ST compared with PBMCs, highlighting their importance in driving synovial inflammation.
Collapse
|
13
|
Lin F, Yuan Y, Ye X, Lv J, Liu X, Guo H, Wen X. Characterization and role of connective tissue growth factor gene in collagen synthesis in swim bladder of chu's croaker (Nibea coibor). Int J Biol Macromol 2023; 227:1336-1345. [PMID: 36473534 DOI: 10.1016/j.ijbiomac.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022]
Abstract
Connective tissue growth factor (Ctgf) is a matricellular protein with diverse biological function. It is regarded as a central regulator of tissue fibrosis and collagen synthesis in mammals. However, its roles in fish remain elusive. Here, a ctgf gene was cloned (NcCtgf), characterized and functionally studied in the chu's croaker (Nibea coibor). NcCtgf encoded a protein containing 346 amino acids, 38 conserved cysteine residues, 4 functional domains and a signal peptide. NcCtgf shared highest identity (99.4 %) to the Larimichthys crocea Ctgf protein. Phylogenetic tree revealed that NcCtgf clustered with the teleost Ctgfa and Ctgf of higher vertebrates, instead of teleost Ctgfb. NcCtgf was expressed with higher level in gonad, spleen, gill and swimming bladder than other tissues, and was up-regulated in swim bladder synchronously with collagen I genes by hydroxyproline and TGF-β1 treatment. NcCtgf knockdown/overexpression inhibited/promoted collagen synthesis in swim bladder cell, respectively. Notably, NcCtgf protein could be secreted to cell culture medium and up-regulated collagen I expression in swim bladder cell. These findings indicate NcCtgf plays vital roles in collagen synthesis in swim bladder of Nibea coibor, and provide basis for further understanding of ctgf evolution and exploring new approach for enhancing collagen deposition in fish products during aquaculture.
Collapse
Affiliation(s)
- Fan Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| | - Yuying Yuan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Xiaokang Ye
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Jiehuan Lv
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Xin Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Haoji Guo
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Xiaobo Wen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
14
|
Li Y, Luo B, Tong B, Xie Z, Cao J, Bai X, Peng Y, Wu Y, Wang W, Qi X. The role and molecular mechanism of gut microbiota in Graves' orbitopathy. J Endocrinol Invest 2023; 46:305-317. [PMID: 35986869 DOI: 10.1007/s40618-022-01902-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/10/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE Graves' orbitopathy (GO) is an autoimmune orbital disorder. Gut microbiota dysfunction plays a vital role in autoimmune diseases, including Graves' disease (GD) and GO. In the present study, we aimed to investigate the change of gut microbiota in GD/GO using mouse model. METHODS The murine model of GD/GO was established by the challenge of adenovirus expressing thyroid-stimulating hormone (TSH) receptor (TSHR) (Ad-TSHR). The histological changes of orbital and thyroid tissues were analyzed by hematoxylin and eosin (H&E), Masson staining, and immunohistochemistry (IHC) staining. The fecal samples were collected for 16S rRNA gene sequencing and bioinformatics analysis. RESULTS The GD/GO model was established successfully, as manifested as the broadened eyelid, exophthalmia and conjunctive redness, severe inflammatory infiltration among thyroid glands and between extraocular muscle space, hypertrophic extraocular muscles, elevated thyroxine (T4) and decreased TSH, and positive CD34, CD40, collagen I, and α-SMA staining. A total of 222 operational taxonomic units (OUTs) were overlapped between mice in the Ad-NC and Ad-TSHR groups. The microbial composition of the samples in the two groups was mainly Bacteroidia and Clostridia, and the Ad-NC group had a significantly lower content of Bacteroidia and higher content of Clostridia. KEGG orthology analysis results revealed differences in dehydrogenase, aspartic acid, bile acid, chalcone synthase, acetyltransferase, glutamylcyclotransferase, glycogenin, and 1-phosphatidylinositol-4-phosphate 5-kinase between two groups; enzyme commission (EC) analysis results revealed differences in several dehydrogenase, oxidase, thioxy/reductase between two groups; MetaCyc pathways analysis results revealed differences in isoleucine degradation, oxidation of C1 compounds, tricarboxylic acid (TCA) cycle IV, taurine degradation, and biosynthesis of paromamine, heme, colonic acid building blocks, butanediol, lysine/threonine/methionine, and histidine/purine/pyrimidine between two groups. CONCLUSION This study induced a mouse model of GD/GO by Ad-TSHR challenge, and gut microbiota characteristics were identified in the GD/GO mice. The Bacteroidia and Clostridia abundance was changed in the GD/GO mice. These findings may lay a solid experimental foundation for developing personalized treatment regimens for GD patients according to the individual gut microbiota. Given the potential impact of regional differences on intestinal microbiota, this study in China may provide a reference for the global overview of the gut-thyroid axis hypothesis.
Collapse
Affiliation(s)
- Y Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - B Luo
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - B Tong
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Z Xie
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - J Cao
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - X Bai
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Y Peng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Y Wu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China
| | - W Wang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China
| | - X Qi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
15
|
Wang Y, Liu X, Xu Q, Xu W, Zhou X, Lin Z. CCN2 deficiency in smooth muscle cells triggers cell reprogramming and aggravates aneurysm development. JCI Insight 2023; 8:162987. [PMID: 36625347 PMCID: PMC9870081 DOI: 10.1172/jci.insight.162987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/17/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular smooth muscle cell (SMC) phenotypic switching is widely recognized as a key mechanism responsible for the pathogenesis of several aortic diseases, such as aortic aneurysm. Cellular communication network factor 2 (CCN2), often upregulated in human pathologies and animal disease models, exerts myriad context-dependent biological functions. However, current understanding of the role of SMC-CCN2 in SMC phenotypic switching and its function in the pathology of abdominal aortic aneurysm (AAA) is lacking. Here, we show that SMC-restricted CCN2 deficiency causes AAA in the infrarenal aorta of angiotensin II-infused (Ang II-infused) hypercholesterolemic mice at a similar anatomic location to human AAA. Notably, the resistance of naive C57BL/6 WT mice to Ang II-induced AAA formation is lost upon silencing of CCN2 in SMC. Furthermore, the pro-AAA phenotype of SMC-CCN2-KO mice is recapitulated in a different model that involves the application of elastase-β-aminopropionitrile. Mechanistically, our findings reveal that CCN2 intersects with TGF-β signaling and regulates SMC marker expression. Deficiency of CCN2 triggers SMC reprograming associated with alterations in Krüppel-like factor 4 and contractile marker expression, and this reprograming likely contributes to the development of AAA in mice. These results identify SMC-CCN2 as potentially a novel regulator of SMC phenotypic switching and AA biology.
Collapse
Affiliation(s)
- Yu Wang
- Cardiology Division, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Xuesong Liu
- Cardiology Division, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qian Xu
- Cardiology Division, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Wei Xu
- Cardiology Division, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Xianming Zhou
- Cardiology Division, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Lin
- Cardiology Division, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Chong GLW, Böhmert B, Lee LEJ, Bols NC, Dowd GC. A continuous myofibroblast precursor cell line from the tail muscle of Australasian snapper (Chrysophrys auratus) that responds to transforming growth factor beta and fibroblast growth factor. In Vitro Cell Dev Biol Anim 2022; 58:922-935. [PMID: 36378268 PMCID: PMC9780137 DOI: 10.1007/s11626-022-00734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Abstract
Chrysophrys auratus (Australasian snapper) is one of the largest and most valuable finfish from capture fisheries in New Zealand, yet no cell lines from this species are reported in the scientific literature. Here, we describe a muscle-derived cell line initiated from the tail of a juvenile snapper which has been designated CAtmus1PFR (Chrysophrys auratus, tail muscle, Plant & Food Research). The cell line has been passaged over 100 times in 3 years and is considered immortal. Cells are reliant on serum supplementation for proliferation and exhibit a broad thermal profile comparable to the eurythermic nature of C. auratus in vivo. The impact of exogenous growth factors, including insulin-like growth factors I and II (IGF-I and IGF-II), basic fibroblast growth factor (bFGF), and transforming growth factor beta (TGFβ), on cell morphology and proliferation was investigated. Insulin-like growth factors acted as mitogens and had minimal effect on cell morphology. TGFβ exposure resulted in CAtmus1PFR exhibiting a myofibroblast morphology becoming enlarged with actin bundling. This differentiation was confirmed through the expression of smooth muscle actin (sma), an increase in type 1 collagen (col1a) expression, and a loss of motility. Expression of col1a and sma was decreased when cells were exposed to bFGF, and no actin bundling was observed. These data indicate that CAtmus1PFR may be myofibroblastic precursor cells descending from mesenchymal progenitor cells present in the tail muscle myosepta.
Collapse
Affiliation(s)
- Gavril L. W. Chong
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten Street, Nelson, 7010 New Zealand
| | - Björn Böhmert
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten Street, Nelson, 7010 New Zealand
| | - Lucy E. J. Lee
- Faculty of Science, University of the Fraser Valley, Abbotsford, BC V2S 7M8 Canada
| | - Niels C. Bols
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - Georgina C. Dowd
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten Street, Nelson, 7010 New Zealand
| |
Collapse
|
17
|
Connective Tissue Growth Factor in Idiopathic Pulmonary Fibrosis: Breaking the Bridge. Int J Mol Sci 2022; 23:ijms23116064. [PMID: 35682743 PMCID: PMC9181498 DOI: 10.3390/ijms23116064] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/23/2022] Open
Abstract
CTGF is upregulated in patients with idiopathic pulmonary fibrosis (IPF), characterized by the deposition of a pathological extracellular matrix (ECM). Additionally, many omics studies confirmed that aberrant cellular senescence-associated mitochondria dysfunction and metabolic reprogramming had been identified in different IPF lung cells (alveolar epithelial cells, alveolar endothelial cells, fibroblasts, and macrophages). Here, we reviewed the role of the CTGF in IPF lung cells to mediate anomalous senescence-related metabolic mechanisms that support the fibrotic environment in IPF.
Collapse
|
18
|
Ma J, Chen J, Li Y, Zhang-Peng X, Wei H, Li W, Hu F, Zhang Y. Electrochemical immuno determination of connective tissue growth factor levels on nitrogen-doped graphene. Mikrochim Acta 2022; 189:187. [PMID: 35397015 DOI: 10.1007/s00604-022-05237-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/19/2022] [Indexed: 11/29/2022]
Abstract
Connective tissue growth factor (CTGF) is a disease marker of rheumatoid arthritis (RA), and its rapid and sensitive detection is essential for the diagnosis of RA. In this work, a three-dimensional pore structure of alkali-activated nitrogen-doped graphene (aN-G) was used as an electrode modification material, and a label-free electrochemical immunosensor for the sensitive detection of CTGF was successfully constructed by the formation of an amide bond between amino groups in protein and carboxyl groups on the carbon surface. Under optimized conditions, the sensor achieved accurate detection of CTGF in the wide range of 0.0625 ~ 2000 pg mL-1. It had good accuracy (95.0 ~ 100.1%), repeatability (1.2 ~ 2.2%), stability, selectivity, and a low limit of detection (0.0424 pg mL-1, S/N = 3). The sensor was used in serum samples of patients with RA, and CTGF was also successfully detected. Based on this, the electrochemical sensor is expected to become an effective method for RA diagnosis and treatment effect evaluation.
Collapse
Affiliation(s)
- Jing Ma
- School of Pharmacy@the State Key Laboratory of Applied Organic Chemistry (SKLAOC), Lanzhou University, Lanzhou, 730000, China
| | - Junhui Chen
- Department of Pediatrics, Gansu Province People's Hospital, 204 Donggang West Road, Lanzhou, 730000, People's Republic of China
| | - YuanYuan Li
- School of Pharmacy@the State Key Laboratory of Applied Organic Chemistry (SKLAOC), Lanzhou University, Lanzhou, 730000, China
| | - Xinru Zhang-Peng
- School of Pharmacy@the State Key Laboratory of Applied Organic Chemistry (SKLAOC), Lanzhou University, Lanzhou, 730000, China
| | - Hong Wei
- School of Pharmacy@the State Key Laboratory of Applied Organic Chemistry (SKLAOC), Lanzhou University, Lanzhou, 730000, China
| | - Wen Li
- School of Pharmacy@the State Key Laboratory of Applied Organic Chemistry (SKLAOC), Lanzhou University, Lanzhou, 730000, China
| | - Fangdi Hu
- School of Pharmacy@the State Key Laboratory of Applied Organic Chemistry (SKLAOC), Lanzhou University, Lanzhou, 730000, China.
| | - Yan Zhang
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd, Liaocheng, China.
| |
Collapse
|
19
|
Poosti F, Soebadi MA, Crijns H, De Zutter A, Metzemaekers M, Berghmans N, Vanheule V, Albersen M, Opdenakker G, Van Damme J, Sprangers B, Proost P, Struyf S. Inhibition of renal fibrosis with a human CXCL9‐derived glycosaminoglycan‐binding peptide. Clin Transl Immunology 2022; 11:e1370. [PMID: 35140938 PMCID: PMC8810938 DOI: 10.1002/cti2.1370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 05/18/2021] [Accepted: 01/05/2022] [Indexed: 11/09/2022] Open
Abstract
Objectives Renal fibrosis accompanies all chronic kidney disorders, ultimately leading to end‐stage kidney disease and the need for dialysis or even renal replacement. As such, renal fibrosis poses a major threat to global health and the search for effective therapeutic strategies to prevent or treat fibrosis is highly needed. We evaluated the applicability of a highly positively charged human peptide derived from the COOH‐terminal domain of the chemokine CXCL9, namely CXCL9(74–103), for therapeutic intervention. Because of its high density of net positive charges at physiological pH, CXCL9(74–103) competes with full‐length chemokines for glycosaminoglycan (GAG) binding. Consequently, CXCL9(74–103) prevents recruitment of inflammatory leucocytes to sites of inflammation. Methods CXCL9(74–103) was chemically synthesised and tested in vitro for anti‐fibrotic properties on human fibroblasts and in vivo in the unilateral ureteral obstruction (UUO) mouse model. Results CXCL9(74–103) significantly reduced the mRNA and/or protein expression of connective tissue growth factor (CTGF), alpha‐smooth muscle actin (α‐SMA) and collagen III by transforming growth factor (TGF)‐β1‐stimulated human fibroblasts. In addition, administration of CXCL9(74–103) inhibited fibroblast migration towards platelet‐derived growth factor (PDGF), without affecting cell viability. In the UUO model, CXCL9(74–103) treatment significantly decreased renal α‐SMA, vimentin, and fibronectin mRNA and protein expression. Compared with vehicle, CXCL9(74–103) attenuated mRNA expression of TGF‐β1 and the inflammatory markers/mediators MMP‐9, F4/80, CCL2, IL‐6 and TNF‐α. Finally, CXCL9(74–103) treatment resulted in reduced influx of leucocytes in the UUO model and preserved tubular morphology. The anti‐fibrotic and anti‐inflammatory effects of CXCL9(74–103) were mediated by competition with chemokines and growth factors for GAG binding. Conclusions Our findings provide a scientific rationale for targeting GAG–protein interactions in renal fibrotic disease.
Collapse
Affiliation(s)
- Fariba Poosti
- Laboratory of Molecular Immunology Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgium
| | - Mohammad Ayodhia Soebadi
- Laboratory of Experimental Urology University Hospitals Leuven Leuven Belgium
- Department of Urology Faculty of Medicine Universitas Airlangga Surabaya Indonesia
| | - Helena Crijns
- Laboratory of Molecular Immunology Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgium
| | - Alexandra De Zutter
- Laboratory of Molecular Immunology Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgium
| | - Mieke Metzemaekers
- Laboratory of Molecular Immunology Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgium
| | - Vincent Vanheule
- Laboratory of Molecular Immunology Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgium
| | - Maarten Albersen
- Laboratory of Experimental Urology University Hospitals Leuven Leuven Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgium
| | - Ben Sprangers
- Laboratory of Molecular Immunology Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgium
- Department of Nephrology University Hospitals Leuven Leuven Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology Department of Microbiology, Immunology and Transplantation Rega Institute KU Leuven Leuven Belgium
| |
Collapse
|
20
|
Ismaeel A, Miserlis D, Papoutsi E, Haynatzki G, Bohannon WT, Smith RS, Eidson JL, Casale GP, Pipinos II, Koutakis P. Endothelial cell-derived pro-fibrotic factors increase TGF-β1 expression by smooth muscle cells in response to cycles of hypoxia-hyperoxia. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166278. [PMID: 34601016 PMCID: PMC8629962 DOI: 10.1016/j.bbadis.2021.166278] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/12/2021] [Accepted: 09/23/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND The vascular pathology of peripheral artery disease (PAD) encompasses abnormal microvascular architecture and fibrosis in response to ischemia-reperfusion (I/R) cycles. We aimed to investigate the mechanisms by which pathological changes in the microvasculature direct fibrosis in the context of I/R. METHODS Primary human aortic endothelial cells (ECs) were cultured under cycles of normoxia-hypoxia (NH) or normoxia-hypoxia-hyperoxia (NHH) to mimic I/R. Primary human aortic smooth muscle cells (SMCs) were cultured and treated with media from the ECs. FINDINGS The mRNA and protein expression of the pro-fibrotic factors platelet derived growth factor (PDGF)-BB and connective tissue growth factor (CTGF) were significantly upregulated in ECs undergoing NH or NHH cycles. Treatment of SMCs with media from ECs undergoing NH or NHH cycles led to significant increases in TGF-β1, TGF-β pathway signaling intermediates, and collagen expression. Addition of neutralizing antibodies against PDGF-BB and CTGF to the media blunted the increases in TGF-β1 and collagen expression. Treatment of SMCs with PAD patient-derived serum also led to increased TGF-β1 levels. INTERPRETATION In an in-vitro model of I/R, which recapitulates the pathophysiology of PAD, increased secretion of PDGF-BB and CTGF by ECs was shown to be predominantly driving TGF-β1-mediated expression by SMCs. These cell culture experiments help elucidate the mechanism and interaction between ECs and SMCs in microvascular fibrosis associated with I/R. Thus, targeting these pro-fibrotic factors may be an effective strategy to combat fibrosis in response to cycles of I/R. FUNDING National Institute on Aging at the National Institutes of Health grant number R01AG064420. RESEARCH IN CONTEXT Evidence before this study: Previous studies in gastrocnemius biopsies from peripheral artery disease (PAD) patients showed that transforming growth factor beta 1 (TGF-β1), the most potent inducer of pathological fibrosis, is increased in the vasculature of PAD patients and correlated with collagen deposition. However, the exact cellular source of TGF-β1 remained unclear. Added value of this study: Exposing cells to cycles of normoxia-hypoxia-hyperoxia (NHH) resulted in pathological changes that are consistent with human PAD. This supports the idea that the use of NHH may be a reliable, novel in vitro model of PAD useful for studying associated pathophysiological mechanisms. Furthermore, pro-fibrotic factors (PDGF-BB and CTGF) released from endothelial cells were shown to induce a fibrotic phenotype in smooth muscle cells. This suggests a potential interaction between these cell types in the microvasculature that drives increased TGF-β1 expression and collagen deposition. Thus, targeting these pro-fibrotic factors may be an effective strategy to combat fibrosis in response to cycles of ischemia-reperfusion.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX 76798-7388, USA
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas Health Science Center San Antonio, 8300 Floyd Curl Dr., San Antonio, TX 78229, USA
| | - Evlampia Papoutsi
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX 76798-7388, USA
| | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, 984375 Nebraska Medical Center, Omaha, NE 68198-4375, USA
| | - William T Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, 2401 S 31st St, Temple, TX 76508, USA
| | - Robert S Smith
- Department of Surgery, Baylor Scott & White Medical Center, 2401 S 31st St, Temple, TX 76508, USA
| | - Jack L Eidson
- Department of Surgery, Baylor Scott & White Medical Center, 2401 S 31st St, Temple, TX 76508, USA
| | - George P Casale
- Department of Surgery, University of Nebraska Medical Center, 982500 Nebraska Medical Center, Omaha, NE 68198-2500, USA
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center, 982500 Nebraska Medical Center, Omaha, NE 68198-2500, USA
| | - Panagiotis Koutakis
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX 76798-7388, USA.
| |
Collapse
|
21
|
Yang S, Wang X, Xiao W, Xu Z, Ye H, Sha X, Yang H. Dihydroartemisinin Exerts Antifibrotic and Anti-Inflammatory Effects in Graves' Ophthalmopathy by Targeting Orbital Fibroblasts. Front Endocrinol (Lausanne) 2022; 13:891922. [PMID: 35663306 PMCID: PMC9157422 DOI: 10.3389/fendo.2022.891922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Graves' ophthalmopathy (GO) is a common orbital disease that threatens visual function and appearance. Orbital fibroblasts (OFs) are considered key target and effector cells in GO. In addition, hyaluronan (HA) production, inflammation, and orbital fibrosis are intimately linked to the pathogenesis of GO. In this study, we explored the therapeutic effects of dihydroartemisinin (DHA), an antimalarial drug, on GO-derived, primary OFs. CCK8 and EdU assays were applied to evaluate the antiproliferative effect of DHA on OFs. Wound healing assays were conducted to assess OF migration capacity, while qRT-PCR, western blotting, ELISA, and immunofluorescence were used to determine the expression of fibrosis-related and pro-inflammatory markers in these cells. Moreover, RNA sequencing was conducted to identify differentially expressed genes (DEGs) in DHA-treated OFs, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs was performed to explore potential mechanisms mediating the antifibrotic effect of DHA on GO-derived OFs. Results showed that DHA dose-dependently inhibited OF proliferation and downregulated, at the mRNA and protein levels, TGF-β1-induced expression of fibrosis markers, including alpha smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF). Furthermore, DHA inhibited TGF-β1 induced phosphorylation of extracellular signal-regulated protein kinase 1/2 (ERK1/2) and signal transducer and activator of transcription 3 (STAT3), which suggested that DHA exerted antifibrotic effects via suppression of the ERK and STAT3 signaling pathways. In addition, DHA suppressed the expression of pro-inflammatory cytokines and chemokines, including IL-6, IL-8, CXCL-1, MCP-1, and ICAM-1, and attenuated HA production induced by IL-1β in GO-derived OFs. In conclusion, our study provides first-time evidence that DHA may significantly alleviate pathogenic manifestations of GO by inhibiting proliferation, fibrosis- and inflammation-related gene expression, and HA production in OFs. These data suggest that DHA may be a promising candidate drug for treatment of GO.
Collapse
|
22
|
The Hedgehog Signaling Pathway in Idiopathic Pulmonary Fibrosis: Resurrection Time. Int J Mol Sci 2021; 23:ijms23010171. [PMID: 35008597 PMCID: PMC8745434 DOI: 10.3390/ijms23010171] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
The hedgehog (Hh) pathway is a sophisticated conserved cell signaling pathway that plays an essential role in controlling cell specification and proliferation, survival factors, and tissue patterning formation during embryonic development. Hh signal activity does not entirely disappear after development and may be reactivated in adulthood within tissue-injury-associated diseases, including idiopathic pulmonary fibrosis (IPF). The dysregulation of Hh-associated activating transcription factors, genomic abnormalities, and microenvironments is a co-factor that induces the initiation and progression of IPF.
Collapse
|
23
|
Bhartiya P, Masur K, Shome D, Kaushik N, Nguyen LN, Kaushik NK, Choi EH. Influence of Redox Stress on Crosstalk between Fibroblasts and Keratinocytes. BIOLOGY 2021; 10:biology10121338. [PMID: 34943253 PMCID: PMC8698713 DOI: 10.3390/biology10121338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary There has been significant scientific progress in skin care and skin damage repair, but the complete understanding of skin homeostasis is still beyond our reach. With an increase in environmental stress factors, the incidence rates of skin cancer and skin disorders are on the rise. Taken together with the incidence of scar- and burn-related morbidities, there is an urgent need to understand interactions between skin cells to develop novel therapies for the regeneration of healthy skin. One of the recurrent stress factors affecting the skin are the harmful free radicals, also referred to as oxidative stress. This study aimed to address the influence of oxidative stress on the interaction between two types of skin cells, keratinocytes and fibroblasts. The study utilized cold atmospheric plasma (CAP) to induce oxidative stress in cells and to assess the interactions between the two cell types. We showed that CAP can stimulate cells to enhance their proliferation and migration. This study provides a further understanding of skin cell regulation under stress conditions. Such knowledge may help in designing treatment therapies for rapid wound healing and skin repair. Abstract Although the skin is constantly subjected to endogenous and exogenous stress, it maintains a homeostatic state through wound repair and regeneration pathways. Treatment for skin diseases and injury requires a significant understanding of the various mechanisms and interactions that occur within skin cells. Keratinocytes and fibroblasts interact with each other and act as key players in the repair process. Although fibroblasts and keratinocytes are widely studied in wound healing and skin remodeling under different conditions, the influence of redox stress on keratinocyte-fibroblast crosstalk has not been thoroughly investigated. In this study, we used cold atmospheric plasma (CAP) to generate and deliver oxidative stress to keratinocytes and fibroblasts and to assess its impact on their interactions. To this end, we used a well-established in vitro 3D co-culture model imitating a realistic scenario. Our study shows that low CAP exposure is biocompatible and does not affect the viability or energetics of fibroblasts and keratinocytes. Exposure to low doses of CAP enhanced the proliferation rate of cells and stimulated the expression of key genes (KGF, MMP2, GMCSF, IL-6, and IL-8) in fibroblasts, indicating the activation and initiation of the skin repair process. Additionally, enhanced migration was observed under co-culture conditions under the given redox stress conditions, and expression of the upstream regulator and the effectors of the Hippo pathway (YAP and CYR61, respectively), which are associated with enhanced migration, were elevated. Overall, this study reinforces the application of CAP and redox stress in skin repair physiology.
Collapse
Affiliation(s)
- Pradeep Bhartiya
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (P.B.); (L.N.N.)
| | - Kai Masur
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology, 17489 Greifswald, Germany; (K.M.); (D.S.)
| | - Debarati Shome
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology, 17489 Greifswald, Germany; (K.M.); (D.S.)
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, University of Suwon, Hwaseong 18323, Korea;
| | - Linh N. Nguyen
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (P.B.); (L.N.N.)
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (P.B.); (L.N.N.)
- Correspondence: (N.K.K.); (E.H.C.)
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (P.B.); (L.N.N.)
- Correspondence: (N.K.K.); (E.H.C.)
| |
Collapse
|
24
|
Wu SB, Hou TY, Kau HC, Tsai CC. Effect of Pirfenidone on TGF-β1-Induced Myofibroblast Differentiation and Extracellular Matrix Homeostasis of Human Orbital Fibroblasts in Graves' Ophthalmopathy. Biomolecules 2021; 11:biom11101424. [PMID: 34680057 PMCID: PMC8533421 DOI: 10.3390/biom11101424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 01/01/2023] Open
Abstract
Pirfenidone is a pyridinone derivative that has been shown to inhibit fibrosis in animal models and in patients with idiopathic pulmonary fibrosis. Its effect on orbital fibroblasts remains poorly understood. We investigated the in vitro effect of pirfenidone in transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation and extracellular matrix (ECM) homeostasis in primary cultured orbital fibroblasts from patients with Graves' ophthalmopathy (GO). The expression of fibrotic proteins, including α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF), fibronectin, and collagen type I, was determined by Western blots. The activities of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) responsible for the ECM homeostasis were examined. After pretreating the GO orbital fibroblasts with pirfenidone (250, 500, and 750 μg/mL, respectively) for one hour followed by TGF-β1 for another 24 h, the expression of α-SMA, CTGF, fibronectin, and collagen type I decreased in a dose-dependent manner. Pretreating the GO orbital fibroblasts with pirfenidone not only abolished TGF-β1-induced TIMP-1 expression but recovered the MMP-2/-9 activities. Notably, pirfenidone inhibited TGF-β1-induced phosphorylation of p38 and c-Jun N-terminal kinase (JNK), the critical mediators in the TGF-β1 pathways. These findings suggest that pirfenidone modulates TGF-β1-mediated myofibroblast differentiation and ECM homeostasis by attenuating downstream signaling of TGF-β1.
Collapse
Affiliation(s)
- Shi-Bei Wu
- Biomedical Commercialization Center, Taipei Medical University, Taipei 11031, Taiwan;
| | - Tzu-Yu Hou
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- School of Medicine, National Yang Ming University, Taipei 11221, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hui-Chuan Kau
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- School of Medicine, National Yang Ming University, Taipei 11221, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Ophthalmology, Koo Foundation Sun Yat-Sen Cancer Center, Taipei 11259, Taiwan
| | - Chieh-Chih Tsai
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- School of Medicine, National Yang Ming University, Taipei 11221, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Correspondence: ; Tel.: +886-2-28757325; Fax: +886-2-28213984
| |
Collapse
|
25
|
Li F, Li SS, Chen H, Zhao JZ, Hao J, Liu JM, Zu XG, Cui W. miR-320 accelerates chronic heart failure with cardiac fibrosis through activation of the IL6/STAT3 axis. Aging (Albany NY) 2021; 13:22516-22527. [PMID: 34582362 PMCID: PMC8507257 DOI: 10.18632/aging.203562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Cardiac fibrosis could induce abnormal cardiac function and become a novel target for cardiac hypertrophy and chronic heart failure. MiRNA-320 is a crucial miRNA in cardiovascular disease, but it is poorly understood whether it plays a role in cardiac fibrosis pathogenesis. We aimed to identify the specific underlying mechanism of miR-320 in cardiac fibrosis and hypertrophic pathogenesis. In our study, the GEO datasets revealed that STAT3 was significantly highly expressed in cardiomyocyte lines. MiR-320 activation and STAT3 signaling pathways were statistically significantly connected. Furthermore, miR-320 was highly associated with cardiac fibrosis and hypertrophic disease. Interstitial fibrosis was observed in the mice subjected to TAC surgery, markedly enhanced in miR-320 mimics. Mechanistically, we revealed that miR-320 mimics aggravated the pressure overload and induced cardiac hypertrophy and fibrosis via the IL6/STAT3/PTEN axis. MiR-320 mimics accelerated cardiac hypertrophy and cardiac fibrosis via the IL6/STAT3/PTEN axis. These results suggest that targeting miR-320 may represent a potential therapeutic strategy for cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Fang Li
- Third Division, Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China
| | - Shan-Shan Li
- Third Division, Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China
| | - Hui Chen
- Third Division, Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China
| | - Jian-Zhi Zhao
- Department of Biochemistry and Molecular Biology, The Hebei Medical University, Shijiazhuang, Hebei 050011, PR China
| | - Jie Hao
- Third Division, Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China
| | - Jin-Ming Liu
- Third Division, Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China
| | - Xiu-Guang Zu
- Third Division, Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, PR China
| | - Wei Cui
- Department of Cardiology, The Second Hospital of Hebei Medical University and Hebei Institute of Cardiovascular Research, Shijiazhuang, Hebei 050011, PR China
| |
Collapse
|
26
|
Rebolledo DL, Lipson KE, Brandan E. Driving fibrosis in neuromuscular diseases: Role and regulation of Connective tissue growth factor (CCN2/CTGF). Matrix Biol Plus 2021; 11:100059. [PMID: 34435178 PMCID: PMC8377001 DOI: 10.1016/j.mbplus.2021.100059] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Connective tissue growth factor or cellular communication network 2 (CCN2/CTGF) is a matricellular protein member of the CCN family involved in several crucial biological processes. In skeletal muscle, CCN2/CTGF abundance is elevated in human muscle biopsies and/or animal models for diverse neuromuscular pathologies, including muscular dystrophies, neurodegenerative disorders, muscle denervation, and muscle overuse. In this context, CCN2/CTGF is deeply involved in extracellular matrix (ECM) modulation, acting as a strong pro-fibrotic factor that promotes excessive ECM accumulation. Reducing CCN2/CTGF levels or biological activity in pathological conditions can decrease fibrosis, improve muscle architecture and function. In this work, we summarize information about the role of CCN2/CTGF in fibrosis associated with neuromuscular pathologies and the mechanisms and signaling pathways that regulate their expression in skeletal muscle.
Collapse
Affiliation(s)
- Daniela L Rebolledo
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Punta Arenas, Chile
| | | | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Chile.,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile.,Fundación Ciencia y Vida, Santiago, Chile
| |
Collapse
|
27
|
3D-Printed Gelatin Methacrylate Scaffolds with Controlled Architecture and Stiffness Modulate the Fibroblast Phenotype towards Dermal Regeneration. Polymers (Basel) 2021; 13:polym13152510. [PMID: 34372114 PMCID: PMC8347286 DOI: 10.3390/polym13152510] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Impaired skin wound healing due to severe injury often leads to dysfunctional scar tissue formation as a result of excessive and persistent myofibroblast activation, characterised by the increased expression of α-smooth muscle actin (αSMA) and extracellular matrix (ECM) proteins. Yet, despite extensive research on impaired wound healing and the advancement in tissue-engineered skin substitutes, scar formation remains a significant clinical challenge. This study aimed to first investigate the effect of methacrylate gelatin (GelMA) biomaterial stiffness on human dermal fibroblast behaviour in order to then design a range of 3D-printed GelMA scaffolds with tuneable structural and mechanical properties and understand whether the introduction of pores and porosity would support fibroblast activity, while inhibiting myofibroblast-related gene and protein expression. Results demonstrated that increasing GelMA stiffness promotes myofibroblast activation through increased fibrosis-related gene and protein expression. However, the introduction of a porous architecture by 3D printing facilitated healthy fibroblast activity, while inhibiting myofibroblast activation. A significant reduction was observed in the gene and protein production of αSMA and the expression of ECM-related proteins, including fibronectin I and collagen III, across the range of porous 3D-printed GelMA scaffolds. These results show that the 3D-printed GelMA scaffolds have the potential to improve dermal skin healing, whilst inhibiting fibrosis and scar formation, therefore potentially offering a new treatment for skin repair.
Collapse
|
28
|
Plikus MV, Wang X, Sinha S, Forte E, Thompson SM, Herzog EL, Driskell RR, Rosenthal N, Biernaskie J, Horsley V. Fibroblasts: Origins, definitions, and functions in health and disease. Cell 2021; 184:3852-3872. [PMID: 34297930 PMCID: PMC8566693 DOI: 10.1016/j.cell.2021.06.024] [Citation(s) in RCA: 412] [Impact Index Per Article: 137.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Fibroblasts are diverse mesenchymal cells that participate in tissue homeostasis and disease by producing complex extracellular matrix and creating signaling niches through biophysical and biochemical cues. Transcriptionally and functionally heterogeneous across and within organs, fibroblasts encode regional positional information and maintain distinct cellular progeny. We summarize their development, lineages, functions, and contributions to fibrosis in four fibroblast-rich organs: skin, lung, skeletal muscle, and heart. We propose that fibroblasts are uniquely poised for tissue repair by easily reentering the cell cycle and exhibiting a reversible plasticity in phenotype and cell fate. These properties, when activated aberrantly, drive fibrotic disorders in humans.
Collapse
Affiliation(s)
- Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA.
| | - Xiaojie Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Elvira Forte
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK
| | - Sean M Thompson
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Erica L Herzog
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Ryan R Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
| | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK.
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Valerie Horsley
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
29
|
Tabib T, Huang M, Morse N, Papazoglou A, Behera R, Jia M, Bulik M, Monier DE, Benos PV, Chen W, Domsic R, Lafyatis R. Myofibroblast transcriptome indicates SFRP2 hi fibroblast progenitors in systemic sclerosis skin. Nat Commun 2021; 12:4384. [PMID: 34282151 PMCID: PMC8289865 DOI: 10.1038/s41467-021-24607-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Skin and lung fibrosis in systemic sclerosis (SSc) is driven by myofibroblasts, alpha-smooth muscle actin expressing cells. The number of myofibroblasts in SSc skin correlates with the modified Rodnan skin score, the most widely used clinical measure of skin disease severity. Murine fibrosis models indicate that myofibroblasts can arise from a variety of different cell types, but their origin in SSc skin has remained uncertain. Utilizing single cell RNA-sequencing, we define different dermal fibroblast populations and transcriptome changes, comparing SSc to healthy dermal fibroblasts. Here, we show that SSc dermal myofibroblasts arise in two steps from an SFRP2hi/DPP4-expressing progenitor fibroblast population. In the first step, SSc fibroblasts show globally upregulated expression of transcriptome markers, such as PRSS23 and THBS1. A subset of these cells shows markers indicating that they are proliferating. Only a fraction of SFRP2hi SSc fibroblasts differentiate into myofibroblasts, as shown by expression of additional markers, SFRP4 and FNDC1. Bioinformatics analysis of the SSc fibroblast transcriptomes implicated upstream transcription factors, including FOSL2, RUNX1, STAT1, FOXP1, IRF7 and CREB3L1, as well as SMAD3, driving SSc myofibroblast differentiation. Myofibroblasts drive fibrosis in systemic sclerosis (SSc), but the cellular progenitors are unknown. Utilizing single cell RNA-sequencing, the authors show that SSc dermal myofibroblasts arise in a two-step process from SFRP2/DPP4-expressing progenitors and implicate upstream transcription factors.
Collapse
Affiliation(s)
- Tracy Tabib
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA
| | - Mengqi Huang
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA
| | - Nina Morse
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA
| | - Anna Papazoglou
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA
| | - Rithika Behera
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA
| | - Minxue Jia
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA, USA
| | - Melissa Bulik
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA
| | - Daisy E Monier
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA, USA
| | - Wei Chen
- Division of Pulmonary Medicine, Allergy and Immunology, Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robyn Domsic
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
30
|
Yu WK, Hwang WL, Wang YC, Tsai CC, Wei YH. Curcumin Suppresses TGF-β1-Induced Myofibroblast Differentiation and Attenuates Angiogenic Activity of Orbital Fibroblasts. Int J Mol Sci 2021; 22:ijms22136829. [PMID: 34202024 PMCID: PMC8268269 DOI: 10.3390/ijms22136829] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
Orbital fibrosis, a hallmark of tissue remodeling in Graves’ ophthalmopathy (GO), is a chronic, progressive orbitopathy with few effective treatments. Orbital fibroblasts are effector cells, and transforming growth factor β1 (TGF-β1) acts as a critical inducer to promote myofibroblast differentiation and subsequent tissue fibrosis. Curcumin is a natural compound with anti-fibrotic activity. This study aims to investigate the effects of curcumin on TGF-β1-induced myofibroblast differentiation and on the pro-angiogenic activities of orbital fibroblasts. Orbital fibroblasts from one healthy donor and three patients with GO were collected for primary cell culture and subjected to myofibroblast differentiation under the administration of 1 or 5 ng/mL TGF-β1 for 24 h. The effects of curcumin on TGF-β1-induced orbital fibroblasts were assessed by measuring the cellular viability and detecting the expression of myofibroblast differentiation markers, including connective tissue growth factor (CTGF) and α-smooth muscle actin (α-SMA). The pro-angiogenic potential of curcumin-treated orbital fibroblasts was evaluated by examining the transwell migration and tube-forming capacities of fibroblast-conditioned EA.hy926 and HMEC-1 endothelial cells. Treatment of orbital fibroblasts with curcumin inhibited the TGF-β1 signaling pathway and attenuated the expression of CTGF and α-SMA induced by TGF-β1. Curcumin, at the concentration of 5 μg/mL, suppressed 5 ng/mL TGF-β1-induced pro-angiogenic activities of orbital fibroblast-conditioned EA hy926 and HMEC-1 endothelial cells. Our findings suggest that curcumin reduces the TGF-β1-induced myofibroblast differentiation and pro-angiogenic activity in orbital fibroblasts. The results support the potential application of curcumin for the treatment of GO.
Collapse
Affiliation(s)
- Wei-Kuang Yu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Wei-Lun Hwang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-L.H.); (Y.-C.W.)
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yi-Chuan Wang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (W.-L.H.); (Y.-C.W.)
- Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chieh-Chih Tsai
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Correspondence: (C.-C.T.); (Y.-H.W.)
| | - Yau-Huei Wei
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
- Correspondence: (C.-C.T.); (Y.-H.W.)
| |
Collapse
|
31
|
JNK and p38 Inhibitors Prevent Transforming Growth Factor-β1-Induced Myofibroblast Transdifferentiation in Human Graves' Orbital Fibroblasts. Int J Mol Sci 2021; 22:ijms22062952. [PMID: 33799469 PMCID: PMC7998969 DOI: 10.3390/ijms22062952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from orbital fibroblasts is known to dominate tissue remodeling and fibrosis in Graves’ ophthalmopathy (GO). However, the signaling pathways through which TGF-β1 activates Graves’ orbital fibroblasts remain unclear. This study investigated the role of the mitogen-activated protein kinase (MAPK) pathway in TGF-β1-induced myofibroblast transdifferentiation in human Graves’ orbital fibroblasts. The MAPK pathway was assessed by measuring the phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular-signal-regulated kinase (ERK) by Western blots. The expression of connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), and fibronectin representing fibrogenesis was estimated. The activities of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) responsible for extracellular matrix (ECM) metabolism were analyzed. Specific pharmacologic kinase inhibitors were used to confirm the involvement of the MAPK pathway. After treatment with TGF-β1, the phosphorylation levels of p38 and JNK, but not ERK, were increased. CTGF, α-SMA, and fibronectin, as well as TIMP-1 and TIMP-3, were upregulated, whereas the activities of MMP-2/-9 were inhibited. The effects of TGF-β1 on the expression of these factors were eliminated by p38 and JNK inhibitors. The results suggested that TGF-β1 could induce myofibroblast transdifferentiation in human Graves’ orbital fibroblasts through the p38 and JNK pathways.
Collapse
|
32
|
Mesenchymal Stem Cells for Mitigating Radiotherapy Side Effects. Cells 2021; 10:cells10020294. [PMID: 33535574 PMCID: PMC7912747 DOI: 10.3390/cells10020294] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Radiation therapy for cancers also damages healthy cells and causes side effects. Depending on the dosage and exposure region, radiotherapy may induce severe and irreversible injuries to various tissues or organs, especially the skin, intestine, brain, lung, liver, and heart. Therefore, promising treatment strategies to mitigate radiation injury is in pressing need. Recently, stem cell-based therapy generates great attention in clinical care. Among these, mesenchymal stem cells are extensively applied because it is easy to access and capable of mesodermal differentiation, immunomodulation, and paracrine secretion. Here, we summarize the current attempts and discuss the future perspectives about mesenchymal stem cells (MSCs) for mitigating radiotherapy side effects.
Collapse
|
33
|
Mukherjee D, Wagh G, Mokalled MH, Kontarakis Z, Dickson AL, Rayrikar A, Günther S, Poss KD, Stainier DYR, Patra C. Ccn2a is an injury-induced matricellular factor that promotes cardiac regeneration in zebrafish. Development 2021; 148:dev193219. [PMID: 33234717 PMCID: PMC7847265 DOI: 10.1242/dev.193219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
The ability of zebrafish to heal their heart after injury makes them an attractive model for investigating the mechanisms governing the regenerative process. In this study, we show that the gene cellular communication network factor 2a (ccn2a), previously known as ctgfa, is induced in endocardial cells in the injured tissue and regulates CM proliferation and repopulation of the damaged tissue. We find that, whereas in wild-type animals, CMs track along the newly formed blood vessels that revascularize the injured tissue, in ccn2a mutants CM proliferation and repopulation are disrupted, despite apparently unaffected revascularization. In addition, we find that ccn2a overexpression enhances CM proliferation and improves the resolution of transient collagen deposition. Through loss- and gain-of-function as well as pharmacological approaches, we provide evidence that Ccn2a is necessary for and promotes heart regeneration by enhancing the expression of pro-regenerative extracellular matrix genes, and by inhibiting the chemokine receptor gene cxcr3.1 through a mechanism involving Tgfβ/pSmad3 signaling. Thus, Ccn2a positively modulates the innate regenerative response of the adult zebrafish heart.
Collapse
Affiliation(s)
- Debanjan Mukherjee
- Department of Developmental Biology, Agharkar Research Institute, Pune 411004, India
| | - Ganesh Wagh
- Department of Developmental Biology, Agharkar Research Institute, Pune 411004, India
- SP Pune University, Pune 411007, India
| | - Mayssa H Mokalled
- Regeneration Next, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zacharias Kontarakis
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim 61231, Germany
| | - Amy L Dickson
- Regeneration Next, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Amey Rayrikar
- Department of Developmental Biology, Agharkar Research Institute, Pune 411004, India
- SP Pune University, Pune 411007, India
| | - Stefan Günther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Kenneth D Poss
- Regeneration Next, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim 61231, Germany
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, Pune 411004, India
| |
Collapse
|
34
|
Hellinger JW, Schömel F, Buse JV, Lenz C, Bauerschmitz G, Emons G, Gründker C. Identification of drivers of breast cancer invasion by secretome analysis: insight into CTGF signaling. Sci Rep 2020; 10:17889. [PMID: 33087801 PMCID: PMC7578015 DOI: 10.1038/s41598-020-74838-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
An altered consistency of tumor microenvironment facilitates the progression of the tumor towards metastasis. Here we combine data from secretome and proteome analysis using mass spectrometry with microarray data from mesenchymal transformed breast cancer cells (MCF-7-EMT) to elucidate the drivers of epithelial-mesenchymal transition (EMT) and cell invasion. Suppression of connective tissue growth factor (CTGF) reduced invasion in 2D and 3D invasion assays and expression of transforming growth factor-beta-induced protein ig-h3 (TGFBI), Zinc finger E-box-binding homeobox 1 (ZEB1) and lysyl oxidase (LOX), while the adhesion of cell-extracellular matrix (ECM) in mesenchymal transformed breast cancer cells is increased. In contrast, an enhanced expression of CTGF leads to an increased 3D invasion, expression of fibronectin 1 (FN1), secreted protein acidic and cysteine rich (SPARC) and CD44 and a reduced cell ECM adhesion. Gonadotropin-releasing hormone (GnRH) agonist Triptorelin reduces CTGF expression in a Ras homolog family member A (RhoA)-dependent manner. Our results suggest that CTGF drives breast cancer cell invasion in vitro and therefore could be an attractive therapeutic target for drug development to prevent the spread of breast cancer.
Collapse
Affiliation(s)
- Johanna W Hellinger
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Franziska Schömel
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Judith V Buse
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Christof Lenz
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Gerd Bauerschmitz
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Günter Emons
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Carsten Gründker
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| |
Collapse
|
35
|
Liu X, Song F, Liu C, Zhang Y. 25-OH-PPD inhibits hypertrophy on diabetic cardiomyopathy via the PI3k/Akt/GSK-3β signaling pathway. Exp Ther Med 2020; 20:2141-2147. [PMID: 32765689 PMCID: PMC7401478 DOI: 10.3892/etm.2020.8893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
The present study investigated the inhibitory effects and the associated mechanism of the compound 25-OH-PPD (PPD) on cardiac hypertrophy, fibrosis and inflammation. The signaling pathways associated with diabetic mellitus cardiomyopathy (DMCM) were investigated using a rat model. DMCM Sprague-Dawley rats were induced by injection of streptozotocin. The animals were divided into 5 groups as follows: Normal group (NG group), diabetic group, PPD treatment group, PPD/LY294002 group (inhibitor of PI3K/Akt) and PPD/LiCl group [inhibitor of glycogen synthase kinase (GSK) 3β]. The studies were carried out during the 12 weeks following induction of diabetes and the levels of plasma brain natriuretic peptide (BNP), creatine phosphokinase isoenzyme (CK-MB) were measured. In addition, the volume of myocardial collagen fraction (CVF) was tested. The expression levels of the inflammatory cytokines, including transforming growth factor beta 1 (TGF-β1), connective tissue growth factor (CTGF), cell adhesion molecules α-smooth muscle actin (α-SMA) and vascular adhesion molecule 1 (VCAM-1) and associated signaling proteins (Akt, GSK-3β) were measured by biochemical analyses. The levels of BNP and CK-MB, the volume of CVF, the expression levels of TGF-β1, CTGF, α-SMA and VCAM-1 in the diabetic group were higher compared with those of the normal control group (P<0.05). Conversely, the levels of these molecules were significantly decreased in the PPD treatment groups (P<0.05). The aforementioned effects were partially eliminated in the PPD/LY294002 and PPD/LiCl groups. In addition, PPD treatment significantly increased the expression levels of p-Akt and decreased the levels of phosphorylated GSK-3β compared with those of the DMCM group (P<0.05). The data demonstrated that the protective effects of 25-OH-PPD against DMCM may be attributed to the PI3k/Akt/GSK-3β signaling pathway, via the suppression of the α-SMA/VCAM axis and the downregulation of TGF-β1 and CTGF expression.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Pharmacology, Jinzhou Medical University, Jinzhou, Liaoning 120001, P.R. China
| | - Feiran Song
- Department of Gynecology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chunna Liu
- Department of Pharmacology, Jinzhou Medical University, Jinzhou, Liaoning 120001, P.R. China
| | - Yi Zhang
- Department of Gynecology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
36
|
Liquid Platelet-Rich Fibrin and Heat-Coagulated Albumin Gel: Bioassays for TGF-β Activity. MATERIALS 2020; 13:ma13163466. [PMID: 32781631 PMCID: PMC7475845 DOI: 10.3390/ma13163466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
Liquid platelet-rich fibrin (PRF) can be prepared by high centrifugation forces separating the blood into a platelet-poor plasma (PPP) layer and a cell-rich buffy coat layer, termed concentrated PRF (C-PRF). Heating the liquid PPP was recently introduced to prepare an albumin gel (Alb-gel) that is later mixed back with the concentrated liquid C-PRF to generate Alb-PRF. PRF is a rich source of TGF-β activity; however, the overall TGF-β activity in the PPP and the impact of heating the upper plasma layer remains unknown. Here, we investigated for the first time the in vitro TGF-β activity of all fractions of Alb-PRF. We report that exposure of oral fibroblasts with lysates of PPP and the buffy coat layer, but not with heated PPP, provoked a robust increase in the TGF-β target genes interleukin 11 and NADPH oxidase 4 by RT-PCR, and for IL11 by immunoassay. Consistent with the activation of TGF-β signaling, expression changes were blocked in the presence of the TGF-β receptor type I kinase inhibitor SB431542. Immunofluorescence and Western blot further confirmed that lysates of PPP and the buffy coat layer, but not heated PPP, induced the nuclear translocation of Smad2/3 and increased phosphorylation of Smad3. The immunoassay further revealed that PPP and particularly BC are rich in active TGF-β compared to heated PPP. These results strengthen the evidence that not only the cell-rich C-PRF but also PPP comprise a TGF-β activity that is, however, heat sensitive. It thus seems relevant to mix the heated PPP with the buffy coat C-PRF layer to regain TGF-β activity, as proposed during the preparation of Alb-PRF.
Collapse
|
37
|
The Role of MicroRNAs in Regulating Cytokines and Growth Factors in Coronary Artery Disease: The Ins and Outs. J Immunol Res 2020; 2020:5193036. [PMID: 32775466 PMCID: PMC7397388 DOI: 10.1155/2020/5193036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 12/16/2022] Open
Abstract
Coronary artery diseases (CAD), as a leading cause of mortality around the world, has attracted the researchers' attention for years to find out its underlying mechanisms and causes. Among the various key players in the pathogenesis of CAD cytokines, microRNAs (miRNAs) are crucial. In this study, besides providing a comprehensive overview of the involvement of cytokines, growth factors, and miRNAs in CAD, the interplay between miRNA with cytokine or growth factors during the development of CAD is discussed.
Collapse
|
38
|
Revisiting Cell Death Responses in Fibrotic Lung Disease: Crosstalk between Structured and Non-Structured Cells. Diagnostics (Basel) 2020; 10:diagnostics10070504. [PMID: 32708315 PMCID: PMC7400296 DOI: 10.3390/diagnostics10070504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is a life-threatening disorder caused by excessive formation of connective tissue that can affect several critical organs. Innate immune cells are involved in the development of various disorders, including lung fibrosis. To date, several hematopoietic cell types have been implicated in fibrosis, including pro-fibrotic monocytes like fibrocytes and segregated-nucleus-containing atypical monocytes (SatMs), but the precise cellular and molecular mechanisms underlying its development remain unclear. Repetitive injury and subsequent cell death response are triggering events for lung fibrosis development. Crosstalk between lung structured and non-structured cells is known to regulate the key molecular event. We recently reported that RNA-binding motif protein 7 (RBM7) expression is highly upregulated in the fibrotic lung and plays fundamental roles in fibrosis development. RBM7 regulates nuclear degradation of NEAT1 non-coding RNA, resulting in sustained apoptosis in the lung epithelium and fibrosis. Apoptotic epithelial cells produce CXCL12, which leads to the recruitment of pro-fibrotic monocytes. Apoptosis is also the main source of autoantigens. Recent studies have revealed important functions for natural autoantibodies that react with specific sets of self-antigens and are unique to individual diseases. Here, we review recent insights into lung fibrosis development in association with crosstalk between structured cells like lung epithelial cells and non-structured cells like migrating immune cells, and discuss their relevance to acquired immunity through natural autoantibody production.
Collapse
|
39
|
Borrelli MR, Patel RA, Adem S, Diaz Deleon NM, Shen AH, Sokol J, Yen S, Chang EY, Nazerali R, Nguyen D, Momeni A, Wang KC, Longaker MT, Wan DC. The antifibrotic adipose-derived stromal cell: Grafted fat enriched with CD74+ adipose-derived stromal cells reduces chronic radiation-induced skin fibrosis. Stem Cells Transl Med 2020; 9:1401-1413. [PMID: 32563212 PMCID: PMC7581454 DOI: 10.1002/sctm.19-0317] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/04/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Fat grafting can reduce radiation‐induced fibrosis. Improved outcomes are found when fat grafts are enriched with adipose‐derived stromal cells (ASCs), implicating ASCs as key drivers of soft tissue regeneration. We have identified a subpopulation of ASCs positive for CD74 with enhanced antifibrotic effects. Compared to CD74− and unsorted (US) ASCs, CD74+ ASCs have increased expression of hepatocyte growth factor, fibroblast growth factor 2, and transforming growth factor β3 (TGF‐β3) and decreased levels of TGF‐β1. Dermal fibroblasts incubated with conditioned media from CD74+ ASCs produced less collagen upon stimulation, compared to fibroblasts incubated with media from CD74− or US ASCs. Upon transplantation, fat grafts enriched with CD74+ ASCs reduced the stiffness, dermal thickness, and collagen content of overlying skin, and decreased the relative proportions of more fibrotic dermal fibroblasts. Improvements in several extracellular matrix components were also appreciated on immunofluorescent staining. Together these findings indicate CD74+ ASCs have antifibrotic qualities and may play an important role in future strategies to address fibrotic remodeling following radiation‐induced fibrosis.
Collapse
Affiliation(s)
- Mimi R Borrelli
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Ronak A Patel
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Sandeep Adem
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Nestor M Diaz Deleon
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Abra H Shen
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jan Sokol
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Sara Yen
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Erin Y Chang
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Rahim Nazerali
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Dung Nguyen
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Arash Momeni
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Kevin C Wang
- Program in Epithelial Biology, Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA.,Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Division of Plastic Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
40
|
Huang H, Wang X, Zhang X, Wang H, Jiang W. Roxadustat attenuates experimental pulmonary fibrosis in vitro and in vivo. Toxicol Lett 2020; 331:112-121. [PMID: 32534005 DOI: 10.1016/j.toxlet.2020.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 05/15/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022]
Abstract
Roxadustat is the first orally administered, small-molecule hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitor that has been submitted for FDA regulatory approval to treat anemia secondary to chronic kidney diseases. Its usage has also been suggested for pulmonary fibrosis; however, the corresponding therapeutic effects remain to be investigated. The in vitro effects of roxadustat on cobalt chloride (CoCl2)-stimulated pulmonary fibrosis with L929 mouse fibroblasts as well as on an in vivo pulmonary fibrosismice model induced with bleomycin (BLM; intraperitoneal injection, 50 mg/kg twice a week for 4 continuous weeks) were investigated. It found that the proliferation of L929 cells was inhibited and the production of collagen I, collagen III, prolyl hydroxylase domain protein 2 (PHD2), HIF-1α, α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF), transforming growth factor-β1 (TGF-β1) and p-Smad3 were reduced relative to that in the CoCl2 or BLM group after roxadustat treatment. Roxadustat ameliorated pulmonary fibrosis by reducing the pathology score and collagen deposition as well as decreasing the expression of collagen I, collagen III, PHD2, HIF-1α, α-SMA, CTGF, TGF-β1 and p-Smad3/Smad3. Our cumulative results demonstrate that roxadustat administration can attenuate experimental pulmonary fibrosis via the inhibition of TGF-β1/Smad activation.
Collapse
Affiliation(s)
- Haidi Huang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China
| | - Xin Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China
| | - Xue Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China
| | - Hongbo Wang
- School of Pharmacy, Yantai University, Yantai, 264003, PR China
| | - Wanglin Jiang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China.
| |
Collapse
|
41
|
Kang S, Kim J, Ahn M, Kim J, Heo MG, Min DH, Won C. RNAi nanotherapy for fibrosis: highly durable knockdown of CTGF/CCN-2 using siRNA-DegradaBALL (LEM-S401) to treat skin fibrotic diseases. NANOSCALE 2020; 12:6385-6393. [PMID: 32134425 DOI: 10.1039/c9nr10305h] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Skin fibrosis occurs in a variety of human diseases but the current anti-fibrosis treatments are not sufficient. One major cause of fibrotic diseases shared across diverse organ fibrosis is uncontrolled overexpression of the connective tissue growth factor (CTGF, also known as CCN2). Here, we examine the anti-fibrotic activity of RNAi therapy utilizing siRNA against CTGF with a new drug delivery system (DDS), 'DegradaBALL', which is based on porous nanoparticles, for durable CTGF gene silencing. DegradaBALL is a modular DDS having many favorable properties for RNA delivery such as effective intracellular uptake, convenient drug loading, biocompatibility, sustained release profile and biodegradability. DegradaBALL loaded with siCTGF, named 'LEM-S401', showed highly durable and effective CTGF gene-silencing in TGF-β induced lung fibrosis and skin fibrosis model cells, A549 and HaCaT, respectively. In addition, LEM-S401 induced knockdown of collagen types I and III, which are excess extracellular matrix components in fibrotic skin in addition to CTGF in the mouse wound healing model. Most importantly, we showed that LEM-S401 effectively inhibited the formation of hypertrophic scars in wound-associated dermal fibrosis mouse models, during both the epidermis recovery and tissue remodeling process. Our findings suggest that LEM-S401 could be a highly potent therapeutic option for skin fibrotic diseases.
Collapse
Affiliation(s)
- Seounghun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
The HIPPO Transducer YAP and Its Targets CTGF and Cyr61 Drive a Paracrine Signalling in Cold Atmospheric Plasma-Mediated Wound Healing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4910280. [PMID: 32104533 PMCID: PMC7040405 DOI: 10.1155/2020/4910280] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
Reactive species play a pivotal role in orchestrating wound healing responses. They act as secondary messengers and drive redox-signalling pathways that are involved in the homeostatic, inflammatory, proliferative, and remodelling phases of wound healing. The application of Cold Atmospheric Plasma (CAP) to the wound site produces a profusion of short- and long-lived reactive species that have been demonstrated to be effective in promoting wound healing; however, knowledge of the mechanisms underlying CAP-mediated wound healing remains scarce. To address this, an in vitro coculture model was used to study the effects of CAP on wound healing and on paracrine crosstalk between dermal keratinocytes and fibroblasts. Using this coculture model, we observed a stimulatory effect on the migration ability of HaCaT cells that were cocultured with dermal fibroblasts. Additionally, CAP treatment resulted in an upregulation of the HIPPO transcription factor YAP in HaCaTs and fibroblasts. Downstream effectors of the HIPPO signalling pathway (CTGF and Cyr61) were also upregulated in dermal fibroblasts, and the administration of antioxidants could inhibit CAP-mediated wound healing and abrogate the gene expression of the HIPPO downstream effectors. Interestingly, we observed that HaCaT cells exhibited an improved cell migration rate when incubated with CAP-treated fibroblast-conditioned media compared to that observed after incubation with untreated media. An induction of CTGF and Cyr61 secretion was also observed upon CAP treatment in the fibroblast-conditioned media. Finally, exposure to recombinant CTGF and Cyr61 could also significantly improve HaCaT cell migration. In summary, our results validated that CAP activates a regenerative signalling pathway at the onset of wound healing. Additionally, CAP also stimulated a reciprocal communication between dermal fibroblasts and keratinocytes, resulting in improved keratinocyte wound healing in coculture.
Collapse
|
43
|
Wu SH, Lu IC, Tai MH, Chai CY, Kwan AL, Huang SH. Erythropoietin Alleviates Burn-induced Muscle Wasting. Int J Med Sci 2020; 17:33-44. [PMID: 31929736 PMCID: PMC6945565 DOI: 10.7150/ijms.38590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Burn injury induces long-term skeletal muscle pathology. We hypothesized EPO could attenuate burn-induced muscle fiber atrophy. Methods: Rats were allocated into four groups: a sham burn group, an untreated burn group subjected to third degree hind paw burn, and two burn groups treated with weekly or daily EPO for four weeks. Gastrocnemius muscle was analyzed at four weeks post-burn. Results: EPO attenuated the reduction of mean myofiber cross-sectional area post-burn and the level of the protective effect was no significant difference between two EPO-treated groups (p=0.784). Furthermore, EPO decreased the expression of atrophy-related ubiquitin ligase, atrogin-1, which was up-regulated in response to burn. Compared to untreated burn rats, those receiving weekly or daily EPO groups had less cell apoptosis by TUNEL assay. EPO decreased the expression of cleaved caspase 3 (key factor in the caspase-dependent pathway) and apoptosis-inducing factor (implicated in the caspase-independent pathway) after burn. Furthermore, EPO alleviated connective tissue overproduction following burn via transforming growth factor beta 1-Smad2/3 pathway. Daily EPO group caused significant erythrocytosis compared with untreated burn group but not weekly EPO group. Conclusion: EPO therapy attenuated skeletal muscle apoptosis and fibrosis at four weeks post-burn. Weekly EPO may be a safe and effective option in muscle wasting post-burn.
Collapse
Affiliation(s)
- Sheng-Hua Wu
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - I-Cheng Lu
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Hong Tai
- Center for Neuroscience, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chee-Yin Chai
- Departments of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Hung Huang
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
44
|
Wei YH, Liao SL, Wang SH, Wang CC, Yang CH. Simvastatin and ROCK Inhibitor Y-27632 Inhibit Myofibroblast Differentiation of Graves' Ophthalmopathy-Derived Orbital Fibroblasts via RhoA-Mediated ERK and p38 Signaling Pathways. Front Endocrinol (Lausanne) 2020; 11:607968. [PMID: 33597925 PMCID: PMC7883643 DOI: 10.3389/fendo.2020.607968] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor-β (TGF-β)-induced differentiation of orbital fibroblasts into myofibroblasts is an important pathogenesis of Graves' ophthalmopathy (GO) and leads to orbital tissue fibrosis. In the present study, we explored the antifibrotic effects of simvastatin and ROCK inhibitor Y-27632 in primary cultured GO orbital fibroblasts and tried to explain the molecular mechanisms behind these effects. Both simvastatin and Y-27632 inhibited TGF-β-induced α-smooth muscle actin (α-SMA) expression, which serves as a marker of fibrosis. The inhibitory effect of simvastatin on TGF-β-induced RhoA, ROCK1, and α-SMA expression could be reversed by geranylgeranyl pyrophosphate, an intermediate in the biosynthesis of cholesterol. This suggested that the mechanism of simvastatin-mediated antifibrotic effects may involve RhoA/ROCK signaling. Furthermore, simvastatin and Y-27632 suppressed TGF-β-induced phosphorylation of ERK and p38. The TGF-β-mediated α-SMA expression was suppressed by pharmacological inhibitors of p38 and ERK. These results suggested that simvastatin inhibits TGF-β-induced myofibroblast differentiation via suppression of the RhoA/ROCK/ERK and p38 MAPK signaling pathways. Thus, our study provides evidence that simvastatin and ROCK inhibitors may be potential therapeutic drugs for the prevention and treatment of orbital fibrosis in GO.
Collapse
Affiliation(s)
- Yi-Hsuan Wei
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Lang Liao
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sen-Hsu Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Chun Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan
- *Correspondence: Chang-Hao Yang,
| |
Collapse
|
45
|
Ejaz A, Greenberger JS, Rubin PJ. Understanding the mechanism of radiation induced fibrosis and therapy options. Pharmacol Ther 2019; 204:107399. [DOI: 10.1016/j.pharmthera.2019.107399] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
|
46
|
Shimbo A, Kajiyama H, Tamauchi S, Yoshikawa N, Ikeda Y, Nishino K, Suzuki S, Niimi K, Sakata J, Kikkawa F. Expression of connective tissue growth factor as a prognostic indicator and its possible involvement in the aggressive properties of epithelial ovarian carcinoma. Oncol Rep 2019; 42:2323-2332. [PMID: 31578579 PMCID: PMC6826307 DOI: 10.3892/or.2019.7352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/03/2019] [Indexed: 12/27/2022] Open
Abstract
Recently, connective tissue growth factor (CTGF) was demonstrated to be associated with aggressive characteristics, including proliferation, invasion and metastasis, in a number of malignancies. Here, we investigated the expression and function of CTGF in epithelial ovarian carcinoma (EOC) to clarify its molecular mechanism and clinical significance. Paraffin sections from clinical samples of EOC (N=104) were immunostained with the CTGF antibody, and then the staining positivity was semiquantitatively examined. Moreover, we explored the role of CTGF expression in the migration-promoting effect on and chemoresistance of EOC cells. The results revealed that of the 104 EOC patients, the low and high CTGF staining expression rates were 65 (62.5%) and 39 (37.5%), respectively. Patients belonging to the higher-level CTGF group showed poorer progression-free (PFS) and overall survival (OS) rates than those in the lower-level group [PFS (log-rank: P=0.0076) and OS (log-rank: P=0.0078), respectively]. Multivariable analysis showed that CTGF expression was a significant predictor of poorer PFS and OS [PFS: HR (high vs. low): 1.837, 95% CI: 1.023–3.289 (P=0.0418); OS: HR: 2.141, 95% CI: 1.077–4.296 (P=0.0300)]. In in vitro studies, in acquired paclitaxel (PTX)-resistant EOC cells, the silencing of CTGF expression led to the restoration of PTX sensitivity. Furthermore, we confirmed that the TGF-β-dependent migration-promoting effect on these CTGF-depleted cells was completely inhibited. In conclusion, the results of the present study suggest the possible involvement of CTGF in the migration-promoting effect and chemoresistance of EOC, suggesting that it may be a target for overcoming the malignant properties of EOC.
Collapse
Affiliation(s)
- Akiko Shimbo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| | - Satoshi Tamauchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| | - Yoshiki Ikeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| | - Kimihiro Nishino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| | - Shiro Suzuki
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| | - Kaoru Niimi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| | - Jun Sakata
- Department of Gynecology, Graduate School of Medicine, Aichi Cancer Center Hospital, Nagoya, Aichi 464‑8681, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| |
Collapse
|
47
|
Yang IH, Rose GE, Ezra DG, Bailly M. Macrophages promote a profibrotic phenotype in orbital fibroblasts through increased hyaluronic acid production and cell contractility. Sci Rep 2019; 9:9622. [PMID: 31270379 PMCID: PMC6610127 DOI: 10.1038/s41598-019-46075-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/21/2019] [Indexed: 12/29/2022] Open
Abstract
Graves’ orbitopathy (GO) is an autoimmune inflammatory disease affecting the orbit. Orbital fibroblasts are a key component in GO pathogenesis, which includes inflammation, adipogenesis, hyaluronic acid (HA) secretion, and fibrosis. Macrophages are thought to participate in the immunological stage of GO, but whether they can directly affect the fibroblasts phenotype and modulate disease progression is unknown. We previously showed that GO adipogenic and fibrotic phenotypes could be modelled in a pseudo-physiological 3D environment in vitro. Here, we introduced macrophages in this 3D culture model to investigate role for macrophages in modulating adipogenesis, HA production, and contractility in orbital fibroblasts. Macrophages had a minimal effect on lipid droplet formation in fibroblasts, but significantly increased HA production and cell contractility, suggesting that they may promote the fibrotic phenotype. This effect was found to be mediated at least in part through phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) activation and linked to an increase in actin polymerization and protrusive activity in fibroblasts. Overall our work shows for the first time a direct role for macrophages in modulating the fibroblasts’ phenotype in GO, supporting a role for macrophages in the progression of the fibrotic phenotype through induction of HA production and stimulation of the contractile phenotype in orbital fibroblasts.
Collapse
Affiliation(s)
- I-Hui Yang
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK.,Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Geoffrey E Rose
- Department of Adnexal Surgery, Moorfields Eye Hospital, London, EC1V 2PD, UK
| | - Daniel G Ezra
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK.,Department of Adnexal Surgery, Moorfields Eye Hospital, London, EC1V 2PD, UK.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital, City Road, London, EC1V 2PD, UK
| | - Maryse Bailly
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK.
| |
Collapse
|
48
|
Peng C, Zou X, Xia W, Gao H, Li Z, Liu N, Xu Z, Gao C, He Z, Niu W, Fang R, Biswas S, Agrez M, Zhi X, Niu J. Integrin αvβ6 plays a bi-directional regulation role between colon cancer cells and cancer-associated fibroblasts. Biosci Rep 2018; 38:BSR20180243. [PMID: 30355650 PMCID: PMC6435516 DOI: 10.1042/bsr20180243] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 09/20/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022] Open
Abstract
Tumor microenvironment (TME) is the cellular environment in which tumor exists, and it contributes to tumor formation and progression. The TME is composed of tumor cells, stromal cells, cytokines, and chemotactic factors of which fibroblasts are the main cellular components. In our present study, we found that colorectal cancer (CRC) cells expressing integrin αvβ6 clearly could induce morphological changes in inactive fibroblasts and increased the expression of activated fibroblast markers such as α-smooth muscle actin (α-SMA) and fibroblast-activating protein (FAP). Those activated fibroblasts in the TME are called cancer-associated fibroblasts (CAFs). In order to investigate the mechanism by which CRC cells expressing integrin αvβ6 activated CAFs, a series of assays have been carried out in the follow-up. We found that CRC cells could secrete inactive transforming growth factor β (TGF-β); however, integrin αvβ6 activated TGF-β, which subsequently activated fibroblasts. This process was disrupted by knockdown of integrin αvβ6. In contrast, activated fibroblasts could promote CRC cell invasion. In particular, the strengthening effect on expression of integrin αvβ6 in colon cancer cells was obvious. Additionally, we found that CAFs could secrete stromal cell-derived factor-1 (SDF-1) and promote CRC cell metastasis in distant organs via the SDF-1/C-X-C chemokine receptor type 4 (CXCR4) axis. Taken together, we assumed that CRC cells and CAFs activated one another and worked together to promote cancer progression, with integrin αvβ6 playing a role in the bi-directional regulation of these cells. Hence, integrin αvβ6 may serve as a therapeutic target for the future CRC treatment.
Collapse
Affiliation(s)
- Cheng Peng
- Department of General Surgery, QiLu Hospital, Shandong University, Jinan, Shandong, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Shandong University, Jinan, Shandong, China
| | - Xueqing Zou
- Department of General Surgery, QiLu Hospital, Shandong University, Jinan, Shandong, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Shandong University, Jinan, Shandong, China
| | - Wanying Xia
- Department of General Surgery, QiLu Hospital, Shandong University, Jinan, Shandong, China
| | - Huijie Gao
- Department of General Surgery, QiLu Hospital, Shandong University, Jinan, Shandong, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Shandong University, Jinan, Shandong, China
| | - Zequn Li
- Department of General Surgery, QiLu Hospital, Shandong University, Jinan, Shandong, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Shandong University, Jinan, Shandong, China
| | - Naiqing Liu
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Shandong University, Jinan, Shandong, China
- Department of General Surgery, Linyi Central Hospital, Linyi, Shandong, China
| | - Zongquan Xu
- Department of General Surgery, Jiangxi Provincial Tumor Hospital, Nanchang, Jiangxi, China
| | - Chao Gao
- Department of General Surgery, QiLu Hospital, Shandong University, Jinan, Shandong, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Shandong University, Jinan, Shandong, China
| | - Zhaobin He
- Department of General Surgery, QiLu Hospital, Shandong University, Jinan, Shandong, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Shandong University, Jinan, Shandong, China
| | - Weibo Niu
- Department of General Surgery, QiLu Hospital, Shandong University, Jinan, Shandong, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Shandong University, Jinan, Shandong, China
| | - Ruliang Fang
- Department of General Surgery, QiLu Hospital, Shandong University, Jinan, Shandong, China
- The Institute of Laparoscopic Minimally Invasive Surgery of Shandong University, Shandong University, Jinan, Shandong, China
| | - Siddhartha Biswas
- Department of General Surgery, QiLu Hospital, Shandong University, Jinan, Shandong, China
| | - Michael Agrez
- Newcastle Bowel Cancer Research Collaborative, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Xuting Zhi
- Department of General Surgery, QiLu Hospital, Shandong University, Jinan, Shandong, China
| | - Jun Niu
- Department of General Surgery, QiLu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
49
|
Thankam FG, Palanikumar G, Fitzgibbons RJ, Agrawal DK. Molecular Mechanisms and Potential Therapeutic Targets in Incisional Hernia. J Surg Res 2018; 236:134-143. [PMID: 30694748 DOI: 10.1016/j.jss.2018.11.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/27/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022]
Abstract
The pathophysiology underlying the formation, progression, and surgical healing of incisional hernia (IH) that develops as a major complication associated with abdominal laparotomy is poorly understood. The proposed mechanisms include the switch of collagen phenotype and the proliferation of abnormal fibroblasts after surgery. The focus of this article was to critically review the cellular, biochemical, and potential molecular events associated with the development of IH. The disturbance in collagen homeostasis with alterations in the expression of collagen subtypes, including type 1, type 3, type 4, and type 5, and impairment in the transdifferentiation of fibroblasts to myofibroblasts are discussed. The phenotype switch of wound-repair fibroblasts results in mechanically compromised extracellular matrix that triggers the proliferation of abnormal fibroblasts. High-mobility group box 1 could be involved in wound progression, whereas signaling events mediated by tumor necrosis factor β1, connective tissue growth factor, lysyl oxidase, and hypoxia-inducible factor 1 play significant role in the wound healing response. Thus, the ratio of tumor necrosis factorβ1: high-mobility group box 1 could be a critical determinant of the underlying pathology. Potential target sites for therapeutic intervention in the management of IH are recognized.
Collapse
Affiliation(s)
- Finosh G Thankam
- Departments of Clinical and Translational Science and Surgery, Creighton University School of Medicine, Omaha, Nebraska
| | - Gunasekar Palanikumar
- Departments of Clinical and Translational Science and Surgery, Creighton University School of Medicine, Omaha, Nebraska
| | - Robert J Fitzgibbons
- Departments of Clinical and Translational Science and Surgery, Creighton University School of Medicine, Omaha, Nebraska
| | - Devendra K Agrawal
- Departments of Clinical and Translational Science and Surgery, Creighton University School of Medicine, Omaha, Nebraska.
| |
Collapse
|