1
|
Zhao Z, Wang R, Yang X, Jia J, Zhang Q, Ye S, Man S, Ma L. Machine Learning-Assisted, Dual-Channel CRISPR/Cas12a Biosensor-In-Microdroplet for Amplification-Free Nucleic Acid Detection for Food Authenticity Testing. ACS NANO 2024; 18:33505-33519. [PMID: 39620398 DOI: 10.1021/acsnano.4c10823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The development of novel detection technology for meat species authenticity is imperative. Here, we developed a machine learning-supported, dual-channel biosensor-in-microdroplet platform for meat species authenticity detection named CC-drop (CRISPR/Cas12a digital single-molecule microdroplet biosensor). This strategy allowed us to quickly identify and analyze animal-derived components in foods. This biosensor was enabled by CRISPR/Cas12a-based fluorescence lighting-up detection, and the nucleic acid signals can be recognized by a Cas12a-crRNA binary complex to trigger the trans-cleavage of any by-stander reporter single-stranded (ss) DNA, in which nucleic acid signals can be converted and amplified to fluorescent readouts. The ultralocalized microdroplet reactor was constructed by reducing the reaction volume from up to picoliter to accommodate the aforementioned reaction to further enhance the sensitivity to even render an amplification-free nucleic acid detection. Moreover, we established a smartphone App coupled with a random forest machine learning model based on parameters such as area, fluorescent intensity, and counting number to ensure the accuracy of image recording and processing. The sample-to-result time was within 80 min. Importantly, the proposed biosensor was able to accurately detect the ND1 (pork-specific) and IL-2 (duck-specific) genes in deep processed meat-derived foods that usually had truncated DNA, and the results were more robust and practical than conventional real-time polymerase chain reaction after a side-by-side comparison. All in all, the proposed biosensor can be expected to be used for rapid food authenticity and other nucleic acid detections in the future.
Collapse
Affiliation(s)
- Zhiying Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Roumeng Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinqi Yang
- College of Artificial Intelligence, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jingyu Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qiang Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- Branch of Tianjin Third Central Hospital, Tianjin 300170, China
| | - Shengying Ye
- Pharmacy Department, The 983th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Tianjin 300142, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
2
|
Ankill J, Zhao Z, Tekpli X, Kure EH, Kristensen VN, Mathelier A, Fleischer T. Integrative pan-cancer analysis reveals a common architecture of dysregulated transcriptional networks characterized by loss of enhancer methylation. PLoS Comput Biol 2024; 20:e1012565. [PMID: 39556603 DOI: 10.1371/journal.pcbi.1012565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Aberrant DNA methylation contributes to gene expression deregulation in cancer. However, these alterations' precise regulatory role and clinical implications are still not fully understood. In this study, we performed expression-methylation Quantitative Trait Loci (emQTL) analysis to identify deregulated cancer-driving transcriptional networks linked to CpG demethylation pan-cancer. By analyzing 33 cancer types from The Cancer Genome Atlas, we identified and confirmed significant correlations between CpG methylation and gene expression (emQTL) in cis and trans, both across and within cancer types. Bipartite network analysis of the emQTL revealed groups of CpGs and genes related to important biological processes involved in carcinogenesis including proliferation, metabolism and hormone-signaling. These bipartite communities were characterized by loss of enhancer methylation in specific transcription factor binding regions (TFBRs) and the CpGs were topologically linked to upregulated genes through chromatin loops. Penalized Cox regression analysis showed a significant prognostic impact of the pan-cancer emQTL in many cancer types. Taken together, our integrative pan-cancer analysis reveals a common architecture where hallmark cancer-driving functions are affected by the loss of enhancer methylation and may be epigenetically regulated.
Collapse
Affiliation(s)
- Jørgen Ankill
- Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Zhi Zhao
- Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Xavier Tekpli
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Elin H Kure
- Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Vessela N Kristensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Anthony Mathelier
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Norway, Oslo, Norway
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Yaşar B, Boskovic N, Ivask M, Weltner J, Jouhilahti EM, Vill P, Skoog T, Jaakma Ü, Kere J, Bürglin TR, Katayama S, Org T, Kurg A. Molecular cloning of PRD-like homeobox genes expressed in bovine oocytes and early IVF embryos. BMC Genomics 2024; 25:1048. [PMID: 39506635 PMCID: PMC11542365 DOI: 10.1186/s12864-024-10969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Embryonic genome activation (EGA) is a critical step in early embryonic development, as it marks the transition from relying on maternal factors to the initiation of transcription from embryo's own genome. The factors associated with EGA are not well understood and need further investigation. PRD-like (PRDL) homeodomain transcription factors (TFs) are considered to play crucial roles in this early event during development but these TFs have evolved differently, even within mammalian lineages. Different numbers of PRDL TFs have been predicted in bovine (Bos taurus); however, their divergent evolution requires species-specific confirmation and functional investigations. RESULTS In this study, we conducted molecular cloning of mRNAs for the PRDL TFs ARGFX, DUXA, LEUTX, NOBOX, TPRX1, TPRX2, and TPRX3 in bovine oocytes or in vitro fertilized (IVF) preimplantation embryos. Our results confirmed the expression of PRDL TF genes in early bovine development at the cDNA level and uncovered their structures. For each investigated PRDL TF gene, we isolated at least one homeodomain-encoding cDNA fragment, indicative of DNA binding and thus potential role in transcriptional regulation in developing bovine embryos. Additionally, our cDNA cloning approach allowed us to reveal breed-related differences in bovine, as evidenced by the identification of a high number of single nucleotide variants (SNVs) across the PRDL class homeobox genes. Subsequently, we observed the prediction of the 9aa transactivation domain (9aaTAD) motif in the putative protein sequence of TPRX3 leading us to conduct functional analysis of this gene. We demonstrated that the TPRX3 overexpression in bovine fibroblast induces not only protein-coding genes but also short noncoding RNAs involved in splicing and RNA editing. We supported this finding by identifying a shared set of genes between our and published bovine early embryo development datasets. CONCLUSIONS Providing full-length cDNA evidence for previously predicted homeobox genes that belong to PRDL class improves the annotation of the bovine genome. Updating the annotation with seven developmentally-important genes will enhance the accuracy of RNAseq analysis with datasets derived from bovine preimplantation embryos. In addition, the absence of TPRX3 in humans highlights the species-specific and TF-specific regulation of biological processes during early embryo development.
Collapse
Affiliation(s)
- Barış Yaşar
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden.
| | - Nina Boskovic
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Marilin Ivask
- Chair of Animal Breeding and Biotechnology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Jere Weltner
- Folkhälsan Research Centre, Helsinki, Finland
- Stem Cells and Metabolism and Research Program, University of Helsinki, Helsinki, Finland
| | - Eeva-Mari Jouhilahti
- Folkhälsan Research Centre, Helsinki, Finland
- Stem Cells and Metabolism and Research Program, University of Helsinki, Helsinki, Finland
| | - Piibe Vill
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Tiina Skoog
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Ülle Jaakma
- Chair of Animal Breeding and Biotechnology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Juha Kere
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
- Folkhälsan Research Centre, Helsinki, Finland
- Stem Cells and Metabolism and Research Program, University of Helsinki, Helsinki, Finland
| | - Thomas R Bürglin
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Shintaro Katayama
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Sweden
- Folkhälsan Research Centre, Helsinki, Finland
- Stem Cells and Metabolism and Research Program, University of Helsinki, Helsinki, Finland
| | - Tõnis Org
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- Centre for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Ants Kurg
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
4
|
Mattar CN, Chew WL, Lai PS. Embryo and fetal gene editing: Technical challenges and progress toward clinical applications. Mol Ther Methods Clin Dev 2024; 32:101229. [PMID: 38533521 PMCID: PMC10963250 DOI: 10.1016/j.omtm.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Gene modification therapies (GMTs) are slowly but steadily making progress toward clinical application. As the majority of rare diseases have an identified genetic cause, and as rare diseases collectively affect 5% of the global population, it is increasingly important to devise gene correction strategies to address the root causes of the most devastating of these diseases and to provide access to these novel therapies to the most affected populations. The main barriers to providing greater access to GMTs continue to be the prohibitive cost of developing these novel drugs at clinically relevant doses, subtherapeutic effects, and toxicity related to the specific agents or high doses required. In vivo strategy and treating younger patients at an earlier course of their disease could lower these barriers. Although currently regarded as niche specialties, prenatal and preconception GMTs offer a robust solution to some of these barriers. Indeed, treating either the fetus or embryo benefits from economy of scale, targeting pre-pathological tissues in the fetus prior to full pathogenesis, or increasing the likelihood of complete tissue targeting by correcting pluripotent embryonic cells. Here, we review advances in embryo and fetal GMTs and discuss requirements for clinical application.
Collapse
Affiliation(s)
- Citra N.Z. Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
| | - Wei Leong Chew
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, 60 Biopolis St, Singapore, Singapore 138672
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
| |
Collapse
|
5
|
McGraw MS, Bishman JA, Daigneault BW. Efficiency of embryo complementation and pluripotency maintenance following multiple passaging of in vitro-derived bovine embryos. Reprod Fertil Dev 2024; 36:RD24018. [PMID: 38902907 DOI: 10.1071/rd24018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
Context Current methods to obtain bovine embryos of high genetic merit include approaches that require skilled techniques for low-efficiency cloning strategies. Aims The overall goal herein was to identify the efficacy of alternative methods for producing multiple embryos through blastomere complementation while determining maintenance of cell pluripotency. Methods Bovine oocytes were fertilised in vitro to produce 4-cell embryos from which blastomeres were isolated and cultured as 2-cell aggregates using a well-of-the-well system. Aggregates were returned to incubation up to 7days (Passage 1). A second passage of complement embryos was achieved by splitting 4-cell Passage 1 embryos. Passaged embryos reaching the blastocyst stage were characterised for cell number and cell lineage specification in replicate with non-reconstructed zona-intact embryos. Key results Passage 1 and 2 embryo complements yielded 29% and 25% blastocyst development, respectively. Passage 1 embryos formed blastocysts, but with a reduction in expression of SOX2 and decreased size compared to non-reconstructed zona-intact embryos. Passage 2 embryos had a complete lack of SOX2 expression and a reduction in transcript abundance of SOX2 and SOX17, suggesting loss of pluripotency markers that primarily affected inner cell mass (ICM) and hypoblast formation. Conclusions In vitro fertilised bovine embryos can be reconstructed with multiple passaging to generate genetically identical embryos. Increased passaging drives trophectoderm cell lineage specification while compromising ICM formation. Implications These results may provide an alternative strategy for producing genetically identical bovine embryos through blastomere complementation with applications towards the development of trophoblast and placental models of early development.
Collapse
Affiliation(s)
- Maura S McGraw
- Department of Animal Sciences, University of Florida, 2250 Shealy Drive, Gainesville, FL 32611, USA
| | - Jordan A Bishman
- Department of Animal Sciences, University of Florida, 2250 Shealy Drive, Gainesville, FL 32611, USA
| | - Bradford W Daigneault
- Department of Animal Sciences, University of Florida, 2250 Shealy Drive, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Scatolin GN, Ming H, Wang Y, Iyyappan R, Gutierrez-Castillo E, Zhu L, Sagheer M, Song C, Bondioli K, Jiang Z. Single-cell transcriptional landscapes of bovine peri-implantation development. iScience 2024; 27:109605. [PMID: 38633001 PMCID: PMC11022056 DOI: 10.1016/j.isci.2024.109605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Supporting healthy pregnancy outcomes requires a comprehensive understanding of the molecular and cellular programs of peri-implantation development, when most pregnancy failure occurs. Here, we present single-cell transcriptomes of bovine peri-implantation embryo development at day 12, 14, 16, and 18 post-fertilization. We defined the cellular composition and gene expression of embryonic disc, hypoblast, and trophoblast lineages in bovine peri-implantation embryos, and identified markers and pathway signaling that represent distinct stages of bovine peri-implantation lineages; the expression of selected markers was validated in peri-implantation embryos. Using detailed time-course transcriptomic analyses, we revealed a previously unrecognized primitive trophoblast cell lineage. We also characterized conserved and divergence peri-implantation lineage programs between bovine and other mammalian species. Finally, we established cell-cell communication signaling underlies embryonic and extraembryonic cell interaction to ensure proper early development. These data provide foundational information to discover essential biological signaling underpinning bovine peri-implantation development.
Collapse
Affiliation(s)
| | - Hao Ming
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Yinjuan Wang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Rajan Iyyappan
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | | | - Linkai Zhu
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Masroor Sagheer
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Chao Song
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Kenneth Bondioli
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Zongliang Jiang
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Cañón-Beltrán K, Cajas YN, Almpanis V, Egido SG, Gutierrez-Adan A, González EM, Rizos D. MicroRNA-148b secreted by bovine oviductal extracellular vesicles enhance embryo quality through BPM/TGF-beta pathway. Biol Res 2024; 57:11. [PMID: 38520036 PMCID: PMC10960404 DOI: 10.1186/s40659-024-00488-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/29/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) and their cargoes, including MicroRNAs (miRNAs) play a crucial role in cell-to-cell communication. We previously demonstrated the upregulation of bta-mir-148b in EVs from oviductal fluid of cyclic cows. This miRNA is linked to the TGF-β pathway in the cell proliferation. Our aim was to verify whether miR-148b is taken up by embryos through gymnosis, validate its target genes, and investigate the effect of miR-148b supplementation on early embryo development and quality. METHODS Zygotes were cultured in SOF + 0.3% BSA (Control) or supplemented with: 1 µM miR-148b mimics during: D1-D7 (miR148b) or D1-D4 (miR148b-OV: representing miRNA effect in the oviduct) or D4-D7 (miR148b-UT: representing miRNA effect in the uterus) or 1 µM control mimics was used during: D1-D7 (CMimic). Embryos at ≥ 16-cells and D7 blastocysts (BD7) were collected to examine the mRNA abundance of transcripts linked to the TGF-β pathway (TGFBR2, SMAD1, SMAD2, SMAD3, SMAD5, BMPR2, RPS6KB1, POU5F1, NANOG), total cell number (TC), trophectoderm (TE), and inner cell mass (ICM) were also evaluated. One-way ANOVA was used for all analyses. RESULTS We demonstrated that miR-148b can be taken up in both 16-cell embryos and BD7 by gymnosis, and we observed a decrease in SMAD5 mRNA, suggesting it's a potential target of miR-148b. Cleavage and blastocysts rates were not affected in any groups; however, supplementation of miR-148b mimics had a positive effect on TC, TE and ICM, with values of 136.4 ± 1.6, 92.5 ± 0.9, 43.9 ± 1.3 for miR148b and 135.3 ± 1.5, 92.6 ± 1.2, 42.7 ± 0.8, for miR148b-OV group. Furthermore, mRNA transcripts of SMAD1 and SMAD5 were decreased (P ≤ 0.001) in 16-cell embryos and BD7 from miR148b and miR148b-OV groups, while POU5F1 and NANOG were upregulated (P ≤ 0.001) in BD7 and TGFBR2 was only downregulated in 16-cell embryos. pSMAD1/5 levels were higher in the miR148b and miR148b-OV groups. CONCLUSIONS Our findings suggest that supplementation of bta-miR-148b mimics during the entire culture period (D1 - D7) or from D1 - D4 improves embryo quality and influences the TGF-β signaling pathway by altering the transcription of genes associated with cellular differentiation and proliferation. This highlights the importance of miR-148b on embryo quality and development.
Collapse
Affiliation(s)
- Karina Cañón-Beltrán
- Department of Biochemistry and Molecular Biology, Veterinary Faculty, Complutense University of Madrid (UCM), Madrid, Spain
- Programa de Medicina Veterinaria y Zootecnia, Corporación Universitaria del Huila (CORHUILA), Grupo Kyron, Huila, Colombia
| | - Yulia N Cajas
- Department Agrarian Production, Technical University of Madrid (UPM), Madrid, Spain
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja (UTPL), Loja, Ecuador
| | - Vasileios Almpanis
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (CSIC-INIA), Madrid, Spain
| | - Sandra Guisado Egido
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (CSIC-INIA), Madrid, Spain
| | - Alfonso Gutierrez-Adan
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (CSIC-INIA), Madrid, Spain
| | - Encina M González
- Department of Anatomy and Embryology, Veterinary Faculty, Complutense University of Madrid (UCM), Madrid, Spain.
| | - Dimitrios Rizos
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (CSIC-INIA), Madrid, Spain.
| |
Collapse
|
8
|
Biase FH, Schettini G. Protocol for the electroporation of CRISPR-Cas for DNA and RNA targeting in Bos taurus zygotes. STAR Protoc 2024; 5:102940. [PMID: 38460133 PMCID: PMC10941008 DOI: 10.1016/j.xpro.2024.102940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 02/21/2024] [Indexed: 03/11/2024] Open
Abstract
The use of CRISPR-Cas9 ribonucleoproteins has revolutionized manipulation of genomes. Here, we present a protocol for the electroporation of CRISPR-Cas for DNA and RNA targeting in Bos taurus zygotes. First, we describe steps for production and preparation of presumptive zygotes for electroporation. The first electroporation introduces ribonucleoproteins formed by Cas9D10A with two guide RNAs to target DNA, and the second introduces the same ribonucleoprotein complex to target DNA plus Cas13a with one guide RNA to target RNAs. For complete details on the use and execution of this protocol, please refer to Nix et al.1.
Collapse
Affiliation(s)
- Fernando H Biase
- Virginia Polytechnique Institute and State University, Blacksburg, VA 24061, USA.
| | - Gustavo Schettini
- Virginia Polytechnique Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
9
|
Almubarak A, Lee S, Yu IJ, Jeon Y. Effects of Nobiletin supplementation on the freezing diluent on porcine sperm cryo-survival and subsequent in vitro embryo development. Theriogenology 2024; 214:314-322. [PMID: 37956580 DOI: 10.1016/j.theriogenology.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/29/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Nobiletin (NOB) is a bioflavonoid compound isolated from citrus fruit peels. The present study aimed to elucidate whether NOB facilitates the porcine sperm cryosurvival and embryo development after in vitro fertilization (IVF). To this end, spermatozoa were diluted and cryopreserved in a freezing extender supplemented with 0 (control), 50, 100, 150, and 200 μM Nobiletin. The kinematic patterns of frozen-thawed (FT) sperm were assessed after 30 and 90 min incubation using a Sperm Class Analyzer (SCA). Viability, acrosome integrity, and mitochondrial membrane potential (MMP) were measured by fluorescence microscopy 30 min after thawing using SYBR-14/PI, PSA/FITC, and R123/PI, respectively. Lipid peroxidation was determined using MDA assay after incubation for 90 min. The addition of 100 μM and 150 μM NOB to the extender significantly improved sperm progressive motility, and acrosome integrity compared to the control group (P < 0.05). The proportion of viable spermatozoa was significantly higher in the 150 μM NOB group. MDA levels were less in 50 μM and 150 μM NOB treated groups compared to the control. In addition, IVF with FT sperm was used to assess the embryo developmental competence. Treatment with 150 μM NOB before cryopreservation increased the cleavage and blastocyst formation rates compared to the control group. Furthermore, the relative expression of POU5F1 and AMPK, genes related to pluripotency and cell differentiation were significantly upregulated in embryos resulting from NOB-treated sperm compared to the control group. These results suggest that Nobiletin is a functionally novel phytochemical to mitigate oxidative stress during the freezing-thawing of porcine spermatozoa as reflected by improved FT sperm quality and IVF outcome.
Collapse
Affiliation(s)
- Areeg Almubarak
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea; Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Sudan University of Science and Technology, P.O. Box 204, Hilat Kuku, Khartoum North, 11111, Sudan
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 9 34134, South Korea
| | - Il-Jeoung Yu
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Yubyeol Jeon
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| |
Collapse
|
10
|
Punetha M, Kumar D, Saini S, Chaudhary S, Bajwa KK, Sharma S, Mangal M, Yadav PS, Green JA, Whitworth K, Datta TK. Optimising Electroporation Condition for CRISPR/Cas-Mediated Knockout in Zona-Intact Buffalo Zygotes. Animals (Basel) 2023; 14:134. [PMID: 38200865 PMCID: PMC10778295 DOI: 10.3390/ani14010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Somatic cell nuclear transfer or cytoplasm microinjection has widely been used to produce genome-edited farm animals; however, these methods have several drawbacks which reduce their efficiency. In the present study, we describe an easy adaptable approach for the introduction of mutations using CRISPR-Cas9 electroporation of zygote (CRISPR-EP) in buffalo. The goal of the study was to determine the optimal conditions for an experimental method in which the CRISPR/Cas9 system is introduced into in vitro-produced buffalo zygotes by electroporation. Electroporation was performed using different combinations of voltage, pulse and time, and we observed that the electroporation in buffalo zygote at 20 V/mm, 5 pulses, 3 msec at 10 h post insemination (hpi) resulted in increased membrane permeability and higher knockout efficiency without altering embryonic developmental potential. Using the above parameters, we targeted buffalo POU5F1 gene as a proof of concept and found no variations in embryonic developmental competence at cleavage or blastocyst formation rate between control, POU5F1-KO, and electroporated control (EC) embryos. To elucidate the effect of POU5F1-KO on other pluripotent genes, we determined the relative expression of SOX2, NANOG, and GATA2 in the control (POU5F1 intact) and POU5F1-KO-confirmed blastocyst. POU5F1-KO significantly (p ≤ 0.05) altered the expression of SOX2, NANOG, and GATA2 in blastocyst stage embryos. In conclusion, we standardized an easy and straightforward protocol CRISPR-EP method that could be served as a useful method for studying the functional genomics of buffalo embryos.
Collapse
Affiliation(s)
- Meeti Punetha
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, Haryana, India
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, Haryana, India
| | - Sheetal Saini
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, Haryana, India
| | - Suman Chaudhary
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, Haryana, India
| | - Kamlesh Kumari Bajwa
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, Haryana, India
| | - Surabhi Sharma
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, Haryana, India
| | - Manu Mangal
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, Haryana, India
| | - Prem S. Yadav
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, Haryana, India
| | - Jonathan A. Green
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Kristin Whitworth
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Tirtha K. Datta
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, Haryana, India
| |
Collapse
|
11
|
Aguila L, Nociti RP, Sampaio RV, Therrien J, Meirelles FV, Felmer RN, Smith LC. Haploid androgenetic development of bovine embryos reveals imbalanced WNT signaling and impaired cell fate differentiation†. Biol Reprod 2023; 109:821-838. [PMID: 37788061 DOI: 10.1093/biolre/ioad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/09/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023] Open
Abstract
Haploid embryos have contributed significantly to our understanding of the role of parental genomes in development and can be applied to important biotechnology for human and animal species. However, development to the blastocyst stage is severely hindered in bovine haploid androgenetic embryos (hAE). To further our understanding of such developmental arrest, we performed a comprehensive comparison of the transcriptomic profile of morula-stage embryos, which were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) of transcripts associated with differentiation in haploid and biparental embryos. Among numerous disturbances, results showed that pluripotency pathways, especially the wingless-related integration site (WNT) signaling, were particularly unbalanced in hAE. Moreover, transcript levels of KLF4, NANOG, POU5F1, SOX2, CDX2, CTNNBL1, AXIN2, and GSK3B were noticeably altered in hAE, suggesting disturbance of pluripotency and canonical WNT pathways. To evaluate the role of WNT on hAE competence, we exposed early Day-5 morula stage embryos to the GSK3B inhibitor CHIR99021. Although no alterations were observed in pluripotency and WNT-related transcripts, exposure to CHIR99021 improved their ability to reach the blastocysts stage, confirming the importance of the WNT pathway in the developmental outcome of bovine hAE.
Collapse
Affiliation(s)
- Luis Aguila
- Centre de Recherche en Reproduction et Fértilité (CRRF), Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile
| | - Ricardo P Nociti
- Centre de Recherche en Reproduction et Fértilité (CRRF), Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, São Paulo, Brazil
| | - Rafael V Sampaio
- Centre de Recherche en Reproduction et Fértilité (CRRF), Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Jacinthe Therrien
- Centre de Recherche en Reproduction et Fértilité (CRRF), Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Flavio V Meirelles
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, São Paulo, Brazil
| | - Ricardo N Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile
| | - Lawrence C Smith
- Centre de Recherche en Reproduction et Fértilité (CRRF), Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| |
Collapse
|
12
|
Nix JL, Schettini GP, Speckhart SL, Ealy AD, Biase FH. Ablation of OCT4 function in cattle embryos by double electroporation of CRISPR-Cas for DNA and RNA targeting (CRISPR-DART). PNAS NEXUS 2023; 2:pgad343. [PMID: 37954164 PMCID: PMC10637268 DOI: 10.1093/pnasnexus/pgad343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
CRISPR-Cas ribonucleoproteins (RNPs) are important tools for gene editing in preimplantation embryos. However, the inefficient production of biallelic deletions in cattle zygotes has hindered mechanistic studies of gene function. In addition, the presence of maternal RNAs that support embryo development until embryonic genome activation may cause confounding phenotypes. Here, we aimed to improve the efficiency of biallelic deletions and deplete specific maternal RNAs in cattle zygotes using CRISPR-Cas editing technology. Two electroporation sessions with Cas9D10A RNPs targeting exon 1 and the promoter of OCT4 produced biallelic deletions in 91% of the embryos tested. In most cases, the deletions were longer than 1,000 nucleotides long. Electroporation of Cas13a RNPs prevents the production of the corresponding proteins. We electroporated Cas9D10A RNPs targeting exon 1, including the promoter region, of OCT4 in two sessions with inclusion of Cas13a RNPs targeting OCT4 mRNAs in the second session to ablate OCT4 function in cattle embryos. A lack of OCT4 resulted in embryos arresting development prior to blastocyst formation at a greater proportion (13%) than controls (31.6%, P < 0.001). The few embryos that developed past the morula stage did not form a normal inner cell mass. Transcriptome analysis of single blastocysts, confirmed to lack exon 1 and promoter region of OCT4, revealed a significant (False Discovery Rate, FDR < 0.1) reduction in transcript abundance of many genes functionally connected to stemness, including markers of pluripotency (CADHD1, DPPA4, GNL3, RRM2). The results confirm that OCT4 is a key regulator of genes that modulate pluripotency and is required to form a functional blastocyst in cattle.
Collapse
Affiliation(s)
- Jada L Nix
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| | - Gustavo P Schettini
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| | - Savannah L Speckhart
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| | - Alan D Ealy
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| | - Fernando H Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| |
Collapse
|
13
|
Valencia C, Pérez-García F, Aguila L, Felmer R, Arias ME. Combined Exogenous Activation of Bovine Oocytes: Effects on Maturation-Promoting Factor, Mitogen-Activated Protein Kinases, and Embryonic Competence. Int J Mol Sci 2023; 24:15794. [PMID: 37958778 PMCID: PMC10649646 DOI: 10.3390/ijms242115794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Oocyte activation via dual inhibition of protein synthesis and phosphorylation has improved in vitro embryo production in different mammalian species. In this study, we evaluated the effects of the combination of cycloheximide (CHX), dimethyl amino purine (DMAP), and anisomycin (ANY) on the activation of bovine oocytes, particularly on dynamics of MPF and MAPKs, embryonic developmental potential, and quality. The results showed that the cleavage and blastocyst rates, as well as levels of CCNB1, CDK1, p-CDK1Thr161, and p-CDK1Thr14-Tyr15, were similar among groups; ANY and ANY + CHX reduced the expression of ERK1/2 compared to DMAP-combinations (p < 0.05), whereas ANY + DMAP, CHX + DMAP, and ANY + CHX + DMAP reduced p-ERK1/2 compared to ANY and ANY + CHX treatments (p < 0.05). The quality of blastocysts in terms of cell counts, their allocation, and the numbers of TUNEL-positive cells did not differ among groups. However, transcript levels of POU5F1 were higher in embryos derived from ANY + CHX + DMAP treatment compared to other groups, while expression levels of CDX2 did not show differences. In addition, the BCL2A1/BAX ratio of the ANY + CHX + DMAP treatment was significantly low compared to the ANY treatment (p < 0.05) and did not differ significantly from the other treatments. In conclusion, oocyte activation by dual inhibition of protein synthesis and phosphorylation induces MPF inactivation without degradation of CCNB1, while MAPK inactivation occurs differentially between these inhibitors. Thus, although the combined use of these inhibitors does not affect early developmental competence in vitro, it positively impacts the expression of transcripts associated with embryonic quality.
Collapse
Affiliation(s)
- Cecilia Valencia
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4811322, Chile (L.A.); (R.F.)
| | - Felipe Pérez-García
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4811322, Chile (L.A.); (R.F.)
| | - Luis Aguila
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4811322, Chile (L.A.); (R.F.)
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4811322, Chile (L.A.); (R.F.)
- Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry Sciences, Universidad de La Frontera, Temuco 4811322, Chile
| | - María Elena Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4811322, Chile (L.A.); (R.F.)
- Department of Animal Production, Faculty of Agriculture and Forestry Sciences, Universidad de La Frontera, Temuco 4811322, Chile
| |
Collapse
|
14
|
Huang Y, Zhang J, Li X, Wu Z, Xie G, Wang Y, Liu Z, Jiao M, Zhang H, Shi B, Wang Y, Zhang Y. Chromatin accessibility memory of donor cells disrupts bovine somatic cell nuclear transfer blastocysts development. FASEB J 2023; 37:e23111. [PMID: 37531300 DOI: 10.1096/fj.202300131rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
The post-transfer developmental capacity of bovine somatic cell nuclear transfer (SCNT) blastocysts is reduced, implying that abnormalities in gene expression regulation are present at blastocyst stage. Chromatin accessibility, as an indicator for transcriptional regulatory elements mediating gene transcription activity, has heretofore been largely unexplored in SCNT embryos, especially at blastocyst stage. In the present study, single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) of in vivo and SCNT blastocysts were conducted to segregate lineages and demonstrate the aberrant chromatin accessibility of transcription factors (TFs) related to inner cell mass (ICM) development in SCNT blastocysts. Pseudotime analysis of lineage segregation further reflected dysregulated chromatin accessibility dynamics of TFs in the ICM of SCNT blastocysts compared to their in vivo counterparts. ATAC- and ChIP-seq results of SCNT donor cells revealed that the aberrant chromatin accessibility in the ICM of SCNT blastocysts was due to the persistence of chromatin accessibility memory at corresponding loci in the donor cells, with strong enrichment of trimethylation of histone H3 at lysine 4 (H3K4me3) at these loci. Correction of the aberrant chromatin accessibility through demethylation of H3K4me3 by KDM5B diminished the expression of related genes (e.g., BCL11B) and significantly improved the ICM proliferation in SCNT blastocysts. This effect was confirmed by knocking down BCL11B in SCNT embryos to down-regulate p21 and alleviate the inhibition of ICM proliferation. These findings expand our understanding of the chromatin accessibility abnormalities in SCNT blastocysts and BCL11B may be a potential target to improve SCNT efficiency.
Collapse
Affiliation(s)
- Yuemeng Huang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Xinmei Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhipei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Guoxiang Xie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Zhengqing Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Mei Jiao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Hexu Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Binqiang Shi
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| | - Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Center for Animal Embryo Technology, Yangling, China
| |
Collapse
|
15
|
Rabel RAC, Marchioretto PV, Bangert EA, Wilson K, Milner DJ, Wheeler MB. Pre-Implantation Bovine Embryo Evaluation-From Optics to Omics and Beyond. Animals (Basel) 2023; 13:2102. [PMID: 37443900 DOI: 10.3390/ani13132102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Approximately 80% of the ~1.5 million bovine embryos transferred in 2021 were in vitro produced. However, only ~27% of the transferred IVP embryos will result in live births. The ~73% pregnancy failures are partly due to transferring poor-quality embryos, a result of erroneous stereomicroscopy-based morphological evaluation, the current method of choice for pre-transfer embryo evaluation. Numerous microscopic (e.g., differential interference contrast, electron, fluorescent, time-lapse, and artificial-intelligence-based microscopy) and non-microscopic (e.g., genomics, transcriptomics, epigenomics, proteomics, metabolomics, and nuclear magnetic resonance) methodologies have been tested to find an embryo evaluation technique that is superior to morphologic evaluation. Many of these research tools can accurately determine embryo quality/viability; however, most are invasive, expensive, laborious, technically sophisticated, and/or time-consuming, making them futile in the context of in-field embryo evaluation. However accurate they may be, using complex methods, such as RNA sequencing, SNP chips, mass spectrometry, and multiphoton microscopy, at thousands of embryo production/collection facilities is impractical. Therefore, future research is warranted to innovate field-friendly, simple benchtop tests using findings already available, particularly from omics-based research methodologies. Time-lapse monitoring and artificial-intelligence-based automated image analysis also have the potential for accurate embryo evaluation; however, further research is warranted to innovate economically feasible options for in-field applications.
Collapse
Affiliation(s)
- R A Chanaka Rabel
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paula V Marchioretto
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Elizabeth A Bangert
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kenneth Wilson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Derek J Milner
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Matthew B Wheeler
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
16
|
Scatolin GN, Ming H, Wang Y, Zhu L, Castillo EG, Bondioli K, Jiang Z. Single-cell transcriptional landscapes of bovine peri-implantation development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544813. [PMID: 37398069 PMCID: PMC10312721 DOI: 10.1101/2023.06.13.544813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Supporting healthy pregnancy outcomes requires a comprehensive understanding of the cellular hierarchy and underlying molecular mechanisms during peri-implantation development. Here, we present a single-cell transcriptome-wide view of the bovine peri-implantation embryo development at day 12, 14, 16 and 18, when most of the pregnancy failure occurs in cattle. We defined the development and dynamic progression of cellular composition and gene expression of embryonic disc, hypoblast, and trophoblast lineages during bovine peri-implantation development. Notably, the comprehensive transcriptomic mapping of trophoblast development revealed a previously unrecognized primitive trophoblast cell lineage that is responsible for pregnancy maintenance in bovine prior to the time when binucleate cells emerge. We analyzed novel markers for the cell lineage development during bovine early development. We also identified cell-cell communication signaling underling embryonic and extraembryonic cell interaction to ensure proper early development. Collectively, our work provides foundational information to discover essential biological pathways underpinning bovine peri-implantation development and the molecular causes of the early pregnancy failure during this critical period. Significance Statement Peri-implantation development is essential for successful reproduction in mammalian species, and cattle have a unique process of elongation that proceeds for two weeks prior to implantation and represents a period when many pregnancies fail. Although the bovine embryo elongation has been studied histologically, the essential cellular and molecular factors governing lineage differentiation remain unexplored. This study profiled the transcriptome of single cells in the bovine peri-implantation development throughout day 12, 14, 16, and 18, and identified peri-implantation stage-related features of cell lineages. The candidate regulatory genes, factors, pathways and embryonic and extraembryonic cell interactions were also prioritized to ensure proper embryo elongation in cattle.
Collapse
|
17
|
Zhang Z, Shi Q, Zhu X, Jin L, Lang L, Lyu S, Xin X, Huang Y, Yu X, Li Z, Chen S, Xu Z, Zhang W, Wang E. Identification and Functional Analysis of Transcriptome Profiles, Long Non-Coding RNAs, Single-Nucleotide Polymorphisms, and Alternative Splicing from the Oocyte to the Preimplantation Stage of Sheep by Single-Cell RNA Sequencing. Genes (Basel) 2023; 14:1145. [PMID: 37372325 DOI: 10.3390/genes14061145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Numerous dynamic and complicated processes characterize development from the oocyte to the embryo. However, given the importance of functional transcriptome profiles, long non-coding RNAs, single-nucleotide polymorphisms, and alternative splicing during embryonic development, the effect that these features have on the blastomeres of 2-, 4-, 8-, 16-cell, and morula stages of development has not been studied. Here, we carried out experiments to identify and functionally analyze the transcriptome profiles, long non-coding RNAs, single-nucleotide polymorphisms (SNPs), and alternative splicing (AS) of cells from sheep from the oocyte to the blastocyst developmental stages. We found between the oocyte and zygote groups significantly down-regulated genes and the second-largest change in gene expression occurred between the 8- and 16-cell stages. We used various methods to construct a profile to characterize cellular and molecular features and systematically analyze the related GO and KEGG profile of cells of all stages from the oocyte to the blastocyst. This large-scale, single-cell atlas provides key cellular information and will likely assist clinical studies in improving preimplantation genetic diagnosis.
Collapse
Affiliation(s)
- Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| | - Qiaoting Shi
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| | - Xiaoting Zhu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| | - Lei Jin
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| | - Limin Lang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| | - Shijie Lyu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| | - Xiaoling Xin
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiang Yu
- Henan Animal Health Supervision Institute, Zhengzhou 450003, China
| | - Zhiming Li
- Henan Provincial Animal Husbandry General Station, Zhengzhou 450008, China
| | - Sujuan Chen
- Synthetic Biology Engineering Lab of Henan Province, School of Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhaoxue Xu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| | - Wei Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No. 116 Hua Yuan Road, Zhengzhou 450002, China
| |
Collapse
|
18
|
Lowther KM, Bartolucci AF, Massey RE, Brown J, Peluso JJ. Supplementing culture medium with the weak acid, 5,5-dimethyl-2,4-oxazolidinedione (DMO) limits the development of aneuploid mouse embryos through a Trp53-dependent mechanism. J Assist Reprod Genet 2023; 40:1215-1223. [PMID: 37058262 PMCID: PMC10239418 DOI: 10.1007/s10815-023-02788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/22/2023] [Indexed: 04/15/2023] Open
Abstract
PURPOSE This study was designed to determine if DMO limits in vitro development of aneuploid-enriched mouse embryos by activating a Trp53-dependent mechanism. METHODS Mouse cleavage-stage embryos were treated with reversine to induce aneuploidy or vehicle to generate controls, and then cultured in media supplemented with DMO to reduce the pH of the culture media. Embryo morphology was assessed by phase microscopy. Cell number, mitotic figures, and apoptotic bodies were revealed by staining fixed embryos with DAPI. mRNA levels of Trp53, Oct-4, and Cdx2 were monitored by quantitative polymerase chain reactions (qPCRs). The effect of Trp53 on the expression of Oct-4 and Cdx2 was assessed by depleting Trp53 using Trp53 siRNA. RESULTS Aneuploid-enriched late-stage blastocysts were morphologically indistinguishable from control blastocysts but had fewer cells and reduced mRNA levels of Oct-4 and Cdx2. Adding 1 mM DMO to the culture media during the 8-cell to blastocyst transition reduced the formation of aneuploid-enriched late-stage blastocysts but not control blastocysts and further suppressed the levels of Oct-4 and Cdx2 mRNA. Trp53 RNA levels in aneuploid-enriched embryos that were exposed to DMO were > twofold higher than controls, and Trp53 siRNA levels reduced the levels of Trp53 and increased levels of Oct-4 and Cdx2 mRNA by > twofold. CONCLUSION These studies suggest that the development of morphologically normal aneuploid-enriched mouse blastocysts can be inhibited by adding low amounts of DMO to the culture media, which results in elevated levels of Trp53 mRNA that suppresses Oct-4 and Cdx2 expression.
Collapse
Affiliation(s)
- Katie M Lowther
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave., CT, 06030, Farmington, USA
| | - Alison F Bartolucci
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT, 06030, USA
- The Center for Advanced Reproductive Services, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | | | - Judy Brown
- Institute for Systems Genomics, UCONN, Storrs, CT, 06268, USA
| | - John J Peluso
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave., CT, 06030, Farmington, USA.
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
19
|
Moradi-Hajidavaloo R, Jafarpour F, Hajian M, Rahimi Andani M, Rouhollahi Varnosfaderani S, Nasr-Esfahani MH. Oct-4 activating compound 1 (OAC1) could improve the quality of somatic cell nuclear transfer embryos in the bovine. Theriogenology 2023; 198:75-86. [PMID: 36565671 DOI: 10.1016/j.theriogenology.2022.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Previous studies described aberrant nuclear reprogramming in somatic cell nuclear transfer (SCNT) embryos that is distinctly different from fertilized embryos. This abnormal nuclear reprogramming hampers the proper pre- and/or post-implantation development. It has been demonstrated that SCNT blastocysts aberrantly expressed POU5F1 and POU5F1-related genes. With regard to this, it has been postulated that promoting the expression of POU5F1 in SCNT embryos may enhance reprogramming in SCNT embryos. In this study, we treated either fibroblast donor cells or SCNT embryos with OAC1 as a novel small molecule that has been reported to induce POU5F1 expression. Quantitative results from the MTS assay revealed that lower concentrations of OAC1 (1, 1.5, and 3 μM) are non-toxic after 2, 4, and 6 days, but higher concentrations (6, 8, 10, and 12 μM) are toxic and reduced the proliferation of cells after 6 days. No enhancement in the expression of endogenous POU5F1 was observed when both mouse and bovine fibroblast cells were treated with 1.5 and 3 μM OAC1 for up to 6 consecutive days. Subsequently, we treated either fibroblast as donor cells in the SCNT procedure (BFF-OAC1 group) or SCNT embryos [for 4 days (IVC-OAC1: D4-D7 group) or 7 days (IVC-OAC1: D0-D7 group)] with 1.5 μM OAC1. We observed that neither treatment of fibroblast donor cells nor SCNT embryos improved the cleavage and blastocyst rates. Interestingly, we observed that treatment of SCNT embryos all throughout the in vitro culture (IVC) (IVC-OAC1: D0-D7) with 1.5 μM OAC1 improves the quality of derived blastocyst which was indexed by morphological grading, blastomere allocation, epigenetic marks and mRNA expression of target genes. In conclusion, our results showed that supplementation of IVC medium with 1.5 μM OAC1 (D0-D7) accelerates SCNT reprogramming in bovine species.
Collapse
Affiliation(s)
- Reza Moradi-Hajidavaloo
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mehdi Hajian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Rahimi Andani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Shiva Rouhollahi Varnosfaderani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
20
|
Goissis MD, Cibelli JB. Early Cell Specification in Mammalian Fertilized and Somatic Cell Nuclear Transfer Embryos. Methods Mol Biol 2023; 2647:59-81. [PMID: 37041329 DOI: 10.1007/978-1-0716-3064-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Early cell specification in mammalian preimplantation embryos is an intricate cellular process that leads to coordinated spatial and temporal expression of specific genes. Proper segregation into the first two cell lineages, the inner cell mass (ICM) and the trophectoderm (TE), is imperative for developing the embryo proper and the placenta, respectively. Somatic cell nuclear transfer (SCNT) allows the formation of a blastocyst containing both ICM and TE from a differentiated cell nucleus, which means that this differentiated genome must be reprogrammed to a totipotent state. Although blastocysts can be generated efficiently through SCNT, the full-term development of SCNT embryos is impaired mostly due to placental defects. In this review, we examine the early cell fate decisions in fertilized embryos and compare them to observations in SCNT-derived embryos, in order to understand if these processes are affected by SCNT and could be responsible for the low success of reproductive cloning.
Collapse
Affiliation(s)
- Marcelo D Goissis
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil.
| | - Jose B Cibelli
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
21
|
Paulson EE, Fishman EL, Schultz RM, Ross PJ. Embryonic microRNAs are essential for bovine preimplantation embryo development. Proc Natl Acad Sci U S A 2022; 119:e2212942119. [PMID: 36322738 PMCID: PMC9659414 DOI: 10.1073/pnas.2212942119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression after transcription. miRNAs are present in transcriptionally quiescent full-grown oocytes and preimplantation embryos that display a low level of transcription prior to embryonic genome activation. The role of miRNAs, if any, in preimplantation development is not known. The temporal pattern of expression of miRNAs during bovine preimplantation development was determined by small RNA-sequencing using eggs and preimplantation embryos (1-cell, 2-cell, 4-cell, 8-cell, 16-cell, morula, and blastocyst). Embryos cultured in the presence of α-amanitin, which permitted the distinguishing of maternal miRNAs from embryonic miRNAs, indicated that embryonic miRNA expression was first detected at the two-cell stage but dramatically increased during the morula and blastocyst stages. Targeting DGCR8 by a small-interfering RNA/morpholino approach revealed a role for miRNAs in the morula-to-blastocyst transition. Knockdown of DGCR8 not only inhibited expression of embryonically expressed miRNAs but also inhibited the morula-to-blastocyst transition. In addition, RNA-sequencing identified an increased relative abundance of messenger RNAs potentially targeted by embryonic miRNAs in DGCR8-knockdown embryos when compared with controls. Results from these experiments implicate an essential role for miRNAs in bovine preimplantation embryo development.
Collapse
Affiliation(s)
- Erika E. Paulson
- Department of Animal Science, University of California, Davis, CA 95616
| | - Emily L. Fishman
- Department of Animal Science, University of California, Davis, CA 95616
| | - Richard M. Schultz
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Pablo J. Ross
- Department of Animal Science, University of California, Davis, CA 95616
| |
Collapse
|
22
|
Zhu L, Zhou T, Iyyappan R, Ming H, Dvoran M, Wang Y, Chen Q, Roberts RM, Susor A, Jiang Z. High-resolution ribosome profiling reveals translational selectivity for transcripts in bovine preimplantation embryo development. Development 2022; 149:280468. [PMID: 36227586 PMCID: PMC9687001 DOI: 10.1242/dev.200819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
High-resolution ribosome fractionation and low-input ribosome profiling of bovine oocytes and preimplantation embryos has enabled us to define the translational landscapes of early embryo development at an unprecedented level. We analyzed the transcriptome and the polysome- and non-polysome-bound RNA profiles of bovine oocytes (germinal vesicle and metaphase II stages) and early embryos at the two-cell, eight-cell, morula and blastocyst stages, and revealed four modes of translational selectivity: (1) selective translation of non-abundant mRNAs; (2) active, but modest translation of a selection of highly expressed mRNAs; (3) translationally suppressed abundant to moderately abundant mRNAs; and (4) mRNAs associated specifically with monosomes. A strong translational selection of low-abundance transcripts involved in metabolic pathways and lysosomes was found throughout bovine embryonic development. Notably, genes involved in mitochondrial function were prioritized for translation. We found that translation largely reflected transcription in oocytes and two-cell embryos, but observed a marked shift in the translational control in eight-cell embryos that was associated with the main phase of embryonic genome activation. Subsequently, transcription and translation become more synchronized in morulae and blastocysts. Taken together, these data reveal a unique spatiotemporal translational regulation that accompanies bovine preimplantation development.
Collapse
Affiliation(s)
- Linkai Zhu
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0352, USA
| | - Rajan Iyyappan
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, 277 21 Liběchov, Czech Republic
| | - Hao Ming
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michal Dvoran
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, 277 21 Liběchov, Czech Republic
| | - Yinjuan Wang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - R Michael Roberts
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310, USA
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, 277 21 Liběchov, Czech Republic
| | - Zongliang Jiang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
23
|
Zhang T, Wang L, Pan Y, He H, Wang J, Zhao T, Ding T, Wang Y, Zhao L, Han X, Fan J, Xu G, Cui Y, Yu S. Effect of rapamycin treatment on oocyte in vitro maturation and embryonic development after parthenogenesis in yaks. Theriogenology 2022; 193:128-135. [PMID: 36162289 DOI: 10.1016/j.theriogenology.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022]
Abstract
Autophagy plays an important role in mammalian oocyte maturation and early embryonic development and rapamycin is well known for inducing autophagy. Although previous studies have reported the effects of rapamycin on oocytes in vitro maturation (IVM) in different species, few studies have been reported on the role of rapamycin in yak oocytes IVM and embryonic development. Therefore, the objective of this study was to examine the effect of rapamycin treatment on yak oocytes IVM and early embryonic development. Specifically, immature yak oocytes during IVM or parthenogenetic (PA) embryos were treated with different rapamycin concentrations to select an optimal dose. Then evaluated its effect on maturation rates, cleavage, and blastocyst formation rates, mitochondrial membrane potential, ROS levels. Related genes and proteins expression in matured oocytes and blastocysts were also evaluated. The results show that 10 nM rapamycin treatment during IVM significantly improved oocyte maturation rates of oocytes and blastocyst formation rates. Treatment with 10 nM rapamycin reduced ROS level but increased mitochondrial membrane potential. Correspondingly, mRNA and protein expressions of LC3, Beclin-1, and Bcl-2 up-regulated while Bax down-regulated in matured yak COCs. When parthenogenetic embryos were treated with different rapamycin concentrations, 10 nM rapamycin treatment showed higher 8-cell and blastocyst formation rates. Also, CDX2, POU5F1, SOX2, and Nanog levels in blastocysts were upregulated. In summary, our findings demonstrate that rapamycin treatment improves oocytes maturation probably by increasing mitochondrial membrane potential, reducing ROS levels, and regulating the apoptosis in mature yak oocytes. Rapamycin treatment also improves embryonic developmental competence in the yak.
Collapse
Affiliation(s)
- Tongxiang Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Libin Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Province Livestock Embryo Engineering Research Center, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Province Livestock Embryo Engineering Research Center, China
| | - Honghong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jinglei Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tian Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Tianyi Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yaying Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ling Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaohong Han
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jiangfeng Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Province Livestock Embryo Engineering Research Center, China
| | - Gengquan Xu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Province Livestock Embryo Engineering Research Center, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Province Livestock Embryo Engineering Research Center, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Province Livestock Embryo Engineering Research Center, China.
| |
Collapse
|
24
|
Daigneault BW. Insights to maternal regulation of the paternal genome in mammalian livestock embryos: A mini-review. Front Genet 2022; 13:909804. [PMID: 36061209 PMCID: PMC9437210 DOI: 10.3389/fgene.2022.909804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022] Open
Abstract
This mini-review focuses on current knowledge regarding maternal regulation of the paternal genome in early embryos of mammalian livestock species. Emphasis has been placed on regulatory events described for maternally imprinted genes and further highlights transcriptional regulation of the post-fertilization paternal genome by maternal factors. Specifically, the included content aims to summarize genomic and epigenomic contributions of paternally expressed genes, their regulation by the maternal embryo environment, and chromatin structure that are indispensable for early embryo development. The accumulation of current knowledge will summarize conserved allelic function among species to include molecular and genomic studies across large domestic animals and humans with reference to founding experimental animal models.
Collapse
|
25
|
Talluri TR, Kumaresan A, Sinha MK, Paul N, Ebenezer Samuel King JP, Datta TK. Integrated multi-omics analyses reveals molecules governing sperm metabolism potentially influence bull fertility. Sci Rep 2022; 12:10692. [PMID: 35739152 PMCID: PMC9226030 DOI: 10.1038/s41598-022-14589-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Bull fertility is of paramount importance in bovine industry because semen from a single bull is used to breed several thousands of cows; however, so far, no reliable test is available for bull fertility prediction. In the present study, spermatozoa from high- and low-fertility bulls were subjected to high-throughput transcriptomic, proteomic and metabolomic analysis. Using an integrated multi-omics approach the molecular differences between high- and low-fertility bulls were identified. We identified a total of 18,068 transcripts, 5041 proteins and 3704 metabolites in bull spermatozoa, of which the expression of 4766 transcripts, 785 proteins and 33 metabolites were dysregulated between high- and low-fertility bulls. At transcript level, several genes involved in oxidative phosphorylation pathway were found to be downregulated, while at protein level genes involved in metabolic pathways were significantly downregulated in low-fertility bulls. We found that metabolites involved in Taurine and hypotaurine metabolism were significantly downregulated in low-fertility bulls. Integrated multi-omics analysis revealed the interaction of dysregulated transcripts, proteins and metabolites in major metabolic pathways, including Butanoate metabolism, Glycolysis and gluconeogenesis, Methionine and cysteine metabolism, Phosphatidyl inositol phosphate, pyrimidine metabolism and saturated fatty acid beta oxidation. These findings collectively indicate that molecules governing sperm metabolism potentially influence bull fertility.
Collapse
Affiliation(s)
- Thirumala Rao Talluri
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India.
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Nilendu Paul
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - John Peter Ebenezer Samuel King
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR- National Dairy Research Institute, Bengaluru, Karnataka, 560030, India
| | - Tirtha K Datta
- Animal Genomics Laboratory, ICAR - National Dairy Research Institute, Karnal, Haryana, 132 001, India
| |
Collapse
|
26
|
Whitworth KM, Green JA, Redel BK, Geisert RD, Lee K, Telugu BP, Wells KD, Prather RS. Improvements in pig agriculture through gene editing. CABI AGRICULTURE AND BIOSCIENCE 2022; 3:41. [PMID: 35755158 PMCID: PMC9209828 DOI: 10.1186/s43170-022-00111-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/12/2022] [Indexed: 05/06/2023]
Abstract
Genetic modification of animals via selective breeding is the basis for modern agriculture. The current breeding paradigm however has limitations, chief among them is the requirement for the beneficial trait to exist within the population. Desirable alleles in geographically isolated breeds, or breeds selected for a different conformation and commercial application, and more importantly animals from different genera or species cannot be introgressed into the population via selective breeding. Additionally, linkage disequilibrium results in low heritability and necessitates breeding over successive generations to fix a beneficial trait within a population. Given the need to sustainably improve animal production to feed an anticipated 9 billion global population by 2030 against a backdrop of infectious diseases and a looming threat from climate change, there is a pressing need for responsive, precise, and agile breeding strategies. The availability of genome editing tools that allow for the introduction of precise genetic modification at a single nucleotide resolution, while also facilitating large transgene integration in the target population, offers a solution. Concordant with the developments in genomic sequencing approaches, progress among germline editing efforts is expected to reach feverish pace. The current manuscript reviews past and current developments in germline engineering in pigs, and the many advantages they confer for advancing animal agriculture.
Collapse
Affiliation(s)
- Kristin M. Whitworth
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Jonathan A. Green
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Bethany K. Redel
- United States Department of Agriculture – Agriculture Research Service, Plant Genetics Research Unit, Columbia, MO 65211 USA
| | - Rodney D. Geisert
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Kiho Lee
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Bhanu P. Telugu
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Kevin D. Wells
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| | - Randall S. Prather
- Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, 920 East Campus Drive, Columbia, MO 65211 USA
| |
Collapse
|
27
|
Daigneault BW, de Agostini Losano JD. Tributyltin chloride exposure to post-ejaculatory sperm reduces motility, mitochondrial function and subsequent embryo development. Reprod Fertil Dev 2022; 34:833-843. [PMID: 35610772 DOI: 10.1071/rd21371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
CONTEXT Male exposure to environmental toxicants can disrupt spermatogenesis and sperm function. However, consequences of environmentally relevant organotin exposure to post-ejaculatory mammalian spermatozoa on fertility are poorly understood. AIMS Determine the consequences of tributyltin chloride (TBT) exposure on post-ejaculatory sperm function and subsequent embryo development. METHODS Frozen-thawed bovine sperm were exposed to TBT (0.1-100nM) for 90min (acute) and 6h (short-term) followed by quantification of multiple sperm kinematics via computer aided sperm analysis. JC-1 dye was used to measure mitochondrial membrane potential. Sperm were then exposed to TBT for 90min in non-capacitating conditions, washed several times by centrifugation and applied to gamete co-incubation for in vitro embryo production to the blastocyst stage. KEY RESULTS 100nM TBT decreased total motility (88 vs 79%), progressive motility (80 vs 70%) curvilinear velocity and beat-cross frequency for 90min with similar phenotypes at 6h (P<0.05). Sperm mitochondrial membrane potential was lower in 10 and 100nM groups after 6h (P≤0.05). Embryos fertilised from TBT-exposed sperm had reduced cleavage rate (80 vs 62%) and 8-16 cell morula development (55 vs 24%) compared to development from unexposed sperm. CONCLUSIONS Exposure of post-ejaculatory mammalian sperm to TBT alters sperm function through lowered motility and mitochondrial membrane potential. Fertilisation of oocytes with TBT-exposed sperm reduces embryo development through mechanisms of paternal origin. IMPLICATIONS Acute and short-term environmental exposure of post-ejaculatory sperm to organotins and endocrine disrupting chemicals such as TBT contribute to idiopathic subfertility and early embryo loss.
Collapse
|
28
|
Simmet K, Kurome M, Zakhartchenko V, Reichenbach HD, Springer C, Bähr A, Blum H, Philippou-Massier J, Wolf E. OCT4/POU5F1 is indispensable for the lineage differentiation of the inner cell mass in bovine embryos. FASEB J 2022; 36:e22337. [PMID: 35486003 DOI: 10.1096/fj.202101713rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/10/2022] [Accepted: 04/21/2022] [Indexed: 01/01/2023]
Abstract
The mammalian blastocyst undergoes two lineage segregations, that is, formation of the trophectoderm and subsequently differentiation of the hypoblast (HB) from the inner cell mass, leaving the epiblast (EPI) as the remaining pluripotent lineage. To clarify the expression patterns of markers specific for these lineages in bovine embryos, we analyzed day 7, 9, and 12 blastocysts completely produced in vivo by staining for OCT4, NANOG, SOX2 (EPI), and GATA6, SOX17 (HB) and identified genes specific for these developmental stages in a global transcriptomics approach. To study the role of OCT4, we generated OCT4-deficient (OCT4 KO) embryos via somatic cell nuclear transfer or in vitro fertilization. OCT4 KO embryos reached the expanded blastocyst stage by day 8 but lost NANOG and SOX17 expression, while SOX2 and GATA6 were unaffected. Blastocysts transferred to recipient cows from day 6 to 9 expanded, but the OCT4 KO phenotype was not rescued by the uterine environment. Exposure of OCT4 KO embryos to exogenous FGF4 or chimeric complementation with OCT4 intact embryos did not restore NANOG or SOX17 in OCT4-deficient cells. Our data show that OCT4 is required cell autonomously for the maintenance of pluripotency of the EPI and differentiation of the HB in bovine embryos.
Collapse
Affiliation(s)
- Kilian Simmet
- Gene Center, Department of Veterinary Sciences, Institute of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
| | - Mayuko Kurome
- Gene Center, Department of Veterinary Sciences, Institute of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
| | - Valeri Zakhartchenko
- Gene Center, Department of Veterinary Sciences, Institute of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
| | | | - Claudia Springer
- Gene Center, Department of Veterinary Sciences, Institute of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
| | - Andrea Bähr
- Gene Center, Department of Veterinary Sciences, Institute of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Julia Philippou-Massier
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Gene Center, Department of Veterinary Sciences, Institute of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany.,Bavarian State Research Center for Agriculture, Institute of Animal Breeding, Poing, Germany
| |
Collapse
|
29
|
Wyatt CDR, Pernaute B, Gohr A, Miret-Cuesta M, Goyeneche L, Rovira Q, Salzer MC, Boke E, Bogdanovic O, Bonnal S, Irimia M. A developmentally programmed splicing failure contributes to DNA damage response attenuation during mammalian zygotic genome activation. SCIENCE ADVANCES 2022; 8:eabn4935. [PMID: 35417229 PMCID: PMC9007516 DOI: 10.1126/sciadv.abn4935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Transition from maternal to embryonic transcriptional control is crucial for embryogenesis. However, alternative splicing regulation during this process remains understudied. Using transcriptomic data from human, mouse, and cow preimplantation development, we show that the stage of zygotic genome activation (ZGA) exhibits the highest levels of exon skipping diversity reported for any cell or tissue type. Much of this exon skipping is temporary, leads to disruptive noncanonical isoforms, and occurs in genes enriched for DNA damage response in the three species. Two core spliceosomal components, Snrpb and Snrpd2, regulate these patterns. These genes have low maternal expression at ZGA and increase sharply thereafter. Microinjection of Snrpb/d2 messenger RNA into mouse zygotes reduces the levels of exon skipping at ZGA and leads to increased p53-mediated DNA damage response. We propose that mammalian embryos undergo an evolutionarily conserved, developmentally programmed splicing failure at ZGA that contributes to the attenuation of cellular responses to DNA damage.
Collapse
Affiliation(s)
- Christopher D. R. Wyatt
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Barbara Pernaute
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - André Gohr
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Miret-Cuesta
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Lucia Goyeneche
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Quirze Rovira
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marion C. Salzer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elvan Boke
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ozren Bogdanovic
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2010, Australia
| | - Sophie Bonnal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
30
|
Pluripotent Core in Bovine Embryos: A Review. Animals (Basel) 2022; 12:ani12081010. [PMID: 35454256 PMCID: PMC9032358 DOI: 10.3390/ani12081010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Early development in mammals is characterized by the ability of each cell to produce a complete organism plus the extraembryonic, or placental, cells, defined as pluripotency. During subsequent development, pluripotency is lost, and cells begin to differentiate to a particular cell fate. This review summarizes the current knowledge of pluripotency features of bovine embryos cultured in vitro, focusing on the core of pluripotency genes (OCT4, NANOG, SOX2, and CDX2), and main chemical strategies for controlling pluripotent networks during early development. Finally, we discuss the applicability of manipulating pluripotency during the morula to blastocyst transition in cattle species.
Collapse
|
31
|
Cattle production by intracytoplasmic sperm injection into oocytes vitrified after ovum pick-up. Theriogenology 2022; 185:121-126. [DOI: 10.1016/j.theriogenology.2022.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022]
|
32
|
Avidor-Reiss T, Achinger L, Uzbekov R. The Centriole's Role in Miscarriages. Front Cell Dev Biol 2022; 10:864692. [PMID: 35300410 PMCID: PMC8922021 DOI: 10.3389/fcell.2022.864692] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Centrioles are subcellular organelles essential for normal cell function and development; they form the cell’s centrosome (a major cytoplasmic microtubule organization center) and cilium (a sensory and motile hair-like cellular extension). Centrioles with evolutionarily conserved characteristics are found in most animal cell types but are absent in egg cells and exhibit unexpectedly high structural, compositional, and functional diversity in sperm cells. As a result, the centriole’s precise role in fertility and early embryo development is unclear. The centrioles are found in the spermatozoan neck, a strategic location connecting two central functional units: the tail, which propels the sperm to the egg and the head, which holds the paternal genetic material. The spermatozoan neck is an ideal site for evolutionary innovation as it can control tail movement pre-fertilization and the male pronucleus’ behavior post-fertilization. We propose that human, bovine, and most other mammals–which exhibit ancestral centriole-dependent reproduction and two spermatozoan centrioles, where one canonical centriole is maintained, and one atypical centriole is formed–adapted extensive species-specific centriolar features. As a result, these centrioles have a high post-fertilization malfunction rate, resulting in aneuploidy, and miscarriages. In contrast, house mice evolved centriole-independent reproduction, losing the spermatozoan centrioles and overcoming a mechanism that causes miscarriages.
Collapse
Affiliation(s)
- Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States.,Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Luke Achinger
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Rustem Uzbekov
- Faculté de Médecine, Université de Tours, Tours, France.,Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| |
Collapse
|
33
|
Hao J, Zhang Y, Pan X, Wang H, Li B, You D. Kawasaki disease: lncRNA Slco4a1 regulates the progression of human umbilical vein endothelial cells by targeting the miR-335-5p/POU5F1 axis. Transl Pediatr 2022; 11:183-193. [PMID: 35282018 PMCID: PMC8905100 DOI: 10.21037/tp-22-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Kawasaki disease (KD) is an autoimmune disease with systemic vasculitis as the main pathological change, and is most common in children under 5. The role of long non-coding RNAs (lncRNAs) in human diseases has been highlighted. LncRNA Slco4a1 was reported to promote cell growth and act as an oncogenic regulator in cancer. However, the role of lncRNA Slco4a1 in KD remains unclear. This study aimed to investigate the role and mechanism of lncRNA Slco4a1 in KD. METHODS Enzyme linked immunosorbent assay (ELISA), qRT-PCR, Western blot, and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining were conducted to explore the function of lncRNA Slco4a1. The interaction between POU5F1 and miR-335-5p was analyzed by the RIP assay and dual luciferase assay. RESULTS LncRNA Slco4a1 was significantly upregulated in the serum of KD patients compared with healthy controls. LncRNA Slco4a1 was upregulated in human umbilical vein endothelial cells (HUVECs) stimulated with KD serum. LncRNA Slco4a1 overexpression could promote the expression of inflammatory factors and apoptosis in HUVECs. The number of inflammatory cells and the infiltration area of the coronary artery in KD rats were decreased after lncRNA Slco4a1 silencing. Furthermore, lncRNA Slco4a1 is a sponge of miR-335-5p and negatively regulated the expression of miR-335-5p. POU5F1 was the downstream target of miR-335-5p, and miR-335-5p overexpression could upregulate the expression of POU5F1. Additionally, miR-335-5p overexpression could inhibit the expression of inflammatory factors and apoptosis in HUVECs. We further investigated the effect of lncRNA Slco4a1 on the mitogen-activated protein kinase (MAPK) signaling pathway, and the results showed that lncRNA Slco4a1 could promote the activation of the MAPK signaling pathway. CONCLUSIONS Together, these results indicated that lncRNA Slco4a1 could regulate the progression of HUVECs in KD by targeting the miR-335-5p/POU5F1 axis, providing new insights for KD treatment.
Collapse
Affiliation(s)
- Jingxia Hao
- Department of Cardiology, Hebei Provincial Key Laboratory of Pediatric Cardiovascular Disease, Hebei Province Children's Hospital, Shijiazhuang, China
| | - Yingqian Zhang
- Department of Cardiology, Hebei Provincial Key Laboratory of Pediatric Cardiovascular Disease, Hebei Province Children's Hospital, Shijiazhuang, China
| | - Xiqing Pan
- Department of Joint Surgery, The Third Hospital of Shijiazhuang, Shijiazhuang, China
| | - Hua Wang
- Department of Cardiology, Hebei Provincial Key Laboratory of Pediatric Cardiovascular Disease, Hebei Province Children's Hospital, Shijiazhuang, China
| | - Bo Li
- Department of Cardiology, Hebei Provincial Key Laboratory of Pediatric Cardiovascular Disease, Hebei Province Children's Hospital, Shijiazhuang, China
| | - Dianping You
- Hebei Provincial Key Laboratory of Pediatric Cardiovascular Disease, Hebei Province Children's Hospital, Shijiazhuang, China
| |
Collapse
|
34
|
Pluripotency transcription factor levels in sheep embryos correlate with mRNA regulatory elements. Livest Sci 2022. [DOI: 10.1016/j.livsci.2021.104778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Soto-Moreno EJ, Balboula A, Spinka C, Rivera RM. Serum supplementation during bovine embryo culture affects their development and proliferation through macroautophagy and endoplasmic reticulum stress regulation. PLoS One 2021; 16:e0260123. [PMID: 34882691 PMCID: PMC8659681 DOI: 10.1371/journal.pone.0260123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
Serum supplementation during bovine embryo culture has been demonstrated to promote cell proliferation and preimplantation embryo development. However, these desirable outcomes, have been associated with gene expression alterations of pathways involved in macroautophagy, growth, and development at the blastocyst stage, as well as with developmental anomalies such as fetal overgrowth and placental malformations. In order to start dissecting the molecular pathways by which serum supplementation of the culture medium during the preimplantation stage promotes developmental abnormalities, we examined blastocyst morphometry, inner cell mass and trophectoderm cell allocations, macroautophagy, and endoplasmic reticulum stress. On day 5 post-insemination, > 16 cells embryos were selected and cultured in medium containing 10% serum or left as controls. Embryo diameter, inner cell mass and trophectoderm cell number, and macroautophagy were measured on day 8 blastocysts (BL) and expanded blastocysts (XBL). On day 5 and day 8, we assessed transcript level of the ER stress markers HSPA5, ATF4, MTHFD2, and SHMT2 as well as XBP1 splicing (a marker of the unfolded protein response). Serum increased diameter and proliferation of embryos when compared to the no-serum group. In addition, serum increased macroautophagy of BL when compared to controls, while the opposite was true for XBL. None of the genes analyzed was differentially expressed at any stage, except that serum decreased HSPA5 in day 5 > 16 cells stage embryos. XBP1 splicing was decreased in BL when compared to XBL, but only in the serum group. Our data suggest that serum rescues delayed embryos by alleviating endoplasmic reticulum stress and promotes development of advanced embryos by decreasing macroautophagy.
Collapse
Affiliation(s)
- Edgar Joel Soto-Moreno
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America
| | - Ahmed Balboula
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America
| | - Christine Spinka
- College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States of America
| | - Rocío Melissa Rivera
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America
- * E-mail:
| |
Collapse
|
36
|
Schall PZ, Latham KE. Cross-species meta-analysis of transcriptome changes during the morula-to-blastocyst transition: metabolic and physiological changes take center stage. Am J Physiol Cell Physiol 2021; 321:C913-C931. [PMID: 34669511 DOI: 10.1152/ajpcell.00318.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The morula-to-blastocyst transition (MBT) culminates with formation of inner cell mass (ICM) and trophectoderm (TE) lineages. Recent studies identified signaling pathways driving lineage specification, but some features of these pathways display significant species divergence. To better understand evolutionary conservation of the MBT, we completed a meta-analysis of RNA sequencing data from five model species and ICMTE differences from four species. Although many genes change in expression during the MBT within any given species, the number of shared differentially expressed genes (DEGs) is comparatively small, and the number of shared ICMTE DEGs is even smaller. DEGs related to known lineage determining pathways (e.g., POU5F1) are seen, but the most prominent pathways and functions associated with shared DEGs or shared across individual species DEG lists impact basic physiological and metabolic activities, such as TCA cycle, unfolded protein response, oxidative phosphorylation, sirtuin signaling, mitotic roles of polo-like kinases, NRF2-mediated oxidative stress, estrogen receptor signaling, apoptosis, necrosis, lipid and fatty acid metabolism, cholesterol biosynthesis, endocytosis, AMPK signaling, homeostasis, transcription, and cell death. We also observed prominent differences in transcriptome regulation between ungulates and nonungulates, particularly for ICM- and TE-enhanced mRNAs. These results extend our understanding of shared mechanisms of the MBT and formation of the ICM and TE and should better inform the selection of model species for particular applications.
Collapse
Affiliation(s)
- Peter Z Schall
- Department of Animal Science, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan.,Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, Michigan
| | - Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan.,Department of Obstetrics, Gynecology, & Reproductive Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
37
|
Miao X, Sun T, Barletta H, Mager J, Cui W. Loss of RBBP4 results in defective inner cell mass, severe apoptosis, hyperacetylated histones and preimplantation lethality in mice†. Biol Reprod 2021; 103:13-23. [PMID: 32285100 DOI: 10.1093/biolre/ioaa046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/13/2020] [Accepted: 04/09/2020] [Indexed: 01/06/2023] Open
Abstract
Retinoblastoma-binding protein 4 (RBBP4) (also known as chromatin-remodeling factor RBAP48) is an evolutionarily conserved protein that has been involved in various biological processes. Although a variety of functions have been attributed to RBBP4 in vitro, mammalian RBBP4 has not been studied in vivo. Here we report that RBBP4 is essential during early mouse embryo development. Although Rbbp4 mutant embryos exhibit normal morphology at E3.5 blastocyst stage, they cannot be recovered at E7.5 early post-gastrulation stage, suggesting an implantation failure. Outgrowth (OG) assays reveal that mutant blastocysts cannot hatch from the zona or can hatch but then arrest without further development. We find that while there is no change in proliferation or levels of reactive oxygen species, both apoptosis and histone acetylation are significantly increased in mutant blastocysts. Analysis of lineage specification reveals that while the trophoblast is properly specified, both epiblast and primitive endoderm lineages are compromised with severe reductions in cell number and/or specification. In summary, these findings demonstrate the essential role of RBBP4 during early mammalian embryogenesis.
Collapse
Affiliation(s)
- Xiaosu Miao
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Tieqi Sun
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Holly Barletta
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA.,Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
38
|
Dehghan Z, Mohammadi-Yeganeh S, Rezaee D, Salehi M. MicroRNA-21 is involved in oocyte maturation, blastocyst formation, and pre-implantation embryo development. Dev Biol 2021; 480:69-77. [PMID: 34411594 DOI: 10.1016/j.ydbio.2021.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 07/25/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
Follicular fluid is one source of microRNAs (miRNAs). These miRNAs originate from oocytes and their neighboring cells. The changes in the miRNAs profile in the follicular fluid could alter folliculogenesis and oocyte maturation, and lead to infertility. Polycystic ovary syndrome (PCOS) patients have increased miR-21 levels in their sera, granulosa cells, and follicular fluid, and this mi-RNA plays a role in the pathophysiology and follicular dysfunction of PCOS patients. In the current study, we intend to examine whether expression levels of miR-21 influence oocyte maturation and embryo development. We examined miR-21 over-expression and down-regulation of miR-21 by miR-off 21 during in vitro maturation (IVM) to assess its influence on oocyte maturation and embryo development in mice. Over-expression of miR-21 in cumulus cells decreased expansion, meiotic progression, Glutathione-S-transferase GSH levels, and decreased expressions of Bmpr2 and Ptx3 genes. Subsequently, we noted that in vitro fertilization, and the cleavage rate and blastocyst formation significantly increased in cumulus oocyte complexes (COCs) that over-expressed miR-21. Inhibition of miR-21 by miR-off 21 led to increased cumulus expansion and GSH levels, along with decreased cleavage rate and blastocyst formation by alterations in Cdk2ap1 and Oct4 gene expressions. However, oocyte progression from the germinal vesicle (GV) to the metaphase II (MII) stage was not significant. miR-21 altered the gene expression levels in cumulus cells and influenced cytoplasmic oocyte maturation, cumulus expansion, and subsequent embryonic development in mice.
Collapse
Affiliation(s)
- Zeinab Dehghan
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Delsuz Rezaee
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Gerri C, Menchero S, Mahadevaiah SK, Turner JMA, Niakan KK. Human Embryogenesis: A Comparative Perspective. Annu Rev Cell Dev Biol 2021; 36:411-440. [PMID: 33021826 DOI: 10.1146/annurev-cellbio-022020-024900] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding human embryology has historically relied on comparative approaches using mammalian model organisms. With the advent of low-input methods to investigate genetic and epigenetic mechanisms and efficient techniques to assess gene function, we can now study the human embryo directly. These advances have transformed the investigation of early embryogenesis in nonrodent species, thereby providing a broader understanding of conserved and divergent mechanisms. Here, we present an overview of the major events in human preimplantation development and place them in the context of mammalian evolution by comparing these events in other eutherian and metatherian species. We describe the advances of studies on postimplantation development and discuss stem cell models that mimic postimplantation embryos. A comparative perspective highlights the importance of analyzing different organisms with molecular characterization and functional studies to reveal the principles of early development. This growing field has a fundamental impact in regenerative medicine and raises important ethical considerations.
Collapse
Affiliation(s)
- Claudia Gerri
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Sergio Menchero
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Shantha K Mahadevaiah
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| |
Collapse
|
40
|
Pérez-Gómez A, González-Brusi L, Bermejo-Álvarez P, Ramos-Ibeas P. Lineage Differentiation Markers as a Proxy for Embryo Viability in Farm Ungulates. Front Vet Sci 2021; 8:680539. [PMID: 34212020 PMCID: PMC8239129 DOI: 10.3389/fvets.2021.680539] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022] Open
Abstract
Embryonic losses constitute a major burden for reproductive efficiency of farm animals. Pregnancy losses in ungulate species, which include cattle, pigs, sheep and goats, majorly occur during the second week of gestation, when the embryo experiences a series of cell differentiation, proliferation, and migration processes encompassed under the term conceptus elongation. Conceptus elongation takes place following blastocyst hatching and involves a massive proliferation of the extraembryonic membranes trophoblast and hypoblast, and the formation of flat embryonic disc derived from the epiblast, which ultimately gastrulates generating the three germ layers. This process occurs prior to implantation and it is exclusive from ungulates, as embryos from other mammalian species such as rodents or humans implant right after hatching. The critical differences in embryo development between ungulates and mice, the most studied mammalian model, have precluded the identification of the genes governing lineage differentiation in livestock species. Furthermore, conceptus elongation has not been recapitulated in vitro, hindering the study of these cellular events. Luckily, recent advances on transcriptomics, genome modification and post-hatching in vitro culture are shedding light into this largely unknown developmental window, uncovering possible molecular markers to determine embryo quality. In this review, we summarize the events occurring during ungulate pre-implantation development, highlighting recent findings which reveal that several dogmas in Developmental Biology established by knock-out murine models do not hold true for other mammals, including humans and farm animals. The developmental failures associated to in vitro produced embryos in farm animals are also discussed together with Developmental Biology tools to assess embryo quality, including molecular markers to assess proper lineage commitment and a post-hatching in vitro culture system able to directly determine developmental potential circumventing the need of experimental animals.
Collapse
Affiliation(s)
- Alba Pérez-Gómez
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Leopoldo González-Brusi
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Pablo Bermejo-Álvarez
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - Priscila Ramos-Ibeas
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| |
Collapse
|
41
|
Stamatiadis P, Boel A, Cosemans G, Popovic M, Bekaert B, Guggilla R, Tang M, De Sutter P, Van Nieuwerburgh F, Menten B, Stoop D, Chuva de Sousa Lopes SM, Coucke P, Heindryckx B. Comparative analysis of mouse and human preimplantation development following POU5F1 CRISPR/Cas9 targeting reveals interspecies differences. Hum Reprod 2021; 36:1242-1252. [PMID: 33609360 DOI: 10.1093/humrep/deab027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/14/2021] [Indexed: 12/26/2022] Open
Abstract
STUDY QUESTION What is the role of POU class 5 homeobox 1 (POU5F1) in human preimplantation development and how does it compare with the mouse model? SUMMARY ANSWER POU5F1 is required for successful development of mouse and human embryos to the blastocyst stage as knockout embryos exhibited a significantly lower blastocyst formation rate, accompanied by lack of inner cell mass (ICM) formation. WHAT IS KNOWN ALREADY Clustered regularly interspaced short palindromic repeats-CRISPR associated genes (CRISPR-Cas9) has previously been used to examine the role of POU5F1 during human preimplantation development. The reported POU5F1-targeted blastocysts always retained POU5F1 expression in at least one cell, because of incomplete CRISPR-Cas9 editing. The question remains of whether the inability to obtain fully edited POU5F1-targeted blastocysts in human results from incomplete editing or the actual inability of these embryos to reach the blastocyst stage. STUDY DESIGN, SIZE, DURATION The efficiency of CRISPR-Cas9 to induce targeted gene mutations was first optimized in the mouse model. Two CRISPR-Cas9 delivery methods were compared in the B6D2F1 strain: S-phase injection (zygote stage) (n = 135) versus metaphase II-phase (M-phase) injection (oocyte stage) (n = 23). Four control groups were included: non-injected media-control zygotes (n = 43)/oocytes (n = 48); sham-injected zygotes (n = 45)/oocytes (n = 47); Cas9-protein injected zygotes (n = 23); and Cas9 protein and scrambled guide RNA (gRNA)-injected zygotes (n = 27). Immunofluorescence analysis was performed in Pou5f1-targeted zygotes (n = 37), media control zygotes (n = 19), and sham-injected zygotes (n = 15). To assess the capacity of Pou5f1-null embryos to develop further in vitro, additional groups of Pou5f1-targeted zygotes (n = 29) and media control zygotes (n = 30) were cultured to postimplantation stages (8.5 dpf). Aiming to identify differences in developmental capacity of Pou5f1-null embryos attributed to strain variation, zygotes from a second mouse strain-B6CBA (n = 52) were targeted. Overall, the optimized methodology was applied in human oocytes following IVM (metaphase II stage) (n = 101). The control group consisted of intracytoplasmically sperm injected (ICSI) IVM oocytes (n = 33). Immunofluorescence analysis was performed in human CRISPR-injected (n = 10) and media control (n = 9) human embryos. PARTICIPANTS/MATERIALS, SETTING, METHODS A gRNA-Cas9 protein mixture targeting exon 2 of Pou5f1/POU5F1 was microinjected in mouse oocytes/zygotes or human IVM oocytes. Reconstructed embryos were cultured for 4 days (mouse) or 6.5 days (human) in sequential culture media. An additional group of mouse-targeted zygotes was cultured to postimplantation stages. Embryonic development was assessed daily, with detailed scoring at late blastocyst stage. Genomic editing was assessed by immunofluorescence analysis and next-generation sequencing. MAIN RESULTS AND THE ROLE OF CHANCE Genomic analysis in mouse revealed very high editing efficiencies with 95% of the S-Phase and 100% of the M-Phase embryos containing genetic modifications, of which 89.47% in the S-Phase and 84.21% in the M-Phase group were fully edited. The developmental capacity was significantly compromised as only 46.88% embryos in the S-Phase and 19.05% in the M-Phase group reached the blastocyst stage, compared to 86.36% in control M-Phase and 90.24% in control S-Phase groups, respectively. Immunofluorescence analysis confirmed the loss of Pou5f1 expression and downregulation of the primitive marker SRY-Box transcription factor (Sox17). Our experiments confirmed the requirement of Pou5f1 expression for blastocyst development in the second B6CBA strain. Altogether, our data obtained in mouse reveal that Pou5f1 expression is essential for development to the blastocyst stage. M-Phase injection in human IVM oocytes (n = 101) similarly resulted in 88.37% of the POU5F1-targeted embryos being successfully edited. The developmental capacity of generated embryos was compromised from the eight-cell stage onwards. Only 4.55% of the microinjected embryos reached the late blastocyst stage and the embryos exhibited complete absence of ICM and an irregular trophectoderm cell layer. Loss of POU5F1 expression resulted in absence of SOX17 expression, as in mouse. Interestingly, genetic mosaicism was eliminated in a subset of targeted human embryos (9 out of 38), three of which developed into blastocysts. LIMITATIONS, REASONS FOR CAUTION One of the major hurdles of CRISPR-Cas9 germline genome editing is the occurrence of mosaicism, which may complicate phenotypic analysis and interpretation of developmental behavior of the injected embryos. Furthermore, in this study, spare IVM human oocytes were used, which may not recapitulate the developmental behavior of in vivo matured oocytes. WIDER IMPLICATIONS OF THE FINDINGS Comparison of developmental competency following CRISPR-Cas-mediated gene targeting in mouse and human may be influenced by the selected mouse strain. Gene targeting by CRISPR-Cas9 is subject to variable targeting efficiencies. Therefore, striving to reduce mosaicism can provide novel molecular insights into mouse and human embryogenesis. STUDY FUNDING/COMPETING INTEREST(S) The research was funded by the Ghent University Hospital and Ghent University and supported by the FWO-Vlaanderen (Flemish fund for scientific research, Grant no. G051516N), and Hercules funding (FWO.HMZ.2016.00.02.01). The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- P Stamatiadis
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - A Boel
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - G Cosemans
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - M Popovic
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - B Bekaert
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - R Guggilla
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - M Tang
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - P De Sutter
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - F Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - B Menten
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - D Stoop
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - S M Chuva de Sousa Lopes
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium.,Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, 2333 ZC, the Netherlands
| | - P Coucke
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - B Heindryckx
- Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
42
|
Cavazza T, Takeda Y, Politi AZ, Aushev M, Aldag P, Baker C, Choudhary M, Bucevičius J, Lukinavičius G, Elder K, Blayney M, Lucas-Hahn A, Niemann H, Herbert M, Schuh M. Parental genome unification is highly error-prone in mammalian embryos. Cell 2021; 184:2860-2877.e22. [PMID: 33964210 PMCID: PMC8162515 DOI: 10.1016/j.cell.2021.04.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 02/05/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022]
Abstract
Most human embryos are aneuploid. Aneuploidy frequently arises during the early mitotic divisions of the embryo, but its origin remains elusive. Human zygotes that cluster their nucleoli at the pronuclear interface are thought to be more likely to develop into healthy euploid embryos. Here, we show that the parental genomes cluster with nucleoli in each pronucleus within human and bovine zygotes, and clustering is required for the reliable unification of the parental genomes after fertilization. During migration of intact pronuclei, the parental genomes polarize toward each other in a process driven by centrosomes, dynein, microtubules, and nuclear pore complexes. The maternal and paternal chromosomes eventually cluster at the pronuclear interface, in direct proximity to each other, yet separated. Parental genome clustering ensures the rapid unification of the parental genomes on nuclear envelope breakdown. However, clustering often fails, leading to chromosome segregation errors and micronuclei, incompatible with healthy embryo development.
Collapse
Affiliation(s)
- Tommaso Cavazza
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Yuko Takeda
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, NE1 4EP Newcastle upon Tyne, UK
| | - Antonio Z Politi
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Magomet Aushev
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, NE1 4EP Newcastle upon Tyne, UK
| | - Patrick Aldag
- Institute of Farm Animal Genetics, Biotechnology, Friedrich-Loeffler-Institute, Mariensee, 31535 Neustadt, Germany
| | | | - Meenakshi Choudhary
- Newcastle Fertility Centre at Life, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 4EP Newcastle upon Tyne, UK
| | - Jonas Bucevičius
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | - Kay Elder
- Bourn Hall Clinic, CB23 2TN Cambridge, UK
| | | | - Andrea Lucas-Hahn
- Institute of Farm Animal Genetics, Biotechnology, Friedrich-Loeffler-Institute, Mariensee, 31535 Neustadt, Germany
| | - Heiner Niemann
- Institute of Farm Animal Genetics, Biotechnology, Friedrich-Loeffler-Institute, Mariensee, 31535 Neustadt, Germany
| | - Mary Herbert
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, NE1 4EP Newcastle upon Tyne, UK; Newcastle Fertility Centre at Life, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 4EP Newcastle upon Tyne, UK
| | - Melina Schuh
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
43
|
Tahir MS, Porto-Neto LR, Gondro C, Shittu OB, Wockner K, Tan AWL, Smith HR, Gouveia GC, Kour J, Fortes MRS. Meta-Analysis of Heifer Traits Identified Reproductive Pathways in Bos indicus Cattle. Genes (Basel) 2021; 12:768. [PMID: 34069992 PMCID: PMC8157873 DOI: 10.3390/genes12050768] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Fertility traits measured early in life define the reproductive potential of heifers. Knowledge of genetics and biology can help devise genomic selection methods to improve heifer fertility. In this study, we used ~2400 Brahman cattle to perform GWAS and multi-trait meta-analysis to determine genomic regions associated with heifer fertility. Heifer traits measured were pregnancy at first mating opportunity (PREG1, a binary trait), first conception score (FCS, score 1 to 3) and rebreeding score (REB, score 1 to 3.5). The heritability estimates were 0.17 (0.03) for PREG1, 0.11 (0.05) for FCS and 0.28 (0.05) for REB. The three traits were highly genetically correlated (0.75-0.83) as expected. Meta-analysis was performed using SNP effects estimated for each of the three traits, adjusted for standard error. We identified 1359 significant SNPs (p-value < 9.9 × 10-6 at FDR < 0.0001) in the multi-trait meta-analysis. Genomic regions of 0.5 Mb around each significant SNP from the meta-analysis were annotated to create a list of 2560 positional candidate genes. The most significant SNP was in the vicinity of a genomic region on chromosome 8, encompassing the genes SLC44A1, FSD1L, FKTN, TAL2 and TMEM38B. The genomic region in humans that contains homologs of these genes is associated with age at puberty in girls. Top significant SNPs pointed to additional fertility-related genes, again within a 0.5 Mb region, including ESR2, ITPR1, GNG2, RGS9BP, ANKRD27, TDRD12, GRM1, MTHFD1, PTGDR and NTNG1. Functional pathway enrichment analysis resulted in many positional candidate genes relating to known fertility pathways, including GnRH signaling, estrogen signaling, progesterone mediated oocyte maturation, cAMP signaling, calcium signaling, glutamatergic signaling, focal adhesion, PI3K-AKT signaling and ovarian steroidogenesis pathway. The comparison of results from this study with previous transcriptomics and proteomics studies on puberty of the same cattle breed (Brahman) but in a different population identified 392 genes in common from which some genes-BRAF, GABRA2, GABR1B, GAD1, FSHR, CNGA3, PDE10A, SNAP25, ESR2, GRIA2, ORAI1, EGFR, CHRNA5, VDAC2, ACVR2B, ORAI3, CYP11A1, GRIN2A, ATP2B3, CAMK2A, PLA2G, CAMK2D and MAPK3-are also part of the above-mentioned pathways. The biological functions of the positional candidate genes and their annotation to known pathways allowed integrating the results into a bigger picture of molecular mechanisms related to puberty in the hypothalamus-pituitary-ovarian axis. A reasonable number of genes, common between previous puberty studies and this study on early reproductive traits, corroborates the proposed molecular mechanisms. This study identified the polymorphism associated with early reproductive traits, and candidate genes that provided a visualization of the proposed mechanisms, coordinating the hypothalamic, pituitary, and ovarian functions for reproductive performance in Brahman cattle.
Collapse
Affiliation(s)
- Muhammad S. Tahir
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Laercio R. Porto-Neto
- Commonwealth Scientific and Industrial Research Organization, Brisbane, QLD 4072, Australia;
| | - Cedric Gondro
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA;
| | - Olasege B. Shittu
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Kimberley Wockner
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Andre W. L. Tan
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Hugo R. Smith
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Gabriela C. Gouveia
- Animal Science Department, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Jagish Kour
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Marina R. S. Fortes
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| |
Collapse
|
44
|
Schall PZ, Latham KE. Essential shared and species-specific features of mammalian oocyte maturation-associated transcriptome changes impacting oocyte physiology. Am J Physiol Cell Physiol 2021; 321:C3-C16. [PMID: 33881934 DOI: 10.1152/ajpcell.00105.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oogenesis is a complex process resulting in the production of a truly remarkable cell-the oocyte. Oocytes execute many unique processes and functions such as meiotic segregation of maternal genetic material, and essential life-generating functions after fertilization including posttranscriptional support of essential homeostatic and metabolic processes, and activation and reprogramming of the embryonic genome. An essential goal for understanding female fertility and infertility in mammals is to discover critical features driving the production of quality oocytes, particularly the complex regulation of oocyte maternal mRNAs. We report here the first in-depth meta-analysis of oocyte maturation-associated transcriptome changes, using eight datasets encompassing 94 RNAseq libraries for human, rhesus monkey, mouse, and cow. A majority of maternal mRNAs are regulated in a species-restricted manner, highlighting considerable divergence in oocyte transcriptome handling during maturation. We identified 121 mRNAs changing in relative abundance similarly across all four species (92 of high homology), and 993 (670 high homology) mRNAs regulated similarly in at least three of the four species, corresponding to just 0.84% and 6.9% of mRNAs analyzed. Ingenuity Pathway Analysis (IPA) revealed an association of these shared mRNAs with many shared pathways and functions, most prominently oxidative phosphorylation and mitochondrial function. These shared functions were reinforced further by primate-specific and species-specific differentially expressed genes (DEGs). Thus, correct downregulation of mRNAs related to oxidative phosphorylation and mitochondrial function is a major shared feature of mammalian oocyte maturation.
Collapse
Affiliation(s)
- Peter Z Schall
- Department of Animal Science, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan.,Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, Michigan
| | - Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan.,Department of Obstetrics, Gynecology, & Reproductive Biology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
45
|
Hisey EA, Ross PJ, Meyers S. Genetic Manipulation of the Equine Oocyte and Embryo. J Equine Vet Sci 2021; 99:103394. [PMID: 33781418 PMCID: PMC8605602 DOI: 10.1016/j.jevs.2021.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 01/19/2023]
Abstract
As standard in vitro fertilization is not a viable technique in horses yet, many different techniques have been used to create equine embryos for research purposes. One such method is parthenogenesis in which an oocyte is induced to mature into an embryo-like state without the introduction of a spermatozoon, and thus they are not considered true embryos. Another method is somatic cell nuclear transfer (SCNT), in which a somatic cell nucleus from an extant horse is inserted into an enucleated oocyte, creating a genetic clone of the donor horse. Due to limited availability of equine oocytes in the United States, researchers have investigated the potential for combining equine somatic cell nuclei with oocytes from other species to make embryos for research purposes, which has not been successful to date. There has also been a rising interest in producing transgenic animals using sperm exposed to exogenous DNA. The successful creation of transgenic equine blastocysts shows the promise of sperm mediated gene transfer (SMGT), but this method is not ideal for other applications, like gene therapy, because it cannot be used to induce targeted mutations. That is why technologies like CRISPR/Cas9 are vital. In this review, we argue that parthenogenesis, SCNT, and interspecies SCNT can be considered genetic manipulation strategies as they create embryos that are genetically identical to their parent cell. Here, we describe how these methods are performed and their applications and we also describe the few methods that have been used to directly modify equine embryos: SMGT and CRISPR/Cas9.
Collapse
Affiliation(s)
- Erin A. Hisey
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA
| | - Pablo J. Ross
- Department of Animal Science, University of California, Davis, CA
| | - Stuart Meyers
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA,Corresponding author at: S. Meyers, 1089 Veterinary Medicine Dr. Davis CA 95616. (S. Meyers)
| |
Collapse
|
46
|
Hisey E, Ross PJ, Meyers SA. A Review of OCT4 Functions and Applications to Equine Embryos. J Equine Vet Sci 2021; 98:103364. [PMID: 33663726 PMCID: PMC8603767 DOI: 10.1016/j.jevs.2020.103364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/16/2020] [Indexed: 01/19/2023]
Abstract
OCT4 is a core transcription factor involved in pluripotency maintenance in the early mammalian embryo. The POU5F1 gene that encodes the OCT4 protein is highly conserved across species, suggesting conserved function. However, studies in several species including mice, cattle, and pigs, suggest that there are differences in where and when OCT4 is expressed. Specifically, in the horse, several studies have shown that exposure to the uterine environment may be necessary to induce OCT4 expression restriction to the inner cell mass (ICM) of the developing embryo, suggesting that there may be equine-specific extrinsic regulators of OCT4 expression that have not yet been investigated. However, an alternative hypothesis is that this restriction may not be evident in equine embryos because of our inability to culture them to the epiblast stage, preventing the observation of this restriction. In vitro studies have identified that OCT4 is expressed in the immature equine oocyte and in the early equine embryo, but OCT4 expression has not been studied after the formation of the ICM in the equine embryo. Despite the gaps in knowledge about equine-specific functions of OCT4, this factor has been used in studies assessing equine embryonic stem cells and to induce pluripotency in equine somatic cells. This review describes the role of OCT4 in the equine embryo and its applications in equine stem cell research.
Collapse
Affiliation(s)
- Erin Hisey
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, Davis, CA
| | - Pablo J. Ross
- Department of Animal Science, University of California, Davis, CA
| | - Stuart A. Meyers
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, Davis, CA,Corresponding author at: Stuart A. Meyers, 1089 Veterinary Medicine Dr. Davis, CA 95616. (S.A. Meyers)
| |
Collapse
|
47
|
Pioltine EM, Costa CB, Barbosa Latorraca L, Franchi FF, dos Santos PH, Mingoti GZ, de Paula-Lopes FF, Nogueira MFG. Treatment of in vitro-Matured Bovine Oocytes With Tauroursodeoxycholic Acid Modulates the Oxidative Stress Signaling Pathway. Front Cell Dev Biol 2021; 9:623852. [PMID: 33681203 PMCID: PMC7933469 DOI: 10.3389/fcell.2021.623852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/01/2021] [Indexed: 01/24/2023] Open
Abstract
In several species, oocyte and embryo competence are improved by the addition of endoplasmic reticulum (ER) stress inhibitors to in vitro maturation (IVM) medium and/or in vitro culture (IVC) medium. This study aimed to evaluate the effects of three concentrations of tauroursodeoxycholic acid (TUDCA; 50, 200, and 1,000 μM), a chemical chaperone for relieving ER stress, during IVM of bovine cumulus-oocyte complexes (COCs) for 24 h. Treated oocytes were analyzed for nuclear maturation, reactive oxygen species (ROS) production, mitochondrial activity, and abundance of target transcripts. In addition, the number of pronuclei in oocytes was evaluated after 18-20 h of insemination, and the rates of blastocyst and hatched blastocyst formation were evaluated after 7 and 8/9 days of culture, respectively. We further evaluated the transcript abundance of embryonic quality markers. Our findings showed that supplementation of IVM medium with 200 μM of TUDCA decreased ROS production and increased abundance of transcripts related to antioxidant activity in oocytes (CAT, GPX1, and HMOX1) and embryos (GPX1 and PRDX3). Interestingly, high concentration of TUDCA (1,000 μM) was toxic to oocytes, reducing the nuclear maturation rate, decreasing mitochondrial activity, and increasing the abundance of ER stress (HSPA5) and cellular apoptosis (CASP3 and CD40) related transcripts. The results of this study suggest that treatment with 200 μM of TUDCA is associated with a greater resistance to oxidative stress and indirectly with ER stress relief in bovine oocytes.
Collapse
Affiliation(s)
- Elisa Mariano Pioltine
- Multi-user Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Institute of Biosciences, Department of Pharmacology, São Paulo State University, Botucatu, Brazil
| | - Camila Bortoliero Costa
- Multi-user Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Institute of Biosciences, Department of Pharmacology, São Paulo State University, Botucatu, Brazil
| | | | - Fernanda Fagali Franchi
- Multi-user Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Institute of Biosciences, Department of Pharmacology, São Paulo State University, Botucatu, Brazil
| | - Priscila Helena dos Santos
- Multi-user Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Institute of Biosciences, Department of Pharmacology, São Paulo State University, Botucatu, Brazil
| | - Gisele Zoccal Mingoti
- School of Veterinary Medicine, Department of Production and Animal Health, São Paulo State University, Araçatuba, Brazil
| | | | - Marcelo Fábio Gouveia Nogueira
- Multi-user Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Institute of Biosciences, Department of Pharmacology, São Paulo State University, Botucatu, Brazil
- Laboratory of Embryonic Micromanipulation, School of Sciences and Languages, Department of Biological Sciences, São Paulo State University, Assis, Brazil
| |
Collapse
|
48
|
Carreiro LE, Santos GSD, Luedke FE, Goissis MD. Cell differentiation events in pre-implantation mouse and bovine embryos. Anim Reprod 2021; 18:e20210054. [PMID: 35035540 PMCID: PMC8747937 DOI: 10.1590/1984-3143-ar2021-0054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022] Open
Abstract
Early mammal embryogenesis starts with oocyte fertilization, giving rise to the zygote. The events that the newly formed zygote surpasses are crucial to the embryo developmental success. Shortly after activation of its genome, cells of the embryo segregate into the inner cell mass (ICM) or the trophectoderm (TE). The first will give rise to the embryo while the latter will become the placenta. This first segregation involves cellular and molecular processes that include cell polarity linked to intracellular pathway activation, which will regulate the transcription of trophectoderm-related genes. Then, cells of the ICM undergo the second event of mammalian cell differentiation, which consists of the separation between epiblast (EPI) and hypoblast or primitive endoderm (PrE). This second segregation involves paracrine signaling, leading to differential expression of key genes that will dictate the fate of the cell. Although these processes are described in detail in the mouse, recent studies suggest that the bovine embryo could also be an interesting model for early development, since there are differences to the mouse and similarities with early human embryogenesis. In this review, we gathered the main data available in the literature upon bovine and mouse early development events, suggesting that both models should be analyzed and studied in a complementary way, to better model early events occurring in human development.
Collapse
|
49
|
Hennig SL, Owen JR, Lin JC, Young AE, Ross PJ, Van Eenennaam AL, Murray JD. Evaluation of mutation rates, mosaicism and off target mutations when injecting Cas9 mRNA or protein for genome editing of bovine embryos. Sci Rep 2020; 10:22309. [PMID: 33339870 PMCID: PMC7749171 DOI: 10.1038/s41598-020-78264-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
The CRISPR/Cas9 genome editing tool has the potential to improve the livestock breeding industry by allowing for the introduction of desirable traits. Although an efficient and targeted tool, the CRISPR/Cas9 system can have some drawbacks, including off-target mutations and mosaicism, particularly when used in developing embryos. Here, we introduced genome editing reagents into single-cell bovine embryos to compare the effect of Cas9 mRNA and protein on the mutation efficiency, level of mosaicism, and evaluate potential off-target mutations utilizing next generation sequencing. We designed guide-RNAs targeting three loci (POLLED, H11, and ZFX) in the bovine genome and saw a significantly higher rate of mutation in embryos injected with Cas9 protein (84.2%) vs. Cas9 mRNA (68.5%). In addition, the level of mosaicism was higher in embryos injected with Cas9 mRNA (100%) compared to those injected with Cas9 protein (94.2%), with little to no unintended off-target mutations detected. This study demonstrated that the use of gRNA/Cas9 ribonucleoprotein complex resulted in a high editing efficiency at three different loci in bovine embryos and decreased levels of mosaicism relative to Cas9 mRNA. Additional optimization will be required to further reduce mosaicism to levels that make single-step embryo editing in cattle commercially feasible.
Collapse
Affiliation(s)
- Sadie L Hennig
- Department of Animal Science, University of California - Davis, Davis, CA, USA
| | - Joseph R Owen
- Department of Animal Science, University of California - Davis, Davis, CA, USA
| | - Jason C Lin
- Department of Animal Science, University of California - Davis, Davis, CA, USA
| | - Amy E Young
- Department of Animal Science, University of California - Davis, Davis, CA, USA
| | - Pablo J Ross
- Department of Animal Science, University of California - Davis, Davis, CA, USA
| | | | - James D Murray
- Department of Animal Science, University of California - Davis, Davis, CA, USA.,Department of Population Health and Reproduction, University of California - Davis, Davis, CA, USA
| |
Collapse
|
50
|
Su J, Miao X, Archambault D, Mager J, Cui W. ZC3H4-a novel Cys-Cys-Cys-His-type zinc finger protein-is essential for early embryogenesis in mice†. Biol Reprod 2020; 104:325-335. [PMID: 33246328 DOI: 10.1093/biolre/ioaa215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/10/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Zinc finger domains of the Cys-Cys-Cys-His (CCCH) class are evolutionarily conserved proteins that bind nucleic acids and are involved in various biological processes. Nearly 60 CCCH-type zinc finger proteins have been identified in humans and mice, most have not been functionally characterized. Here, we provide the first in vivo functional characterization of ZC3H4-a novel CCCH-type zinc finger protein. Our results show that although Zc3h4 mutant embryos exhibit normal morphology at E3.5 blastocyst stage, they cannot be recovered at E7.5 early post-gastrulation stage, suggesting implantation failure. Outgrowth assays reveal that mutant blastocysts either fail to hatch from the zona pellucida, or can hatch but do not form a typical inner cell mass colony, the source of embryonic stem cells (ESCs). Although there is no change in levels of reactive oxygen species, Zc3h4 mutants display severe DNA breaks and reduced cell proliferation. Analysis of lineage specification reveals that both epiblast and primitive endoderm lineages are compromised with severe reductions in cell number and/or specification in the mutant blastocysts. In summary, these findings demonstrate the essential role of ZC3H4 during early mammalian embryogenesis.
Collapse
Affiliation(s)
- Jianmin Su
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xiaosu Miao
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Danielle Archambault
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA.,Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA
| |
Collapse
|