1
|
Hatfield BM, LaSarre B, Liu M, Dong H, Nettleton D, Beattie GA. Light cues induce protective anticipation of environmental water loss in terrestrial bacteria. Proc Natl Acad Sci U S A 2023; 120:e2309632120. [PMID: 37695906 PMCID: PMC10515139 DOI: 10.1073/pnas.2309632120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
The ecological significance of light perception in nonphotosynthetic bacteria remains largely elusive. In terrestrial environments, diurnal oscillations in light are often temporally coupled to other environmental changes, including increased temperature and evaporation. Here, we report that light functions as an anticipatory cue that triggers protective adaptations to tolerate a future rapid loss of environmental water. We demonstrate this photo-anticipatory stress tolerance in leaf-associated Pseudomonas syringae pv. syringae (Pss) and other plant- and soil-associated pseudomonads. We found that light influences the expression of 30% of the Pss genome, indicating that light is a global regulatory signal, and this signaling occurs almost entirely via a bacteriophytochrome photoreceptor that senses red, far-red, and blue wavelengths. Bacteriophytochrome-mediated light control disproportionally up-regulates water-stress adaptation functions and confers enhanced fitness when cells encounter light prior to water limitation. Given the rapid speed at which water can evaporate from leaf surfaces, such anticipatory activation of a protective response enhances fitness beyond that of a reactive stress response alone, with recurring diurnal wet-dry cycles likely further amplifying the fitness advantage over time. These findings demonstrate that nonphotosynthetic bacteria can use light as a cue to mount an adaptive anticipatory response against a physiologically unrelated but ecologically coupled stress.
Collapse
Affiliation(s)
- Bridget M. Hatfield
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Breah LaSarre
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Meiling Liu
- Department of Statistics, Iowa State University, Ames, IA50011
| | - Haili Dong
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, IA50011
| | - Gwyn A. Beattie
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| |
Collapse
|
2
|
Arana N, Perez Mora B, Permingeat V, Giordano R, Calderone M, Tuttobene M, Klinke S, Rinaldi J, Müller G, Mussi MA. Light regulation in critical human pathogens of clinical relevance such as Acinetobacter baumannii, Staphylococcus aureus and Pseudomonas aeruginosa. Photochem Photobiol Sci 2023; 22:2019-2036. [PMID: 37269546 DOI: 10.1007/s43630-023-00437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/08/2023] [Indexed: 06/05/2023]
Abstract
It is now clearly recognized that light modulates the physiology of many bacterial chemotrophs, either directly or indirectly. An interesting case are bacterial pathogens of clinical relevance. This work summarizes, discusses, and provides novel complementary information to what is currently known about light sensing and responses in critical human pathogens such as Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus aureus. These pathogens are associated with severe hospital and community infections difficult to treat due to resistance to multiple drugs. Moreover, light responses in Brucella abortus, an important animal and human pathogen, are also compiled. Evidence recovered so far indicates that light modulates aspects related to pathogenesis, persistence, and antibiotic susceptibility in these pathogens; such as motility, biofilm formation, iron uptake, tolerance to antibiotics, hemolysis and virulence. The pathogens elicit differential responses to light depending likely on their pathophysiology, ability to cause disease and characteristics of the host. The response to light is not restricted to discrete physiological traits but is global. In higher organisms, light provides spatial and temporal information. Then, it is crucial to understand what information light is providing in these bacterial pathogens. Our current hypothesis postulates that light serves as a signal that allows these pathogens to synchronize their behavior to the circadian rhythm of the host, to optimize infection. Advances on the molecular mechanism of light signal transduction and physiological responses to light, as well as in the relation between light and bacterial infection, would not only enlarge our understanding of bacterial pathogenesis but also could potentially provide alternative treatment options for infectious illnesses.
Collapse
Affiliation(s)
- Natalia Arana
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Bárbara Perez Mora
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Valentín Permingeat
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Rocío Giordano
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Malena Calderone
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Marisel Tuttobene
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, (C1405BWE) Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Jimena Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, (C1405BWE) Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela Müller
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina.
| | - María Alejandra Mussi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina.
| |
Collapse
|
3
|
Abstract
The ferric uptake regulator (Fur) protein is the founding member of the FUR superfamily of metalloregulatory proteins that control metal homeostasis in bacteria. FUR proteins regulate metal homeostasis in response to the binding of iron (Fur), zinc (Zur), manganese (Mur), or nickel (Nur). FUR family proteins are generally dimers in solution, but the DNA-bound complex can involve a single dimer, a dimer-of-dimers, or an extended array of bound protein. Elevated FUR levels due to changes in cell physiology increase DNA occupancy and may also kinetically facilitate protein dissociation. Interactions between FUR proteins and other regulators are commonplace, often including cooperative and competitive DNA-binding interactions within the regulatory region. Further, there are many emerging examples of allosteric regulators that interact directly with FUR family proteins. Here, we focus on newly uncovered examples of allosteric regulation by diverse Fur antagonists (Escherichia coli YdiV/SlyD, Salmonella enterica EIIANtr, Vibrio parahaemolyticus FcrX, Acinetobacter baumannii BlsA, Bacillus subtilis YlaN, and Pseudomonas aeruginosa PacT) as well as one Zur antagonist (Mycobacterium bovis CmtR). Small molecules and metal complexes may also serve as regulatory ligands, with examples including heme binding to Bradyrhizobium japonicum Irr and 2-oxoglutarate binding to Anabaena FurA. How these protein-protein and protein-ligand interactions act in conjunction with regulatory metal ions to facilitate signal integration is an active area of investigation.
Collapse
Affiliation(s)
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Blue Light Sensing BlsA-Mediated Modulation of Meropenem Resistance and Biofilm Formation in Acinetobacter baumannii. mSystems 2023; 8:e0089722. [PMID: 36622157 PMCID: PMC9948694 DOI: 10.1128/msystems.00897-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The presence or absence of BlsA, a protein with a blue light-sensing flavin domain in the genomes of Acinetobacter species has aroused curiosity about its roles in the regulation of bacterial lifestyle under light. Genomic and transcriptomic analyses revealed the loss of BlsA in several multidrug-resistant (MDR) A. baumannii strains as well as the light-mediated induction of blsA, along with a possible BlsA-interacting partner BipA. Their direct in vivo interactions were verified using a bacterial two-hybrid system. The results demonstrated that the C-terminal region of BipA could bind to the C-terminal residues of BlsA under blue light at 23°C but not at 37°C. Genetic manipulations of blsA and bipA revealed that the coexistence of BlsA and BipA was required to induce the light-dependent expression of ompA in A. baumannii ATCC 17978 at 23°C. The same phenomenon occurred in the BlsA-deficient MDR strain in our functional complementation assay; however, the underlying molecular mechanism remains poorly understood. BlsA-modulated amounts of OmpA, the most abundant porin, in the outer membrane affected the membrane integrity and permeability of small molecules. Dark conditions or the deletion of ompA made the membrane more permeable to lipophilic ethidium bromide (EtBr) but not to meropenem. Interestingly, light illumination and low temperature conditions made the cells more sensitive to meropenem; however, this bactericidal effect was not noted in the blsA mutant or in the BlsA-deficient MDR strains. Light-mediated cell death and the reduction of biofilm formation at 23°C were abolished in the blsA mutant strain, suggesting multifaceted roles of BlsA in A. baumannii strains. IMPORTANCE Little is known about the functional roles of BlsA and its interacting partners in Acinetobacter species. Intriguingly, no BlsA homolog was found in several clinical isolates, suggesting that BlsA was not required inside the host because of the lack of blue light and the warm temperature conditions. As many chromophore-harboring proteins interact with various partners to control light-dependent cellular behaviors, the maintenance of blsA in the genomes of many Acinetobacter species during their evolution may be beneficial when fluctuations occur in two important environmental factors: light and temperature. Our study is the first to report the novel protein partner of BlsA, namely, BipA, and its contribution to multiple phenotypic changes, including meropenem resistance and biofilm formation. Rapid physiological acclimation to changing light or temperature conditions may be possible in the presence of the light-sensing BlsA protein, which may have more interacting partners than expected.
Collapse
|
5
|
BfmRS encodes a regulatory system involved in light signal transduction modulating motility and desiccation tolerance in the human pathogen Acinetobacter baumannii. Sci Rep 2023; 13:175. [PMID: 36604484 PMCID: PMC9814549 DOI: 10.1038/s41598-022-26314-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
We have previously shown that Acinetobacter baumannii as well as other relevant clinical bacterial pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa, perceive and respond to light at 37 °C, the normal temperature in mammal hosts. In this work, we present evidence indicating that the two-component system BfmRS transduces a light signal in A. baumannii at this temperature, showing selective involvement of the BfmR and BfmS components depending on the specific cellular process. In fact, both BfmR and BfmS participate in modulation of motility by light, while only BfmR is involved in light regulation of desiccation tolerance in this microorganism. Neither BfmR nor BfmS contain a photoreceptor domain and then most likely, the system is sensing light indirectly. Intriguingly, this system inhibits blsA expression at 37 °C, suggesting antagonistic functioning of both signaling systems. Furthermore, we present evidence indicating that the phosphorylatable form of BfmR represses motility. Overall, we provide experimental evidence on a new biological function of this multifaceted system that broadens our understanding of A. baumannii's physiology and responses to light.
Collapse
|
6
|
Squire MS, Townsend HA, Islam A, Actis LA. Light Regulates Acinetobacter baumannii Chromosomal and pAB3 Plasmid Genes at 37°C. J Bacteriol 2022; 204:e0003222. [PMID: 35604222 PMCID: PMC9210970 DOI: 10.1128/jb.00032-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
The opportunistic pathogen A. baumannii has a remarkable capacity to persist in the hospital environment and cause devastating human infections. This capacity can be attributed partly to the sensing and regulatory systems that enable this pathogen to modify its physiology based on environmental cues. One of the signals that A. baumannii senses and responds to is light through the sensing and regulatory roles of the BlsA photoreceptor protein in cells cultured at temperatures below 30°C. This report presents evidence that a light stimulon is operational at 37°C, a condition at which the BlsA production and activity are drastically impaired. Global transcriptional analysis showed that the 37°C light stimulon includes the differential expression of chromosomal genes encoding a wide range of functions that are known to be involved in the adaptation to different metabolic conditions, as well as virulence and persistence in the host and the medical environment. Unexpectedly, the 37°C light stimulon also includes the differential expression of conjugation functions encoded by pAB3 plasmid genes. Our work further demonstrates that the TetR1 and H-NS regulators encoded by this conjugative plasmid control the expression of H2O2 resistance and surface motility, respectively. Furthermore, our data showed that pAB3 has an overall negative effect on the expression of these phenotypes and plays no significant virulence role. Although the nature of the bacterial factors and the mechanisms by which the regulation is attained at 37°C remain unknown, taken together, our work expands the current knowledge about light sensing and gene regulation in A. baumannii. IMPORTANCE As a facultative pathogen, Acinetobacter baumannii persists in various environments by sensing different environmental cues, including light. This report provides evidence of light-dependent regulation at 37°C of the expression of genes coding for a wide range of functions, including those involved in the conjugation of the pAB3 plasmid. Although this plasmid affects the expression of virulence traits when tested under laboratory conditions, it does not have a significant impact when tested using ex vivo and in vivo experimental models. These findings provide a better understanding of the interplay between light regulation and plasmid persistence in the pathobiology of A. baumannii.
Collapse
Affiliation(s)
| | | | - Aminul Islam
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| | - Luis A. Actis
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| |
Collapse
|
7
|
Soares EV. Perspective on the biotechnological production of bacterial siderophores and their use. Appl Microbiol Biotechnol 2022. [PMID: 35672469 DOI: 10.1007/s00253-022-11995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Iron (Fe) is an essential element in several fundamental cellular processes. Although present in high amounts in the Earth's crust, Fe can be a scarce element due to its low bioavailability. To mitigate Fe limitation, microorganism (bacteria and fungi) and grass plant biosynthesis and secret secondary metabolites, called siderophores, with capacity to chelate Fe(III) with high affinity and selectivity. This review focuses on the current state of knowledge concerning the production of siderophores by bacteria. The main siderophore types and corresponding siderophore-producing bacteria are summarized. A concise outline of siderophore biosynthesis, secretion and regulation is given. Important aspects to be taken into account in the selection of a siderophore-producing bacterium, such as biological safety, complexing properties of the siderophores and amount of siderophores produced are summarized and discussed. An overview containing recent scientific advances on culture medium formulation and cultural conditions that influence the production of siderophores by bacteria is critically presented. The recovery, purification and processing of siderophores are outlined. Potential applications of siderophores in different sectors including agriculture, environment, biosensors and the medical field are sketched. Finally, future trends regarding the production and use of siderophores are discussed. KEY POINTS : • An overview of siderophore production by bacteria is critically presented • Scientific advances on factors that influence siderophores production are discussed • Potential applications of siderophores, in different fields, are outlined.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory, ISEP-School of Engineering, Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga-Guimaraes, Portugal.
| |
Collapse
|
8
|
Soares EV. Perspective on the biotechnological production of bacterial siderophores and their use. Appl Microbiol Biotechnol 2022; 106:3985-4004. [PMID: 35672469 DOI: 10.1007/s00253-022-11995-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022]
Abstract
Iron (Fe) is an essential element in several fundamental cellular processes. Although present in high amounts in the Earth's crust, Fe can be a scarce element due to its low bioavailability. To mitigate Fe limitation, microorganism (bacteria and fungi) and grass plant biosynthesis and secret secondary metabolites, called siderophores, with capacity to chelate Fe(III) with high affinity and selectivity. This review focuses on the current state of knowledge concerning the production of siderophores by bacteria. The main siderophore types and corresponding siderophore-producing bacteria are summarized. A concise outline of siderophore biosynthesis, secretion and regulation is given. Important aspects to be taken into account in the selection of a siderophore-producing bacterium, such as biological safety, complexing properties of the siderophores and amount of siderophores produced are summarized and discussed. An overview containing recent scientific advances on culture medium formulation and cultural conditions that influence the production of siderophores by bacteria is critically presented. The recovery, purification and processing of siderophores are outlined. Potential applications of siderophores in different sectors including agriculture, environment, biosensors and the medical field are sketched. Finally, future trends regarding the production and use of siderophores are discussed. KEY POINTS : • An overview of siderophore production by bacteria is critically presented • Scientific advances on factors that influence siderophores production are discussed • Potential applications of siderophores, in different fields, are outlined.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory, ISEP-School of Engineering, Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal. .,CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal. .,LABBELS - Associate Laboratory, Braga-Guimaraes, Portugal.
| |
Collapse
|
9
|
Abatedaga I, Perez Mora B, Tuttobene M, Müller G, Biancotti D, Borsarelli CD, Valle L, Mussi MA. Characterization of BLUF-photoreceptors present in Acinetobacter nosocomialis. PLoS One 2022; 17:e0254291. [PMID: 35442978 PMCID: PMC9020721 DOI: 10.1371/journal.pone.0254291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
Acinetobacter nosocomialis is a Gram-negative opportunistic pathogen, whose ability to cause disease in humans is well recognized. Blue light has been shown to modulate important physiological traits related to persistence and virulence in this microorganism. In this work, we characterized the three Blue Light sensing Using FAD (BLUF) domain-containing proteins encoded in the A. nosocomialis genome, which account for the only canonical light sensors present in this microorganism. By focusing on a light-modulated bacterial process such as motility, the temperature dependence of light regulation was studied, as well as the expression pattern and spectroscopic characteristics of the different A. nosocomialis BLUFs. Our results show that the BLUF-containing proteins AnBLUF65 and AnBLUF46 encode active photoreceptors in the light-regulatory temperature range when expressed recombinantly. In fact, AnBLUF65 is an active photoreceptor in the temperature range from 15°C to 37°C, while AnBLUF46 between 15°C to 32°C, in vitro. In vivo, only the Acinetobacter baumannii BlsA’s ortholog AnBLUF65 was expressed in A. nosocomialis cells recovered from motility plates. Moreover, complementation assays showed that AnBLUF65 is able to mediate light regulation of motility in A. baumannii ΔblsA strain at 30°C, confirming its role as photoreceptor and in modulation of motility by light. Intra-protein interactions analyzed using 3D models built based on A. baumannii´s BlsA photoreceptor, show that hydrophobic/aromatic intra-protein interactions may contribute to the stability of dark/light- adapted states of the studied proteins, reinforcing the previous notion on the importance of these interactions in BLUF photoreceptors. Overall, the results presented here reveal the presence of BLUF photoreceptors in A. nosocomialis with idiosyncratic characteristics respect to the previously characterized A. baumannii’s BlsA, both regarding the photoactivity temperature-dependency as well as expression patterns, contributing thus to broaden our knowledge on the BLUF family.
Collapse
Affiliation(s)
- Inés Abatedaga
- Instituto de Bionanotecnología del NOA (INBIONATEC-CONICET), Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Bárbara Perez Mora
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Marisel Tuttobene
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Gabriela Müller
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Daiana Biancotti
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Claudio D. Borsarelli
- Instituto de Bionanotecnología del NOA (INBIONATEC-CONICET), Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
- Instituto de Ciencias Químicas (ICQ), Facultad de Agronomía y Agroindustrias (FAyA), UNSE, Santiago del Estero, Argentina
| | - Lorena Valle
- Instituto de Bionanotecnología del NOA (INBIONATEC-CONICET), Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
- Instituto de Ciencias Químicas (ICQ), Facultad de Agronomía y Agroindustrias (FAyA), UNSE, Santiago del Estero, Argentina
- * E-mail: (MAM); (LV)
| | - Maria A. Mussi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
- * E-mail: (MAM); (LV)
| |
Collapse
|
10
|
Squire MS, Townsend HA, Actis LA. The Influence of Blue Light and the BlsA Photoreceptor on the Oxidative Stress Resistance Mechanisms of Acinetobacter baumannii. Front Cell Infect Microbiol 2022; 12:856953. [PMID: 35402311 PMCID: PMC8987720 DOI: 10.3389/fcimb.2022.856953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii is a catalase-positive Gram-negative bacterial pathogen that causes severe infections among compromised patients. Among its noteworthy regulatory mechanisms, this microorganism regulates its lifestyle through the blue light using flavin (BLUF) protein BlsA. This protein regulates a diverse set of cellular processes that include, but are not limited to, motility, biofilm formation, phenylacetic acid metabolism, iron uptake, and catalase activity. We set out to determine how A. baumannii regulates catalase activity and other related oxidative stress phenotypes in response to light. Notably, because A. baumannii ATCC 17978 encodes four catalase homologs – which we refer to as KatA, KatE, KatE2, and KatG – we also aimed to show which of these enzymes exhibit light- and BlsA-dependent activity. Our work not only provides insight into the general function of all four catalase homologs and the impact of light on these functions, but also directly identifies KatE as a BlsA-regulated enzyme. We further demonstrate that the regulation of KatE by BlsA is dependent on a lysine residue that we previously demonstrated to be necessary for the regulation of surface motility. Furthermore, we show that BlsA’s five most-C-terminal residues – previously considered dispensable for BlsA’s overall function – are necessary for the light-independent and light-dependent regulation of catalase and superoxide dismutase activities, respectively. We hypothesize that these identified critical residues are necessary for BlsA’s interaction with protein partners including the transcriptional regulators Fur and BfmR. Together these data expand the understanding regarding how A. baumannii uses light as a signal to control oxidative stress resistance mechanisms that are critical for its pathophysiology.
Collapse
|
11
|
Genetic Factors Affect the Survival and Behaviors of Selected Bacteria during Antimicrobial Blue Light Treatment. Int J Mol Sci 2021; 22:ijms221910452. [PMID: 34638788 PMCID: PMC8508746 DOI: 10.3390/ijms221910452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance is a global, mounting and dynamic issue that poses an immediate threat to human, animal, and environmental health. Among the alternative antimicrobial treatments proposed to reduce the external use of antibiotics is electromagnetic radiation, such as blue light. The prevailing mechanistic model is that blue light can be absorbed by endogenous porphyrins within the bacterial cell, inducing the production of reactive oxygen species, which subsequently inflict oxidative damages upon different cellular components. Nevertheless, it is unclear whether other mechanisms are involved, particularly those that can affect the efficacy of antimicrobial blue light treatments. In this review, we summarize evidence of inherent factors that may confer protection to a selected group of bacteria against blue light-induced oxidative damages or modulate the physiological characteristics of the treated bacteria, such as virulence and motility. These include descriptions of three major photoreceptors in bacteria, chemoreceptors, SOS-dependent DNA repair and non-SOS protective mechanisms. Future directions are also provided to assist with research efforts to increase the efficacy of antimicrobial blue light and to minimize the development of blue light-tolerant phenotypes.
Collapse
|
12
|
Blue light directly modulates the quorum network in the human pathogen Acinetobacter baumannii. Sci Rep 2021; 11:13375. [PMID: 34183737 PMCID: PMC8239052 DOI: 10.1038/s41598-021-92845-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023] Open
Abstract
Quorum sensing modulates bacterial collective behaviors including biofilm formation, motility and virulence in the important human pathogen Acinetobacter baumannii. Disruption of quorum sensing has emerged as a promising strategy with important therapeutic potential. In this work, we show that light modulates the production of acyl-homoserine lactones (AHLs), which were produced in higher levels in the dark than under blue light at environmental temperatures, a response that depends on the AHL synthase, AbaI, and on the photoreceptor BlsA. BlsA interacts with the transcriptional regulator AbaR in the dark at environmental temperatures, inducing abaI expression. Under blue light, BlsA does not interact with AbaR, but induces expression of the lactonase aidA and quorum quenching, consistently with lack of motility at this condition. At temperatures found in warm-blooded hosts, the production of AHLs, quorum quenching as well as abaI and aidA expression were also modulated by light, though in this case higher levels of AHLs were detected under blue light than in the dark, in a BlsA-independent manner. Finally, AbaI reduces A. baumannii's ability to kill C. albicans only in the dark both at environmental as well as at temperatures found in warm-blooded hosts. The overall data indicate that light directly modulates quorum network in A. baumannii.
Collapse
|
13
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
14
|
Light Modulates Important Pathogenic Determinants and Virulence in ESKAPE Pathogens Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus. J Bacteriol 2021; 203:JB.00566-20. [PMID: 33288627 DOI: 10.1128/jb.00566-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Light sensing has been extensively characterized in the human pathogen Acinetobacter baumannii at environmental temperatures. However, the influence of light on the physiology and pathogenicity of human bacterial pathogens at temperatures found in warm-blooded hosts is still poorly understand. In this work, we show that Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa (ESKAPE) priority pathogens, which have been recognized by the WHO and the CDC as critical, can also sense and respond to light at temperatures found in human hosts. Most interestingly, in these pathogens, light modulates important pathogenicity determinants as well as virulence in an epithelial infection model, which could have implications in human infections. In fact, we found that alpha-toxin-dependent hemolysis, motility, and growth under iron-deprived conditions are modulated by light in S. aureus Light also regulates persistence, metabolism, and the ability to kill competitors in some of these microorganisms. Finally, light exerts a profound effect on the virulence of these pathogens in an epithelial infection model, although the response is not the same in the different species; virulence was enhanced by light in A. baumannii and S. aureus, while in A. nosocomialis and P. aeruginosa it was reduced. Neither the BlsA photoreceptor nor the type VI secretion system (T6SS) is involved in virulence modulation by light in A. baumannii Overall, this fundamental knowledge highlights the potential use of light to control pathogen virulence, either directly or by manipulating the light regulatory switch toward the lowest virulence/persistence configuration.IMPORTANCE Pathogenic bacteria are microorganisms capable of producing disease. Dangerous bacterial pathogens, such as Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii, are responsible for serious intrahospital and community infections in humans. Therapeutics is often complicated due to resistance to multiple antibiotics, rendering them ineffective. In this work, we show that these pathogens sense natural light and respond to it by modulating aspects related to their ability to cause disease; in the presence of light, some of them become more aggressive, while others show an opposite response. Overall, we provide new understanding on the behavior of these pathogens, which could contribute to the control of infections caused by them. Since the response is distributed in diverse pathogens, this notion could prove a general concept.
Collapse
|
15
|
Chitrakar I, Iuliano JN, He Y, Woroniecka HA, Collado JT, Wint J, Walker SG, Tonge PJ, French JB. Structural Basis for the Regulation of Biofilm Formation and Iron Uptake in A. baumannii by the Blue-Light-Using Photoreceptor, BlsA. ACS Infect Dis 2020; 6:2592-2603. [PMID: 32926768 PMCID: PMC10035076 DOI: 10.1021/acsinfecdis.0c00156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The opportunistic human pathogen, A. baumannii, senses and responds to light using the blue light sensing A (BlsA) photoreceptor protein. BlsA is a blue-light-using flavin adenine dinucleotide (BLUF) protein that is known to regulate a wide variety of cellular functions through interactions with different binding partners. Using immunoprecipitation of tagged BlsA in A. baumannii lysates, we observed a number of proteins that interact with BlsA, including several transcription factors. In addition to a known binding partner, the iron uptake regulator Fur, we identified the biofilm response regulator BfmR as a putative BlsA-binding partner. Using microscale thermophoresis, we determined that both BfmR and Fur bind to BlsA with nanomolar binding constants. To better understand how BlsA interacts with and regulates these transcription factors, we solved the X-ray crystal structures of BlsA in both a ground (dark) state and a photoactivated light state. Comparison of the light- and dark-state structures revealed that, upon photoactivation, the two α-helices comprising the variable domain of BlsA undergo a distinct conformational change. The flavin-binding site, however, remains largely unchanged from dark to light. These structures, along with docking studies of BlsA and Fur, reveal key mechanistic details about how BlsA propagates the photoactivation signal between protein domains and on to its binding partner. Taken together, our structural and biophysical data provide important insights into how BlsA controls signal transduction in A. baumannii and provides a likely mechanism for blue-light-dependent modulation of biofilm formation and iron uptake.
Collapse
Affiliation(s)
- Iva Chitrakar
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA, 11790
- Biochemistry and Structural Biology Program, Stony Brook University, Stony Brook, NY, USA, 11790
| | - James N. Iuliano
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA, 11790
| | - YongLe He
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA, 11790
| | | | | | - Jinelle Wint
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA, 11790
| | - Stephen G. Walker
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, NY, USA, 11790
| | - Peter J. Tonge
- Biochemistry and Structural Biology Program, Stony Brook University, Stony Brook, NY, USA, 11790
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA, 11790
| | - Jarrod B. French
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA, 11790
- Biochemistry and Structural Biology Program, Stony Brook University, Stony Brook, NY, USA, 11790
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA, 11790
- The Hormel Institute, University of Minnesota, Austin, MN, 55912
- To whom correspondence should be addressed: Jarrod B. French: ; (507)437-9637
| |
Collapse
|
16
|
Pezza A, Tuttobene M, Abatedaga I, Valle L, Borsarelli CD, Mussi MA. Through the eyes of a pathogen: light perception and signal transduction in Acinetobacter baumannii. Photochem Photobiol Sci 2019; 18:2363-2373. [PMID: 31290528 DOI: 10.1039/c9pp00261h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sunlight is a ubiquitous environmental stimulus for the great majority of living organisms on Earth; therefore it is logical to expect the development of "seeing mechanisms" which lead them to successfully adapt to particular ecological niches. Although these mechanisms were recognized in photosynthetic organisms, it was not until recent years that the scientific community found out about light perception in chemotrophic ones. In this review we summarize the current knowledge about the mechanism of light sensing through the blue light receptor BlsA in Acinetobacter baumannii. We highlight its function as a global regulator that pleiotropically modulates a large number of physiological processes, many of which are linked to the ability of this opportunist pathogen to persist in adverse intrahospital environments. Moreover, we describe with some specific examples the molecular basis of how this photoregulator senses blue light and translates this physical signal by modulating gene expression of target regulons. Finally, we discuss the possible course of these investigations needed to dissect this complex regulatory network, which ultimately will help us better understand the A. baumannii physiology.
Collapse
Affiliation(s)
- Alejandro Pezza
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), 2000, Rosario, Argentina
| | | | | | | | | | | |
Collapse
|
17
|
Golic AE, Valle L, Jaime PC, Álvarez CE, Parodi C, Borsarelli CD, Abatedaga I, Mussi MA. BlsA Is a Low to Moderate Temperature Blue Light Photoreceptor in the Human Pathogen Acinetobacter baumannii. Front Microbiol 2019; 10:1925. [PMID: 31497002 PMCID: PMC6712483 DOI: 10.3389/fmicb.2019.01925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 08/05/2019] [Indexed: 11/20/2022] Open
Abstract
Light is an environmental signal that produces extensive effects on the physiology of the human pathogen Acinetobacter baumannii. Many of the bacterial responses to light depend on BlsA, a bluelight using FAD (BLUF)-type photoreceptor, which also integrates temperature signals. In this work, we disclose novel mechanistic aspects of the function of BlsA. First, we show that light modulation of motility occurs only at temperatures lower than 24°C, a phenotype depending on BlsA. Second, blsA transcript levels were significantly reduced at temperatures higher than 25°C, in agreement with BlsA protein levels in the cell which were undetectable at 26°C and higher temperatures. Also, quantum yield of photo-activation of BlsA (lBlsA) between 14 and 37°C, showed that BlsA photoactivity is greatly compromised at 25°C and absent above 28°C. Fluorescence emission and anisotropy of the cofactor together with the intrinsic protein fluorescence studies suggest that the FAD binding site is more susceptible to structural changes caused by increments in temperature than other regions of the protein. Moreover, BlsA itself gains structural instability and strongly aggregates at temperatures above 30°C. Overall, BlsA is a low to moderate temperature photoreceptor, whose functioning is highly regulated in the cell, with control points at expression of the cognate gene as well as photoactivity.
Collapse
Affiliation(s)
- Adrián E Golic
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Lorena Valle
- Instituto de Bionanotecnología del NOA (INBIONATEC) CONICET-Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Paula C Jaime
- Instituto de Bionanotecnología del NOA (INBIONATEC) CONICET-Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Clarisa E Álvarez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Clarisa Parodi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Claudio D Borsarelli
- Instituto de Bionanotecnología del NOA (INBIONATEC) CONICET-Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Inés Abatedaga
- Instituto de Bionanotecnología del NOA (INBIONATEC) CONICET-Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - María Alejandra Mussi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| |
Collapse
|
18
|
Wood CR, Squire MS, Finley NL, Page RC, Actis LA. Structural and functional analysis of the Acinetobacter baumannii BlsA photoreceptor and regulatory protein. PLoS One 2019; 14:e0220918. [PMID: 31415622 PMCID: PMC6695109 DOI: 10.1371/journal.pone.0220918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/25/2019] [Indexed: 12/22/2022] Open
Abstract
The Acinetobacter baumannii BlsA photoreceptor has an N-terminal (NT) BLUF domain and a C-terminal (CT) amino acid sequence with no significant homology to characterized bacterial proteins. In this study, we tested the biological role of specific residues located in these BlsA regions. Site-directed mutagenesis, surface motility assays at 24°C and protein overexpression showed that residues Y7, Q51 and W92 are essential for not only light-regulated motility, but also BlsA's solubility when overexpressed in a heterologous host. In contrast, residues A29 and F32, the latter representing a difference when compared with other BLUF-containing photoreceptors, do not play a major role in BlsA's biological functions. Analysis of the CT region showed that the deletion of the last five BlsA residues has no significant effect on the protein's light-sensing and motility regulatory functions, but the deletion of the last 14 residues as well as K144E and K145E substitutions significantly alter light-regulated motility responses. In contrast to the NT mutants, these CT derivatives were overexpressed and purified to homogeneity to demonstrate that although these mutations do not significantly affect flavin binding and photocycling, they do affect BlsA's photodynamic properties. Notably, these mutations map within a potential fifth α-helical component that could play a role in predicted interactions between regulatory partners and BlsA, which could function as a monomer according to gel filtration data. All these observations indicate that although BlsA shares common structural and functional properties with unrelated photoreceptors, it also exhibits unique features that make it a distinct BLUF photoreceptor.
Collapse
Affiliation(s)
- Cecily R. Wood
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Mariah S. Squire
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Natosha L. Finley
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - Richard C. Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, United States of America
| | - Luis A. Actis
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
- * E-mail:
| |
Collapse
|
19
|
Tuttobene MR, Fernández-García L, Blasco L, Cribb P, Ambroa A, Müller GL, Fernández-Cuenca F, Bleriot I, Rodríguez RE, Barbosa BGV, Lopez-Rojas R, Trastoy R, López M, Bou G, Tomás M, Mussi MA. Quorum and Light Signals Modulate Acetoin/Butanediol Catabolism in Acinetobacter spp. Front Microbiol 2019; 10:1376. [PMID: 31281296 PMCID: PMC6595428 DOI: 10.3389/fmicb.2019.01376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/03/2019] [Indexed: 12/25/2022] Open
Abstract
Acinetobacter spp. are found in all environments on Earth due to their extraordinary capacity to survive in the presence of physical and chemical stressors. In this study, we analyzed global gene expression in airborne Acinetobacter sp. strain 5-2Ac02 isolated from hospital environment in response to quorum network modulators and found that they induced the expression of genes of the acetoin/butanediol catabolism, volatile compounds shown to mediate interkingdom interactions. Interestingly, the acoN gene, annotated as a putative transcriptional regulator, was truncated in the downstream regulatory region of the induced acetoin/butanediol cluster in Acinetobacter sp. strain 5-2Ac02, and its functioning as a negative regulator of this cluster integrating quorum signals was confirmed in Acinetobacter baumannii ATCC 17978. Moreover, we show that the acetoin catabolism is also induced by light and provide insights into the light transduction mechanism by showing that the photoreceptor BlsA interacts with and antagonizes the functioning of AcoN in A. baumannii, integrating also a temperature signal. The data support a model in which BlsA interacts with and likely sequesters AcoN at this condition, relieving acetoin catabolic genes from repression, and leading to better growth under blue light. This photoregulation depends on temperature, occurring at 23°C but not at 30°C. BlsA is thus a dual regulator, modulating different transcriptional regulators in the dark but also under blue light, representing thus a novel concept. The overall data show that quorum modulators as well as light regulate the acetoin catabolic cluster, providing a better understanding of environmental as well as clinical bacteria.
Collapse
Affiliation(s)
- Marisel Romina Tuttobene
- Centro de Estudios Fotosintéticos y Bioquímicos de Rosario (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Laura Fernández-García
- Microbiology Department-Biomedical Research Institute A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Lucía Blasco
- Microbiology Department-Biomedical Research Institute A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Pamela Cribb
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Anton Ambroa
- Microbiology Department-Biomedical Research Institute A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Gabriela Leticia Müller
- Centro de Estudios Fotosintéticos y Bioquímicos de Rosario (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Felipe Fernández-Cuenca
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen Macarena, Seville, Spain.,Department of Microbiology and Medicine, University of Seville, Seville, Spain.,Biomedicine Institute of Seville (IBIS), Seville, Spain
| | - Inés Bleriot
- Centro de Estudios Fotosintéticos y Bioquímicos de Rosario (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Beatriz G V Barbosa
- Microbial Resistance Laboratory, Biological Sciences Institute, University of Pernambuco (UPE), Recife, Brazil
| | - Rafael Lopez-Rojas
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen Macarena, Seville, Spain.,Department of Microbiology and Medicine, University of Seville, Seville, Spain.,Biomedicine Institute of Seville (IBIS), Seville, Spain
| | - Rocío Trastoy
- Microbiology Department-Biomedical Research Institute A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - María López
- Microbiology Department-Biomedical Research Institute A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - Germán Bou
- Centro de Estudios Fotosintéticos y Bioquímicos de Rosario (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Tomás
- Microbiology Department-Biomedical Research Institute A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
| | - María A Mussi
- Centro de Estudios Fotosintéticos y Bioquímicos de Rosario (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
20
|
Regulation of Iron Uptake by Fine-Tuning the Iron Responsiveness of the Iron Sensor Fur. Appl Environ Microbiol 2019; 85:AEM.03026-18. [PMID: 30824449 DOI: 10.1128/aem.03026-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/23/2019] [Indexed: 02/07/2023] Open
Abstract
Iron is one of most abundant environmental metal ions but is highly limited in organisms. It is an important metal ion as it facilitates various biological processes, including catalysis of metabolic enzymes and DNA biogenesis. In bacteria, the ferric uptake regulator (Fur) protein controls iron uptake by regulating genes coding for iron transporters in response to iron concentration. This iron response is ascribed to Fur's intrinsic affinity for iron because its binding to iron dictates its regulatory function. However, we now report that the pathogen Salmonella achieves a proper response of Fur to changes in environmental iron concentrations via EIIANtr (a nitrogen metabolic phosphotransferase system component). We establish that EIIANtr increases expression of iron transporter-coding genes under low-iron conditions (i.e., nanomolar ranges) in a Fur-dependent manner, which promotes Salmonella growth under such conditions. EIIANtr directly hampers Fur binding to DNA, thereby inducing expression of those genes. This regulation allows Salmonella to express Fur-regulated genes under low-iron conditions. Our findings reveal a potentially widespread control mechanism of bacterial iron uptake systems operating in response to iron availability.IMPORTANCE Iron is a fundamental metal ion for living organisms as it facilitates various biological processes. The ferric uptake regulator (Fur) protein controls iron homeostasis in various bacterial species. It is believed that Fur's iron-dependent regulatory action is sufficient for it to function as an iron sensor. However, we now establish that the bacterial pathogen Salmonella enables Fur to properly reflect changes in surrounding iron availability by fine-tuning its responsiveness to iron. This process requires a protein that hampers Fur DNA binding at low iron concentrations. In this way, Salmonella broadens the range of iron concentrations that Fur responds to. Our findings reveal a potentially widespread control mechanism of bacterial iron homeostasis.
Collapse
|
21
|
Tiwari V, Rajeswari MR, Tiwari M. Proteomic analysis of iron-regulated membrane proteins identify FhuE receptor as a target to inhibit siderophore-mediated iron acquisition in Acinetobacter baumannii. Int J Biol Macromol 2018; 125:1156-1167. [PMID: 30579900 DOI: 10.1016/j.ijbiomac.2018.12.173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/02/2018] [Accepted: 12/19/2018] [Indexed: 11/27/2022]
Abstract
Survival of the Acinetobacter baumannii inside host requires different micronutrients such as iron, but their bioavailability is limited because of nutritional immunity created by host. A. baumannii has to develop mechanisms to acquire nutrient iron during infection. The present study is an attempt to identify membrane proteins involved in iron sequestration mechanism of A. baumannii using two-dimensional electrophoresis and LC-MS/MS analysis. The identified iron-regulated membrane protein (IRMP) of A. baumannii was used for its interaction studies with different siderophores, and designing of the inhibitor against A. baumannii targeting this IRMP. Membrane proteomic results identified over-expression of four membrane proteins (Fhu-E receptor, ferric-acinetobactin receptor, ferrienterochelin receptor, and ferric siderophore receptor) under iron-limited condition. A. baumannii produces siderophores that have good interaction with the FhuE receptor. Result also showed that FhuE receptor has interaction with siderophores produced by other bacteria. Interaction of FhuE receptor and siderophores helps in iron sequestration and survival of Acinetobacter under nutritional immunity imposed by the host. Hence it becomes essential to find a potential inhibitor for the FhuE receptor that can inhibit the survival of A. baumannii in the host. In-silico screening, and molecular mechanics studies identified ZINC03794794 and ZINC01530652 as a likely lead to design inhibitor against the FhuE receptor of A. baumannii. The designed inhibitor is experimentally validated for its antibacterial activity on the A. baumannii. Therefore, designed inhibitor interferes with the iron acquisition mechanism of Acinetobacter hence may prove useful for preventing infection caused by A. baumannii by limiting nutrient availability.
Collapse
Affiliation(s)
- Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India.
| | - Moganty R Rajeswari
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| |
Collapse
|