1
|
Tovar-Hernández K, Salinas-Vera YM, Carlos-Reyes Á, García-Hernández AP, Marchat LA, Mandujano-Lázaro G, Ríos-Castro E, Velasco-Suárez A, Mendez-Gómez I, Tecalco-Cruz ÁC, Ibarra-Sierra E, López-Camarillo C. Adipocytes reprogram the proteome of breast cancer cells in organotypic three-dimensional cell cultures. Sci Rep 2024; 14:27029. [PMID: 39505903 PMCID: PMC11542085 DOI: 10.1038/s41598-024-76053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
While epidemiological evidence has long linked obesity with an increased risk of breast cancer, the intricate interactions between adipocytes and cancer cells within the tumor microenvironment remain largely uncharted territory. The use of organotypic three-dimensional (3D) cell cultures that more accurately mimic the spatial architecture of tumors represents an innovative approach to this complex issue. In the present study, we investigated the effects of adipocytes on the proteome of Hs578t breast cancer cells cultured in a 3D microenvironment. Using different treatments, we rigorously optimized the experimental conditions to induce the optimal differentiation of 3T3-L1 fibroblasts into mature adipocytes. Then, we grow the Hs578t cells in a simulated microenvironment using an on-top model for organotypic 3D cultures. Our data showed that cancer cells formed 3D stellate-like architectures when grown over an extracellular matrix proteins-enriched scaffold for 48 h. Proteomic profiling using LC-MS/MS mass spectrometry of Hs578t cells grown in 3D conditions with or without the adipocyte-enriched culture discovered 916 unique proteins. Of these, 605 showed no significant changes in abundance, whereas 87 proteins were significantly upregulated and 224 downregulated after interaction with fat cells (p < 0.05, FC > 2.0). Bioinformatic analysis of upregulated proteins indicated that the most enriched GO terms and molecular functions were related to lipids transport, cell differentiation, hypoxia response, and cell junctions. In addition, several modulated proteins have been previously associated with breast cancer progression. Interestingly, lipid transport proteins, including PITPNM2, ATP2C1, ABCA12, HDLBP, and APOB, showed perturbations in their expression, which were also associated with low overall survival in breast cancer patients. Functional studies showed that the knockdown of apolipoprotein B (APOB) expression in Hs578t cells reduced the size of 3D cellular structures. Moreover, APOB-knocked cells cocultured with adipocytes for 48 h exhibited a significant decrease of intracellular lipids, whereas an increase in the adipocytes was found. Our results indicate that the 3D microenvironment and the adipocytes crosstalk reprogram the proteome of breast cancer cells. These data help us understand the environmental effects in gene expression and contribute to discovering novel tumor proteins with potential intervention in breast cancer therapy.
Collapse
Affiliation(s)
- Karla Tovar-Hernández
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Yarely M Salinas-Vera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Ángeles Carlos-Reyes
- Laboratorio de Oncoinmunobiologia, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México, México.
- , Calzada de Tlalpan 4502, Belisario Domínguez Sección 16, Tlalpan, Ciudad de México, 14080, México.
| | | | - Laurence A Marchat
- Laboratorio de Biomedicina Molecular II. Programa en Biomedicina Molecular y Red de Biotecnología, Instituto Politécnico Nacional, Ciudad de México, México
| | - Gilberto Mandujano-Lázaro
- Laboratorio de Biomedicina Molecular II. Programa en Biomedicina Molecular y Red de Biotecnología, Instituto Politécnico Nacional, Ciudad de México, México
| | - Emmanuel Ríos-Castro
- Unidad de Genómica, Proteómica y Metabolómica. CINVESTAV-IPN, Ciudad de México, México
| | - Andrea Velasco-Suárez
- Unidad de Genómica, Proteómica y Metabolómica. CINVESTAV-IPN, Ciudad de México, México
| | - Ivonne Mendez-Gómez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Ángeles C Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Eloisa Ibarra-Sierra
- Departamento de Investigación, Instituto Estatal de Cancerologia "Dr. Arturo Beltrán Ortega", Acapulco, Guerrero, México
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México.
- San Lorenzo 290, Colonia del Valle, Ciudad de México, 03100, México.
| |
Collapse
|
2
|
Roy R, Man E, Aldakhlallah R, Gonzalez K, Merritt L, Daisy C, Lombardo M, Yordanova V, Sun L, Isaac B, Rockowitz S, Lotz M, Pories S, Moses MA. Mammary adipocytes promote breast tumor cell invasion and angiogenesis in the context of menopause and obesity. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167325. [PMID: 38925485 DOI: 10.1016/j.bbadis.2024.167325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
The mechanism(s) underlying obesity-related postmenopausal (PM) breast cancer (BC) are not clearly understood. We hypothesized that the increased local presence of 'obese' mammary adipocytes within the BC microenvironment promotes the acquisition of an invasive and angiogenic BC cell phenotype and accelerates tumor proliferation and progression. BC cells, treated with primary mammary adipocyte secretome from premenopausal (Pre-M) and PM obese women (ObAdCM; obese adipocyte conditioned-media) upregulated the expression of several pro-tumorigenic factors including VEGF, lipocalin-2 and IL-6. Both Pre-M and PM ObAdCM stimulated endothelial cell recruitment and proliferation and significantly stimulated BC cell proliferation, migration and invasion. IL-6 and LCN2 induced STAT3/Akt signaling in BC cells and STAT3 inhibition abrogated the ObAdCM-stimulated BC cell proliferation and migration. Expression of proangiogenic regulators including VEGF, NRP1, NRP2, IL8RB, TGFβ2, and TSP-1 were found to be differentially regulated in mammary adipocytes from obese PM women. Comparative RNAseq indicated an upregulation of PI3K/Akt signaling, ECM-receptor interactions and lipid/fatty acid metabolism in PM versus Pre-M mammary adipocytes. Our results demonstrate that irrespective of menopausal status, cross-talk between obese mammary adipocytes and BC cells promotes tumor aggressiveness and suggest that targeting the LCN2/IL-6/STAT3 signaling axis may be a useful strategy in obesity-driven breast tumorigenesis.
Collapse
Affiliation(s)
- Roopali Roy
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA.
| | - Emily Man
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Rama Aldakhlallah
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | | | - Lauren Merritt
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Cassandra Daisy
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Michael Lombardo
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA
| | | | - Liang Sun
- Research Computing and Information Technology, Boston Children's Hospital, Boston, MA, USA
| | - Biju Isaac
- Research Computing and Information Technology, Boston Children's Hospital, Boston, MA, USA
| | - Shira Rockowitz
- Research Computing and Information Technology, Boston Children's Hospital, Boston, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Margaret Lotz
- Hoffman Breast Center, Mount Auburn Hospital, Cambridge, MA, USA
| | - Susan Pories
- Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA; Hoffman Breast Center, Mount Auburn Hospital, Cambridge, MA, USA
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA; Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Meng X, Morita M, Kuba S, Hayashi H, Otsubo R, Matsumoto M, Yamanouchi K, Kobayashi K, Soyama A, Hidaka M, Kanetaka K, Nagayasu T, Eguchi S. Association of quantitative analysis of intratumoral reduced E-cadherin expression with lymph node metastasis and prognosis in patients with breast cancer. Sci Rep 2023; 13:10434. [PMID: 37369698 PMCID: PMC10300190 DOI: 10.1038/s41598-023-37012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Loss of E-cadherin expression is a poor prognostic factor in patients with breast cancer. Breast cancer cells co-cultured with adipocytes reportedly promote E-cadherin attenuation and tumor progression. The current study aimed to investigate the association of reduced E-cadherin expression with adipose tissue invasion (ATI) and prognosis in breast cancer. Surgical specimens were collected from 188 women with invasive ductal carcinoma of the breast who had undergone surgery without neoadjuvant treatment. We compared E-cadherin expression in ATI and invasive front (IF) using immunohistochemistry with ImageJ. Reduced E-cadherin expression was detected not only in the ATI area but also in the IF, and the degree of reduced E-cadherin expression was positively correlated with both areas. In patients with lymph node metastasis compared to those without, E-cadherin expression was reduced and this reduction was associated with poor recurrence-free survival. We concluded that E-cadherin expression is reduced not only at the ATI area but also at the IF of the tumor. Reduced E-cadherin expression is a clear prognostic factor for breast cancer. Hence, future research is warranted for establishing an objective and quantitative E-cadherin staining assay that will allow clinical use of E-cadherin as a prognostic factor.
Collapse
Affiliation(s)
- Xiangyue Meng
- Department of Surgery, Nagasaki University Graduate School of Biomedical Science, 1-7-1 Sakamoto-Machi, Nagasaki, 852-8501, Japan
| | - Michi Morita
- Department of Surgery, Nagasaki University Graduate School of Biomedical Science, 1-7-1 Sakamoto-Machi, Nagasaki, 852-8501, Japan
| | - Sayaka Kuba
- Department of Surgery, Nagasaki University Graduate School of Biomedical Science, 1-7-1 Sakamoto-Machi, Nagasaki, 852-8501, Japan.
| | - Hiroko Hayashi
- Department of Pathology, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
| | - Ryota Otsubo
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
| | - Megumi Matsumoto
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
| | - Kosho Yamanouchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Science, 1-7-1 Sakamoto-Machi, Nagasaki, 852-8501, Japan
| | - Kazuma Kobayashi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Science, 1-7-1 Sakamoto-Machi, Nagasaki, 852-8501, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Science, 1-7-1 Sakamoto-Machi, Nagasaki, 852-8501, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Science, 1-7-1 Sakamoto-Machi, Nagasaki, 852-8501, Japan
| | - Kengo Kanetaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Science, 1-7-1 Sakamoto-Machi, Nagasaki, 852-8501, Japan
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Science, 1-7-1 Sakamoto-Machi, Nagasaki, 852-8501, Japan
| |
Collapse
|
4
|
Lučić I, Kurtović M, Mlinarić M, Piteša N, Čipak Gašparović A, Sabol M, Milković L. Deciphering Common Traits of Breast and Ovarian Cancer Stem Cells and Possible Therapeutic Approaches. Int J Mol Sci 2023; 24:10683. [PMID: 37445860 DOI: 10.3390/ijms241310683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer (BC) and ovarian cancer (OC) are among the most common and deadly cancers affecting women worldwide. Both are complex diseases with marked heterogeneity. Despite the induction of screening programs that increase the frequency of earlier diagnosis of BC, at a stage when the cancer is more likely to respond to therapy, which does not exist for OC, more than 50% of both cancers are diagnosed at an advanced stage. Initial therapy can put the cancer into remission. However, recurrences occur frequently in both BC and OC, which are highly cancer-subtype dependent. Therapy resistance is mainly attributed to a rare subpopulation of cells, named cancer stem cells (CSC) or tumor-initiating cells, as they are capable of self-renewal, tumor initiation, and regrowth of tumor bulk. In this review, we will discuss the distinctive markers and signaling pathways that characterize CSC, their interactions with the tumor microenvironment, and the strategies they employ to evade immune surveillance. Our focus will be on identifying the common features of breast cancer stem cells (BCSC) and ovarian cancer stem cells (OCSC) and suggesting potential therapeutic approaches.
Collapse
Affiliation(s)
- Ivan Lučić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Matea Kurtović
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Monika Mlinarić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Nikolina Piteša
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ana Čipak Gašparović
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Lidija Milković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Arndt L, Hernandez-Resendiz I, Moos D, Dokas J, Müller S, Jeromin F, Wagner R, Ceglarek U, Heid IM, Höring M, Liebisch G, Stadler SC, Burkhardt R. Trib1 Deficiency Promotes Hyperlipidemia, Inflammation, and Atherosclerosis in LDL Receptor Knockout Mice. Arterioscler Thromb Vasc Biol 2023; 43:979-994. [PMID: 37078290 DOI: 10.1161/atvbaha.122.318137] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Genetic variants at the TRIB1 gene locus are strongly associated with plasma lipid traits and the risk of coronary artery disease in humans. Here, we analyzed the consequences of Trib1 deficiency on lipid metabolism and atherosclerotic lesion formation in atherosclerosis-susceptible Ldlr-/- mice. METHODS Trib1-/- mice were crossed onto the Ldlr-/- background to generate double-knockout mice (Trib1-/-Ldlr-/-) and fed a semisynthetic, modified AIN76 diet (0.02% cholesterol and 4.3% fat) until 20 weeks of age. RESULTS Trib1-/-Ldlr-/- mice had profoundly larger (5.8-fold) and more advanced atherosclerotic lesions at the aortic root as compared with Trib1+/+Ldlr-/- controls. Further, we observed significantly elevated plasma total cholesterol and triglyceride levels in Trib1-/-Ldlr-/- mice, resulting from higher VLDL (very-low-density lipoprotein) secretion. Lipidomics analysis revealed that loss of Trib1 altered hepatic lipid composition, including the accumulation of cholesterol and proinflammatory ceramide species, which was accompanied by signs of hepatic inflammation and injury. Concomitantly, we detected higher plasma levels of IL (interleukin)-6 and LCN2 (lipocalin 2), suggesting increased systemic inflammation in Trib1-/-Ldlr-/- mice. Hepatic transcriptome analysis demonstrated significant upregulation of key genes controlling lipid metabolism and inflammation in Trib1-/-Ldlr-/- mice. Further experiments suggested that these effects may be mediated through pathways involving a C/EPB (CCAAT/enhancer binding protein)-PPARγ (peroxisome proliferator-activated receptor γ) axis and JNK (c-Jun N-terminal kinase) signaling. CONCLUSIONS We provide experimental evidence that Trib1 deficiency promotes atherosclerotic lesion formation in a complex manner that includes the modulation of lipid metabolism and inflammation.
Collapse
Affiliation(s)
- Lilli Arndt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany (L.A., D.M., J.D., S.M., F.J., R.W., U.C.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Germany (L.A., I.H.-R., M.H., G.L., S.C.S., R.B.)
| | - Ileana Hernandez-Resendiz
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Germany (L.A., I.H.-R., M.H., G.L., S.C.S., R.B.)
| | - Doreen Moos
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany (L.A., D.M., J.D., S.M., F.J., R.W., U.C.)
| | - Janine Dokas
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany (L.A., D.M., J.D., S.M., F.J., R.W., U.C.)
| | - Silvana Müller
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany (L.A., D.M., J.D., S.M., F.J., R.W., U.C.)
| | - Franziska Jeromin
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany (L.A., D.M., J.D., S.M., F.J., R.W., U.C.)
| | - Richard Wagner
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany (L.A., D.M., J.D., S.M., F.J., R.W., U.C.)
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany (L.A., D.M., J.D., S.M., F.J., R.W., U.C.)
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Germany (I.M.H.)
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Germany (L.A., I.H.-R., M.H., G.L., S.C.S., R.B.)
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Germany (L.A., I.H.-R., M.H., G.L., S.C.S., R.B.)
| | - Sonja C Stadler
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Germany (L.A., I.H.-R., M.H., G.L., S.C.S., R.B.)
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Germany (L.A., I.H.-R., M.H., G.L., S.C.S., R.B.)
| |
Collapse
|
6
|
Tumor and peritumoral adipose tissue crosstalk: De-differentiated adipocytes influence spread of colon carcinoma cells. Tissue Cell 2023; 80:101990. [PMID: 36542947 DOI: 10.1016/j.tice.2022.101990] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Colorectal cancer is the second leading cause of cancer and often has a fatal course. There are many studies in the literature that have described a close functional relationship between the tumor mass and surrounding tissue, or tumor stroma, which is affected by the continuous metabolic exchange that occurs at the interface between tumor and tissues in contact with it. There is much evidence that the presence of adipose tissue in stroma plays a fundamental role in modulating the tumor microenvironment and promote tumor development, growth, and angiogenesis due to its endocrine characteristics. In this analysis, we have studied the alterations of adipose tissue surrounding colorectal tumors with MRI and optical imaging in vivo techniques to monitor tumor progression and also performed histological and molecular analysis. We detected differences in the principal adipose markers expressed by adipocytes residing around the rectal colon and observed that peritumoral adipose tissue is exposed to a mesenchymal transition process that leads to the acquisition of a less differentiated phenotype of adipocyte that represents the main cellular type present in tumor stroma. The mesenchymal transition correlated with the acquisition of more aggressive tumor phenotype and could represent a valid target for tumor therapy.
Collapse
|
7
|
Cabrera A, Edelstein HI, Glykofrydis F, Love KS, Palacios S, Tycko J, Zhang M, Lensch S, Shields CE, Livingston M, Weiss R, Zhao H, Haynes KA, Morsut L, Chen YY, Khalil AS, Wong WW, Collins JJ, Rosser SJ, Polizzi K, Elowitz MB, Fussenegger M, Hilton IB, Leonard JN, Bintu L, Galloway KE, Deans TL. The sound of silence: Transgene silencing in mammalian cell engineering. Cell Syst 2022; 13:950-973. [PMID: 36549273 PMCID: PMC9880859 DOI: 10.1016/j.cels.2022.11.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/22/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
To elucidate principles operating in native biological systems and to develop novel biotechnologies, synthetic biology aims to build and integrate synthetic gene circuits within native transcriptional networks. The utility of synthetic gene circuits for cell engineering relies on the ability to control the expression of all constituent transgene components. Transgene silencing, defined as the loss of expression over time, persists as an obstacle for engineering primary cells and stem cells with transgenic cargos. In this review, we highlight the challenge that transgene silencing poses to the robust engineering of mammalian cells, outline potential molecular mechanisms of silencing, and present approaches for preventing transgene silencing. We conclude with a perspective identifying future research directions for improving the performance of synthetic gene circuits.
Collapse
Affiliation(s)
- Alan Cabrera
- Department of Bioengineering, Rice University, Houston, TX 77005, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hailey I Edelstein
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; The Eli and Edythe Broad CIRM Center, Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Fokion Glykofrydis
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033-9080, USA
| | - Kasey S Love
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sebastian Palacios
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Meng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Urbana, IL 61801, USA
| | - Sarah Lensch
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Cara E Shields
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| | - Mark Livingston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Urbana, IL 61801, USA
| | - Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| | - Leonardo Morsut
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033-9080, USA
| | - Yvonne Y Chen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA 90095, USA
| | - Ahmad S Khalil
- Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Wilson W Wong
- Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - James J Collins
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033-9080, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Susan J Rosser
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Karen Polizzi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel 4058, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, Basel 4058, Switzerland
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Joshua N Leonard
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; The Eli and Edythe Broad CIRM Center, Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kate E Galloway
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tara L Deans
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
8
|
Zhou X, Zhang J, Lv W, Zhao C, Xia Y, Wu Y, Zhang Q. The pleiotropic roles of adipocyte secretome in remodeling breast cancer. J Exp Clin Cancer Res 2022; 41:203. [PMID: 35701840 PMCID: PMC9199207 DOI: 10.1186/s13046-022-02408-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Breast cancer is the leading female cancer type and the cause of cancer-related mortality worldwide. Adipocytes possess important functions of energy supply, metabolic regulation, and cytokine release, and are also the matrix cell that supports mammary gland tissue. In breast cancer tumor microenvironment (TME), adipocytes are the prominent stromal cells and are implicated in inflammation, metastatic formation, metabolic remodeling, and cancer susceptibility.
Main body
It is well-established that adipocyte secretome is a reservoir engaged in the regulation of tumor cell behavior by secreting a large number of cytokines (IL-6, IL-8, and chemokines), adipokines (leptin, adiponectin, autotaxin, and resistin), lipid metabolites (free fatty acids and β-hydroxybutyrate), and other exosome-encapsulated substances. These released factors influence the evolution and clinical outcome of breast cancer through complex mechanisms. The progression of breast cancer tumors revolves around the tumor-adipose stromal network, which may contribute to breast cancer aggressiveness by increasing the pro-malignant potential of TME and tumor cells themselves. Most importantly, the secretome alterations of adipocytes are regarded as distinctly important targets for breast cancer diagnosis, treatment, and drug resistance.
Conclusion
Therefore, this review will provide a comprehensive description of the specific adipocyte secretome characteristics and interactions within TME cell populations, which will enable us to better tailor strategies for tumor stratification management and treatment.
Collapse
|
9
|
Blankenship L, Pratap UP, Yang X, Liu Z, Altwegg KA, Santhamma B, Ramasamy K, Konda S, Chen Y, Lai Z, Zheng S, Sareddy GR, Valente PT, Kost ER, Nair HB, Tekmal RR, Vadlamudi RK, Viswanadhapalli S. Inhibition of LIFR Blocks Adiposity-Driven Endometrioid Endometrial Cancer Growth. Cancers (Basel) 2022; 14:5400. [PMID: 36358818 PMCID: PMC9657203 DOI: 10.3390/cancers14215400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Endometrial cancer (EC) is the fourth most common cancer in women, and half of the endometrioid EC (EEC) cases are attributable to obesity. However, the underlying mechanism(s) of obesity-driven EEC remain(s) unclear. In this study, we examined whether LIF signaling plays a role in the obesity-driven progression of EEC. RNA-seq analysis of EEC cells stimulated by adipose conditioned medium (ADP-CM) showed upregulation of LIF/LIFR-mediated signaling pathways including JAK/STAT and interleukin pathways. Immunohistochemistry analysis of normal and EEC tissues collected from obese patients revealed that LIF expression is upregulated in EEC tissues compared to the normal endometrium. Treatment of both primary and established EEC cells with ADP-CM increased the expression of LIF and its receptor LIFR and enhanced proliferation of EEC cells. Treatment of EEC cells with the LIFR inhibitor EC359 abolished ADP-CM induced colony formation andcell viability and decreased growth of EEC organoids. Mechanistic studies using Western blotting, RT-qPCR and reporter assays confirmed that ADP-CM activated LIF/LIFR downstream signaling, which can be effectively attenuated by the addition of EC359. In xenograft assays, co-implantation of adipocytes significantly enhanced EEC xenograft tumor growth. Further, treatment with EC359 significantly attenuated adipocyte-induced EEC progression in vivo. Collectively, our data support the premise that LIF/LIFR signaling plays an important role in obesity-driven EEC progression and the LIFR inhibitor EC359 has the potential to suppress adipocyte-driven tumor progression.
Collapse
Affiliation(s)
- Logan Blankenship
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Uday P. Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Xue Yang
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zexuan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kristin A. Altwegg
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | | | - Kumaraguruparan Ramasamy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | | | - Yidong Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Siyuan Zheng
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Gangadhara R. Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Philip T. Valente
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Edward R. Kost
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | | | - Rajeshwar R. Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
10
|
Hillers-Ziemer LE, Kuziel G, Williams AE, Moore BN, Arendt LM. Breast cancer microenvironment and obesity: challenges for therapy. Cancer Metastasis Rev 2022; 41:627-647. [PMID: 35435599 PMCID: PMC9470689 DOI: 10.1007/s10555-022-10031-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Women with obesity who develop breast cancer have a worsened prognosis with diminished survival rates and increased rates of metastasis. Obesity is also associated with decreased breast cancer response to endocrine and chemotherapeutic treatments. Studies utilizing multiple in vivo models of obesity as well as human breast tumors have enhanced our understanding of how obesity alters the breast tumor microenvironment. Changes in the complement and function of adipocytes, adipose-derived stromal cells, immune cells, and endothelial cells and remodeling of the extracellular matrix all contribute to the rapid growth of breast tumors in the context of obesity. Interactions of these cells enhance secretion of cytokines and adipokines as well as local levels of estrogen within the breast tumor microenvironment that promote resistance to multiple therapies. In this review, we will discuss our current understanding of the impact of obesity on the breast tumor microenvironment, how obesity-induced changes in cellular interactions promote resistance to breast cancer treatments, and areas for development of treatment interventions for breast cancer patients with obesity.
Collapse
Affiliation(s)
- Lauren E Hillers-Ziemer
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Genevra Kuziel
- Program in Cancer Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Abbey E Williams
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brittney N Moore
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lisa M Arendt
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Program in Cancer Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Dr. Rm 4354A, Madison, WI, 53706, USA.
| |
Collapse
|
11
|
Taylor SR, Falcone JN, Cantley LC, Goncalves MD. Developing dietary interventions as therapy for cancer. Nat Rev Cancer 2022; 22:452-466. [PMID: 35614234 DOI: 10.1038/s41568-022-00485-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 12/11/2022]
Abstract
Cancer cells acquire distinct metabolic preferences based on their tissue of origin, genetic alterations and degree of interaction with systemic hormones and metabolites. These adaptations support the increased nutrient demand required for increased growth and proliferation. Diet is the major source of nutrients for tumours, yet dietary interventions lack robust evidence and are rarely prescribed by clinicians for the treatment of cancer. Well-controlled diet studies in patients with cancer are rare, and existing studies have been limited by nonspecific enrolment criteria that inappropriately grouped together subjects with disparate tumour and host metabolic profiles. This imprecision may have masked the efficacy of the intervention for appropriate candidates. Here, we review the metabolic alterations and key vulnerabilities that occur across multiple types of cancer. We describe how these vulnerabilities could potentially be targeted using dietary therapies including energy or macronutrient restriction and intermittent fasting regimens. We also discuss recent trials that highlight how dietary strategies may be combined with pharmacological therapies to treat some cancers, potentially ushering a path towards precision nutrition for cancer.
Collapse
Affiliation(s)
- Samuel R Taylor
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-I MD-PhD program, New York, NY, USA
| | - John N Falcone
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Marcus D Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Corchado-Cobos R, García-Sancha N, Mendiburu-Eliçabe M, Gómez-Vecino A, Jiménez-Navas A, Pérez-Baena MJ, Holgado-Madruga M, Mao JH, Cañueto J, Castillo-Lluva S, Pérez-Losada J. Pathophysiological Integration of Metabolic Reprogramming in Breast Cancer. Cancers (Basel) 2022; 14:cancers14020322. [PMID: 35053485 PMCID: PMC8773662 DOI: 10.3390/cancers14020322] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Tumors exhibit metabolic changes that differentiate them from the normal tissues from which they derive. These metabolic changes favor tumor growth, are primarily induced by cancer cells, and produce metabolic and functional changes in the surrounding stromal cells. There is a close functional connection between the metabolic changes in tumor cells and those that appear in the surrounding stroma. A better understanding of intratumoral metabolic interactions may help identify new vulnerabilities that will facilitate new, more individualized treatment strategies against cancer. We review the metabolic changes described in tumor and stromal cells and their functional changes and then consider, in depth, the metabolic interactions between the cells of the two compartments. Although these changes are generic, we illustrate them mainly with reference to examples in breast cancer. Abstract Metabolic changes that facilitate tumor growth are one of the hallmarks of cancer. The triggers of these metabolic changes are located in the tumor parenchymal cells, where oncogenic mutations induce an imperative need to proliferate and cause tumor initiation and progression. Cancer cells undergo significant metabolic reorganization during disease progression that is tailored to their energy demands and fluctuating environmental conditions. Oxidative stress plays an essential role as a trigger under such conditions. These metabolic changes are the consequence of the interaction between tumor cells and stromal myofibroblasts. The metabolic changes in tumor cells include protein anabolism and the synthesis of cell membranes and nucleic acids, which all facilitate cell proliferation. They are linked to catabolism and autophagy in stromal myofibroblasts, causing the release of nutrients for the cells of the tumor parenchyma. Metabolic changes lead to an interstitium deficient in nutrients, such as glucose and amino acids, and acidification by lactic acid. Together with hypoxia, they produce functional changes in other cells of the tumor stroma, such as many immune subpopulations and endothelial cells, which lead to tumor growth. Thus, immune cells favor tissue growth through changes in immunosuppression. This review considers some of the metabolic changes described in breast cancer.
Collapse
Affiliation(s)
- Roberto Corchado-Cobos
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Natalia García-Sancha
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Marina Mendiburu-Eliçabe
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Aurora Gómez-Vecino
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Alejandro Jiménez-Navas
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Manuel Jesús Pérez-Baena
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Marina Holgado-Madruga
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
- Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Javier Cañueto
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
- Departamento de Dermatología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007 Salamanca, Spain
- Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
| | - Sonia Castillo-Lluva
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
- Correspondence: (S.C.-L.); (J.P-L.)
| | - Jesús Pérez-Losada
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC-CIC), Universidad de Salamanca/CSIC, 37007 Salamanca, Spain; (R.C.-C.); (N.G.-S.); (M.M.-E.); (A.G.-V.); (A.J.-N.); (M.J.P.-B.); (J.C.)
- Instituto de Investigación Biosanitaria de Salamanca (IBSAL), 37007 Salamanca, Spain;
- Correspondence: (S.C.-L.); (J.P-L.)
| |
Collapse
|
13
|
Mentoor I, Engelbrecht AM, van de Vyver M, van Jaarsveld PJ, Nell T. The paracrine effects of adipocytes on lipid metabolism in doxorubicin-treated triple negative breast cancer cells. Adipocyte 2021; 10:505-523. [PMID: 34812105 PMCID: PMC8632082 DOI: 10.1080/21623945.2021.1979758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adipocytes in the breast tumour microenvironment promotes acquired treatment resistance. We used an in vitro adipocyte-conditioned media approach to investigate the direct paracrine effects of adipocyte secretory factors on MDA-MB-231 breast cancer cells treated with doxorubicin to clarify the underlying treatment resistance mechanisms. Cell-viability assays, and Western blots were performed to determine alterations in apoptotic, proliferation and lipid metabolism protein markers. Free fatty acids (FFA) and inflammatory markers in the collected treatment-conditioned media were also quantified. Adipocyte secretory factors increased the cell-viability of doxorubicin-treated cells (p < 0.0001), which did not correspond to apoptosis or proliferation pathways. Adipocyte secretory factors increased the protein expression of hormone-sensitive lipase (p < 0.05) in doxorubicin-treated cells. Adipocyte secretory factors increased the utilization of leptin (p < 0.05) and MCP-1 (p < 0.01) proteins and possibly inhibited release of linoleic acid by doxorubicin-treated cells (treatment-conditioned media FFA profiles). Adipocyte secretory factors induced doxorubicin treatment resistance, by increasing the utilization of inflammatory mediators and inhibiting the release of FFA by doxorubicin-treated cells. This further promotes inflammation and lipid metabolic reprogramming (lipid storage) in the tumour microenvironment, which breast cancer cells use to evade the toxic effects induced by doxorubicin and confers to acquired treatment resistance.
Collapse
Affiliation(s)
- Ilze Mentoor
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, South Africa
- African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, South Africa
- African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Mari van de Vyver
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Paul J. van Jaarsveld
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Theo Nell
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, South Africa
- Centre for Cardio-Metabolic Research in Africa (CARMA), Department of Biomedical Sciences, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
14
|
Yao H, He S. Multi‑faceted role of cancer‑associated adipocytes in the tumor microenvironment (Review). Mol Med Rep 2021; 24:866. [PMID: 34676881 PMCID: PMC8554381 DOI: 10.3892/mmr.2021.12506] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/15/2021] [Indexed: 01/08/2023] Open
Abstract
Adipocytes are a type of stromal cell found in numerous different tissues that serve an active role in the tumor microenvironment. Cancer-associated adipocytes (CAAs) display a malignant phenotype and are found at the invasive tumor front, which mediates the crosstalk network between adipocytes (the precursor cells that will become cancer-associated adipocytes in the future) and cancer cells. The present review covers the mechanisms of adipocytes in the development of cancer, including metabolic reprogramming, chemotherapy resistance and adipokine regulation. Furthermore, the potential mechanisms involved in the adipocyte-cancer cell cycle in various types of cancer, including breast, ovarian, colon and rectal cancer, are discussed. Deciphering the complex network of CAA-cancer cell crosstalk will provide insights into tumor biology and optimize therapeutic strategies.
Collapse
Affiliation(s)
- Huihui Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Songbing He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
15
|
Chabrol E, Fagnen C, Landron S, Marcheteau E, Stojko J, Guenin SP, Antoine M, Fould B, Ferry G, Boutin JA, Vénien-Bryan C. Biochemistry, structure, and cellular internalization of a four nanobody-bearing Fc dimer. Protein Sci 2021; 30:1946-1957. [PMID: 34117809 DOI: 10.1002/pro.4147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022]
Abstract
VHH stands for the variable regions of heavy chain only of camelid IgGs. The VHH family forms a set of interesting proteins derived from antibodies that maintain their capacity to recognize the antigen, despite their relatively small molecular weight (in the 12,000 Da range). Continuing our exploration of the possibilities of those molecules, we chose to design alternative molecules with maintained antigen recognition, but enhanced capacity, by fusing four VHH with one Fc, the fragment crystallizable region of antibodies. In doing so, we aimed at having a molecule with superior quantitative antigen recognition (×4) while maintaining its size below the 110 kDa. In the present paper, we described the building of those molecules that we coined VHH2 -Fc-VHH2 . The structure of VHH2 -Fc-VHH2 in complex with HER2 antigen was determined using electronic microscopy and modeling. The molecule is shown to bind four HER2 proteins at the end of its flexible arms. VHH2 -Fc-VHH2 also shows an internalization capacity via HER2 receptor superior to the reference anti-HER2 monoclonal antibody, Herceptin®, and to a simple fusion of two VHH with one Fc (VHH2 -Fc). This new type of molecules, VHH2 -Fc-VHH2 , could be an interesting addition to the therapeutic arsenal with multiple applications, from diagnostic to therapy.
Collapse
Affiliation(s)
- Eric Chabrol
- Pole d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France.,Lumedix, Palaiseau, France
| | - Charline Fagnen
- Sorbonne Université, UMR 7590, CNRS, Muséum National d'Histoire Naturelle, IRD, Institut de Minéralogie, Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France.,Université de Caen, Caen, France
| | - Sophie Landron
- Pole d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Estelle Marcheteau
- Pole d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Johann Stojko
- Pole d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Sophie-Pénélope Guenin
- Pole d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Mathias Antoine
- Pole d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France.,Roche Pharma SA, Basel, Switzerland
| | - Benjamin Fould
- Pole d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Gilles Ferry
- Pole d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Jean A Boutin
- Institut de Recherches Internationales Servier, Suresnes Cedex, France.,PHARMADEV (Pharmacochimie et biologie pour le développement), Université Toulouse 3 Paul Sabatier, Faculté de Pharmacie, Toulouse Cedex 9, France
| | - Catherine Vénien-Bryan
- Sorbonne Université, UMR 7590, CNRS, Muséum National d'Histoire Naturelle, IRD, Institut de Minéralogie, Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| |
Collapse
|
16
|
Yamaguchi J, Moriuchi H, Ueda T, Kawashita Y, Hazeyama T, Tateishi M, Aoki S, Uchihashi K, Nakamura M. Active behavior of triple-negative breast cancer with adipose tissue invasion: a single center and retrospective review. BMC Cancer 2021; 21:434. [PMID: 33879104 PMCID: PMC8056529 DOI: 10.1186/s12885-021-08147-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/05/2021] [Indexed: 12/31/2022] Open
Abstract
Background Interactions between adipocyte and breast cancer (BC) cells have yet to be fully elucidated. Here we investigated the prognostic impact of marginal adipose tissue invasion in both luminal breast cancer (HR+/HER2-) and triple-negative breast cancer (TNBC) (HR−/HER2-). Methods A total of 735 patients with early-stage invasive BC (1999–2014) were retrospectively registered. Median length of patient follow-up was 8.9 years. Survival curves were calculated using a Kaplan-Meier cumulative survival plot. The prognostic difference between two groups were assessed by the univariate Cox-proportional hazard regression model. Results Patients with adipose tissue invasion (n = 614) had a significantly poorer prognosis than those without adipose tissue invasion (n = 121) in overall survival (OS) (hazard ratio, 2.1; 95% Confidence interval [CI], 1.1 to 4.0; P = 0.025). While a poorer prognosis was observed in TNBC (n = 137) than in luminal BC patients (n = 496) (hazard ratio, 0.45; 95% CI, 0.30 to 0.68, P < 0.001), this aggressive nature of TNBC was noted in node-positive disease (hazard ratio, 0.3; 95% CI, 0.18 to 0.5, P < 0.001) but not in node-negative disease (hazard ratio, 0.78; 95% CI, 0.39 to 1.55, P = 0.472), and also noted in adipose tissue invasion-positive patients (hazard ratio, 0.4; 95% CI, 0.26 to 0.6, P < 0.001) but not in adipose tissue invasion-negative patients (hazard ratio, 0.73; 95% CI, 0.16 to 3.24, P = 0.675). In addition, although patients suffering from TNBC with adipose tissue invasion had a poorer outcome than those without adipose tissue invasion (hazard ratio, 3.63; 95% CI, 1.11 to 11.84; P = 0.033), the difference was not observed in luminal BC (hazard ratio, 1.75; 95% CI, 0.64 to 4.82; P = 0.277). Conclusions Adipose tissue invasion was correlated with poor survival in TNBC. Cancer cell invasion into local fat may be a first step on cancer progression and systemic disease in TNBC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08147-2.
Collapse
Affiliation(s)
- Junzo Yamaguchi
- Department of Surgery, Fukuoka Seisyukai Hospital, Fukuoka, 811-2316, Japan.
| | - Hiroki Moriuchi
- Department of Surgery, National Hospital Organization, Saga Hospital, Saga, Japan
| | - Takashi Ueda
- Department of Surgery, Fukuoka Seisyukai Hospital, Fukuoka, 811-2316, Japan
| | - Yujo Kawashita
- Department of Surgery, Fukuoka Seisyukai Hospital, Fukuoka, 811-2316, Japan
| | - Takanori Hazeyama
- Department of Surgery, Fukuoka Seisyukai Hospital, Fukuoka, 811-2316, Japan
| | - Masaki Tateishi
- Department of Surgery, Fukuoka Seisyukai Hospital, Fukuoka, 811-2316, Japan
| | - Shigehisa Aoki
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Kazuyoshi Uchihashi
- Department of Pathology, National Hospital Organization, Saga Hospital, Saga, Japan
| | - Mikio Nakamura
- Department of Urology (Chair of the Board of Directors), Seisyukai Social Medical Corporation, Fukuoka, Japan
| |
Collapse
|
17
|
The Tumor Promotional Role of Adipocytes in the Breast Cancer Microenvironment and Macroenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1342-1352. [PMID: 33639102 DOI: 10.1016/j.ajpath.2021.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
The role of the adipocyte in the tumor microenvironment has received significant attention as a critical mediator of the obesity-cancer relationship. Current estimates indicate that 650 million adults have obesity, and thirteen cancers, including breast cancer, are estimated to be associated with obesity. Even in people with a normal body mass index, adipocytes are key players in breast cancer progression because of the proximity of tumors to mammary adipose tissue. Outside the breast microenvironment, adipocytes influence metabolic and immune function and produce numerous signaling molecules, all of which affect breast cancer development and progression. The current epidemiologic data linking obesity, and importantly adipose tissue, to breast cancer risk and prognosis, focusing on metabolic health, weight gain, and adipose distribution as underlying drivers of obesity-associated breast cancer is presented here. Bioactive factors produced by adipocytes, both normal and cancer associated, such as cytokines, growth factors, and metabolites, and the potential mechanisms through which adipocytes influence different breast cancer subtypes are highlighted.
Collapse
|
18
|
Soni S, Torvund M, Mandal CC. Molecular insights into the interplay between adiposity, breast cancer and bone metastasis. Clin Exp Metastasis 2021; 38:119-138. [PMID: 33591548 DOI: 10.1007/s10585-021-10076-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/03/2021] [Indexed: 01/20/2023]
Abstract
Cancer is a complex disease, with various pre-existing health ailments enhancing its pathology. In cancer, the extracellular environment contains various intrinsic physiological factors whose levels are altered with aging and pre-existing conditions. In obesity, the tumor microenvironment and metastases are enriched with factors that are both derived locally, and from other physiological compartments. Similarly, in obesity, the cancer cell environment both at the site of origin and at the secondary site i.e., metastatic niche, contains significantly more phenotypically-altered adipocytes than that of un-obese cancer patients. Indeed, obesity has been linked with cancer progression, metastasis, and therapy resistance. Adipocytes not only interact with tumor cells, but also with adjacent stromal cells at primary and metastatic sites. This review emphasizes the importance of bidirectional interactions between adipocytes and breast tumor cells in breast cancer progression and its bone metastases. This paper not only chronicles the role of various adipocyte-derived factors in tumor growth, but also describes the significance of adipocyte-derived bone metastatic factors in the development of bone metastasis of breast cancer. It provides a molecular view of the interplay between the adipocytes and tumor cells involved in breast cancer bone metastasis. However, more research is needed to determine if targeting cancer-associated adipocytes holds promise as a potential therapeutic approach for breast cancer bone metastasis treatment. Interplay between adipocytes and breast cancer cells at primary cancer site and metastatic bone microenvironment. AMSC Adipose-derived mesenchymal stem cell, CAA Cancer associated adipocytes, CAF Cancer associated fibroblast, BMSC Bone marrow derived mesenchymal stem cell, BMA Bone marrow adipocyte.
Collapse
Affiliation(s)
- Sneha Soni
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Meaghan Torvund
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
19
|
Transcriptional analyses of the effects of Catharanthus roseus L. medicinal plant extracts on some markers related to obesity and inflammation in 3T3-L1 mouse cell lines. Biologia (Bratisl) 2021. [DOI: 10.2478/s11756-020-00567-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Seo J, Kim KS, Park JW, Cho JY, Chang H, Fukuda J, Hong KY, Chun YS. Metastasis-on-a-chip reveals adipocyte-derived lipids trigger cancer cell migration via HIF-1α activation in cancer cells. Biomaterials 2020; 269:120622. [PMID: 33385686 DOI: 10.1016/j.biomaterials.2020.120622] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Although obesity is a newly considered risk factor for cancer, the mechanisms by which adipocyte-derived metabolites accelerate cancer malignancy have yet to be elucidated. To identify the connection among heterogeneous cell types, conventional methods including Transwell assays or conditioned media (CM) have been used; however, these methods do not fully reflect niche effects in the tumor microenvironment (TME). Here, we established an oxygen permeable polydimethylsiloxane (PDMS)-based three-dimensional (3D) culture system to allow direct attachment between human adipocyte derived stem cells (ADSCs) and cancer cells. By doing so, a physiologically bioactive TME was created, which could be used to reveal further the relationships between different cell types. We found that co-culture of cancer cells with ADSCs resulted in a dispersion phenomenon, and the dispersed spheroid was well matched with the enhanced metastatic potential of cancer cells. Lipid profiling and in vitro migration assays suggested that lipids are the driving force for cancer cell migration via HIF-1α upregulation. In addition, the lipid/HIF-1α axis promoted tumor metastasis in a xenograft mouse model. This study presents an in vitro model of a biomimetic TME and provides new mechanistic insights into the effects of ADSC-released fatty acids on cancer cells as oncometabolites.
Collapse
Affiliation(s)
- Jieun Seo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea; Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Kyeong Seog Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea; Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, 03080, South Korea
| | - Jong-Wan Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Joo-Youn Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea; Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, 03080, South Korea
| | - Hak Chang
- Department of Plastic Surgery, Seoul National University Hospital, Seoul, 03080, South Korea
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, Yokohama, 240-8501, Japan
| | - Ki Yong Hong
- Department of Plastic and Reconstructive Surgery, Dongguk University Ilsan Hospital, Dongguk University School of Medicine, Goyang, 10326, South Korea
| | - Yang-Sook Chun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea; Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
21
|
Chae WR, Lee NY. Monolayer/spheroid co-culture of cells on a PDMS well plate mediated by selective polydopamine coating. J Mater Chem B 2020; 8:10108-10116. [PMID: 33124642 DOI: 10.1039/d0tb01589j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Here, we have selectively coated polydopamine (PDA) onto a polydimethylsiloxane (PDMS) well plate to enable the cell co-culture of a monolayer and spheroids in a semi-segregated manner. During the coating process, the contact between the PDA solution and PDMS well plate was limited to the outer flat surface because the strong hydrophobicity of PDMS prevented the access of the PDA solution into the concave structures. This resulted in a spatially-defined coating of PDA. The success of PDA coating was evidenced by measuring the water contact angle, observing the liquid-air interface, and via PDA-specific metallization. This platform provides a simultaneous cell culture in both a monolayer and spheroids employing either monotypic or heterotypic cells. For the monotypic culture, mesenchymal stem cells (MSCs) were seeded over the well plate to concurrently generate the monolayer and spheroids. In the heterotypic culture, MSCs were first seeded into the wells to form spheroids. Then, human umbilical vein endothelial cells (HUVECs) were added over the flat surface of the well plate and allowed to form a monolayer. The microscopic observation and fluorescence-based cell staining confirmed the clear segregation between the monolayer and spheroids in both monotypic and heterotypic cultures. This new model could pave the way for the construction of a platform closely mimicking the physiological environment used to investigate cell-cell interactions and communications applicable for drug screening.
Collapse
Affiliation(s)
- Woo Ri Chae
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea.
| | | |
Collapse
|
22
|
Renin angiotensin system inhibition attenuates adipocyte-breast cancer cell interactions. Exp Cell Res 2020; 394:112114. [DOI: 10.1016/j.yexcr.2020.112114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/24/2020] [Accepted: 05/24/2020] [Indexed: 12/21/2022]
|
23
|
Blücher C, Iberl S, Schwagarus N, Müller S, Liebisch G, Höring M, Hidrobo MS, Ecker J, Spindler N, Dietrich A, Burkhardt R, Stadler SC. Secreted Factors from Adipose Tissue Reprogram Tumor Lipid Metabolism and Induce Motility by Modulating PPARα/ANGPTL4 and FAK. Mol Cancer Res 2020; 18:1849-1862. [DOI: 10.1158/1541-7786.mcr-19-1223] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/16/2020] [Accepted: 08/24/2020] [Indexed: 11/16/2022]
|
24
|
Zhao C, Wu M, Zeng N, Xiong M, Hu W, Lv W, Yi Y, Zhang Q, Wu Y. Cancer-associated adipocytes: emerging supporters in breast cancer. J Exp Clin Cancer Res 2020; 39:156. [PMID: 32787888 PMCID: PMC7425140 DOI: 10.1186/s13046-020-01666-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/04/2020] [Indexed: 02/08/2023] Open
Abstract
Breast cancer (BC) is a malignant breast tumor confronted with high invasion, metastasis and recurrence rate, and adipocytes are the largest components in breast tissue. The aberrant adipocytes, especially the BC-neighbored cancer-associated adipocytes (CAAs), are found in the invasive front of BC. CAAs present a vicious phenotype compared with mature mammary adipocytes and mediate the crosstalk network between adipocytes and BC cells. By releasing multiple adipokines such as leptin, adiponectin, interleukin (IL)-6, chemokine ligand 2 (CCL2) and chemokine ligand 5 (CCL5), CAAs play essential roles in favor of proliferation, angiogenesis, dissemination, invasion and metastasis of BC. This article reviews the recent existing CAAs studies on the functions and mechanisms of adipocytes in the development of BC, including adipokine regulating, metabolic reprogramming, extracellular matrix (ECM) remodeling, microRNAs (miRNAs) and immune cell adjusting. Besides, adipocyte secretome and cellular interactions are implicated in the intervention to BC therapy and autologous fat grafting of breast reconstruction. Therefore, the potential functions and mechanisms of CAAs are very important for unveiling BC oncogenesis and progress. Deciphering the complex network between CAAs and BC is critical for designing therapeutic strategies and achieving the maximum therapeutic effects of BC.
Collapse
Affiliation(s)
- Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Ning Zeng
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
25
|
Revisiting Cancer Stem Cells as the Origin of Cancer-Associated Cells in the Tumor Microenvironment: A Hypothetical View from the Potential of iPSCs. Cancers (Basel) 2020; 12:cancers12040879. [PMID: 32260363 PMCID: PMC7226406 DOI: 10.3390/cancers12040879] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/17/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022] Open
Abstract
The tumor microenvironment (TME) has an essential role in tumor initiation and development. Tumor cells are considered to actively create their microenvironment during tumorigenesis and tumor development. The TME contains multiple types of stromal cells, cancer-associated fibroblasts (CAFs), Tumor endothelial cells (TECs), tumor-associated adipocytes (TAAs), tumor-associated macrophages (TAMs) and others. These cells work together and with the extracellular matrix (ECM) and many other factors to coordinately contribute to tumor growth and maintenance. Although the types and functions of TME cells are well understood, the origin of these cells is still obscure. Many scientists have tried to demonstrate the origin of these cells. Some researchers postulated that TME cells originated from surrounding normal tissues, and others demonstrated that the origin is cancer cells. Recent evidence demonstrates that cancer stem cells (CSCs) have differentiation abilities to generate the original lineage cells for promoting tumor growth and metastasis. The differentiation of CSCs into tumor stromal cells provides a new dimension that explains tumor heterogeneity. Using induced pluripotent stem cells (iPSCs), our group postulates that CSCs could be one of the key sources of CAFs, TECs, TAAs, and TAMs as well as the descendants, which support the self-renewal potential of the cells and exhibit heterogeneity. In this review, we summarize TME components, their interactions within the TME and their insight into cancer therapy. Especially, we focus on the TME cells and their possible origin and also discuss the multi-lineage differentiation potentials of CSCs exploiting iPSCs to create a society of cells in cancer tissues including TME.
Collapse
|
26
|
Blücher C, Zilberfain C, Venus T, Spindler N, Dietrich A, Burkhardt R, Stadler SC, Estrela-Lopis I. Single cell study of adipose tissue mediated lipid droplet formation and biochemical alterations in breast cancer cells. Analyst 2020; 144:5558-5570. [PMID: 31408068 DOI: 10.1039/c9an00816k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity is a known risk factor for breast cancer and a negative prognostic factor for cancer recurrence and survival. Several studies demonstrated that aggressive breast tumor cells contain higher numbers of intracellular lipid droplets (LDs). Here we applied simultaneous visualization, identification and quantification of the lipid accumulation in lipid droplets (LDs) of aggressive, human triple-negative MDA-MB-231 breast cancer cells treated with adipose tissue-conditioned medium (ACM) derived from overweight and obese patients. In addition to Oil Red O and AdipoRed fluorescent staining, label-free confocal Raman microspectroscopy (CRM) has been applied. CRM enables imaging of cell compartments as well as quantification and monitoring of specific biomolecules and metabolic processes on a single cell level. Interestingly, breast cancer cells incubated with ACM showed a significantly higher number of intracellular LDs. Cultivation of breast tumor cells with ACM of obese patients induced the formation of LDs with a 20-fold higher lipid concentration than cultivation with basal medium. This is in line with the significantly higher levels of NEFAs (non-esterified fatty acids) detected in the ACM obtained from obese patient compared to ACM obtained from overweight patients or basal medium. Further, by principal component analysis, we identified a significant increase in unsaturation, esterification and lipid to protein ratio in LDs in breast cancer cells incubated with ACM. CRM analyses might function as a valuable diagnostic tool to identify metabolic alterations in biological samples which in turn could provide more detailed insights in the pathogenesis of breast cancer in association with obesity.
Collapse
Affiliation(s)
- Christina Blücher
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Dias AS, Almeida CR, Helguero LA, Duarte IF. Metabolic crosstalk in the breast cancer microenvironment. Eur J Cancer 2019; 121:154-171. [PMID: 31581056 DOI: 10.1016/j.ejca.2019.09.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/03/2019] [Indexed: 02/08/2023]
Abstract
During tumorigenesis, breast tumour cells undergo metabolic reprogramming, which generally includes enhanced glycolysis, tricarboxylic acid cycle activity, glutaminolysis and fatty acid biosynthesis. However, the extension and functional importance of these metabolic alterations may diverge not only according to breast cancer subtypes, but also depending on the interaction of cancer cells with the complex surrounding microenvironment. This microenvironment comprises a variety of non-cancerous cells, such as immune cells (e.g. macrophages, lymphocytes, natural killer cells), fibroblasts, adipocytes and endothelial cells, together with extracellular matrix components and soluble factors, which influence cancer progression and are predictive of clinical outcome. The continuous interaction between cancer and stromal cells results in metabolic competition and symbiosis, with oncogenic-driven metabolic reprogramming of cancer cells shaping the metabolism of neighbouring cells and vice versa. This review addresses current knowledge on this metabolic crosstalk within the breast tumour microenvironment (TME). Improved understanding of how metabolism in the TME modulates cancer development and evasion of tumour-suppressive mechanisms may provide clues for novel anticancer therapeutics directed to metabolic targets.
Collapse
Affiliation(s)
- Ana S Dias
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, Aveiro, Portugal; iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Catarina R Almeida
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Luisa A Helguero
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Iola F Duarte
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, Aveiro, Portugal.
| |
Collapse
|
28
|
The Spatial and Genomic Hierarchy of Tumor Ecosystems Revealed by Single-Cell Technologies. Trends Cancer 2019; 5:411-425. [PMID: 31311656 DOI: 10.1016/j.trecan.2019.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/23/2022]
Abstract
Many malignancies display heterogeneous features that support cancer progression. Emerging high-resolution methods provide a view of heterogeneity that recognizes the influence of diverse cell types and cell states of the tumor microenvironment. Here we outline a hierarchical organization of tumor heterogeneity from a genomic perspective, summarize the origins of spatially patterned metabolic features, and review recent developments in single-cell and spatially resolved techniques for genome-wide study of multicellular tissues. We also discuss how integrating these approaches can yield new insights into human cancer and emerging immune therapies. Applying these technologies for the analysis of primary tumors, patient-derived xenografts, and in vitro systems holds great promise for understanding the hierarchical structure and environmental influences that underlie tumor ecosystems.
Collapse
|
29
|
Sudhakaran M, Sardesai S, Doseff AI. Flavonoids: New Frontier for Immuno-Regulation and Breast Cancer Control. Antioxidants (Basel) 2019; 8:E103. [PMID: 30995775 PMCID: PMC6523469 DOI: 10.3390/antiox8040103] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) remains the second most common cause of cancer-related deaths in women in the US, despite advances in detection and treatment. In addition, breast cancer survivors often struggle with long-term treatment related comorbidities. Identifying novel therapies that are effective while minimizing toxicity is critical in curtailing this disease. Flavonoids, a subclass of plant polyphenols, are emerging as promising treatment options for the prevention and treatment of breast cancer. Recent evidence suggests that in addition to anti-oxidant properties, flavonoids can directly interact with proteins, making them ideal small molecules for the modulation of enzymes, transcription factors and cell surface receptors. Of particular interest is the ability of flavonoids to modulate the tumor associated macrophage function. However, clinical applications of flavonoids in cancer trials are limited. Epidemiological and smaller clinical studies have been largely hypothesis generating. Future research should aim at addressing known challenges with a broader use of preclinical models and investigating enhanced dose-delivery systems that can overcome limited bioavailability of dietary flavonoids. In this review, we discuss the structure-functional impact of flavonoids and their action on breast tumor cells and the tumor microenvironment, with an emphasis on their clinical role in the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Meenakshi Sudhakaran
- Department Physiology, Michigan State University, East Lansing, MI 48824, USA.
- Physiology Graduate Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Sagar Sardesai
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Andrea I Doseff
- Department Physiology, Michigan State University, East Lansing, MI 48824, USA.
- Department Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
30
|
Rajarajan D, Selvarajan S, Charan Raja MR, Kar Mahapatra S, Kasiappan R. Genome-wide analysis reveals miR-3184-5p and miR-181c-3p as a critical regulator for adipocytes-associated breast cancer. J Cell Physiol 2019; 234:17959-17974. [PMID: 30847933 DOI: 10.1002/jcp.28428] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/03/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Abstract
Obesity is considered as an independent risk factor for breast cancer (BCa) and plays a major role in the breast tumor microenvironment. The etiology and mechanisms by which obesity contributes to BCa development is not yet understood. Herein, we show that in vitro coculture of BCa cells with mature adipocytes (MA-BCa) increased proliferation, migration, and invasive phenotype of BCa cells. MA-BCa coculture led to increased production of proinflammatory cytokines and chemokines. To identify microRNAs (miRNAs) in BCa cells that are modulated by the presence of adipocytes, we used small RNA sequencing analysis. Sequencing data revealed that 98 miRNAs were differentially expressed in MA-BCa. Among them, miR-3184-5p and miR-181c-3p were found to be the most upregulated and downregulated miRNAs, and direct targets are FOXP4 and PPARα, respectively. In vitro functional assays using a combination of miR-3184-5p inhibitor and miR-181c-3p mimic synergistically decreased adipocytes-induced cell proliferation and invasive capacity of BCa cells. Gene Set Enrichment analysis indicated that transcription factors were highly enriched followed by protein kinases, oncogene, and protein regulators in MA-BCa. GeneGo Metacore pathway analysis uncovered "NOTCH-induced EMT pathway" was found to be the most abundant in MA-BCa. Consistently, epithelial-mesenchymal transition-associated markers were also increased in MA-BCa. The disease enrichment analysis of the predict target genes revealed that diabetes mellitus was significantly affected disease in MA-BCa. Taken together, our data suggest that miRNA-based regulatory mechanism associated with deregulation of pathways and biological functions orchestrated by adipocytes-secreted factors might drive the BCa progression and metastasis in obese patients.
Collapse
Affiliation(s)
- Dheeran Rajarajan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sweetha Selvarajan
- Department of Biochemistry, The Graduate Centre of the City University of New York (CUNY), New York
| | - Mamilla R Charan Raja
- Department of Biotechnology, Centre for Research in Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA Deemed To Be University, Thanjavur, India
| | - Santanu Kar Mahapatra
- Department of Biotechnology, Centre for Research in Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA Deemed To Be University, Thanjavur, India
| | - Ravi Kasiappan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
31
|
Xu YXZ, Mishra S. Obesity-Linked Cancers: Current Knowledge, Challenges and Limitations in Mechanistic Studies and Rodent Models. Cancers (Basel) 2018; 10:E523. [PMID: 30567335 PMCID: PMC6316427 DOI: 10.3390/cancers10120523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/09/2018] [Accepted: 12/15/2018] [Indexed: 02/07/2023] Open
Abstract
The worldwide prevalence of obesity has doubled during the last 50 years, and according to the World Obesity Federation, one third of the people on Earth will be obese by the year 2025. Obesity is described as a chronic, relapsing and multifactorial disease that causes metabolic, biomechanical, and psychosocial health consequences. Growing evidence suggests that obesity is a risk factor for multiple cancer types and rivals smoking as the leading preventable cause for cancer incidence and mortality. The epidemic of obesity will likely generate a new wave of obesity-related cancers with high aggressiveness and shortened latency. Observational studies have shown that from cancer risk to disease prognosis, an individual with obesity is consistently ranked worse compared to their lean counterpart. Mechanistic studies identified similar sets of abnormalities under obesity that may lead to cancer development, including ectopic fat storage, altered adipokine profiles, hormone fluctuations and meta-inflammation, but could not explain how these common mechanisms produce over 13 different cancer types. A major hurdle in the mechanistic underpinning of obesity-related cancer is the lack of suitable pre-clinical models that spontaneously develop obesity-linked cancers like humans. Current approaches and animal models fall short when discerning the confounders that often coexist in obesity. In this mini-review, we will briefly survey advances in the different obesity-linked cancers and discuss the challenges and limitations in the rodent models employed to study their relationship. We will also provide our perspectives on the future of obesity-linked cancer research.
Collapse
Affiliation(s)
- Yang Xin Zi Xu
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Suresh Mishra
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Department of Internal Medicine, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
32
|
Rosendahl AH, Bergqvist M, Lettiero B, Kimbung S, Borgquist S. Adipocytes and Obesity-Related Conditions Jointly Promote Breast Cancer Cell Growth and Motility: Associations With CAP1 for Prognosis. Front Endocrinol (Lausanne) 2018; 9:689. [PMID: 30524378 PMCID: PMC6262006 DOI: 10.3389/fendo.2018.00689] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/02/2018] [Indexed: 12/04/2022] Open
Abstract
The global increase in overweight and obesity rates represent pressing public health concerns associated with severe comorbidities, amongst a rising incidence and impaired outcome of breast cancer. Yet, biological explanations for how obesity affects breast cancer are incompletely mapped. Herein, the joint impact by differentiated 3T3-L1 adipocytes and obesity-related metabolic conditions on breast cancer cells was evaluated in vitro and adipocyte-derived mediators assessed. Adipokine receptor expression was explored among breast cancer cell lines (n = 47) and primary breast tumors (n = 1,881), where associations with survival outcomes were investigated. Adipocytes and metabolic complications jointly stimulated breast cancer cell proliferation and motility, with phenotype-specific differences. Resistin was among the top modulated adipokines secreted by 3T3-L1 adipocytes under obesity-associated metabolic conditions compared with normal physiology. The newly identified resistin receptor, CAP1, was expressed across a large panel of breast cancer cell lines and primary breast tumors. CAP1 was associated with poor tumor characteristics with higher CAP1 expression among estrogen receptor (ER)-negative tumors, relative to ER-positive tumors (P = 0.025), and higher histological grades (P = 0.016). High CAP1 tumor expression was associated with shorter overall survival (adjusted hazard ratio [HRadj] 1.54; 95% confidence interval [CI], 1.11-2.13) and relapse-free survival (HRadj 1.47; 95% CI, 1.10-1.96), compared with low or intermediate CAP1 expression, particularly among ER-positive tumors or lymph node positive tumors. Together, these translational data demonstrate that the adipocyte secretome promote breast cancer cell proliferation and motility and highlight a potential role of CAP1 regarding breast cancer outcome-results that warrant further investigation to elucidate the obesity-breast cancer link in human pathology.
Collapse
Affiliation(s)
- Ann H. Rosendahl
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
- *Correspondence: Ann H. Rosendahl
| | - Malin Bergqvist
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Barbara Lettiero
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Siker Kimbung
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Signe Borgquist
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
- Departments of Clinical Medicine/Oncology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|