1
|
Hu F, Qu Z, Chen K, Zhang P, Wang B, Jiang R, Zuo Y, Xia P, Chen H. Lipoxin A4 Ameliorates Imiquimod-Induced Psoriasis-Like Dermatitis via Promoting the Regression of Inflammation. Clin Cosmet Investig Dermatol 2023; 16:2103-2111. [PMID: 37575152 PMCID: PMC10422962 DOI: 10.2147/ccid.s418467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
Introduction As a mediator of inflammation resolution, lipoxin A4 (LXA4) mainly plays an anti-inflammatory role and promotes inflammation resolution. LXA4 plays an inhibiting inflammatory role in a variety of diseases, tissues and cells, including keratinocytes. Psoriasis is a chronic inflammatory skin disease mediated by dysregulation of inflammation of immune cells and keratinocytes. However, the expression and role of LXA4 in psoriasis-like mouse models are still unclear. Methods Imiquimod (IMQ) topical treatment of dorsal skin induces psoriasis-like dermatitis in BALB/c mice, pretreated intraperitoneally with or without LXA4 prior to IMQ application. Severity of dorsal lesions is assessed by using a modified human scoring system and histopathology. The concentration of LXA4 and the expression of ALOX15 (a key gene in LXA4 metabolic synthesis) in lesional skins were detected by ELISA and Western blot. Quantitative PCR and ELISA were conducted to detect the mRNA and secretion levels of inflammatory cytokines. The proportion of IL-17A-producing γδT cells in skin and skin draining cervical lymph nodes and helper (Th) 17 cells in spleens was evaluated by flow cytometry. Western blotting was used to analyze the expressions of p-STAT3 and TRAF6. Results The concentration of LXA4 and the expression of ALOX15 were decreased in IMQ-induced lesional skin. LXA4 significantly relieved psoriasis-like lesions in IMQ-induced mouse models. Furthermore, LXA4 decreased IMQ-induced systemic inflammation, including reduced the proportion of IL-17A-producing gdT cells in skin and skin draining cervical lymph nodes and Th17 cells in spleens, the secretion and expression of CCL20, IL-17A, IL-1β, and TNF-α in skin and serum. LXA4 markedly inhibited IMQ-induced expression of TRAF6 and p-STAT3. Conclusion LXA4 significantly ameliorates IMQ-induced psoriasis-like inflammation, and LXA4 can be used as a target for psoriasis treatment.
Collapse
Affiliation(s)
- Feng Hu
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Province & Key Laboratory of Skin Infection and Immunity, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Zilu Qu
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Province & Key Laboratory of Skin Infection and Immunity, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Kai Chen
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Province & Key Laboratory of Skin Infection and Immunity, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Ping Zhang
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Bei Wang
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Ruili Jiang
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Yuyue Zuo
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Ping Xia
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Hongxiang Chen
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, People’s Republic of China
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
2
|
Smith CJ, Williams JL, Hall C, Casas J, Caley MP, O'Toole EA, Prasad R, Metherell LA. Ichthyosis linked to sphingosine 1-phosphate lyase insufficiency is due to aberrant sphingolipid and calcium regulation. J Lipid Res 2023; 64:100351. [PMID: 36868360 PMCID: PMC10123262 DOI: 10.1016/j.jlr.2023.100351] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 03/05/2023] Open
Abstract
Sphingosine 1-phosphate lyase (SGPL1) insufficiency (SPLIS) is a syndrome which presents with adrenal insufficiency, steroid-resistant nephrotic syndrome, hypothyroidism, neurological disease, and ichthyosis. Where a skin phenotype is reported, 94% had abnormalities such as ichthyosis, acanthosis, and hyperpigmentation. To elucidate the disease mechanism and the role SGPL1 plays in the skin barrier we established clustered regularly interspaced short palindromic repeats-Cas9 SGPL1 KO and a lentiviral-induced SGPL1 overexpression (OE) in telomerase reverse-transcriptase immortalised human keratinocytes (N/TERT-1) and thereafter organotypic skin equivalents. Loss of SGPL1 caused an accumulation of S1P, sphingosine, and ceramides, while its overexpression caused a reduction of these species. RNAseq analysis showed perturbations in sphingolipid pathway genes, particularly in SGPL1_KO, and our gene set enrichment analysis revealed polar opposite differential gene expression between SGPL1_KO and _OE in keratinocyte differentiation and Ca2+ signaling genesets. SGPL1_KO upregulated differentiation markers, while SGPL1_OE upregulated basal and proliferative markers. The advanced differentiation of SGPL1_KO was confirmed by 3D organotypic models that also presented with a thickened and retained stratum corneum and a breakdown of E-cadherin junctions. We conclude that SPLIS associated ichthyosis is a multifaceted disease caused possibly by sphingolipid imbalance and excessive S1P signaling, leading to increased differentiation and an imbalance of the lipid lamellae throughout the epidermis.
Collapse
Affiliation(s)
- Christopher J Smith
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.
| | - Jack L Williams
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Charlotte Hall
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; Biomedical Research Centre (CIBEREHD), ISCIII, Madrid, Spain
| | - Matthew P Caley
- Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Edel A O'Toole
- Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Rathi Prasad
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Louise A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
3
|
Makinde HKM, Dunn JLM, Gadhvi G, Carns M, Aren K, Chung AH, Muhammad LN, Song J, Cuda CM, Dominguez S, Pandolfino JE, Dematte D’Amico JE, Budinger GS, Assassi S, Frech TM, Khanna D, Shaeffer A, Perlman H, Hinchcliff M, Winter DR. Three Distinct Transcriptional Profiles of Monocytes Associate with Disease Activity in Scleroderma Patients. Arthritis Rheumatol 2023; 75:595-608. [PMID: 36281773 PMCID: PMC10165944 DOI: 10.1002/art.42380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Patients with diffuse cutaneous systemic sclerosis (dcSSc) display a complex clinical phenotype. Transcriptional profiling of whole blood or tissue from patients are affected by changes in cellular composition that drive gene expression and an inability to detect minority cell populations. We undertook this study to focus on the 2 main subtypes of circulating monocytes, classical monocytes (CMs) and nonclassical monocytes (NCMs) as a biomarker of SSc disease severity. METHODS SSc patients were recruited from the Prospective Registry for Early Systemic Sclerosis. Clinical data were collected, as well as peripheral blood for isolation of CMs and NCMs. Age-, sex-, and race-matched healthy volunteers were recruited as controls. Bulk macrophages were isolated from the skin in a separate cohort. All samples were assayed by RNA sequencing (RNA-seq). RESULTS We used an unbiased approach to cluster patients into 3 groups (groups A-C) based on the transcriptional signatures of CMs relative to controls. Each group maintained their characteristic transcriptional signature in NCMs. Genes up-regulated in group C demonstrated the highest expression compared to the other groups in SSc skin macrophages, relative to controls. Patients from groups B and C exhibited worse lung function than group A, although there was no difference in SSc skin disease at baseline, relative to controls. We validated our approach by applying our group classifications to published bulk monocyte RNA-seq data from SSc patients, and we found that patients without skin disease were most likely to be classified as group A. CONCLUSION We are the first to show that transcriptional signatures of CMs and NCMs can be used to unbiasedly stratify SSc patients and correlate with disease activity outcome measures.
Collapse
Affiliation(s)
- Hadijat-Kubura M. Makinde
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - Julia L. M. Dunn
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
- Cincinnati Children’s Hospital Medical Center, Division of Allergy & Immunology. Cincinnati, OH 45229 (current affiliation)
| | - Gaurav Gadhvi
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - Mary Carns
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - Kathleen Aren
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - Anh H. Chung
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - Lutfiyya N. Muhammad
- Northwestern University, Feinberg School of Medicine Department of Preventive Medicine. Chicago, IL 60611
| | - Jing Song
- Northwestern University, Feinberg School of Medicine Department of Preventive Medicine. Chicago, IL 60611
| | - Carla M. Cuda
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - Salina Dominguez
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - John E. Pandolfino
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology. Chicago, IL 60611
| | - Jane E. Dematte D’Amico
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Division of Pulmonary and Critical Care. Chicago, IL 60611
| | - G. Scott Budinger
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Division of Pulmonary and Critical Care. Chicago, IL 60611
| | - Shervin Assassi
- Prospective Registry of Early Systemic Sclerosis (PRESS) consortium. Shervin Assassi MD MS- University of Texas Health Sciences Center at Houston (TX), Elana Bernstein MD MS- Columbia University (NY), Robyn Domsic MD MS - University of Pittsburgh (PA), Tracy Frech MD MS - University of Utah (UT), Jessica Gordon - Hospital for Special Surgery (NY), Faye Hant - Medical University of South Carolina (SC), Monique Hinchcliff – Yale School of Medicine (CT), Dinesh Khanna MD MS - University of Michigan (MI), Ami Shah - Johns Hopkins University (MD), Victoria Shanmugam - George Washington University (DC)
- University of Texas Health Science Center at Houston, Division of Rheumatology, Houston, Texas 77030
| | - Tracy M. Frech
- Prospective Registry of Early Systemic Sclerosis (PRESS) consortium. Shervin Assassi MD MS- University of Texas Health Sciences Center at Houston (TX), Elana Bernstein MD MS- Columbia University (NY), Robyn Domsic MD MS - University of Pittsburgh (PA), Tracy Frech MD MS - University of Utah (UT), Jessica Gordon - Hospital for Special Surgery (NY), Faye Hant - Medical University of South Carolina (SC), Monique Hinchcliff – Yale School of Medicine (CT), Dinesh Khanna MD MS - University of Michigan (MI), Ami Shah - Johns Hopkins University (MD), Victoria Shanmugam - George Washington University (DC)
- Vanderbilt University, Department of Medicine, Division of Rheumatology and Immunology. Nashville, TN 37232
| | - Dinesh Khanna
- Prospective Registry of Early Systemic Sclerosis (PRESS) consortium. Shervin Assassi MD MS- University of Texas Health Sciences Center at Houston (TX), Elana Bernstein MD MS- Columbia University (NY), Robyn Domsic MD MS - University of Pittsburgh (PA), Tracy Frech MD MS - University of Utah (UT), Jessica Gordon - Hospital for Special Surgery (NY), Faye Hant - Medical University of South Carolina (SC), Monique Hinchcliff – Yale School of Medicine (CT), Dinesh Khanna MD MS - University of Michigan (MI), Ami Shah - Johns Hopkins University (MD), Victoria Shanmugam - George Washington University (DC)
- University of Michigan, Department of Medicine, Division of Rheumatology. Ann Arbor, MI 48109
| | - Alex Shaeffer
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - Harris Perlman
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - Monique Hinchcliff
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
- Prospective Registry of Early Systemic Sclerosis (PRESS) consortium. Shervin Assassi MD MS- University of Texas Health Sciences Center at Houston (TX), Elana Bernstein MD MS- Columbia University (NY), Robyn Domsic MD MS - University of Pittsburgh (PA), Tracy Frech MD MS - University of Utah (UT), Jessica Gordon - Hospital for Special Surgery (NY), Faye Hant - Medical University of South Carolina (SC), Monique Hinchcliff – Yale School of Medicine (CT), Dinesh Khanna MD MS - University of Michigan (MI), Ami Shah - Johns Hopkins University (MD), Victoria Shanmugam - George Washington University (DC)
- Yale University, School of Medicine, Section of Rheumatology, Allergy & Immunology. New Haven, CT 06520
| | - Deborah R. Winter
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| |
Collapse
|
4
|
Liu L, Lian N, Shi L, Hao Z, Chen K. Ferroptosis: Mechanism and connections with cutaneous diseases. Front Cell Dev Biol 2023; 10:1079548. [PMID: 36684424 PMCID: PMC9846271 DOI: 10.3389/fcell.2022.1079548] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
Ferroptosis is a recognized novel form of programmed cell death pathway, featuring abnormalities in iron metabolism, SystemXc-/glutathione axis, and lipid peroxidation regulation. A variety of ferroptosis inducers can influence glutathione peroxidase directly or indirectly via diverse pathways, leading to decreased antioxidant capacity, accumulated cellular lipid peroxides, and finally inducing ferroptosis. To date, mounting studies confirm the association of ferroptosis with various cutaneous diseases, including skin homeostasis, neoplastic diseases, infectious diseases, genetic skin disease, inflammatory skin diseases, and autoimmune diseases. There are shared characteristics regarding ferroptosis and various cutaneous diseases in terms of pathophysiological mechanisms, such as oxidative stress associated with iron metabolism disorder and accumulated lipid peroxides. Therefore, we summarize the current knowledge regarding the mechanisms involved in the regulation of ferroptosis for further discussion of its role in the pathogenesis and prognosis of skin diseases. Gaining insight into the underlying mechanisms of ferroptosis and the associated dermatological disorders could illuminate the pathogenesis and treatments of different cutaneous diseases.
Collapse
Affiliation(s)
- Lihao Liu
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Ni Lian
- Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, Jiangsu, China
| | - Liqing Shi
- Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, Jiangsu, China
| | - Zhimin Hao
- Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, Jiangsu, China
| | - Kun Chen
- Department of Physiotherapy, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China,*Correspondence: Kun Chen,
| |
Collapse
|
5
|
Spite M, Fredman G. Insights into the role of the resolvin D2-GPR18 signaling axis in cardiovascular physiology and disease. ADVANCES IN PHARMACOLOGY 2023; 97:257-281. [DOI: 10.1016/bs.apha.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Dardenne C, Salon M, Authier H, Meunier E, AlaEddine M, Bernad J, Bouschbacher M, Lefèvre L, Pipy B, Coste A. Topical Aspirin Administration Improves Cutaneous Wound Healing in Diabetic Mice Through a Phenotypic Switch of Wound Macrophages Toward an Anti-inflammatory and Proresolutive Profile Characterized by LXA4 Release. Diabetes 2022; 71:2181-2196. [PMID: 35796692 DOI: 10.2337/db20-1245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/29/2022] [Indexed: 11/13/2022]
Abstract
Patients with diabetes present a persistent inflammatory process, leading to impaired wound healing. Since nonhealing diabetic wound management shows limited results, the introduction of advanced therapies targeting and correcting the inflammatory status of macrophages in chronic wounds could be an effective therapeutic strategy to stop the sustained inflammation and to return to a healing state. In an excisional skin injury in a diet-induced diabetic murine model, we demonstrate that topical administration of low-dose aspirin (36 μg/wound/day) improves cutaneous wound healing by increasing wound closure through the promotion of the inflammation resolution program of macrophages. This treatment increased efferocytosis of wound macrophages from aspirin-treated diabetic mice compared with untreated diabetic mice. We also show that aspirin treatment of high-fat-fed mice oriented the phenotype of wound macrophages toward an anti-inflammatory and proresolutive profile characterized by a decrease of LTB4 production. The use of diabetic mice deficient for 5-LOX or 12/15-LOX demonstrated that these two enzymes of acid arachidonic metabolism are essential for the beneficial effect of aspirin on wound healing. Thus, aspirin treatment modified the balance between pro- and anti-inflammatory eicosanoids by promoting the synthesis of proresolving LXA4 through 5-LOX, LTA4, 12/15-LOX signaling. In conclusion, the restoration of an anti-inflammatory and proresolutive phenotype of wound macrophages by the topical administration of low-dose aspirin represents a promising therapeutic approach in chronic wounds.
Collapse
Affiliation(s)
- Christophe Dardenne
- UMR 152 PHARMA-DEV, Université de Toulouse, and Institut de Recherche pour le Développement, Université Paul Sabatier, Toulouse, France
| | - Marie Salon
- UMR 152 PHARMA-DEV, Université de Toulouse, and Institut de Recherche pour le Développement, Université Paul Sabatier, Toulouse, France
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, Université Paul Sabatier, Toulouse, France
| | - Hélène Authier
- UMR 152 PHARMA-DEV, Université de Toulouse, and Institut de Recherche pour le Développement, Université Paul Sabatier, Toulouse, France
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, Université Paul Sabatier, Toulouse, France
| | - Etienne Meunier
- UMR 5089, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | - Mohamad AlaEddine
- UMR 152 PHARMA-DEV, Université de Toulouse, and Institut de Recherche pour le Développement, Université Paul Sabatier, Toulouse, France
| | - José Bernad
- UMR 152 PHARMA-DEV, Université de Toulouse, and Institut de Recherche pour le Développement, Université Paul Sabatier, Toulouse, France
| | | | - Lise Lefèvre
- UMR 152 PHARMA-DEV, Université de Toulouse, and Institut de Recherche pour le Développement, Université Paul Sabatier, Toulouse, France
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, Université Paul Sabatier, Toulouse, France
| | - Bernard Pipy
- UMR 152 PHARMA-DEV, Université de Toulouse, and Institut de Recherche pour le Développement, Université Paul Sabatier, Toulouse, France
| | - Agnès Coste
- UMR 152 PHARMA-DEV, Université de Toulouse, and Institut de Recherche pour le Développement, Université Paul Sabatier, Toulouse, France
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
7
|
Kim S, Zhang S, Yoon S. Multiplexed Ultrasound Imaging Using Spectral Analysis on Gas Vesicles. Adv Healthc Mater 2022; 11:e2200568. [PMID: 35765741 PMCID: PMC9463101 DOI: 10.1002/adhm.202200568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/18/2022] [Indexed: 01/27/2023]
Abstract
Current advances in ultrasound imaging techniques combined with the next generation contrast agents such as gas vesicles (GV) revolutionize the visualization of biological tissues with spatiotemporal precision. In optics, fluorescent proteins enable understanding of molecular and cellular functions in biological systems due to their multiplexed imaging capability. Here, a panel of GVs is investigated using mid-band fit (MBF) spectral imaging to realize multiplexed ultrasound imaging to uniquely visualize locations of different types of stationary GVs. The MBF spectral imaging technique demonstrates that stationary clustered GVs are efficiently localized and distinguished from unclustered GVs in agarose gel phantom and 3D vessel structures are visualized in ex vivo mouse liver specimens. Mouse macrophages serve as carriers of clustered and unclustered GVs and multiplexing beacons to report cells' spatial locations by emitting distinct spectral signals. 2D MBF spectral images are reconstructed, and pixels in these images are classified depending on MBF values by comparing predetermined filters that predict the existence of cells with clustered and unclustered GVs. This pseudo-coloring scheme clearly distinguishes the locations of two classes of cells like pseudo-color images in fluorescence microscopy.
Collapse
Affiliation(s)
- Sangnam Kim
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIN46556USA
| | - Siyuan Zhang
- Department of Biological SciencesUniversity of Notre DameNotre DameIN46556USA
| | - Sangpil Yoon
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIN46556USA
| |
Collapse
|
8
|
Tansathien K, Ngawhirunpat T, Rangsimawong W, Patrojanasophon P, Opanasopit P, Nuntharatanapong N. In Vitro Biological Activity and In Vivo Human Study of Porcine-Placenta-Extract-Loaded Nanovesicle Formulations for Skin and Hair Rejuvenation. Pharmaceutics 2022; 14:pharmaceutics14091846. [PMID: 36145597 PMCID: PMC9501513 DOI: 10.3390/pharmaceutics14091846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine placenta extract (PPE) contains many water-soluble macromolecular compounds, such as proteins and growth factors, which have limited transportation through the skin. This study aimed to assess the effect of porcine-placenta-extract (PPE)-loaded nano-transdermal systems for skin repair and hair growth promotion. The potentials of the nanoformulation for cytotoxicity, cell proliferation, intracellular reactive oxygen species (ROS) reduction, lipoxygenase inhibition, intracellular inflammatory cytokine reduction, and cell aggregation were evaluated. PPE-entrapped niosome nanovesicles were produced by thin-film hydration and probe-sonication methods, followed by incorporation in a skin serum formulation. The physicochemical properties of the formulation were examined, and the efficacy of the serum formulation was elucidated in humans. The results showed that PPE had no toxicity and was able to induce cell growth and cell aggregation. In addition, PPE significantly decreased intracellular ROS, inhibited lipoxygenase activity, and reduced the production of intracellular tumor necrosis factor-α. In the in vivo human study, the PPE nanovesicles-loaded serum could improve skin properties by increasing skin hydration. Moreover, it was capable of promoting hair growth by increasing hair elongation and melanin index after application for one month. Consequently, the PPE nanovesicles-loaded serum was effective for skin anti-aging and hair rejuvenation.
Collapse
Affiliation(s)
- Kritsanaporn Tansathien
- Pharmaceutical Development of Green Innovation Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovation Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Worranan Rangsimawong
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovation Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovation Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Correspondence: (P.O.); (N.N.); Tel.: +66-(034)-255800 (P.O. & N.N.); Fax: +66-(034)-255801 (P.O. & N.N.)
| | - Nopparat Nuntharatanapong
- Pharmaceutical Development of Green Innovation Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Correspondence: (P.O.); (N.N.); Tel.: +66-(034)-255800 (P.O. & N.N.); Fax: +66-(034)-255801 (P.O. & N.N.)
| |
Collapse
|
9
|
Minokawa Y, Sawada Y, Nakamura M. Lifestyle Factors Involved in the Pathogenesis of Alopecia Areata. Int J Mol Sci 2022; 23:ijms23031038. [PMID: 35162962 PMCID: PMC8835065 DOI: 10.3390/ijms23031038] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022] Open
Abstract
Alopecia areata is a representative inflammatory skin disease that is associated with various environmental stimuli. While psychological stress is believed to be a major pathogenetic trigger in alopecia areata, infants and newborns also suffer from the disease, suggesting the possible presence of other environmental factors. Daily lifestyle is well known to be involved in various inflammatory diseases and influences the severity of inflammatory skin diseases. However, only a limited number of studies have summarized these influences on alopecia areata. In this review article, we summarize lifestyle factor-related influences on the pathogenesis of alopecia areata and focus on environmental factors, such as smoking, alcohol consumption, sleep, obesity, fatty acids, and gluten consumption.
Collapse
|
10
|
Lima DFPDA, da Cruz VAR, Pereira GL, Curi RA, Costa RB, de Camargo GMF. Genomic Regions Associated with the Position and Number of Hair Whorls in Horses. Animals (Basel) 2021; 11:ani11102925. [PMID: 34679946 PMCID: PMC8532986 DOI: 10.3390/ani11102925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Whorls have been used to indicate the temperaments of domestic animals; however, little is known about the biological events that drive this association. The present study is the first that aims to find the main genomic regions that influence the whorl traits in livestock, with horses as a model. Genes related to hair follicle growth were found. Interestingly, some of these genes also influence psychiatric diseases and neurological disorders, thus evidencing a consistent biological explanation for the association. Abstract The position and number of hair whorls have been associated with the behavior, temperament, and laterality of horses. The easy observation of whorls assists in the prediction of reactivity, and thus permits the development of better measures of handling, training, mounting, and riding horses. However, little is known about the genetics involved in the formation of hair whorls. Therefore, the aim of this study was to perform a genome-wide association analysis to identify chromosome regions and candidate genes associated with hair whorl traits. Data from 342 Quarter Horses genotyped for approximately 53,000 SNPs were used in an association study using a single-step procedure. The following traits were analyzed: vertical position of hair whorl on the head, number of whorls on the head, and number of whorls on the left and right sides of the neck. The traits had between one and three genomic windows associated. Each of them explained at least 4% of the additive variance. The windows accounted for 20–80% of additive variance for each trait analyzed. Many of the prospected genes are related to hair follicle growth. Some of these genes exert a pleiotropic effect on neurological and behavioral traits. This is the first indication of biological and physiological activity that might explain the association of hair whorls and temperament.
Collapse
Affiliation(s)
- Diogo Felipe Pereira de Assis Lima
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador 40170-110, BA, Brazil; (D.F.P.d.A.L.); (V.A.R.d.C.); (R.B.C.)
| | - Valdecy Aparecida Rocha da Cruz
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador 40170-110, BA, Brazil; (D.F.P.d.A.L.); (V.A.R.d.C.); (R.B.C.)
| | - Guilherme Luís Pereira
- Departamento de Melhoramento e Nutrição Animal, Universidade Estadual Paulista (Unesp), Botucatu 18618-681, SP, Brazil; (G.L.P.); (R.A.C.)
| | - Rogério Abdallah Curi
- Departamento de Melhoramento e Nutrição Animal, Universidade Estadual Paulista (Unesp), Botucatu 18618-681, SP, Brazil; (G.L.P.); (R.A.C.)
| | - Raphael Bermal Costa
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador 40170-110, BA, Brazil; (D.F.P.d.A.L.); (V.A.R.d.C.); (R.B.C.)
| | - Gregório Miguel Ferreira de Camargo
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador 40170-110, BA, Brazil; (D.F.P.d.A.L.); (V.A.R.d.C.); (R.B.C.)
- Correspondence:
| |
Collapse
|
11
|
Jordan PM, Gerstmeier J, Pace S, Bilancia R, Rao Z, Börner F, Miek L, Gutiérrez-Gutiérrez Ó, Arakandy V, Rossi A, Ialenti A, González-Estévez C, Löffler B, Tuchscherr L, Serhan CN, Werz O. Staphylococcus aureus-Derived α-Hemolysin Evokes Generation of Specialized Pro-resolving Mediators Promoting Inflammation Resolution. Cell Rep 2021; 33:108247. [PMID: 33053344 PMCID: PMC7729929 DOI: 10.1016/j.celrep.2020.108247] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/02/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Underlying mechanisms of how infectious inflammation is resolved by the host are incompletely understood. One hallmark of inflammation resolution is the activation of specialized pro-resolving mediators (SPMs) that enhance bacterial clearance and promote tissue repair. Here, we reveal α-hemolysin (Hla) from Staphylococcus aureus as a potent elicitor of SPM biosynthesis in human M2-like macrophages and in the mouse peritoneum through selective activation of host 15-lipoxygenase-1 (15-LOX-1). S. aureus-induced SPM formation in M2 is abolished upon Hla depletion or 15-LOX-1 knockdown. Isolated Hla elicits SPM formation in M2 that is reverted by inhibition of the Hla receptor ADAM10. Lipid mediators derived from Hla-treated M2 accelerate planarian tissue regeneration. Hla but not zymosan provokes substantial SPM formation in the mouse peritoneum, devoid of leukocyte infiltration and pro-inflammatory cytokine secretion. Besides harming the host, Hla may also exert beneficial functions by stimulating SPM production to promote the resolution of infectious inflammation. Jordan et al. reveal that α-hemolysin from Staphylococcus aureus stimulates specialized pro-resolving mediator (SPM) formation through activation of 15-lipoxygenase-1 in human macrophages involving ADAM10. The host may exploit α-hemolysin as an SPM inducer to better cope with S. aureus infections and to promote inflammation resolution and tissue regeneration.
Collapse
Affiliation(s)
- Paul M Jordan
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Jana Gerstmeier
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany.
| | - Simona Pace
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Rossella Bilancia
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany; Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Zhigang Rao
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Friedemann Börner
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Laura Miek
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | | | - Vandana Arakandy
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Armando Ialenti
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | | | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Oliver Werz
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany.
| |
Collapse
|
12
|
Springer MS, Guerrero-Juarez CF, Huelsmann M, Collin MA, Danil K, McGowen MR, Oh JW, Ramos R, Hiller M, Plikus MV, Gatesy J. Genomic and anatomical comparisons of skin support independent adaptation to life in water by cetaceans and hippos. Curr Biol 2021; 31:2124-2139.e3. [PMID: 33798433 PMCID: PMC8154672 DOI: 10.1016/j.cub.2021.02.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/21/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022]
Abstract
The macroevolutionary transition from terra firma to obligatory inhabitance of the marine hydrosphere has occurred twice in the history of Mammalia: Cetacea and Sirenia. In the case of Cetacea (whales, dolphins, and porpoises), molecular phylogenies provide unambiguous evidence that fully aquatic cetaceans and semiaquatic hippopotamids (hippos) are each other's closest living relatives. Ancestral reconstructions suggest that some adaptations to the aquatic realm evolved in the common ancestor of Cetancodonta (Cetacea + Hippopotamidae). An alternative hypothesis is that these adaptations evolved independently in cetaceans and hippos. Here, we focus on the integumentary system and evaluate these hypotheses by integrating new histological data for cetaceans and hippos, the first genome-scale data for pygmy hippopotamus, and comprehensive genomic screens and molecular evolutionary analyses for protein-coding genes that have been inactivated in hippos and cetaceans. We identified eight skin-related genes that are inactivated in both cetaceans and hippos, including genes that are related to sebaceous glands, hair follicles, and epidermal differentiation. However, none of these genes exhibit inactivating mutations that are shared by cetaceans and hippos. Mean dates for the inactivation of skin genes in these two clades serve as proxies for phenotypic changes and suggest that hair reduction/loss, the loss of sebaceous glands, and changes to the keratinization program occurred ∼16 Ma earlier in cetaceans (∼46.5 Ma) than in hippos (∼30.5 Ma). These results, together with histological differences in the integument and prior analyses of oxygen isotopes from stem hippopotamids ("anthracotheres"), support the hypothesis that aquatic skin adaptations evolved independently in hippos and cetaceans.
Collapse
Affiliation(s)
- Mark S Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA.
| | - Christian F Guerrero-Juarez
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Matthias Huelsmann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Matthew A Collin
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA; Department of Botany & Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Kerri Danil
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92037, USA
| | - Michael R McGowen
- Department of Vertebrate Zoology, Smithsonian Museum of Natural History, 10th & Constitution Avenue NW, Washington, DC 20560, USA
| | - Ji Won Oh
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea; Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea; Hair Transplantation Center, Kyungpook National University Hospital, Daegu, Korea
| | - Raul Ramos
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany; LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany; Senckenberg Research Institute, 60325 Frankfurt, Germany; Faculty of Biosciences, Goethe-University, 60438 Frankfurt, Germany.
| | - Maksim V Plikus
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA.
| | - John Gatesy
- Division of Vertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA.
| |
Collapse
|
13
|
Protective role of resolvin D1, a pro-resolving lipid mediator, in nonsteroidal anti-inflammatory drug-induced small intestinal damage. PLoS One 2021; 16:e0250862. [PMID: 33945545 PMCID: PMC8096073 DOI: 10.1371/journal.pone.0250862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/10/2021] [Indexed: 12/19/2022] Open
Abstract
Resolvin D1, a specialized pro-resolving lipid mediator produced from docosahexaenoic acid by 15- and 5-lipoxygenase, exerts anti-inflammatory effects driving to the resolution of inflammation. The present study aimed to elucidate its role in small intestinal damage induced by nonsteroidal anti-inflammatory drug (NSAID). Indomethacin was administered orally to C57BL/6J male mice, which were sacrificed 24 h later to collect small intestine specimens. Before administration of indomethacin, mice were subjected to intraperitoneal treatment with resolvin D1 or oral administration of baicalein, a 15-lipoxygenase inhibitor. Small intestinal damage induced by indomethacin was attenuated by pretreatment with resolvin D1. Furthermore, resolvin D1 reduced the gene expression levels of interleukin-1β, tumor necrosis factor-α, and CXCL1/keratinocyte chemoattractant. Conversely, the inhibition of 15-lipoxygenase activity by baicalein increased the expression of genes coding for these inflammatory cytokines and chemokine, leading to exacerbated small intestinal damage, and reduced the concentration of resolvin D1 in the small intestinal tissue. Exogenous treatment with resolvin D1 negated the deleterious effect of baicalein. 15-lipoxygenase was mainly expressed in the epithelium and inflammatory cells of the small intestine, and its gene and protein expression was not affected by the administration of indomethacin. Inhibition of the resolvin D1 receptor, lipoxin A4 receptor /formyl peptide receptor 2, by its specific inhibitors Boc-1 and WRW4 aggravated indomethacin-induced small intestinal damage. Collectively, these results indicate that resolvin D1 produced by 15-lipoxygenase contributes to mucoprotection against NSAID-induced small intestinal damage through its anti-inflammatory effect.
Collapse
|
14
|
Lee TK, Kim B, Kim DW, Ahn JH, Sim H, Lee JC, Yang GE, Her Y, Park JH, Kim HS, Sim TH, Lee HS, Won MH. Effects of Decursin and Angelica gigas Nakai Root Extract on Hair Growth in Mouse Dorsal Skin via Regulating Inflammatory Cytokines. Molecules 2020; 25:E3697. [PMID: 32823713 PMCID: PMC7464339 DOI: 10.3390/molecules25163697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
This current study investigates the facilitative effects and mechanisms of decursin, a major component of Angelica gigas Nakai (AGN), and AGN root extract on hair growth in mice. We perform high-performance liquid chromatography on AGN extract to show it contains 7.3% decursin. Hairs in mouse dorsal skin are shaved distilled in water, 0.15% decursin, and 2% AGN root extract (0.15% decursin in the diluted extract) and topically applied twice a day for 17 days. Hematoxylin and eosin staining are done to examine the morphological changes in the hair follicles. To compare the effects of decursin and AGN extract on inflammatory cytokines in the dorsal skin, Western blot analysis and immunohistochemistry for tumor necrosis factor α (TNF-α) and interleukin (IL)-1β as pro-inflammatory cytokines, and IL-4 and IL-13 as anti-inflammatory cytokines are conducted. The results show that the application of decursin and AGN extract confer effects on hair growth. Hair growth is significantly facilitated from seven days after the treatments compared to that in the control group, and completely grown hair was found 17 days after the treatments. The protein levels and immunoreactivity of TNF-α and IL-1β in this case are significantly decreased, whereas the IL-4 and IL-13 levels and immunoreactivity are significantly increased compared to those in the control group. Additionally, high-mobility group box 1, an inflammatory mediator, is elevated by the topical application of decursin and AGN extract. Taken together, the treatment of mouse dorsal skin with AGE root extract containing decursin promotes hair growth by regulating pro- and/or anti-inflammatory cytokines. We, therefore, suggest that AGN root extract as well as decursin can be utilized as materials for developing hair growth-facilitating treatments.
Collapse
Affiliation(s)
- Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Korea; (T.-K.L.); (J.H.A.)
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung, Gangwon 25457, Korea;
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Korea; (T.-K.L.); (J.H.A.)
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| | - Go Eun Yang
- Department of Radiology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Gangwon 24289, Korea;
| | - Young Her
- Department of Dermatology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Gangwon 24289, Korea;
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Korea;
| | - Hyun Sook Kim
- Leefarm Co., Ltd., Hongcheon, Gangwon 25117, Korea; (H.S.K.); (T.H.S.)
| | - Tae Heung Sim
- Leefarm Co., Ltd., Hongcheon, Gangwon 25117, Korea; (H.S.K.); (T.H.S.)
| | - Hyun Sam Lee
- Leefarm Co., Ltd., Hongcheon, Gangwon 25117, Korea; (H.S.K.); (T.H.S.)
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.)
| |
Collapse
|
15
|
Penno CA, Jäger P, Laguerre C, Hasler F, Hofmann A, Gass SK, Wettstein-Ling B, Schaefer DJ, Avrameas A, Raulf F, Wieczorek G, Lehmann JCU, Loesche C, Roth L, Röhn TA. Lipidomics Profiling of Hidradenitis Suppurativa Skin Lesions Reveals Lipoxygenase Pathway Dysregulation and Accumulation of Proinflammatory Leukotriene B4. J Invest Dermatol 2020; 140:2421-2432.e10. [PMID: 32387270 DOI: 10.1016/j.jid.2020.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Hidradenitis suppurativa (HS) is a chronic, recurring inflammatory dermatosis characterized by abscesses, deep-seated nodules, sinus tracts, and fibrosis in skin lesions around hair follicles of the axillary, inguinal, and anogenital regions. Whereas the exact pathogenesis remains poorly defined, clear evidence suggests that HS is a multifactorial inflammatory disease characterized by innate and adaptive immune components. Bioactive lipids are important regulators of cutaneous homeostasis, inflammation, and resolution of inflammation. Alterations in the lipid mediator profile can lead to malfunction and cutaneous inflammation. We used targeted lipidomics to analyze selected omega-3 and omega-6 polyunsaturated fatty acids in skin of patients with HS and of healthy volunteers. Lesional HS skin displayed enrichment of 5-lipoxygenase (LO)‒derived metabolites, especially leukotriene B4. In addition, 15-LO‒derived metabolites were underrepresented in HS lesions. Changes in the lipid mediator profile were accompanied by transcriptomic dysregulation of the 5-LO and 15-LO pathways. Hyperactivation of the 5-LO pathway in lesional macrophages identified these cells as potential sources of leukotriene B4, which may cause neutrophil influx and activation. Furthermore, leukotriene B4-induced mediators and pathways were elevated in HS lesions, suggesting a contribution of this proinflammatory lipid meditator to the pathophysiology of HS.
Collapse
Affiliation(s)
- Carlos A Penno
- Analytical Sciences & Imaging, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Petra Jäger
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Claire Laguerre
- Analytical Sciences & Imaging, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Franziska Hasler
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Andreas Hofmann
- Analytical Sciences & Imaging, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Stephanie K Gass
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital, Basel, and University of Basel, Basel, Switzerland
| | - Barbara Wettstein-Ling
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital, Basel, and University of Basel, Basel, Switzerland
| | - Dirk J Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital, Basel, and University of Basel, Basel, Switzerland
| | - Alexandre Avrameas
- Biomarker Development, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Friedrich Raulf
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Grazyna Wieczorek
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Joachim C U Lehmann
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Christian Loesche
- Translational Medicine, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Lukas Roth
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Till A Röhn
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
16
|
Laggner M, Copic D, Nemec L, Vorstandlechner V, Gugerell A, Gruber F, Peterbauer A, Ankersmit HJ, Mildner M. Therapeutic potential of lipids obtained from γ-irradiated PBMCs in dendritic cell-mediated skin inflammation. EBioMedicine 2020; 55:102774. [PMID: 32403085 PMCID: PMC7218268 DOI: 10.1016/j.ebiom.2020.102774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Since numerous pathological conditions are evoked by unwanted dendritic cell (DC) activity, therapeutic agents modulating DC functions are of great medical interest. In regenerative medicine, cellular secretomes have gained increasing attention and valuable immunomodulatory properties have been attributed to the secretome of γ-irradiated peripheral blood mononuclear cells (PBMCs). Potential effects of the PBMC secretome (PBMCsec) on key DC functions have not been elucidated so far. METHODS We used a hapten-mediated murine model of contact hypersensitivity (CH) to study the effects of PBMCsec on DCs in vivo. Effects of PBMCsec on human DCs were investigated in monocyte-derived DCs (MoDC) and ex vivo skin cultures. DCs were phenotypically characterised by transcriptomics analyses and flow cytometry. DC function was evaluated by cytokine secretion, antigen uptake, PBMC proliferation and T-cell priming. FINDINGS PBMCsec significantly alleviated tissue inflammation and cellular infiltration in hapten-sensitized mice. We found that PBMCsec abrogated differentiation of MoDCs, indicated by lower expression of classical DC markers CD1a, CD11c and MHC class II molecules. Furthermore, PBMCsec reduced DC maturation, antigen uptake, lipopolysaccharides-induced cytokine secretion, and DC-mediated immune cell proliferation. Moreover, MoDCs differentiated with PBMCsec displayed diminished ability to prime naïve CD4+T-cells into TH1 and TH2 cells. Furthermore, PBMCsec modulated the phenotype of DCs present in the skin in situ. Mechanistically, we identified lipids as the main biomolecule accountable for the observed immunomodulatory effects. INTERPRETATION Together, our data describe DC-modulatory actions of lipids secreted by stressed PBMCs and suggest PBMCsec as a therapeutic option for treatment of DC-mediated inflammatory skin conditions. FUNDING This research project was supported by the Austrian Research Promotion Agency (Vienna, Austria; grant "APOSEC" 862068; 2015-2019) and the Vienna Business Agency (Vienna, Austria; grant "APOSEC to clinic" 2343727).
Collapse
Affiliation(s)
- Maria Laggner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Vienna, Austria; Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Dragan Copic
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Vienna, Austria; Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Lucas Nemec
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
| | - Vera Vorstandlechner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Vienna, Austria; Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Alfred Gugerell
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Vienna, Austria; Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Florian Gruber
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
| | - Anja Peterbauer
- Austrian Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - Hendrik J Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Vienna, Austria; Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Michael Mildner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria.
| |
Collapse
|
17
|
Simpson S, Preston D, Schwerk C, Schroten H, Blazer-Yost B. Cytokine and inflammatory mediator effects on TRPV4 function in choroid plexus epithelial cells. Am J Physiol Cell Physiol 2019; 317:C881-C893. [PMID: 31411921 PMCID: PMC6879874 DOI: 10.1152/ajpcell.00205.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/23/2019] [Accepted: 08/08/2019] [Indexed: 11/22/2022]
Abstract
The choroid plexus (CP), composed of capillaries surrounded by a barrier epithelium, is the main producer of cerebrospinal fluid (CSF). The CP epithelium regulates the transport of ions and water between the blood and the ventricles, contributing to CSF production and composition. Several studies suggest a connection between the cation channel transient receptor potential vanilloid-4 (TRPV4) and transepithelial ion movement. TRPV4 is a nonselective, calcium-permeable cation channel present in CP epithelia reported to be activated by cytokines and inflammatory mediators. Utilizing the PCP-R (porcine choroid plexus-Riems) cell line, we investigated the effects of various cytokines and inflammatory mediators on TRPV4-mediated activity. Select proinflammatory cytokines (TNF-α, IL-1β, TGF-β1) had inhibitory effects on TRPV4-stimulated transepithelial ion flux and permeability changes, whereas anti-inflammatory cytokines (IL-10, IL-4, and IL-6) had none. Quantitative mRNA analysis showed that these cytokines had no effect on TRPV4 transcription levels. Inhibition of the transcription factor NF-κB, involved in the production and regulation of several inflammatory cytokines, inhibited TRPV4-mediated activity, suggesting a link between TRPV4 and cytokine production. Contrary to published studies, the proinflammatory mediator arachidonic acid (AA) had inhibitory rather than stimulatory effects on TRPV4-mediated responses. However, inhibition of AA metabolism also caused inhibitory effects on TRPV4, suggesting a complex interaction of AA and its metabolites in the regulation of TRPV4 activity. Together these data imply that TRPV4 activity is involved in the inflammatory response; it is negatively affected by proinflammatory mediators. Furthermore, arachidonic acid metabolites, but not arachidonic acid itself, are positive regulators of TRPV4.
Collapse
Affiliation(s)
- Stefanie Simpson
- Department of Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana
| | - Daniel Preston
- Department of Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana
| | - Christian Schwerk
- Mannheim Medical Faculty, University of Heidelberg, Children's Hospital, Mannheim, Germany
| | - Horst Schroten
- Mannheim Medical Faculty, University of Heidelberg, Children's Hospital, Mannheim, Germany
| | - Bonnie Blazer-Yost
- Department of Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana
| |
Collapse
|
18
|
Bi K, Linderoth T, Singhal S, Vanderpool D, Patton JL, Nielsen R, Moritz C, Good JM. Temporal genomic contrasts reveal rapid evolutionary responses in an alpine mammal during recent climate change. PLoS Genet 2019; 15:e1008119. [PMID: 31050681 PMCID: PMC6519841 DOI: 10.1371/journal.pgen.1008119] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/15/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
Many species have experienced dramatic changes in their abundance and distribution during recent climate change, but it is often unclear whether such ecological responses are accompanied by evolutionary change. We used targeted exon sequencing of 294 museum specimens (160 historic, 134 modern) to generate independent temporal genomic contrasts spanning a century of climate change (1911-2012) for two co-distributed chipmunk species: an endemic alpine specialist (Tamias alpinus) undergoing severe range contraction and a stable mid-elevation species (T. speciosus). Using a novel analytical approach, we reconstructed the demographic histories of these populations and tested for evidence of recent positive directional selection. Only the retracting species showed substantial population genetic fragmentation through time and this was coupled with positive selection and substantial shifts in allele frequencies at a gene, Alox15, involved in regulation of inflammation and response to hypoxia. However, these rapid population and gene-level responses were not detected in an analogous temporal contrast from another area where T. alpinus has also undergone severe range contraction. Collectively, these results highlight that evolutionary responses may be variable and context dependent across populations, even when they show seemingly synchronous ecological shifts. Our results demonstrate that temporal genomic contrasts can be used to detect very recent evolutionary responses within and among contemporary populations, even in the face of complex demographic changes. Given the wealth of specimens archived in natural history museums, comparative analyses of temporal population genomic data have the potential to improve our understanding of recent and ongoing evolutionary responses to rapidly changing environments.
Collapse
Affiliation(s)
- Ke Bi
- Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
- Computational Genomics Resource Laboratory (CGRL), California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California, United States of America
| | - Tyler Linderoth
- Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Sonal Singhal
- Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Dan Vanderpool
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - James L. Patton
- Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Craig Moritz
- Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
- Research School of Biology and Centre for Biodiversity Analysis, Australian National University, Canberra, ACT, Australia
| | - Jeffrey M. Good
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
- Wildlife Biology Program, University of Montana, Missoula, MT, United States of America
| |
Collapse
|
19
|
Gurung AB, Pamay P, Tripathy D, Biswas K, Chatterjee A, Joshi SR, Bhattacharjee A. Bioprospection of anti-inflammatory phytochemicals suggests rutaecarpine and quinine as promising 15-lipoxygenase inhibitors. J Cell Biochem 2019; 120:13598-13613. [PMID: 30937959 DOI: 10.1002/jcb.28634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 01/31/2023]
Abstract
15-Lipoxygenase (15-LOX) belongs to the family of nonheme iron containing enzymes that catalyzes the peroxidation of polyunsaturated fatty acids (PUFAs) to generate eicosanoids that play an important role in signaling pathways. The role of 15-LOX has been demonstrated in atherosclerosis as well as other inflammatory diseases. In the present study, drug-like compounds were first screened from a set of anti-inflammatory phytochemicals based on Lipinski's rule of five (ROF) and in silico toxicity filters. Two lead compounds-quinine (QUIN) and rutaecarpine (RUT) were shortlisted by analyzing molecular interactions and binding energies of the filtered compounds with the target using molecular docking. Molecular dynamics simulation studies indicate stable trajectories of apo_15-LOX and docked complexes (15-LOX_QUIN and 15-LOX_RUT). In vitro 15-LOX inhibition studies shows that both QUIN and RUT have lower inhibitory concentration (IC50 ) value than the control (quercetin). Both QUIN and RUT exhibit moderate antioxidant activities. The cell viability study of these compounds suggests no significant toxicity in HEK-293 cell lines. Further, QUIN and RUT both did not show any inhibition against selected Gram-positive and Gram-negative bacterial species. Thus, based on our present findings, rutaecarpine and quinine may be suggested as promising 15-LOX inhibitor for the prevention of the atherosclerosis development.
Collapse
Affiliation(s)
- Arun Bahadur Gurung
- Computational Biology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Pezaiwi Pamay
- Computational Biology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Debabrata Tripathy
- Genetics and Molecular biology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Koel Biswas
- Microbiology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Anupam Chatterjee
- Genetics and Molecular biology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - S R Joshi
- Microbiology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India
| | - Atanu Bhattacharjee
- Computational Biology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, India.,Bioinformatics Centre, North-Eastern Hill University, Shillong, Meghalaya, India
| |
Collapse
|
20
|
Werner M, Jordan PM, Romp E, Czapka A, Rao Z, Kretzer C, Koeberle A, Garscha U, Pace S, Claesson HE, Serhan CN, Werz O, Gerstmeier J. Targeting biosynthetic networks of the proinflammatory and proresolving lipid metabolome. FASEB J 2019; 33:6140-6153. [PMID: 30735438 DOI: 10.1096/fj.201802509r] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nonsteroidal anti-inflammatory drugs interfere with the metabolism of arachidonic acid to proinflammatory prostaglandins and leukotrienes by targeting cyclooxygenases (COXs), 5-lipoxygenase (LOX), or the 5-LOX-activating protein (FLAP). These and related enzymes act in conjunction with marked crosstalk within a complex lipid mediator (LM) network where also specialized proresolving LMs (SPMs) are formed. Here, we present how prominent LM pathways can be differentially modulated in human proinflammatory M1 and proresolving M2 macrophage phenotypes that, upon exposure to Escherichia coli, produce either abundant prostaglandins and leukotrienes (M1) or SPMs (M2). Targeted liquid chromatography-tandem mass spectrometry-based metabololipidomics was applied to analyze and quantify the specific LM profiles. Besides expected on-target actions, we found that: 1) COX or 15-LOX-1 inhibitors elevate inflammatory leukotriene levels, 2) FLAP and 5-LOX inhibitors reduce leukotrienes in M1 but less so in M2 macrophages, 3) zileuton blocks resolution-initiating SPM biosynthesis, whereas FLAP inhibition increases SPM levels, and 4) that the 15-LOX-1 inhibitor 3887 suppresses SPM formation in M2 macrophages. Conclusively, interference with discrete LM biosynthetic enzymes in different macrophage phenotypes considerably affects the LM metabolomes with potential consequences for inflammation-resolution pharmacotherapy. Our data may allow better appraisal of the therapeutic potential of these drugs to intervene with inflammatory disorders.-Werner, M., Jordan, P. M., Romp, E., Czapka, A., Rao, Z., Kretzer, C., Koeberle, A., Garscha, U., Pace, S., Claesson, H.-E., Serhan, C. N., Werz, O., Gerstmeier, J. Targeting biosynthetic networks of the proinflammatory and proresolving lipid metabolome.
Collapse
Affiliation(s)
- Markus Werner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Erik Romp
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Anna Czapka
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Zhigang Rao
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Kretzer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Ulrike Garscha
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Hans-Erik Claesson
- Division of Hematology, Department of Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Charles N Serhan
- Department of Anesthesia, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital-Harvard Medical School, Boston, Massachusetts, USA
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
21
|
Murakami M, Yamamoto K, Taketomi Y. Phospholipase A 2 in skin biology: new insights from gene-manipulated mice and lipidomics. Inflamm Regen 2018; 38:31. [PMID: 30546811 PMCID: PMC6284315 DOI: 10.1186/s41232-018-0089-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/21/2018] [Indexed: 01/24/2023] Open
Abstract
The skin represents one of the tissues that are most profoundly influenced by alterations in the quality of lipids (lipoquality). Lipids not only constitute cellular membranes, but also serve as bioactive lipid mediators and essential components of the skin barrier. Phospholipase A2 (PLA2) enzymes supply fatty acids and lysophospholipids from membrane phospholipids, thereby variably affecting cutaneous homeostasis. Accordingly, perturbation of particular PLA2-driven lipid pathways can be linked to various forms of skin disease. In this review article, we highlight the roles of several PLA2 subtypes in cutaneous pathophysiology, as revealed by transgenic/knockout studies in combination with comprehensive lipidomics. We focus mainly on secreted PLA2 group IIF (sPLA2-IIF), which is associated with epidermal hyperplasia through mobilization of a unique lipid metabolite. We also address the distinct roles of sPLA2-IIE in hair follicles and sPLA2-IID in lymphoid immune cells that secondarily affect cutaneous inflammation, and provide some insights into species differences in sPLA2s. Additionally, we briefly overview the patatin-like phospholipase PNPLA1, which belongs to the Ca2+-independent PLA2 (iPLA2) family, as a key regulator of skin barrier function through catalysis of a unique non-PLA2 reaction. These knowledges on lipid metabolism driven by various PLA2 subtypes will open novel opportunities for translated studies toward diagnosis and therapy of human skin diseases.
Collapse
Affiliation(s)
- Makoto Murakami
- 1Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan.,2AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004 Japan
| | - Kei Yamamoto
- 3PRIME, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004 Japan.,4Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, 770-8513 Japan
| | - Yoshitaka Taketomi
- 1Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| |
Collapse
|