1
|
Westphal ER, Plackowski KM, Holzmann MJ, Outka AM, Chen D, Ghosh K, Grey JK. Influence of Carbon-Nitride Dot-Emitting Species and Evolution on Fluorescence-Based Sensing and Differentiation. ACS Sens 2024. [PMID: 39422566 DOI: 10.1021/acssensors.4c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Carbon dots have attracted widespread interest for sensing applications based on their low cost, ease of synthesis, and robust optical properties. We investigate structure-function evolution on multiemitter fluorescence patterns for model carbon-nitride dots (CNDs) and their implications on trace-level sensing. Hydrothermally synthesized CNDs with different reaction times were used to determine how specific functionalities and their corresponding fluorescence signatures respond upon the addition of trace-level analytes. Archetype explosives molecules were chosen as a testbed due to similarities in substituent groups or inductive properties (i.e., electron withdrawing), and solution-based assays were performed using ratiometric fluorescence excitation-emission mapping (EEM). Analyte-specific quenching and enhancement responses were observed in EEM landscapes that varied with the CND reaction time. We then used self-organizing map models to examine EEM feature clustering with specific analytes. The results reveal that interactions between carbon-nitride frameworks and molecular-like species dictate response characteristics that may be harnessed to tailor sensor development for specific applications.
Collapse
Affiliation(s)
- Eric R Westphal
- Sandia National Laboratories, 1515 Eubank Dr. SE, Albuquerque, New Mexico 87185, United States
| | - Kenneth M Plackowski
- Sandia National Laboratories, 1515 Eubank Dr. SE, Albuquerque, New Mexico 87185, United States
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Michael J Holzmann
- Sandia National Laboratories, 1515 Eubank Dr. SE, Albuquerque, New Mexico 87185, United States
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Alexandra M Outka
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Dongchang Chen
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Koushik Ghosh
- Sandia National Laboratories, 1515 Eubank Dr. SE, Albuquerque, New Mexico 87185, United States
| | - John K Grey
- Sandia National Laboratories, 1515 Eubank Dr. SE, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
2
|
Jeon AR, Han BY, Kwon M, Yu SH, Chung KY, Shim J, Lee M. Bilayer Interphase for Air-Stable and Dendrite-Free Lithium Metal Anode Cycling in Carbonate Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402213. [PMID: 38881352 DOI: 10.1002/smll.202402213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Indexed: 06/18/2024]
Abstract
The intrinsic reactivity of lithium (Li) toward ambient air, combined with insufficient cycling stability in conventional electrolytes, hinders the practical adoption of Li metal anodes in rechargeable batteries. Here, a bilayer interphase for Li metal is introduced to address both its susceptibility to corrosion in ambient air and its deterioration during cycling in carbonate electrolytes. Initially, the Li metal anode is coated with a conformal bottom layer of polysiloxane bearing methacrylate, followed by further grafting with poly(vinyl ethylene carbonate) (PVEC) to enhance anti-corrosion capability and electrochemical stability. In contrast to single-layer applications of polysiloxane or PVEC, the bilayer design offers a highly uniform coating that effectively resists humid air and prevents dendritic Li growth. Consequently, it demonstrates stable plating/stripping behavior with only a marginal increase in overpotential over 200 cycles in carbonate electrolytes, even after exposure to ambient air with 46% relative humidity. The design concept paves the way for scalable production of high-voltage, long-cycling Li metal batteries.
Collapse
Affiliation(s)
- A-Re Jeon
- Energy Storage Research Center, Korea Institute of Science and Technology (KIST), 14 Gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
- Graduate Institute of Ferrous & Eco Materials Technology (GIFT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Byeol Yi Han
- Energy Storage Research Center, Korea Institute of Science and Technology (KIST), 14 Gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Minhyung Kwon
- Energy Storage Research Center, Korea Institute of Science and Technology (KIST), 14 Gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
- Graduate Institute of Ferrous & Eco Materials Technology (GIFT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Seung-Ho Yu
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kyung Yoon Chung
- Energy Storage Research Center, Korea Institute of Science and Technology (KIST), 14 Gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jimin Shim
- Department of Chemistry Education, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Minah Lee
- Energy Storage Research Center, Korea Institute of Science and Technology (KIST), 14 Gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Graduate Institute of Ferrous & Eco Materials Technology (GIFT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| |
Collapse
|
3
|
Caetano M, Becceneri AB, Ferreira MV, Assunção RMN, da Silva RS, de Lima RG. Carbonized Polymer Dots: Influence of the Carbon Nanoparticle Structure on Cell Biocompatibility. ACS OMEGA 2024; 9:38864-38877. [PMID: 39310212 PMCID: PMC11411664 DOI: 10.1021/acsomega.4c05011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024]
Abstract
Carbonized polymer dots (CPDs) were obtained by using microwave irradiation under the same conditions. However, different carbogenic precursors were used, such as aromatic diamine molecules, ortho-phenylenediamine (o-OPDA), and 3,4-diaminobenzoic acid (3,4-DABA). Both carbon nanoparticles showed different structural results based on Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, and atomic force microscopy analyses. However, there are similar spectroscopic (UV-visible and fluorescence emission) profiles. The photophysical results, like quantum yield (QY) and fluorescence lifetime, were not identical; CPDs-OPDA has a higher QY and fluorescence lifetime than CPDs-3,4-DABA. CPDs-3,4-DABA presents a more hydrophobic character than CPDs-OPDA and has a more negative superficial charge. Cell viability studies in both standard and tumor lines demonstrated higher cytotoxicity from CPDs-OPDA than that from CPDs-3,4-DABA. The oxidative stress identified in cells treated with CPDs-OPDA was based on reactive oxygen species and associated with nitric oxide production. CPDs-3,4-DABA showed more DPHH inhibition than CPDs-OPDA, indicating the antioxidant activity of CPDs.
Collapse
Affiliation(s)
- Mayara
Martins Caetano
- Instituto
de Química, Universidade Federal de Uberlândia, Avenida
João Naves de Ávila, 2121-Bairro Santa Mônica, Uberlândia, Minas Gerais 38304-402, Brazil
- Instituto
de Ciências Exatas e Naturais Do Pontal, ICENP, Universidade
Federal de Uberlândia, Rua Vinte, 1600, Tupã, Ituiutaba, Minas Gerais 38304-402, Brazil
| | - Amanda Blanque Becceneri
- Faculdade
de Ciências Farmacêuticas de Ribeirão Preto,
USP, Avenida Do Café
S/n, Vila Monte Alegre, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Marcos Vinícius Ferreira
- Instituto
de Química, Universidade Federal de Uberlândia, Avenida
João Naves de Ávila, 2121-Bairro Santa Mônica, Uberlândia, Minas Gerais 38304-402, Brazil
- Instituto
de Ciências Exatas e Naturais Do Pontal, ICENP, Universidade
Federal de Uberlândia, Rua Vinte, 1600, Tupã, Ituiutaba, Minas Gerais 38304-402, Brazil
| | - Rosana Maria Nascimento Assunção
- Instituto
de Química, Universidade Federal de Uberlândia, Avenida
João Naves de Ávila, 2121-Bairro Santa Mônica, Uberlândia, Minas Gerais 38304-402, Brazil
- Instituto
de Ciências Exatas e Naturais Do Pontal, ICENP, Universidade
Federal de Uberlândia, Rua Vinte, 1600, Tupã, Ituiutaba, Minas Gerais 38304-402, Brazil
| | - Roberto Santana da Silva
- Faculdade
de Ciências Farmacêuticas de Ribeirão Preto,
USP, Avenida Do Café
S/n, Vila Monte Alegre, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Renata Galvão de Lima
- Instituto
de Química, Universidade Federal de Uberlândia, Avenida
João Naves de Ávila, 2121-Bairro Santa Mônica, Uberlândia, Minas Gerais 38304-402, Brazil
- Instituto
de Ciências Exatas e Naturais Do Pontal, ICENP, Universidade
Federal de Uberlândia, Rua Vinte, 1600, Tupã, Ituiutaba, Minas Gerais 38304-402, Brazil
| |
Collapse
|
4
|
Kamalarasan V, Venkateswaran C. Fluorescence Carbon Dots from Blood-Berries for Sensing Cr 6+ Ions in Water and Application in White Light Emitting Diode. J Fluoresc 2024:10.1007/s10895-024-03916-1. [PMID: 39254817 DOI: 10.1007/s10895-024-03916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Conventional techniques for identifying heavy metal ions in water are laborious and time-consuming. Therefore, it is necessary to create innovative sensing technologies that can detect with greater sensitivity and speed. Although there have been reports of optical-based assays utilising fluorescent nanomaterials, these assays usually rely on variations in signal strength. However, this approach has significant drawbacks when it comes to environmental monitoring. Fluorescence carbon dots (CDs) have been prepared by facile synthesis from Blood berries. A homemade heavy metal optical detector is constructed to accurately identify heavy metal ions, exclusively Cr6+ ions in a water medium. Their optical emission signature varies based on the specific chromium ions in solution, and the emission intensity also changes depending on its concentration. The quenching behaviour is attributed to the interaction between the metallic cations and the fluorescent surface states of the carbon dots. Another application is the encapsulation of CDs in PVDF polymer to form a flexible film and use it as a phosphor for LED conversion.
Collapse
Affiliation(s)
- V Kamalarasan
- Department of Nuclear Physics, University of Madras, Guindy campus, Chennai, 600025, Tamil Nadu, India
| | - C Venkateswaran
- Department of Nuclear Physics, University of Madras, Guindy campus, Chennai, 600025, Tamil Nadu, India.
| |
Collapse
|
5
|
Du R, Zhong Q, Tan X, Liao L, Tang Z, Chen S, Yan D, Zhao X, Zeng F. Optimized Electrodeposition of Ni 2O 3 on Carbon Paper for Enhanced Electrocatalytic Oxidation of Ethanol. ACS OMEGA 2024; 9:30404-30414. [PMID: 39035965 PMCID: PMC11256107 DOI: 10.1021/acsomega.4c01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 07/23/2024]
Abstract
The urgent need for sustainable and efficient energy conversion technologies has propelled research into novel electrocatalysts for fuel cell applications. This study investigates a carbon paper (CP)-supported Ni2O3 catalyst for the electrocatalytic oxidation of ethanol. We utilized electrodeposition to uniformly deposit/dop Ni2O3 onto the CP, creating an effective electrocatalyst. Our approach allows the tailoring of the doping degree by adjusting the electrodeposition potential. The optimal doping degree, achieved at a medium deposition potential, results in an electrode with high intrinsic activity and a substantial electrochemically active surface area (ECSA), thereby enhancing its electrocatalytic activity. This catalyst efficiently facilitates the oxidation of ethanol to formic acid while maintaining good stability. The enhanced performance is attributed to the effective interface and interaction between Ni2O3 and CP. This work not only provides insights into the design of efficient Ni-based catalysts for ethanol oxidation but also paves the way for developing advanced materials for renewable energy conversion.
Collapse
Affiliation(s)
- Ruixing Du
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Qitong Zhong
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Xing Tan
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Longfei Liao
- School
of Materials Science and Engineering, Harbin
Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Zhenchen Tang
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Shiming Chen
- School
of Intelligent Medicine, China Medical University, Shenyang 110122, Liaoning, China
| | - Dafeng Yan
- College
of Chemistry and Chemical Engineering, Hubei
University, Wuhan 430062, China
| | - Xuebin Zhao
- Technology
Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Feng Zeng
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| |
Collapse
|
6
|
Wetzl C, Renero-Lecuna C, Cardo L, Liz-Marzán LM, Prato M. Temperature-Dependent Luminescence of Nd 3+-Doped Carbon Nanodots for Nanothermometry. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35484-35493. [PMID: 38934218 DOI: 10.1021/acsami.4c07605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Noncontact optical nanothermometers operating within the biological transparency windows are required to study temperature-sensitive biological phenomena at the nanoscale. Nanoparticles containing rare-earth ions such as Nd3+ have been reported to be efficient luminescence-based ratiometric thermometers, however often limited by poor water solubility and concentration-related quenching effects. Herein, we introduce a new type of nanothermometer, obtained by employing low-dimensional carbon nanodots (CNDs) as matrices to host Nd3+ ions (NdCNDs). By means of a one-pot procedure, small (∼7-12 nm), water-soluble nanoparticles were obtained, with high (15 wt %) Nd3+ loading. This stable metal-CND system features temperature-dependent photoluminescence in the second biological window (BW II) upon irradiation at 808 nm, thereby allowing accurate and reversible (heating/cooling) temperature measurements with good sensitivity and thermal resolution. The system possesses remarkable biocompatibility in vitro and promising performance at a high penetration depth in tissue models.
Collapse
Affiliation(s)
- Cecilia Wetzl
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain
- University of the Basque Country, UPV-EHU, 20018 San Sebastián, Spain
| | - Carlos Renero-Lecuna
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| | - Lucia Cardo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
| | - Maurizio Prato
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, 34127 Trieste, Italy
| |
Collapse
|
7
|
Rizk M, Ramzy E, Toubar S, Mahmoud AM, A. El Hamd M, Alshehri S, Helmy MI. Bioinspired Carbon Dots-Based Fluorescent Sensor for the Selective Determination of a Potent Anti-Inflammatory Drug in the Presence of Its Photodegradation Products. ACS OMEGA 2024; 9:27517-27527. [PMID: 38947834 PMCID: PMC11209878 DOI: 10.1021/acsomega.4c02757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Herein, we synthesized biogenic carbon dots (CDs) with blue-shifted maximum excitation (λex/λem of 320/404 nm) from largely wasted tangerine seeds for the first time via a one-step hydrothermal method. The biogenic CDs exhibit a maximum excitation wavelength that overlaps with the absorption spectrum of ketorolac tromethamine (KETO) at 320 nm. The developed CDs serve as a turn-off fluorescent probe via an inner filter effect (IFE) quenching mechanism. The resulting CDs have high quantum yield (QY) (39% ± 2.89%, n = 5) and exhibited great performance toward KETO over a concentration range of 0.50-16.00 μg/mL with a limit of detection (LOD) = 0.17 μg/mL. The nanoprobe achieved a high % recovery in assaying KETO in tablet dosage form and had not been significantly affected by various interferents including co-formulated and co-administered drugs. The nanoprobe shows selectivity toward KETO, even in the presence of its photocatalytic degradation products. It can effectively investigate the elimination of KETO from aquatic systems and test its stability in pharmaceutical preparations. The developed nanoprobe underwent a comprehensive evaluation of its environmental impact using analytical eco-scale (AES), complex green analytical procedure index (Complex GAPI), and the Analytical GREEnness calculator (AGREE). The sustainability of the developed nano sensor was assessed and compared to the reported metal-based quantum dots probe for KETO using the innovative RGB 12 model, considering 12 white analytical chemistry (WAC) perspectives.
Collapse
Affiliation(s)
- Mohamed Rizk
- Department
of Analytical Chemistry, Faculty of Pharmacy, Helwan University, EinHelwan, Cairo 11795, Egypt
| | - Emad Ramzy
- Department
of Analytical Chemistry, Faculty of Pharmacy, Helwan University, EinHelwan, Cairo 11795, Egypt
| | - Safaa Toubar
- Department
of Analytical Chemistry, Faculty of Pharmacy, Helwan University, EinHelwan, Cairo 11795, Egypt
| | - Amr M. Mahmoud
- Department
of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Mohamed A. El Hamd
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
- Department
of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Sultan Alshehri
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa I. Helmy
- Department
of Analytical Chemistry, Faculty of Pharmacy, Helwan University, EinHelwan, Cairo 11795, Egypt
| |
Collapse
|
8
|
Ozfidan-Konakci C, Yildiztugay E, Arikan-Abdulveli B, Alp-Turgut FN, Baslak C, Yıldırım M. The characterization of plant derived-carbon dots and its responses on chlorophyll a fluorescence kinetics, radical accumulation in guard cells, cellular redox state and antioxidant system in chromium stressed-Lactuca sativa. CHEMOSPHERE 2024; 356:141937. [PMID: 38599327 DOI: 10.1016/j.chemosphere.2024.141937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/08/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Based on their chemical structure and catalytic features, carbon dots (CDs) demonstrate great advantages for agricultural systems. The improvements in growth, photosynthesis, nutrient assimilation and resistance are provided by CDs treatments under control or adverse conditions. However, there is no data on how CDs can enhance the tolerance against chromium toxicity on gas exchange, photosynthetic machinery and ROS-based membrane functionality. The present study was conducted to evaluate the impacts of the different concentrations of orange peel derived-carbon dots (50-100-200-500 mg L-1 CD) on growth, chlorophyll fluorescence, phenomenological fluxes between photosystems, photosynthetic performance, ROS accumulation and antioxidant system under chromium stress (Cr, 100 μM chromium (VI) oxide) in Lactuca sativa. CDs removed the Cr-reduced changes in growth (RGR), water content (RWC) and proline (Pro) content. Compared to stress, CD exposures caused an alleviation in carbon assimilation rate, stomatal conductance, transpiration rate, carboxylation efficiency, chlorophyll fluorescence (Fv/Fm) and potential photochemical efficiency (Fv/Fo). Cr toxicity disrupted the energy fluxes (ABS/RC, TRo/RC, ETo/RC and DIo/RC), quantum yields and, efficiency (ΨEo and φRo), dissipation of energy (DIo/RC) and performance index (PIABS and PItotal). An amelioration in these parameters was provided by CD addition to Cr-applied plants. Stressed plants had high activities of superoxide dismutase (SOD), peroxidase (POX) and ascorbate peroxidase (APX), which could not prevent the increase of H2O2 and lipid peroxidation (TBARS content). While all CDs induced SOD and catalase (CAT) in response to stress, POX and enzyme/non-enzymes related to ascorbate-glutathione (AsA-GSH) cycle (APX, monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), the contents of AsA and, GSH) were activated by 50-100-200 mg L-1 CD. CDs were able to protect the AsA regeneration, GSH/GSSG and GSH redox status. The decreases in H2O2 content might be attributed to the increased activity of glutathione peroxidase (GPX). Therefore, all CD applications minimized the Cr stress-based disturbances (TBARS content) by controlling ROS accumulation, antioxidant system and photosynthetic machinery. In conclusion, CDs have the potential to be used as a biocompatible inducer in removing the adverse effects of Cr stress in lettuce plants.
Collapse
Affiliation(s)
- Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, 42090, Konya, Turkey.
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, 42130, Konya, Turkey.
| | - Busra Arikan-Abdulveli
- Department of Biotechnology, Faculty of Science, Selcuk University, 42130, Konya, Turkey.
| | - Fatma Nur Alp-Turgut
- Department of Biotechnology, Faculty of Science, Selcuk University, 42130, Konya, Turkey.
| | - Canan Baslak
- Department of Chemistry, Faculty of Science, Selcuk University, 42130, Konya, Turkey.
| | - Murat Yıldırım
- Department of Biotechnology, Faculty of Science, Selcuk University, 42130, Konya, Turkey.
| |
Collapse
|
9
|
Eren EO, Esen C, Scoppola E, Song Z, Senokos E, Zschiesche H, Cruz D, Lauermann I, Tarakina NV, Kumru B, Antonietti M, Giusto P. Microporous Sulfur-Carbon Materials with Extended Sodium Storage Window. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310196. [PMID: 38350734 DOI: 10.1002/advs.202310196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Indexed: 02/15/2024]
Abstract
Developing high-performance carbonaceous anode materials for sodium-ion batteries (SIBs) is still a grand quest for a more sustainable future of energy storage. Introducing sulfur within a carbon framework is one of the most promising attempts toward the development of highly efficient anode materials. Herein, a microporous sulfur-rich carbon anode obtained from a liquid sulfur-containing oligomer is introduced. The sodium storage mechanism shifts from surface-controlled to diffusion-controlled at higher synthesis temperatures. The different storage mechanisms and electrode performances are found to be independent of the bare electrode material's interplanar spacing. Therefore, these differences are attributed to an increased microporosity and a thiophene-rich chemical environment. The combination of these properties enables extending the plateau region to higher potential and achieving reversible overpotential sodium storage. Moreover, in-operando small-angle X-ray scattering (SAXS) reveals reversible electron density variations within the pore structure, in good agreement with the pore-filling sodium storage mechanism occurring in hard carbons (HCs). Eventually, the depicted framework will enable the design of high-performance anode materials for sodium-ion batteries with competitive energy density.
Collapse
Affiliation(s)
- Enis Oğuzhan Eren
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Cansu Esen
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Ernesto Scoppola
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Zihan Song
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Evgeny Senokos
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Hannes Zschiesche
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Daniel Cruz
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck Gesellschaft, 14195, Berlin, Germany
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
| | - Iver Lauermann
- PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie, 12489, Berlin, Germany
| | - Nadezda V Tarakina
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Barış Kumru
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
- Aerospace Structures and Materials Department, Faculty of Aerospace Engineering, Delft University of Technology, Delft, 2629 HS, The Netherlands
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Paolo Giusto
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| |
Collapse
|
10
|
De Iacovo A, Mitri F, De Santis S, Giansante C, Colace L. Colloidal Quantum Dots for Explosive Detection: Trends and Perspectives. ACS Sens 2024; 9:555-576. [PMID: 38305121 PMCID: PMC11425854 DOI: 10.1021/acssensors.3c02097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Sensitive, accurate, and reliable detection of explosives has become one of the major needs for international security and environmental protection. Colloidal quantum dots, because of their unique chemical, optical, and electrical properties, as well as easy synthesis route and functionalization, have demonstrated high potential to meet the requirements for the development of suitable sensors, boosting the research in the field of explosive detection. Here, we critically review the most relevant research works, highlighting three different mechanisms for explosive detection based on colloidal quantum dots, namely photoluminescence, electrochemical, and chemoresistive sensing. We provide a comprehensive overview and an extensive discussion and comparison in terms of the most relevant sensor parameters. We highlight advantages, limitations, and challenges of quantum dot-based explosive sensors and outline future research directions for the advancement of knowledge in this surging research field.
Collapse
Affiliation(s)
- Andrea De Iacovo
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via Vito Volterra 62, Rome I-00146, Italy
| | - Federica Mitri
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via Vito Volterra 62, Rome I-00146, Italy
| | - Serena De Santis
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via Vito Volterra 62, Rome I-00146, Italy
| | - Carlo Giansante
- Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia CNR-NANOTEC, Via Monteroni, Lecce I-73100, Italy
| | - Lorenzo Colace
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via Vito Volterra 62, Rome I-00146, Italy
| |
Collapse
|
11
|
Chavez J, Khan A, Watson KR, Khan S, Si Y, Deng AY, Koher G, Anike MS, Yi X, Jia Z. Carbon Nanodots Inhibit Tumor Necrosis Factor-α-Induced Endothelial Inflammation through Scavenging Hydrogen Peroxide and Upregulating Antioxidant Gene Expression in EA.hy926 Endothelial Cells. Antioxidants (Basel) 2024; 13:224. [PMID: 38397822 PMCID: PMC10885878 DOI: 10.3390/antiox13020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Carbon nanodots (CNDs) are a new type of nanomaterial with a size of less than 10 nanometers and excellent biocompatibility, widely used in fields such as biological imaging, transmission, diagnosis, and drug delivery. However, its potential and mechanism to mediate endothelial inflammation have yet to be explored. Here, we report that the uptake of CNDs by EA.hy926 endothelial cells is both time and dose dependent. The concentration of CNDs used in this experiment was found to not affect cell viability. TNF-α is a known biomarker of vascular inflammation. Cells treated with CNDs for 24 h significantly inhibited TNF-α (0.5 ng/mL)-induced expression of intracellular adhesion molecule 1 (ICAM-1) and interleukin 8 (IL-8). ICAM-1 and IL-8 are two key molecules responsible for the activation and the firm adhesion of monocytes to activated endothelial cells for the initiation of atherosclerosis. ROS, such as hydrogen peroxide, play an important role in TNF-α-induced inflammation. Interestingly, we found that CNDs effectively scavenged H2O2 in a dose-dependent manner. CNDs treatment also increased the activity of the antioxidant enzyme NQO1 in EA.hy926 endothelial cells indicating the antioxidant properties of CNDs. These results suggest that the anti-inflammatory effects of CNDs may be due to the direct H2O2 scavenging properties of CNDs and the indirect upregulation of antioxidant enzyme NQO1 activity in endothelial cells. In conclusion, CND can inhibit TNF-α-induced endothelial inflammation, possibly due to its direct scavenging of H2O2 and the indirect upregulation of antioxidant enzyme NQO1 activity in endothelial cells.
Collapse
Affiliation(s)
- Jessica Chavez
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA (A.K.); (Y.S.); (G.K.)
| | - Ajmal Khan
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA (A.K.); (Y.S.); (G.K.)
| | - Kenna R. Watson
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA (A.K.); (Y.S.); (G.K.)
| | - Safeera Khan
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA (A.K.); (Y.S.); (G.K.)
| | - Yaru Si
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA (A.K.); (Y.S.); (G.K.)
| | | | - Grant Koher
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA (A.K.); (Y.S.); (G.K.)
| | - Mmesoma S. Anike
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA (A.K.); (Y.S.); (G.K.)
| | - Xianwen Yi
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA (A.K.); (Y.S.); (G.K.)
| |
Collapse
|
12
|
Dechsri K, Suwanchawalit C, Patrojanasophon P, Opanasopit P, Pengnam S, Charoenying T, Taesotikul T. Photodynamic Antibacterial Therapy of Gallic Acid-Derived Carbon-Based Nanoparticles (GACNPs): Synthesis, Characterization, and Hydrogel Formulation. Pharmaceutics 2024; 16:254. [PMID: 38399308 PMCID: PMC10891664 DOI: 10.3390/pharmaceutics16020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Carbon-based nanoparticles (CNPs) have gained recognition because of their good biocompatibility, easy preparation, and excellent phototherapy properties. In biomedicine applications, CNPs are widely applied as photodynamic agents for antibacterial purposes. Photodynamic therapy has been considered a candidate for antibacterial agents because of its noninvasiveness and minimal side effects, especially in the improvement in antibacterial activity against multidrug-resistant bacteria, compared with conventional antibiotic medicines. Here, we developed CNPs from an active polyhydroxy phenolic compound, namely, gallic acid, which has abundant hydroxyl groups that can yield photodynamic effects. Gallic acid CNPs (GACNPs) were rapidly fabricated via a microwave-assisted technique at 200 °C for 20 min. GACNPs revealed notable antibacterial properties against Gram-positive and Gram-negative bacteria, including Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The minimum inhibitory concentrations of GACNPs in S. aureus and E. coli were equal at approximately 0.29 mg/mL and considerably lower than those in gallic acid solution. Furthermore, the GACNP-loaded hydrogel patches demonstrated an attractive photodynamic effect against S. aureus, and it was superior to that of Ag hydrofiber®, a commercial material. Therefore, the photodynamic properties of GACNPs can be potentially used in the development of antibacterial hydrogels for wound healing applications.
Collapse
Affiliation(s)
- Koranat Dechsri
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.D.); (P.P.); (P.O.); (S.P.)
| | - Cheewita Suwanchawalit
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand;
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.D.); (P.P.); (P.O.); (S.P.)
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.D.); (P.P.); (P.O.); (S.P.)
| | - Supusson Pengnam
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.D.); (P.P.); (P.O.); (S.P.)
| | - Thapakorn Charoenying
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; (K.D.); (P.P.); (P.O.); (S.P.)
| | - Theerada Taesotikul
- Department of Biomedicine and Health Informatics, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
13
|
Thara CR, Mathew B. Microwave synthesized N-doped carbon dots for dual mode detection of Hg(II) ion and degradation of malachite green dye. Talanta 2024; 268:125278. [PMID: 37839323 DOI: 10.1016/j.talanta.2023.125278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
One of the most intriguing materials today is carbon dots, which offer a variety of possible uses owing to their distinct photophysical and chemical characteristics. The current study examines the electrochemical and photochemical aspects of carbon dots produced in a single pot for environmental sustainability. Domestic microwave-assisted pyrolysis of urea and glucose yielded chemically synthesized nitrogen-doped carbon dots (microwave synthesized N-doped carbon dots (M-NCDs)) with blue fluorescence and a quantum yield of 14.9 %. High water dispersibility, stability, and biocompatibility were the significant attributes of synthesized M-NCDs. Customarily fluorescent carbon dots were initially used for sensing studies. Fluorescent and electrochemical studies manifest the excellent stability, sensitivity, and selectivity of M-NCDs for mercuric ions. Both methods' Hg (II) procure detection limits of 3.5 nM and 6.1 nM. In addition to sensing traits, the subsequent section deals with the potential of M-NDCs to bring about the exhaustive degradation of malachite green (MG) dye. Within 60 min, 98 % of the dye was catalytically degraded by M-NCD by first-order kinetics based on the Langmuir-Hinshelwood model. This is the first time reporting the catalytic degradation of malachite green dye utilizing carbon dot in its natural form rather than being doped with any metal atom or converted to any composite form.
Collapse
Affiliation(s)
- Chinnu R Thara
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Beena Mathew
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India.
| |
Collapse
|
14
|
Pansari P, Durga G, Sharma R. Carbon nanoprobe derived from Nyctanthes arbor-tristis flower: Unveiling the surface defect-derived fluorescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123119. [PMID: 37478708 DOI: 10.1016/j.saa.2023.123119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023]
Abstract
Dual Emissive (green and blue) Carbon dots (C-Dots) aka g-CD and b-CD were synthesized using flowers of Nyctanthes arbortristis as the sole precursor via hydrothermal method without the aid of any external passivating agent. In the present report, the effect of time and temperature on the hydrothermal reaction was evaluated in order to modulate the surface defects that could lead to dual emissions. To gauge the nature, size, morphology, and optoelectronic characteristics, the C-Dots were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), UV-Vis spectroscopy and Fluorescence spectroscopy. The fluorescence studies of both the Carbon Dots revealed their excitation-dependent emission characteristics with the bathochromic shift. Furthermore, both g-CD and b-CD could effectively be utilized as efficient fluorescent probes for the selective and sensitive detection of Fe3+. These fluorescent nanoprobes could selectively detect Fe3+ over a wide range of concentrations (3 µM to 100 µM) with limit of detection (LOD) as low as 0.06 µM and 0.70 µM respectively. These tuneable Carbon Dots having wider solubilities would open a new avenue as Nanosensors for real-time applications.
Collapse
Affiliation(s)
- Pratibha Pansari
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Greater Noida 201306, U.P., India
| | - Geeta Durga
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Greater Noida 201306, U.P., India.
| | - Roopali Sharma
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Greater Noida 201306, U.P., India
| |
Collapse
|
15
|
Ramasubburayan R, Senthilkumar N, Kanagaraj K, Basumatary S, Kathiresan S, Manjunathan J, Revathi M, Selvaraj M, Prakash S. Environmentally benign, bright luminescent carbon dots from IV bag waste and chitosan for antimicrobial and bioimaging applications. ENVIRONMENTAL RESEARCH 2023; 238:117182. [PMID: 37739153 DOI: 10.1016/j.envres.2023.117182] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
Luminescent carbon dots have gained significant attention in various fields due to their unique optical properties and potential applications. Here, the study was aimed to propose a novel and sustainable approach for the synthesis of luminescent carbon dots (ICDs) using IV (Intravenous) medical bag waste. The ICDs were synthesized through a facile and cost-effective method that involved the carbonization of IV bag waste followed by surface functionalization with chitosan. The synthesized ICDs were characterized using UV-Visible spectrum (UV-Vis), Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray Diffraction analysis (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The size of the ICDs is between 2 and 8 nm. The ICDs effectively inhibited the growth of both gram positive and gram negative bacterial strains with the inhibitory activity in the range of 11-14 mm and 12-18 mm, respectively. Results of antibiofilm activity of ICDs varying concentrations (50 and 100 μg/ml) showed that it effectively distorted the biofilm architecture and thereby validated its promising potentials. In vitro antioxidant activity showed remarkable DPPH radical scavenging potentials of ICDs (33.4%-70.1%). Results of MTT assay revealted that ICDs showed potent cytotoxic effect on HeLa cells in a dose dependant matter (25-400 μg/ml). Furthermore, when HeLa cells were excited at wavelengths of 380 nm, 440 nm and 540 nm, cell-imaging experiments using ICDs revealed the presence of blue, green, and red fluorescence. This innovative method not only addresses the issue of IV bag waste in a sustainable manner but also opens up exciting possibilities for the advancement of versatile carbon-based materials in the field of biomedicine.
Collapse
Affiliation(s)
- Ramasamy Ramasubburayan
- Marine Biomedical Research Laboratory & Environmental Toxicology Unit, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Nangan Senthilkumar
- Department of Chemistry, Graphic Era (Deemed to be University), Bell Road, Clement Town, Dehradun, Uttarakhand, India
| | - Kuppusamy Kanagaraj
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Sanjay Basumatary
- Department of Chemistry, Bodoland University, Kokrajhar, 783370, Assam, India
| | - Sellamuthu Kathiresan
- Department of Chemistry, Kongunadu College of Engineering and Technology (Autonomous), Trichy, Tamilnadu, India
| | - Jagadeesan Manjunathan
- Department of Biotechnology, Vels Institute of Science Technology and Advanced Studies, Chennai, Tamilnadu, India
| | - Meyyappan Revathi
- Department of Chemistry, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, Tamilnadu, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia.
| | - Santhiyagu Prakash
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamilnadu Dr. J. Jayalalithaa Fisheries University, OMR Campus, Chennai, Tamilnadu, India.
| |
Collapse
|
16
|
Özbek N, Çekirge E, Ocak M, Ocak ÜT. Highly Blue-fluorescent Carbon Quantum Dots Obtained from Medlar Seed for Hg 2+ Determination in Real Water Samples. J Fluoresc 2023:10.1007/s10895-023-03463-1. [PMID: 37831355 DOI: 10.1007/s10895-023-03463-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023]
Abstract
The carbon quantum dots (CQDs) have been prepared from medlar seeds with pyrolysis method in an oven at 300 °C. UV-vis absorption spectroscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR) spectroscopy, x-ray diffraction (XRD) technique, x-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) were used in the characterization of CQDs. CQDs, give a strong blue fluorescence under UV lamp (at 365 nm), have a quantum yield of 12.2%. The influence of metal ions such as K+, Mg2+, Ca2+, Be2+, Cr3+, Mn2+, Ni2+, Ag+, Hg2+, and Al3+ on the fluorescence properties of the CQDs was investigated by means of emission spectrophotometry. CQDs altering fluorescence characteristics depending on the excitation wavelength show selectivity for Hg2+ ions with outstanding fluorescence quenching among the tested metal ions. Based on these results, a new fluorimetric method has been developed for the determination of Hg2+ in real water samples. The linear range of method is 1.0 to 5.0 mgL- 1. Limit of detection and limit of quantification are 0.26 and 0.79 mgL- 1, respectively. The proposed method has been successfully used in determination of Hg2+ ions in tap, sea, and stream water samples with application of addition-recovery experiments.
Collapse
Affiliation(s)
- Nurhayat Özbek
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Ender Çekirge
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Miraç Ocak
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, 61080, Turkey
| | - Ümmühan Turgut Ocak
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, 61080, Turkey.
| |
Collapse
|
17
|
Mohebichamkhorami F, Faizi M, Mahmoudifard M, Hajikarim-Hamedani A, Mohseni SS, Heidari A, Ghane Y, Khoramjouy M, Khayati M, Ghasemi R, Zali H, Hosseinzadeh S, Mostafavi E. Microfluidic Synthesis of Ultrasmall Chitosan/Graphene Quantum Dots Particles for Intranasal Delivery in Alzheimer's Disease Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207626. [PMID: 37309299 DOI: 10.1002/smll.202207626] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/26/2023] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) based therapies for Alzheimer's disease (AD) attract interest due to their ability to pass across or bypass the blood-brain barrier. Chitosan (CS) NPs or graphene quantum dots (GQDs) are promising drug carriers with excellent physicochemical and electrical properties. The current study proposes the combination of CS and GQDs in ultrasmall NP form not as drug carriers but as theranostic agents for AD. The microfluidic-based synthesis of the CS/GQD NPs with optimized characteristics makes them ideal for transcellular transfer and brain targeting after intranasal (IN) delivery. The NPs have the ability to enter the cytoplasm of C6 glioma cells in vitro and show dose and time-dependent effects on the viability of the cells. IN administration of the NPs to streptozotocin (STZ) induced AD-like models lead to a significant number of entrances of the treated rats to the target arm in the radial arm water maze (RAWM) test. It shows the positive effect of the NPs on the memory recovery of the treated rats. The NPs are detectable in the brain via in vivo bioimaging due to GQDs as diagnostic markers. The noncytotoxic NPs localize in the myelinated axons of hippocampal neurons. They do not affect the clearance of amyloid β (Aβ) plaques at intercellular space. Moreover, they showed no positive impact on the enhancement of MAP2 and NeuN expression as markers of neural regeneration. The memory improvement in treated AD rats may be due to neuroprotection via the anti-inflammation effect and regulation of the brain tissue microenvironment that needs to be studied.
Collapse
Affiliation(s)
- Fariba Mohebichamkhorami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1968917313, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 19919-53381, Iran
| | - Matin Mahmoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, 1497716316, Iran
| | | | - Seyedeh Sarvenaz Mohseni
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 19919-53381, Iran
| | - Amirhossein Heidari
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran
| | - Yekta Ghane
- School of Medicine, Tehran University of Medical Sciences, Tehran, 1461884513, Iran
| | - Mona Khoramjouy
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 19919-53381, Iran
| | - Maryam Khayati
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Rasoul Ghasemi
- Neurophysiology research center and Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1968917313, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1968917313, Iran
| | - Simzar Hosseinzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1968917313, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
18
|
Lawson T, Gentleman AS, Lage A, Casadevall C, Xiao J, Petit T, Frosz MH, Reisner E, Euser TG. Low-Volume Reaction Monitoring of Carbon Dot Light Absorbers in Optofluidic Microreactors. ACS Catal 2023; 13:9090-9101. [PMID: 37441232 PMCID: PMC10334427 DOI: 10.1021/acscatal.3c02212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Indexed: 07/15/2023]
Abstract
Optical monitoring and screening of photocatalytic batch reactions using cuvettes ex situ is time-consuming, requires substantial amounts of samples, and does not allow the analysis of species with low extinction coefficients. Hollow-core photonic crystal fibers (HC-PCFs) provide an innovative approach for in situ reaction detection using ultraviolet-visible absorption spectroscopy, with the potential for high-throughput automation using extremely low sample volumes with high sensitivity for monitoring of the analyte. HC-PCFs use interference effects to guide light at the center of a microfluidic channel and use this to enhance detection sensitivity. They open the possibility of comprehensively studying photocatalysts to extract structure-activity relationships, which is unfeasible with similar reaction volume, time, and sensitivity in cuvettes. Here, we demonstrate the use of HC-PCF microreactors for the screening of the electron transfer properties of carbon dots (CDs), a nanometer-sized material that is emerging as a homogeneous light absorber in photocatalysis. The CD-driven photoreduction reaction of viologens (XV2+) to the corresponding radical monocation XV•+ is monitored in situ as a model reaction, using a sample volume of 1 μL per measurement and with a detectability of <1 μM. A range of different reaction conditions have been systematically studied, including different types of CDs (i.e., amorphous, graphitic, and graphitic nitrogen-doped CDs), surface chemistry, viologens, and electron donors. Furthermore, the excitation irradiance was varied to study its effect on the photoreduction rate. The findings are correlated with the electron transfer properties of CDs based on their electronic structure characterized by soft X-ray absorption spectroscopy. Optofluidic microreactors with real-time optical detection provide unique insight into the reaction dynamics of photocatalytic systems and could form the basis of future automated catalyst screening platforms, where samples are only available on small scales or at a high cost.
Collapse
Affiliation(s)
- Takashi Lawson
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Alexander S. Gentleman
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Ava Lage
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Carla Casadevall
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Jie Xiao
- Helmholtz-Zentrum
Berlin für Materialien und Energy GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Tristan Petit
- Helmholtz-Zentrum
Berlin für Materialien und Energy GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Michael H. Frosz
- Max
Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany
| | - Erwin Reisner
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Tijmen G. Euser
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
| |
Collapse
|
19
|
Dechsri K, Suwanchawalit C, Chitropas P, Ngawhirunpat T, Rojanarata T, Opanasopit P, Pengnam S. Rapid Microwave-Assisted Synthesis of pH-Sensitive Carbon-Based Nanoparticles for the Controlled Release of Doxorubicin to Cancer Cells. AAPS PharmSciTech 2023; 24:135. [PMID: 37308690 DOI: 10.1208/s12249-023-02593-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
Carbon-based nanoparticles (CNPs) are a new type of interesting nanomaterials applied in various pharmaceutical fields due to their outstanding biocompatible properties. Novel pH-sensitive CNPs were rapidly synthesized within 1 min by microwave-assisted technique for doxorubicin (DOX) delivery into five cancer cell lines, including breast cancer (BT-474 and MDA-MB-231 cell lines), colon cancer (HCT and HT29 cell lines), and cervical cancer (HeLa cell lines). CNPs and DOX-loaded CNPs (CNPs-DOX) had nano-size of 11.66 ± 2.32 nm and 43.24 ± 13.25 nm, respectively. DOX could be self-assembled with CNPs in phosphate buffer solution at pH 7.4 through electrostatic interaction, exhibiting high loading efficiency at 85.82%. The release of DOX from CNPs-DOX at pH 5.0, often observed in the tumor, was nearly two times greater than the release at physiological condition pH 7.4. Furthermore, the anticancer activity of CNPs-DOX was significantly enhanced compared to free DOX in five cancer cell lines. CNPs-DOX could induce cell death through apoptosis induction in MDA-MB-231 cells. The findings revealed that CNPs-DOX exhibited a promising pH-sensitive nano-system as a drug delivery carrier for cancer treatment.
Collapse
Affiliation(s)
- Koranat Dechsri
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Cheewita Suwanchawalit
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Padungkwan Chitropas
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Science, Khon Kaen University, Khon Kaen, 40000, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Theerasak Rojanarata
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Supusson Pengnam
- Department of Biomedicine and Health Informatics, Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
20
|
Lagos KJ, García D, Cuadrado CF, de Souza LM, Mezzacappo NF, da Silva AP, Inada N, Bagnato V, Romero MP. Carbon dots: Types, preparation, and their boosted antibacterial activity by photoactivation. Current status and future perspectives. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1887. [PMID: 37100045 DOI: 10.1002/wnan.1887] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 04/28/2023]
Abstract
Carbon dots (CDs) correspond to carbon-based materials (CBM) with sizes usually below 10 nm. These nanomaterials exhibit attractive properties such us low toxicity, good stability, and high conductivity, which have promoted their thorough study over the past two decades. The current review describes four types of CDs: carbon quantum dots (CQDs), graphene quantum dots (GQDs), carbon nanodots (CNDs), and carbonized polymers dots (CPDs), together with the state of the art of the main routes for their preparation, either by "top-down" or "bottom-up" approaches. Moreover, among the various usages of CDs within biomedicine, we have focused on their application as a novel class of broad-spectrum antibacterial agents, concretely, owing their photoactivation capability that triggers an enhanced antibacterial property. Our work presents the recent advances in this field addressing CDs, their composites and hybrids, applied as photosensitizers (PS), and photothermal agents (PA) within antibacterial strategies such as photodynamic therapy (PDT), photothermal therapy (PTT), and synchronic PDT/PTT. Furthermore, we discuss the prospects for the possible future development of large-scale preparation of CDs, and the potential for these nanomaterials to be employed in applications to combat other pathogens harmful to human health. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Karina J Lagos
- Department of Materials, Escuela Politécnica Nacional (EPN), Quito, Ecuador
| | - David García
- Department of Materials, Escuela Politécnica Nacional (EPN), Quito, Ecuador
| | | | | | | | - Ana Paula da Silva
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, Brazil
| | - Natalia Inada
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, Brazil
| | - Vanderlei Bagnato
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, Brazil
| | | |
Collapse
|
21
|
da Silva DJ, Duran A, Cabral AD, Fonseca FLA, Wang SH, Parra DF, Bueno RF, Pereyra I, Rosa DS. Bioinspired Antimicrobial PLA with Nanocones on the Surface for Rapid Deactivation of Omicron SARS-CoV-2. ACS Biomater Sci Eng 2023; 9:1891-1899. [PMID: 36881832 PMCID: PMC10005812 DOI: 10.1021/acsbiomaterials.2c01529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/25/2023] [Indexed: 03/09/2023]
Abstract
Bioinspired bactericidal surfaces are artificial surfaces that mimic the nanotopography of insect wings and are capable of inhibiting microbial growth by a physicomechanical mechanism. The scientific community has considered them an alternative method to design polymers with surfaces that inhibit bacterial biofilm formation, suitable for self-disinfectant medical devices. In this contribution, poly(lactic acid) (PLA) with nanocone patterns was successfully produced by a novel two-step procedure involving copper plasma deposition followed by argon plasma etching. According to reverse transcription-quantitative polymerase chain reaction tests, the bioinspired PLA nanostructures display antiviral performance to inactivate infectious Omicron severe acute respiratory syndrome coronavirus 2 particles, reducing the amount of the viral genome to less than 4% in just 15 min due to a possible combined effect of mechanical and oxidative stress. The bioinspired antiviral PLA can be suitable for designing personal protection equipment to prevent the transmission of contagious viral diseases, such as Coronavirus Disease 2019.
Collapse
Affiliation(s)
- Daniel J. da Silva
- Center for Engineering, Modeling, and Applied Social
Sciences, Federal University of ABC, Av. dos Estados, 5001,
Bangú, Santo André, SP, Brazil
- Department of Metallurgical and Materials Engineering,
Polytechnic School, University of São Paulo, Av. Prof.
Mello Moraes, 2643, Cidade Universitária, 05508-030, São Paulo, SP,
Brazil
| | - Adriana Duran
- Center for Engineering, Modeling, and Applied Social
Sciences, Federal University of ABC, Av. dos Estados, 5001,
Bangú, Santo André, SP, Brazil
| | - Aline D. Cabral
- Center for Engineering, Modeling, and Applied Social
Sciences, Federal University of ABC, Av. dos Estados, 5001,
Bangú, Santo André, SP, Brazil
| | - Fernando L. A. Fonseca
- Department of Clinical Analysis, Faculty of
Medicine of ABC, Av. Lauro Gomes, 2000, Santo André, SP,
Brazil
| | - Shu Hui Wang
- Department of Metallurgical and Materials Engineering,
Polytechnic School, University of São Paulo, Av. Prof.
Mello Moraes, 2643, Cidade Universitária, 05508-030, São Paulo, SP,
Brazil
| | - Duclerc F. Parra
- Nuclear and Energy Research Institute,
National Nuclear Energy Commission/SP, Av. Prof. Lineu
Prestes, 2242 São Paulo, SP, Brazil
| | - Rodrigo F. Bueno
- Coordinator of the COVID-19 Monitoring Network in
Wastewater National Water and Basic Sanitation Agency, Ministry of Science, Technology and
Innovation and Ministry of Health, Brazil. Center for Engineering, Modeling, and Applied
Social Sciences, Federal University of ABC, Av. Dos Estados,
5001, Bangú, Santo André, SP, Brazil
| | - Inés Pereyra
- Department of Electronic Systems Engineering, Polytechnic
School, University of São Paulo, Av. Prof. Mello Moraes,
2643, Cidade Universitária, São Paulo, SP, Brazil
| | - Derval S. Rosa
- Center for Engineering, Modeling, and Applied Social
Sciences, Federal University of ABC, Av. dos Estados, 5001,
Bangú, Santo André, SP, Brazil
| |
Collapse
|
22
|
Devi N, Wangoo N. Tuning the Luminescence of Microwave-Assisted N-Doped Fluorescent Carbon Dots: Bioimaging Applications and Label-Free Anti-Cancer Drug Delivery. ACS APPLIED BIO MATERIALS 2023; 6:999-1010. [PMID: 36872820 DOI: 10.1021/acsabm.2c00850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Nanosized fluorescent carbon dots (Cdots) have gained a lot of attention in the recent years because of their superior properties, such as good biocompatibility, low toxicity, excellent chemical stability, resistance to photobleaching, and ease of chemical modification. Cdots are promising candidates for considerable applications in various fields: sensors, bioimaging, and drug delivery. Specifically, nitrogen-doped Cdots have attracted a huge interest because of their applicability in bioimaging and drug delivery. Conventional methods for the synthesis of Cdots have drawbacks, such as the use of organic solvents, the presence of side products, and the time required for synthesis. Keeping all these points in mind, herein, we report green methodology for the synthesis of water-soluble, blue-emitting, nitrogen-doped multifunctional Cdots under microwave irradiation within 3 min. The Cdots were prepared using citric acid and arginine as source materials and were characterized using various physicochemical techniques. A pH-responsive drug delivery system was then designed using anticancer drug doxorubicin and the synthesized Cdots. The biocompatibility of synthesized Cdots was analyzed against L929 normal cell line. The Cdots-DOX conjugates exhibited efficient anticancer activity against HeLa cells and also acted as excellent bioimaging agents.
Collapse
Affiliation(s)
- Neha Devi
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh-160014, India
- Department of Applied Sciences, University Institute of Engineering & Technology (U.I.E.T.), Panjab University, Sector-25, Chandigarh-160014, India
| | - Nishima Wangoo
- Department of Applied Sciences, University Institute of Engineering & Technology (U.I.E.T.), Panjab University, Sector-25, Chandigarh-160014, India
| |
Collapse
|
23
|
Lee KK, Raja N, Yun HS, Lee SC, Lee CS. Multifunctional bone substitute using carbon dot and 3D printed calcium-deficient hydroxyapatite scaffolds for osteoclast inhibition and fluorescence imaging. Acta Biomater 2023; 159:382-393. [PMID: 36669550 DOI: 10.1016/j.actbio.2023.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Multifunctional bone substitute materials (BSM) have gained considerable attention with the exponential increase in aging populations. The development of hybrid materials for diagnosis and therapy of bone-related diseases and dysfunctions, especially, has been a significant challenge in the biological and the biomedical field, due to the shortage of agents with specificity and selectivity toward bone. In this study, a hybrid material, referred as Alen-CDs@CDHA, fabricated from alendronate-conjugated carbon dots (Alen-CDs) and calcium-deficient hydroxyapatite (CDHA, the mineral component of bones) scaffolds is offered as a novel multifunctional BSM for in vivo osteoclasts deactivation and fluorescence imaging. The fluorescent Alen-CDs were hydrothermally prepared using phytic acid as carbon source, followed by conjugating alendronate, for controlled alendronate release and fluorescent imaging under acidic conditions. As-prepared fluorescent Alen-CDs were consecutively immobilized on surfaces of CDHA scaffolds, exhibiting high affinity by bisphosphonate group, easily fabricated from α-tricalcium phosphate (α-TCP) paste using three-dimensional (3D) printing system. The resultant Alen-CDs@CDHA caused a significant decrease (> 50%) in viability of osteoclasts at 7 days after in vitro treatment. Furthermore, when Alen-CDs@CDHA was implanted in balb/c nude mice for in vivo evaluation, we found Alen-CDs@CDHA to be suitable for bone imaging through fluorescence signals, without necrosis or inflammatory symptoms in the epidermal tissues. Thus, these observations offer new opportunities for a novel and revolutionary use of Alen-CDs@CDHA as highly specific multifunctional BSM for bone diagnosis and imaging, and as bone-specific drug delivery materials, eventually providing anti-osteoclastogenic treatments solution for degenerative bone disorders. STATEMENT OF SIGNIFICANCE: Alen-CDs@CDHA significantly reduced the viability of osteoclasts and fluorescently imaged in vivo after transplantation, releasing drug via pH modulation. The development of fluorescence materials for bone imaging remains still a major challenge in the biomedical field owing to the shortage of selectivity and specificity. The results could lead to improvements in bone treatment strategies, as it could reduce the invasiveness of procedures and the associated negative outcomes, and increase the precision of strategies. Further, we believe that this study will be of interest to the readership of your journal as clearly focuses on the advancement of a biomaterial, where we have engineered a substance to substitute bone and integrate with a living system.
Collapse
Affiliation(s)
- Kyung Kwan Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biomedical and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Naren Raja
- Department of Advanced Biomaterials Research, Ceramics Materials Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
| | - Hui-Suk Yun
- Department of Advanced Biomaterials Research, Ceramics Materials Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea; Department of Advanced Materials Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sang Cheon Lee
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang-Soo Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
24
|
Eco-Friendly Synthesis of Functionalized Carbon Nanodots from Cashew Nut Skin Waste for Bioimaging. Catalysts 2023. [DOI: 10.3390/catal13030547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
In this study, Anacardium occidentale (A. occidentale) nut skin waste (cashew nut skin waste) was used as a raw material to synthesize functionalized carbon nanodots (F-CNDs). A. occidentale biomass-derived F-CNDs were synthesized at a low temperature (200 °C) using a facile, economical hydrothermal method and subjected to XRD, FESEM, TEM, HRTEM, XPS, Raman Spectroscopy, ATR-FTIR, and Ultraviolet-visible (UV–vis) absorption and fluorescence spectroscopy to determine their structures, chemical compositions, and optical properties. The analysis revealed that dispersed, hydrophilic F-CNDs had a mean diameter of 2.5 nm. XPS and ATR-FTIR showed F-CNDs had a crystalline core and an amorphous surface decorated with –NH2, –COOH, and C=O. In addition, F-CNDs had a quantum yield of 15.5% and exhibited fluorescence with maximum emission at 406 nm when excited at 340 nm. Human colon cancer (HCT-116) cell assays showed that F-CNDs readily penetrated into the cells, had outstanding biocompatibility, high photostability, and minimal toxicity. An MTT assay showed that the viability of HCT-116 cells incubated for 24 h in the presence of F-CNDs (200 μg mL–1) exceeded 95%. Furthermore, when stimulated by filters of three different wavelengths (405, 488, and 555 nm) under a laser scanning confocal microscope, HCT-116 cells containing F-CNDs emitted blue, red, and green, respectively, which suggests F-CNDs might be useful in the biomedical field. Thus, we describe the production of a fluorescent nanoprobe from cashew nut waste potentially suitable for bioimaging applications.
Collapse
|
25
|
Hettithanthri O, Rajapaksha AU, Nanayakkara N, Vithanage M. Temperature influence on layered double hydroxide tailored corncob biochar and its application for fluoride removal in aqueous media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121054. [PMID: 36634859 DOI: 10.1016/j.envpol.2023.121054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/14/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Exposure to excess fluoride is a controversial public health concern as it can cause dental/skeletal fluorosis as well as renal toxicity. The study intended to evaluate the synergistic interaction of clay intercalation and thermochemical modification on corncob biochar to remove fluoride from aqueous solutions. Layered double hydroxide was assorted with thermally activated (torrefaction and pyrolysis) corncob biochar at 1:1 (w/w) ratio to obtain composites called LDH-CCBC250 and LDH-CCBC500. Physicochemically characterized adsorbents were assessed against the pH (3-9), reaction time (up to 12 h) and initial fluoride concentration (0.5-10 mg L-1) for defluoridation. The porous structure of biochar was found to be richer compared to biocharcoal. The adsorption performance of LDH-CCBC500 was 6-fold higher compared to LDH-CCBC250 signifying the pronounced effect of thermal activation. Fluoride adsorption was pH dependent, and the best pH was in the range of pH 3.5-5.0 and there was no ionic strength dependency. Fluoride uptake by LDH-CCBC500 follows pseudo-second order and Elovich kinetic models, which suggests a chemisorption process followed by physisorption. The most expected way to eliminate fluoride by LDH-CCBC500, which had a maximum adsorption capacity of 7.24 mg g-1, was cooperative chemical adsorption upon the Langmuir and Hills isotherm (r2 = 0.99) parameters. Layered double hydroxide intercalated corncob biochar derived from slow pyrolysis is best performing in acidic waters.
Collapse
Affiliation(s)
- Oshadi Hettithanthri
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; Postgraduate Institute of Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | | | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; The Institute of Agriculture, The University of Western Australia, Perth WA6009, Australia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
26
|
Sarkar S, Raghavan A, Deshpande S, Nayak VL, Misra S, Sistla R, Ghosh S. Valorization of Yellow Oleander to Nitrogen Doped Carbon Dots: Theragnostic and Genotoxicity Assessment. ChemistrySelect 2023. [DOI: 10.1002/slct.202203993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Suprabhat Sarkar
- Polymers & Functional Materials Division CSIR- Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Akshaya Raghavan
- Polymers & Functional Materials Division CSIR- Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Shruti Deshpande
- Applied Biology Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - V. Lakshma Nayak
- Applied Biology Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Sunil Misra
- Applied Biology Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Ramakrishna Sistla
- Applied Biology Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sutapa Ghosh
- Polymers & Functional Materials Division CSIR- Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
27
|
Hebbar A, Selvaraj R, Vinayagam R, Varadavenkatesan T, Kumar PS, Duc PA, Rangasamy G. A critical review on the environmental applications of carbon dots. CHEMOSPHERE 2023; 313:137308. [PMID: 36410502 DOI: 10.1016/j.chemosphere.2022.137308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/28/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The discovery of zero-dimensional carbonaceous nanostructures called carbon dots (CDs) and their unique properties associated with fluorescence, quantum confinement and size effects have intrigued researchers. There has been a substantial increase in the amount of research conducted on the lines of synthesis, characterization, modification, and enhancement of properties by doping or design of composite materials, and a diversification of their applications in sensing, catalysis, optoelectronics, photovoltaics, and imaging, among many others. CDs fulfill the need for inexpensive, simple, and continuous environmental monitoring, detection, and remediation of various contaminants such as metals, dyes, pesticides, antibiotics, and other chemicals. The principles of green chemistry have also prompted researchers to rethink novel modes of nanoparticle synthesis by incorporating naturally available carbon precursors or developing micro reactor-based techniques. Photocatalysis using CDs has introduced the possibility of utilizing light to accelerate redox chemical transformations. This comprehensive review aims to provide the reader with a broader perspective of carbon dots by encapsulating the concepts of synthesis, characterization, applications in contaminant detection and photocatalysis, demerits and research gaps, and potential areas of improvement.
Collapse
Affiliation(s)
- Akshatha Hebbar
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ponnusamy Senthil Kumar
- Green Technology and Sustainable Development in Construction Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Pham Anh Duc
- Faculty of Safety Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
28
|
Kaur M, Yusuf M, Tsang YF, Kim KH, Malik AK. Amine/hydrazone functionalized Cd(II)/Zn(II) metal-organic framework for ultrafast sensitive detection of hazardous 2,4,6-trinitrophenol in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159385. [PMID: 36243074 DOI: 10.1016/j.scitotenv.2022.159385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/10/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Amine/hydrazone functionalized dual ligand Cd(II)/Zn(II) based metal-organic frameworks (MOFs) denoted as CdMOF- and ZnMOF-NH2, respectively were synthesized via a simple conventional high-yield reflux method using low-cost and readily available starting materials, i.e., a Schiff base linker, 4-pyridylcarboxaldehydeisonicotinoylhydrazone (L1) and 2-aminoterephthalic acid (H2ata) linker. Crystallographic and thermogravimetric studies confirmed the formation of MOFs with good crystallinity and thermal stability. Photoluminescence studies point out that both MOFs can be used efficiently for fast sensing of 2,4,6-trinitrophenol (TNP) in water with noticeable turn-off quenching response. Their limits of detection (LODs) for TNP were 7 ppb and 10 ppb, respectively with enhanced selectivity toward TNP (over other nitro explosives) as verified by competitive nitro explosive tests. Density functional theory calculations and spectral overlap were used to assess the sensing mechanism. These MOF-based fluorescent sensing systems for TNP are demonstrated to have easy recoverability and high sensitivity.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India
| | - Mohamad Yusuf
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala 147002, Punjab, India.
| |
Collapse
|
29
|
Fluorescent nanoprobe for detection of naproxen based on doped carbon dots prepared in choline chloride-thiourea deep eutectic solvent. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-022-02702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Krishnapriya TK, Prasanth S, Deepti A, Baby Chakrapani PS, Asha AS, Jayaraj MK. Ultrafast detection of folic acid in nanomolar levels and cancer cell imaging using hydrothermally synthesized carbon dots. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
31
|
Yao X, Lewis RE, Haynes CL. Synthesis Processes, Photoluminescence Mechanism, and the Toxicity of Amorphous or Polymeric Carbon Dots. Acc Chem Res 2022; 55:3312-3321. [PMID: 36417545 DOI: 10.1021/acs.accounts.2c00533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fluorescence is the emission of light following photon absorption. This optical phenomenon has many applications in daily life, such as in LED lamps, forensics, and bioimaging. Traditionally, small-molecule fluorophores were most common, but the types of molecules and particles with compelling fluorescence properties have expanded. For example, green fluorescent protein (GFP) was isolated from jellyfish and won the Nobel prize in 2008 due to its significant utility as a fluorescent biomarker. Using the intrinsic fluorescence of GFP, many previously invisible biological processes and substances can now be observed and studied. Other fluorescent materials have also been developed, greatly expanding the potential applications. Semiconductor quantum dots (QDs), which have bright fluorescence and a narrow bandwidth, are a popular choice for display technologies. However, QDs are made of heavy metal elements such as Cd and Se, which pose potential safety concerns to the environment and human health. Thus, new fluorescent organic materials are being developed to mitigate the toxicological concerns while maintaining the QD advantages.One type of new material attracting great attention as an environmentally friendly substitute for semiconductor QDs is carbon dots (CDs). CDs have been developed with strong fluorescence, good photostability, and low toxicity using a variety of precursors, and some synthesis processes have good potential for scale-up. However, since they are made of a variety of materials and through different methods, the structure and properties of CDs can differ from preparation to preparation. There are three major types of CDs: graphene quantum dots (GQDs), carbon quantum dots (CQDs), and amorphous or polymeric carbon dots (PCDs). This Account focuses on PCDs and their unique properties by comparing it with other types of CDs. The synthesis processes, fluorescence properties, fluorescence mechanisms, and toxicity are discussed below with an emphasis on the distinct attributes of PCDs.PCDs can be synthesized from small molecules or polymers. They have an amorphous or cross-linked polymer structure with bright fluorescence. This fluorescence is possibly due to cross-link-enhanced emission or clusteroluminescence that arises from the through-space interactions of heteroatomic-rich functional groups. Other fluorescence mechanisms of CDs, including distinct contributions from the carbon core and surface states, may also contribute. The toxicological profiles of CDs are influenced by the chemical composition, surface functionalization, and light illumination. CDs are generally thought to be of low toxicity, and this can be further improved by removing toxic byproducts, functionalizing the surface, and reducing light exposure to minimize the generation of reactive oxygen species.
Collapse
Affiliation(s)
- Xiaoxiao Yao
- Department of Chemistry, University of Minnesota, Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Riley E Lewis
- Department of Chemistry, University of Minnesota, Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota, Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
32
|
Carbon Nanoparticles Extracted from Date Palm Fronds for Fluorescence Bioimaging: In Vitro Study. J Funct Biomater 2022; 13:jfb13040218. [PMID: 36412859 PMCID: PMC9680435 DOI: 10.3390/jfb13040218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Numerous studies have been reported on single- and multicolored highly fluorescent carbon nanoparticles (FCNPs) originating from various sources and their potential applications in bioimaging. Herein, multicolored biocompatible carbon nanoparticles (CNPs) unsheathed from date palm fronds were studied. The extracted CNPs were characterized via several microscopic and spectroscopic techniques. The results revealed that the CNPs were crystalline graphitic and hydrophilic in nature with sizes ranging from 4 to 20 nm. The unsheathed CNPs showed exemplary photoluminescent (PL) properties. They also emitted bright blue colors when exposed to ultraviolet (UV) light. Furthermore, in vitro cellular uptake and cell viability in the presence of CNPs were also investigated. The cell viability of human colon cancer (HCT-116) and breast adenocarcinoma (MCF-7) cell lines with aqueous CNPs at different concentrations was assessed by a cell metabolic activity assay (MTT) for 24 and 48 h incubations. The results were combined to generate dose-response curves for the CNPs and evaluate the severity of their toxicity. The CNPs showed adequate fluorescence with high cell viability for in vitro cell imaging. Under the laser-scanning confocal microscope, the CNPs with HCT-116 and MCF-7 cell lines showed multicolor fluorescence emissions, including blue, green, and red colors when excited at 405, 458, and 561 nm, respectively. These results prove that unsheathed CNPs from date palm fronds can be used in diverse biomedical applications because of their low cytotoxicity, adequate fluorescence, eco-friendly nature, and cheap production.
Collapse
|
33
|
Sagar P, Srivastava M, Tiwari RK, Kumar A, Srivastava A, Pandey G, Srivastava S. In-situ One-pot Novel Synthesis of Molybdenum di-Telluride@Carbon Nano-Dots for Sensitive and Selective Detection of Hydrogen Peroxide Molecules via Turn-off Fluorescence Mechanism. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Supchocksoonthorn P, Hrimchum N, Budsrirak T, Intaraprasit S, Thongsai N, Aussawasathien D. Lignin Based Carbon Fiber Fabrics with Hybrid Doping Approach as Self-Standing Electrodes for Supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Mohiuddin SMUG, Aydarous A, Alshahrie A, Saeed A, Memić A, Abdullahi S, Salah N. Structural, morphological, and optical properties of carbon nanoparticles unsheathed from date palm fronds. RSC Adv 2022; 12:27411-27420. [PMID: 36276045 PMCID: PMC9513680 DOI: 10.1039/d2ra04189h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/31/2022] [Indexed: 01/22/2023] Open
Abstract
Several studies have reported the synthesis of carbon nanoparticles (CNPs) by various methods. In this study, an easy one-step process to unsheathe CNPs from date palm fronds through a top-down ball milling method has been reported. The CNPs were characterized using various spectroscopic and microscopic methods to determine their structural and morphological features, optical properties, crystallinity, physicochemical properties, and particle stability. Transmission electron microscopy (TEM) revealed that the obtained CNPs' size ranged from 4 to 22 nm in a crystalline form. Scanning electron microscopy (SEM) confirmed their spherical shape, while the maximum photoluminescence (PL) intensity was recorded at 464 nm when excited at 375 nm. The unsheathed CNPs produced a good quantum yield (QY) of 3.24%. Furthermore, the CNPs exhibited high Raman ratios of I D/I G and I 2D/I G with values of 0.59 and 0.04, respectively, verifying their multilayer crystalline graphitic nature. These Raman ratios also agree with the X-ray diffractometry (XRD) results. The CNPs' sp2 and sp3 carbon bonds were confirmed by X-ray photoelectron spectroscopy (XPS), with oxygen on the surface forming carboxyl and carbonyl groups with no other observable impurities. Furthermore, the extracted CNPs showed excellent PL properties for up- and down-conversion. These properties are exemplary for low-cost biomass with potential applications in biomedicine. Therefore, the extracted CNPs reported in this study have potential applications in optical imaging.
Collapse
Affiliation(s)
- Shaik Muhammad U G Mohiuddin
- Department of Physics, Faculty of Sciences, King Abdulaziz University 21589 Jeddah Saudi Arabia
- Center of Nanotechnology, King Abdulaziz University 21589 Jeddah Saudi Arabia
| | - Abdulkadir Aydarous
- Department of Physics, Faculty of Sciences, King Abdulaziz University 21589 Jeddah Saudi Arabia
| | - Ahmed Alshahrie
- Department of Physics, Faculty of Sciences, King Abdulaziz University 21589 Jeddah Saudi Arabia
- Center of Nanotechnology, King Abdulaziz University 21589 Jeddah Saudi Arabia
| | - Abdu Saeed
- Department of Physics, Faculty of Sciences, King Abdulaziz University 21589 Jeddah Saudi Arabia
- Center of Nanotechnology, King Abdulaziz University 21589 Jeddah Saudi Arabia
- Department of Physics, Faculty of Science, Thamar University Thamar Yemen
| | - Adnan Memić
- Center of Nanotechnology, King Abdulaziz University 21589 Jeddah Saudi Arabia
| | - Shittu Abdullahi
- Department of Physics, Faculty of Sciences, King Abdulaziz University 21589 Jeddah Saudi Arabia
- Center of Nanotechnology, King Abdulaziz University 21589 Jeddah Saudi Arabia
- Department of Physics, Faculty of Science, Gombe State University Gombe Nigeria
| | - Numan Salah
- Center of Nanotechnology, King Abdulaziz University 21589 Jeddah Saudi Arabia
| |
Collapse
|
36
|
Graphene-like materials as an alternative to carbon Vulcan support for the electrochemical reforming of ethanol: Towards a complete optimization of the anodic catalyst. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
de Boëver R, Town JR, Li X, Claverie JP. Carbon Dots for Carbon Dummies: The Quantum and The Molecular Questions Among Some Others. Chemistry 2022; 28:e202200748. [DOI: 10.1002/chem.202200748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Raphaël de Boëver
- Department of Chemistry Université de Sherbrooke 2500 Boulevard de l'Université, Sherbrooke Québec J1 K 2R1 Canada
- Institute of Materials Research and Engineering and Institute of Sustainability for Chemicals, Energy and Environment Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Jason R. Town
- Department of Chemistry Université de Sherbrooke 2500 Boulevard de l'Université, Sherbrooke Québec J1 K 2R1 Canada
| | - Xu Li
- Institute of Materials Research and Engineering and Institute of Sustainability for Chemicals, Energy and Environment Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Jerome P. Claverie
- Department of Chemistry Université de Sherbrooke 2500 Boulevard de l'Université, Sherbrooke Québec J1 K 2R1 Canada
| |
Collapse
|
38
|
Omar NAS, Fen YW, Irmawati R, Hashim HS, Ramdzan NSM, Fauzi NIM. A Review on Carbon Dots: Synthesis, Characterization and Its Application in Optical Sensor for Environmental Monitoring. NANOMATERIALS 2022; 12:nano12142365. [PMID: 35889589 PMCID: PMC9321155 DOI: 10.3390/nano12142365] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/17/2023]
Abstract
The development of carbon dots (CDs), either using green or chemical precursors, has inevitably led to their wide range application, from bioimaging to optoelectronic devices. The reported precursors and properties of these CDs have opened new opportunities for the future development of high-quality CDs and applications. Green precursors were classified into fruits, vegetables, flowers, leaves, seeds, stem, crop residues, fungi/bacteria species, and waste products, while the chemical precursors were classified into acid reagents and non-acid reagents. This paper quickly reviews ten years of the synthesis of CDs using green and chemical precursors. The application of CDs as sensing materials in optical sensor techniques for environmental monitoring, including the detection of heavy metal ions, phenol, pesticides, and nitroaromatic explosives, was also discussed in this review. This profound review will offer knowledge for the upcoming community of researchers interested in synthesizing high-quality CDs for various applications.
Collapse
Affiliation(s)
- Nur Alia Sheh Omar
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Yap Wing Fen
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Correspondence:
| | - Ramli Irmawati
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
| | - Hazwani Suhaila Hashim
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
| | - Nur Syahira Md Ramdzan
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
| | - Nurul Illya Muhamad Fauzi
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
39
|
Luminescent carbon nanoparticles immobilized in polymer hydrogels for pH sensing. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
40
|
Ornelas-Hernández LF, Garduno-Robles A, Zepeda-Moreno A. A Brief Review of Carbon Dots-Silica Nanoparticles Synthesis and their Potential Use as Biosensing and Theragnostic Applications. NANOSCALE RESEARCH LETTERS 2022; 17:56. [PMID: 35661270 PMCID: PMC9167377 DOI: 10.1186/s11671-022-03691-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Carbon dots (CDs) are carbon nanoparticles with sizes below 10 nm and have attracted attention due to their relatively low toxicity, great biocompatibility, water solubility, facile synthesis, and exceptional photoluminescence properties. Accordingly, CDs have been widely exploited in different sensing and biomedical applications, for example, metal sensing, catalysis, biosensing, bioimaging, drug and gene delivery, and theragnostic applications. Similarly, the well-known properties of silica, such as facile surface functionalization, good biocompatibility, high surface area, and tunable pore volume, have allowed the loading of diverse inorganic and organic moieties and nanoparticles, creating complex hybrid nanostructures that exploit distinct properties (optical, magnetic, metallic, mesoporous, etc.) for sensing, biosensing, bioimaging, diagnosis, and gene and drug delivery. In this context, CDs have been successfully grafted into diverse silica nanostructures through various synthesis methods (e.g., solgel chemistry, inverse microemulsion, surfactant templating, and molecular imprinting technology (MIT)), imparting hybrid nanostructures with multimodal properties for distinct objectives. This review discusses the recently employed synthesis methods for CDs and silica nanoparticles and their typical applications. Then, we focus on combined synthesis techniques of CD-silica nanostructures and their promising biosensing operations. Finally, we overview the most recent potential applications of these materials as innovative smart hybrid nanocarriers and theragnostic agents for the nanomedical field.
Collapse
Affiliation(s)
- Luis Fernando Ornelas-Hernández
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México
| | - Angeles Garduno-Robles
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México
| | - Abraham Zepeda-Moreno
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México.
- Unidad de Biología Molecular, Investigación Y Diagnóstico SA de CV, Hospital San Javier, Pablo Casals 640, Guadalajara, Jalisco, México.
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara, Jalisco, México.
| |
Collapse
|
41
|
Yun S, Kang ES, Choi JS. Zn-assisted modification of the chemical structure of N-doped carbon dots and their enhanced quantum yield and photostability. NANOSCALE ADVANCES 2022; 4:2029-2035. [PMID: 36133412 PMCID: PMC9419812 DOI: 10.1039/d2na00013j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/09/2022] [Indexed: 05/06/2023]
Abstract
This article presents the Zn-assisted synthesis of N-doped carbon dots (N-CDs) with an enhanced quantum yield (QY) and photostability. There have been intensive studies to improve or tune the optical properties of carbon dots (CDs) to meet the demand for luminescent materials in various fields, including energy conversion, photocatalysis, bioimaging, and phototherapy. For these applications, the photostability of the CDs is also a critical factor, but the related studies are relatively less common. The Zn-assisted N-CDs (denoted as Zn:N-CDs) obtained by the addition of Zn(OAc)2 to the precursors during the synthesis of N-CDs not only exhibited an enhanced quantum yield but also improved photostability compared to those of N-CDs. A comprehensive study of the chemical composition of Zn:N-CD and N-CD using X-ray photoelectron spectroscopy indicated a correlation between their chemical structure and photostability. Zn(OAc)2, which acts as a catalytic reagent, induced the modification of chemical structures at the edges of carbogenic sp2 domains, without being doped in N-CD, and the heteroatom-carbon bonds in Zn:N-CD seemed to be more resistant to light compared to those in N-CDs. The increased QY and photostability of Zn:N-CDs make them more suitable as an optical probe and they could be used in fingerprint identification. With Zn:N-CDs, the microstructure of fingerprints was confirmed clearly for a long duration effectively.
Collapse
Affiliation(s)
- Sohee Yun
- Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea
| | - Eun Soo Kang
- Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea
| | - Jin-Sil Choi
- Department of Chemical and Biological Engineering, Hanbat National University Daejeon 34158 Korea
| |
Collapse
|
42
|
Raj SK, Choudhary B, Yadav A, Patidar R, Mishra A, Kulshrestha V. Green-synthesized, pH-stable and biocompatible carbon nanosensor for Fe3+: An experimental and computational study. Heliyon 2022; 8:e09259. [PMID: 35450389 PMCID: PMC9018154 DOI: 10.1016/j.heliyon.2022.e09259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/13/2022] [Accepted: 04/05/2022] [Indexed: 11/29/2022] Open
Abstract
Brightly fluorescent Carbon Dots (CDs) were synthesized by green hydrothermal method using commonly available biomass (Aloe vera) as carbon precursor. Their physiochemical and optical characterization was done by standard microscopic and spectroscopic techniques. Photophysical features of their aqueous dispersion were investigated in detail. The influence of wide pH range (2–12), high ionic load (2M) and temperature on their photoluminescence behavior was investigated. Their in-vitro cytotoxicity examination was conducted on Human Cervical Cancer Cells (HeLa) using MTT assay. Testing of their ion-recognition property for common metal ions was done in aqueous medium. These CDs exhibited preferential interaction with Fe3+ over other tested metal ions, without any functionalization. Interaction between CDs and Fe3+ was analyzed in the light of Density Functional Theory (DFT). The work demonstrates that these CDs are acting as nanoprobe for Fe3+ and sensing it at ultra-trace level (5 nM).
Collapse
Affiliation(s)
- Savan K. Raj
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India
- Department of Physics, The MK Bhavnagar University, Bhavnagar 364 002, Gujarat, India
| | - Babita Choudhary
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India
| | - Anshul Yadav
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India
| | - Rajesh Patidar
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Near Habibganj Naka, Bhopal 462026, Madhya Pradesh, India
- Corresponding author.
| | - Avinash Mishra
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India
| | - Vaibhav Kulshrestha
- CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India
- Corresponding author.
| |
Collapse
|
43
|
Truskewycz A, Yin H, Halberg N, Lai DTH, Ball AS, Truong VK, Rybicka AM, Cole I. Carbon Dot Therapeutic Platforms: Administration, Distribution, Metabolism, Excretion, Toxicity, and Therapeutic Potential. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106342. [PMID: 35088534 DOI: 10.1002/smll.202106342] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Ultrasmall nanoparticles are often grouped under the broad umbrella term of "nanoparticles" when reported in the literature. However, for biomedical applications, their small sizes give them intimate interactions with biological species and endow them with unique functional physiochemical properties. Carbon quantum dots (CQDs) are an emerging class of ultrasmall nanoparticles which have demonstrated considerable biocompatibility and have been employed as potent theragnostic platforms. These particles find application for increasing drug solubility and targeting, along with facilitating the passage of drugs across impermeable membranes (i.e., blood brain barrier). Further functionality can be triggered by various environmental conditions or external stimuli (i.e., pH, temperature, near Infrared (NIR) light, ultrasound), and their intrinsic fluorescence is valuable for diagnostic applications. The focus of this review is to shed light on the therapeutic potential of CQDs and identify how they travel through the body, reach their site of action, administer therapeutic effect, and are excreted. Investigation into their toxicity and compatibility with larger nanoparticle carriers is also examined. The future of CQDs for theragnostic applications is promising due to their multifunctional attributes and documented biocompatibility. As nanomaterial platforms become more commonplace in clinical treatments, the commercialization of CQD therapeutics is anticipated.
Collapse
Affiliation(s)
- Adam Truskewycz
- School of Engineering, Advanced Manufacturing and Fabrication, RMIT University, Melbourne, Victoria, 3000, Australia
- Department of Biomedicine, University of Bergen, Bergen, 5020, Norway
| | - Hong Yin
- School of Engineering, Advanced Manufacturing and Fabrication, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Nils Halberg
- Department of Biomedicine, University of Bergen, Bergen, 5020, Norway
| | - Daniel T H Lai
- Institute of Health and Sport (IHES), Victoria University, Melbourne, Victoria, 3011, Australia
| | - Andrew S Ball
- ARC Training Centre for the Transformation of Australia Biosolids Resource, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Vi Khanh Truong
- School of Science, Engineering and Health, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Agata Marta Rybicka
- Oncovet Clinical Research, Parc Eurasante, 80 Rue du Dr Alexandre Yersin, Loos, F-59120, France
| | - Ivan Cole
- School of Engineering, Advanced Manufacturing and Fabrication, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
44
|
Dual Fluorometric Detection of Fe 3+ and Hg 2+ Ions in an Aqueous Medium Using Carbon Quantum Dots as a "Turn-off" Fluorescence Sensor. J Fluoresc 2022; 32:1143-1154. [PMID: 35318547 DOI: 10.1007/s10895-022-02922-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
The present study aimed to develop a carbon dots-based fluorescence (FL) sensor that can detect more than one pollutant simultaneously in the same aqueous solution. The carbon dots-based FL sensor has been prepared by employing a facile hydrothermal method using citric acid and ethylenediamine as precursors. The as-synthesized CDs displayed excellent hydrophilicity, good photostability and blue fluorescence under UV light. They have been used as an efficient "turn-off" FL sensor for dual sensing of Fe3+ and Hg2+ ions in an aqueous medium with high sensitivity and selectivity through a static quenching mechanism. The lowest limit of detection (LOD) for Fe3+ and Hg2+ ions was found to be 0.406 µM and 0.934 µM, respectively over the concentration range of 0-50 µM. Therefore, the present work provides an effective strategy to monitor the concentration of Fe3+ and Hg2+ ions simultaneously in an aqueous medium using environment-friendly CDs.
Collapse
|
45
|
Seok J, Hyun JH, Jin A, Um JH, Abruña HD, Yu SH. Visualization of Sodium Metal Anodes via Operando X-Ray and Optical Microscopy: Controlling the Morphological Evolution of Sodium Metal Plating. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10438-10446. [PMID: 35175729 DOI: 10.1021/acsami.1c24673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Because of the abundance and cost effectiveness of sodium, rechargeable sodium metal batteries have been widely studied to replace current lithium-ion batteries. However, there are some critical unresolved issues including the high reactivity of sodium, an unstable solid-electrolyte interphase (SEI), and sodium dendrite formation. While several studies have been conducted to understand sodium plating/stripping processes, only a very limited number of studies have been carried out under operando conditions. We have employed operando X-ray and optical imaging techniques to understand the mechanistic behavior of Na metal plating. The morphology of sodium metal plated on a copper electrode depends strongly on the salts and solvents used in the electrolyte. The addition of a fluorine-containing additive to a carbonate-based electrolyte, NaClO4 in propylene carbonate (PC):fluoroethylene carbonate (FEC), results in uniform sodium plating processes and much more stable cycling performance, compared to NaClO4 in PC, because of the formation of a stable SEI containing NaF. A NaF layer, on top of the sodium metal, leads to a much more uniform deposition of sodium and greatly enhanced cyclability.
Collapse
Affiliation(s)
- Jeesoo Seok
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jae-Hwan Hyun
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Aihua Jin
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ji Hyun Um
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Seung-Ho Yu
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
46
|
Ghosh T, Kandpal S, Rani C, Pathak DK, Tanwar M, Jakhmola S, Jha HC, Maximov MY, Chaudhary A, Kumar R. Synthesizing Luminescent Carbon from Condensed Tobacco Smoke: Bio-Waste for Possible Bioimaging. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Used cigarette filters, a waste material and a major source of land pollution, has been used as a raw material to study the nature of condensed tobacco smoke (tar) using microscopy, optical, IR, photoluminescence and Raman spectroscopy as well as X-ray diffraction and electron & fluorescence microscopy. The tar present in the cigarette filter bud has been used to synthesize luminescent low dimensional carbon using a simple methanol extraction technique. The collected material shows light blue emission under UV excitation with emission peak energy depending strongly on the excitation wavelength. Such excitation energy dependent emission is observed from the extract solution as well as dried film. Careful analysis has been carried out to understand its origin which reveals the presence of giant red-edge effect in the samples. A correlation between room temperature photoluminescence spectroscopy and fluorescence microscopy has also been carried out. Presence of amorphous phase carbon has been established using Raman spectroscopy and a quantum yield of more than 9% has been estimated which is moderately high in comparison with the one shown by carbon dots prepared by using other sources and can be used for bioimaging applications.
Collapse
Affiliation(s)
| | | | | | - Devesh K. Pathak
- Indian Institute of Technology, 28692, Department of Physics, Indore, India, 452020
- University of Seoul, 35010, Department of chemical engineering , 2nd Engineering Building, 403, Dongdaemun-gu, Korea (the Republic of), 02504
| | - Manushree Tanwar
- Indian Institute of Technology, 28692, Department of Physics, Indore, Madhya Pradesh, India, 453552,
| | - S Jakhmola
- IIT Indore, 226957, BSBE, Indore, MP, India
| | - Hem C. Jha
- Indian Institute of Technology Indore, 226957, Department of Biosciences & Biomedical Engineering, Simrol-453552, Indore, India, 452017
| | - Maxim Yu. Maximov
- Peter the Great Saint-Petersburg Polytechnic University, Saint Petersburg, Russian Federation
| | - Anjali Chaudhary
- University of Wisconsin College Courses Online, 5229, Madison, United States
| | - Rajesh Kumar
- IIT Indore, 226957, Physics, POD 1A-211, Khandwa Road, Simrol, Indore, MP, India, 453552
| |
Collapse
|
47
|
Atchudan R, Edison TNJI, Perumal S, Vinodh R, Sundramoorthy AK, Babu RS, Lee YR. Morus nigra-derived hydrophilic carbon dots for the highly selective and sensitive detection of ferric ion in aqueous media and human colon cancer cell imaging. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Arham Z, Kurniawan K. Electrode modifier performance of TiO2 incorporated carbon quantum dots nanocomposites on Fe(CN)3−6/Fe(CN)4−6 electrochemical system. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Ashkar MA, Chandhru M, Sundar M, Kutti Rani S, Vasimalai N. The rapid synthesis of intrinsic green-fluorescent poly(pyrogallol)-derived carbon dots for amoxicillin drug sensing in clinical samples. NEW J CHEM 2022. [DOI: 10.1039/d2nj03915j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Detection of the amoxicillin drug using pyrogallol-derived carbon dots.
Collapse
Affiliation(s)
- M. A. Ashkar
- Department of Chemistry, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai-600 048, India
| | - M. Chandhru
- Department of Chemistry, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai-600 048, India
| | - M. Sundar
- Research, Science Academy of India, Madambakkam, Chennai-603 202, India
| | - S. Kutti Rani
- Department of Chemistry, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai-600 048, India
| | - N. Vasimalai
- Department of Chemistry, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai-600 048, India
| |
Collapse
|
50
|
Latief U, Ul Islam S, Khan ZMSH, Khan MS. A facile green synthesis of functionalized carbon quantum dots as fluorescent probes for a highly selective and sensitive detection of Fe 3+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120132. [PMID: 34245967 DOI: 10.1016/j.saa.2021.120132] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/19/2021] [Accepted: 06/26/2021] [Indexed: 05/07/2023]
Abstract
In this study, we have reported an economical, easy, greener and non-toxic synthesis route of water soluble carbon quantum dots (CQDs) through hydrothermal treatment using gelatin as precursor. Under the UV lamp of wavelength 365 nm, the as-prepared CQDs exhibit strong blue fluorescence along with CIE coordinate index of (0.17, 0.14) and possess a quantum yield of 22.7% with rhodamine B as standard. The morphology of as-synthesized CQDs as investigated by TEM measurement confirmed their spherical shape and also revealed that their sizes varied in the scale of 0.5-5 nm. Furthermore, the CQDs showed excitation dependent fluorescence emission behaviour in range of 280 nm to 420 nm as a result of quantum confinement effect. Apart from this, in CQDs solution, the addition of Fe3+ ion lead to fluorescence quenching effect. These results revealed that the as-synthesized CQDs have a sensitive response towards the Fe3+ ion. The calculated limit of detection (LOD) is 0.2 μM with correlation coefficient R2 = 0.996 in the concentration range 0 to 50 μM. More remarkably, the application of CQDs for monitoring the trace level of Fe3+ ion in tap water yielded acceptable recoveries (103.33%-105%). Therefore, this work provides a novel additional fluorescent probe for the detection of Fe3+ ion in real world.
Collapse
Affiliation(s)
- Urosa Latief
- Department of Physics, Jamia Millia Islamia, New Delhi 110025, India
| | - Shafi Ul Islam
- Department of Physics, Jamia Millia Islamia, New Delhi 110025, India
| | - Zubair M S H Khan
- Department of Physics, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Shahid Khan
- Department of Physics, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|