1
|
Zlitni A, Yang S, Achterberg FB, Gowrishankar G, Steinberg I, Azevedo C, Gambhir SS, Valdez TA. Bridging the Translation of ICG-1-Maltotriose: A Multimodal Sensor for Monitoring and Detecting Bacterial Infections. ACS Sens 2024; 9:2806-2814. [PMID: 38810251 DOI: 10.1021/acssensors.3c02005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Bacterial infections lack reliable, specific, and quick detection methods, which incur substantial costs to patients and caretakers. Our team conjugated the FDA-approved fluorescent dye indocyanine green (ICG) with a maltotriose sugar, resulting in two highly specific imaging agents (ICG-DBCO-1-Maltotriose and ICG-Amide-1-Maltotriose) for detecting bacterial infections. We then evaluated the two derivatives using fluorescence imaging (FLI), bioluminescence imaging (BLI), and photoacoustic imaging (PAI) in bacterial infection murine models. Our findings indicate that both imaging agents can correlate with and reliably detect the infection site using FLI and PAI for both Gram-negative and Gram-positive strains, with various bacterial loads. Furthermore, the differences in pharmacokinetic (PK) properties between the two agents allow for one to be used for immediate imaging (2-4 h postinjection), while the other is more effective for longitudinal studies (18-40 h postinjection).
Collapse
Affiliation(s)
- Aimen Zlitni
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Stella Yang
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California 94304, United States
| | - Friso B Achterberg
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Gayatri Gowrishankar
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Idan Steinberg
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Carmen Azevedo
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Sanjiv S Gambhir
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Tulio A Valdez
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California 94304, United States
| |
Collapse
|
2
|
Zhang Y, Hu P, Li L, Cao R, Khadria A, Maslov K, Tong X, Zeng Y, Jiang L, Zhou Q, Wang LV. Ultrafast longitudinal imaging of haemodynamics via single-shot volumetric photoacoustic tomography with a single-element detector. Nat Biomed Eng 2024; 8:712-725. [PMID: 38036618 PMCID: PMC11136871 DOI: 10.1038/s41551-023-01149-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Abstract
Techniques for imaging haemodynamics use ionizing radiation or contrast agents or are limited by imaging depth (within approximately 1 mm), complex and expensive data-acquisition systems, or low imaging speeds, system complexity or cost. Here we show that ultrafast volumetric photoacoustic imaging of haemodynamics in the human body at up to 1 kHz can be achieved using a single laser pulse and a single element functioning as 6,400 virtual detectors. The technique, which does not require recalibration for different objects or during long-term operation, enables the longitudinal volumetric imaging of haemodynamics in vasculature a few millimetres below the skin's surface. We demonstrate this technique in vessels in the feet of healthy human volunteers by capturing haemodynamic changes in response to vascular occlusion. Single-shot volumetric photoacoustic imaging using a single-element detector may facilitate the early detection and monitoring of peripheral vascular diseases and may be advantageous for use in biometrics and point-of-care testing.
Collapse
Affiliation(s)
- Yide Zhang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Peng Hu
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lei Li
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Rui Cao
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anjul Khadria
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Konstantin Maslov
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Xin Tong
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yushun Zeng
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Laiming Jiang
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Qifa Zhou
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
3
|
Khan S, Mukhopadhyay S, Vasudevan S, Goel G, Joshi D, Kapoor N, Das S. Development of a cost-effective compact diode-laser-based photoacoustic sensing instrument for breast tissue diagnosis. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:017002. [PMID: 38213472 PMCID: PMC10783045 DOI: 10.1117/1.jbo.29.1.017002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024]
Abstract
Significance The photoacoustic (PA) technique, a noninvasive pump-probe technique, has found interesting applications in biomedical tissue diagnosis over the last decade. To take it a step further to clinical applications, the PA technique needs to be designed as an instrument focusing on a compact design, reducing the cost, and quickly providing a quantitative diagnosis. Aim This work presents a design and characterization of a cost-effective, compact PA sensing instrument for biomedical tissue diagnosis. Approach A compact laser diode case design is developed to house several laser diodes for PA excitation, and a pulsed current supply unit is also developed in-house to power the laser diodes to generate a 25 ns current pulse at a frequency of 20 kHz. After PA experimental data acquisition, the signal's frequency spectra were calculated to characterize the tissue quantitatively and correlated with their mechanobiological properties. Results The corresponding dominant frequency peak in the PA spectral response (PASR) study was low in the fibrofatty normal breast tissue 0.26 ± 0.03 MHz , compared to the dominant frequency peak of 1.60 ± 0.016 MHz in the fibrocystic disease tissue, which had increased glandular and stromal elements, thereby increased tissue density. The histopathological findings correlated with the PASR results, and the fibrocystic breast disease tissue exhibited a higher dominant frequency peak and energy compared to the normal breast tissue. Conclusions We experimented with an in vitro PASR study of fibrocystic human breast tissues and successfully differentiated different tissue types using quantitative spectral parameters peak frequency, mean frequency, and spectral energy. This gives the potential to take this technique further for cost-effective and quick clinical applications.
Collapse
Affiliation(s)
- Suhel Khan
- Indian Institute of Technology Indore, Department of Electrical Engineering, Simrol, Madhya Pradesh, India
| | - Sramana Mukhopadhyay
- All India Institute of Medical Science Bhopal, Department of Pathology and Lab Medicine, Bhopal, Madhya Pradesh, India
| | - Srivathsan Vasudevan
- Indian Institute of Technology Indore, Department of Electrical Engineering, Simrol, Madhya Pradesh, India
| | - Garima Goel
- All India Institute of Medical Science Bhopal, Department of Pathology and Lab Medicine, Bhopal, Madhya Pradesh, India
| | - Deepti Joshi
- All India Institute of Medical Science Bhopal, Department of Pathology and Lab Medicine, Bhopal, Madhya Pradesh, India
| | - Neelkamal Kapoor
- All India Institute of Medical Science Bhopal, Department of Pathology and Lab Medicine, Bhopal, Madhya Pradesh, India
| | - Saikat Das
- All India Institute of Medical Science Bhopal, Department of Radiotherapy, Bhopal, Madhya Pradesh, India
| |
Collapse
|
4
|
Ito Y, Ishii T, Yamazaki S, Yoshida A, Nagaya K, Saijo Y. Evaluation of temperature-dependent fluctuations in skin microcirculation flow using a light-emitting diode based photoacoustic imaging device. J Clin Monit Comput 2023; 37:1361-1367. [PMID: 37166692 DOI: 10.1007/s10877-023-01026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
PURPOSE Skin microvessels maintain temperature homeostasis by contracting and dilating upon exposure to changes in temperature. Under general anesthesia, surgical invasiveness, including incisions and coagulation, and the effects of anesthetics may cause variations in the threshold temperature, leading to the constriction and dilation of cutaneous blood vessels. Therefore, studies on skin microvascular circulation are necessary to develop appropriate interventions for complications during surgery. METHODS We visualized and quantified skin microcirculatory fluctuations associated with temperature variations using a light-emitting diode photoacoustic imaging (LED-PAI) device. The hands of ten healthy volunteers were stressed with four different water temperatures [25℃ (Control), 15℃ (Cold1), 40℃ (Warm), and 15℃ (Cold2)]. The photoacoustic images of the fingers were taken under each condition, and the microvascular flow owing to temperature stress was quantified as the area of photoacoustic signal (S) in each image. The S values were compared with the variations in blood flow (Q) measured by laser Doppler flowmetry (LDF). RESULTS The correlation between Q and S according to the 40 measurements was r = 0.45 (p<0.01). In addition, the values of S under each stress condition were as follows: Scontrol = 10,826 ± 3364 pixels, Scold1 = 8825 ± 2484 pixels, Swarm = 13,369 ± 3001 pixels, and Scold2 = 8838 ± 1892 pixels; the differences were significant. The LDF blood flow (Q) showed similar changes among conditions. CONCLUSION These findings suggest that the LED-PAI device could be an option for evaluating microcirculation in association with changes in temperature.
Collapse
Affiliation(s)
- Yosuke Ito
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan.
- Department of Anesthesia, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Miyagi, 983-8512, Japan.
| | - Takuro Ishii
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Shin Yamazaki
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan
| | - Akiko Yoshida
- Department of Anesthesia, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Miyagi, 983-8512, Japan
| | - Kei Nagaya
- Department of Anesthesia, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Miyagi, 983-8512, Japan
| | - Yoshifumi Saijo
- Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, 980-8579, Japan
| |
Collapse
|
5
|
Khan S, Vasudevan S. Biomedical instrumentation of photoacoustic imaging and quantitative sensing for clinical applications. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:091502. [PMID: 37747328 DOI: 10.1063/5.0151882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/02/2023] [Indexed: 09/26/2023]
Abstract
Photoacoustic (PA) imaging has been well researched over the last couple of decades and has found many applications in biomedical engineering. This has evinced interest among many scientists in developing this as a compact instrument for biomedical diagnosis. This review discusses various instrumentation developments for PA experimental setups and their applications in the biomedical diagnostic field. It also covers the PA spectral response or PA sensing technique, which uses the spectral information of the PA signal and performs sensing to deliver a fast, cost-effective, and compact screening tool instead of imaging. Primarily, this review provides an overview of PA imaging concepts and the development of hardware instrumentation systems in both the excitation and acquisition stages of this technique. Later, the paper discusses PA sensing, the quantitative spectral parameter extraction from the PA spectrum, and the correlation study of the spectral parameters with the physical parameters of the tissue. This PA sensing technique was used to diagnose various diseases, such as thyroid nodules, breast cancer, renal disorders, and zoonotic diseases, based on the mechanical and biological characteristics of the tissues. The paper culminates with a discussion section that provides future developments that are necessary to take this technique into clinical applications as a quantitative PA imaging technique.
Collapse
Affiliation(s)
- S Khan
- Department of Electrical Engineering, Indian Institute of Technology, Indore 453552, India
| | - S Vasudevan
- Department of Electrical Engineering, Indian Institute of Technology, Indore 453552, India
| |
Collapse
|
6
|
John S, Hester S, Basij M, Paul A, Xavierselvan M, Mehrmohammadi M, Mallidi S. Niche preclinical and clinical applications of photoacoustic imaging with endogenous contrast. PHOTOACOUSTICS 2023; 32:100533. [PMID: 37636547 PMCID: PMC10448345 DOI: 10.1016/j.pacs.2023.100533] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023]
Abstract
In the past decade, photoacoustic (PA) imaging has attracted a great deal of popularity as an emergent diagnostic technology owing to its successful demonstration in both preclinical and clinical arenas by various academic and industrial research groups. Such steady growth of PA imaging can mainly be attributed to its salient features, including being non-ionizing, cost-effective, easily deployable, and having sufficient axial, lateral, and temporal resolutions for resolving various tissue characteristics and assessing the therapeutic efficacy. In addition, PA imaging can easily be integrated with the ultrasound imaging systems, the combination of which confers the ability to co-register and cross-reference various features in the structural, functional, and molecular imaging regimes. PA imaging relies on either an endogenous source of contrast (e.g., hemoglobin) or those of an exogenous nature such as nano-sized tunable optical absorbers or dyes that may boost imaging contrast beyond that provided by the endogenous sources. In this review, we discuss the applications of PA imaging with endogenous contrast as they pertain to clinically relevant niches, including tissue characterization, cancer diagnostics/therapies (termed as theranostics), cardiovascular applications, and surgical applications. We believe that PA imaging's role as a facile indicator of several disease-relevant states will continue to expand and evolve as it is adopted by an increasing number of research laboratories and clinics worldwide.
Collapse
Affiliation(s)
- Samuel John
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Scott Hester
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Maryam Basij
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Avijit Paul
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | | - Mohammad Mehrmohammadi
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, Rochester, NY, USA
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
7
|
Ni L, Wang X, Xu G. Photoacoustic clinical applications: Musculoskeletal and abdominal imaging. Z Med Phys 2023; 33:324-335. [PMID: 37365088 PMCID: PMC10517401 DOI: 10.1016/j.zemedi.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/04/2023] [Accepted: 04/21/2023] [Indexed: 06/28/2023]
Abstract
Photoacoustic (PA) imaging has been extensively investigated in application in biomedicine over the last decade. This article reviews the motivation, significance, and system configuration of a few ongoing studies of implementing photoacoustic technology in musculoskeletal imaging, abdominal imaging, and interstitial sensing. The review then summarizes the methodologies and latest progress of relevant projects. Finally, we discuss our expectations for the future of translation research in PA imaging.
Collapse
Affiliation(s)
- Linyu Ni
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
| | - Guan Xu
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA; Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St., Ann Arbor, MI 48105, USA.
| |
Collapse
|
8
|
Sankepalle DM, Anthony B, Mallidi S. Visual inertial odometry enabled 3D ultrasound and photoacoustic imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:2756-2772. [PMID: 37342691 PMCID: PMC10278605 DOI: 10.1364/boe.489614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023]
Abstract
There is an increasing need for 3D ultrasound and photoacoustic (USPA) imaging technology for real-time monitoring of dynamic changes in vasculature or molecular markers in various malignancies. Current 3D USPA systems utilize expensive 3D transducer arrays, mechanical arms or limited-range linear stages to reconstruct the 3D volume of the object being imaged. In this study, we developed, characterized, and demonstrated an economical, portable, and clinically translatable handheld device for 3D USPA imaging. An off-the-shelf, low-cost visual odometry system (the Intel RealSense T265 camera equipped with simultaneous localization and mapping technology) to track free hand movements during imaging was attached to the USPA transducer. Specifically, we integrated the T265 camera into a commercially available USPA imaging probe to acquire 3D images and compared it to the reconstructed 3D volume acquired using a linear stage (ground truth). We were able to reliably detect 500 µm step sizes with 90.46% accuracy. Various users evaluated the potential of handheld scanning, and the volume calculated from the motion-compensated image was not significantly different from the ground truth. Overall, our results, for the first time, established the use of an off-the-shelf and low-cost visual odometry system for freehand 3D USPA imaging that can be seamlessly integrated into several photoacoustic imaging systems for various clinical applications.
Collapse
Affiliation(s)
| | - Brian Anthony
- Institute of Medical Engineering and Sciences, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- Wellman Center for Photomedicine, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
9
|
Banerjee S, Sarkar S, Saha S, Hira SK, Karmakar S. Observing temporal variation in hemolysis through photoacoustics with a low cost LASER diode based system. Sci Rep 2023; 13:7002. [PMID: 37117171 PMCID: PMC10147907 DOI: 10.1038/s41598-023-32839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/03/2023] [Indexed: 04/30/2023] Open
Abstract
Patients under hemolytic condition need continuous monitoring of lysis as depletion of Red Blood Cells (RBC) and the presence of antioxidant free hemoglobin (Hb) in excess amount due to hemolysis lead to severe deterioration of their health. Out of many modalities, Photoacoustics (PA) offers real time information noninvasively from deep lying blood vessels since Hb is the strongest chromophore in mammalian blood and the PA response of blood varies with the amount of Hb present. During hemolysis, total Hb content in blood however remains unchanged, thus, questions the use of PA in hemolysis detection. In this report, a hypothesis that the amplitude of the PA signal would not change with the amount of lysis is framed and tested by applying osmotic shock to the RBCs in hypotonic environment and the PA response is recorded over time using a low cost NIR based PA system. The experimental outcome indicates that PA amplitude falls off as lysis progresses in course of time consequently rejecting the hypothesis. The decaying PA response also carries the signature of RBC swelling during the early phase of lysis. The PA measurement can detect hemolysis as low as 1.7%. These findings further advocate transforming this NIR-PA system into a portable, noninvasive patient care device to monitor hemolysis in-vivo.
Collapse
Affiliation(s)
- Soumyodeep Banerjee
- University Science Instrumentation Centre, The University of Burdwan, Bardhaman, 713104, India
| | - Sandip Sarkar
- Applied Nuclear Physics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700064, India
| | - Shaibal Saha
- Applied Nuclear Physics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700064, India
| | - Sumit K Hira
- Department of Zoology, The University of Burdwan, Bardhaman, 713104, India
| | - Subhajit Karmakar
- University Science Instrumentation Centre, The University of Burdwan, Bardhaman, 713104, India.
| |
Collapse
|
10
|
Li X, Han M, Chen M, Li Y, Qin F, Zhu G, Wang L, Wang Y. Integrated Sensing and Communication Chip Based on III-Nitride for Motion Detection. ACS OMEGA 2023; 8:14656-14661. [PMID: 37125093 PMCID: PMC10134249 DOI: 10.1021/acsomega.3c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Integrated Sensing and Communication (ISAC) involves incorporating wireless sensing capabilities into communication systems. The integration of ISAC affords improvements in the performance of the communication system, as well as the ability to perform high-precision motion detection, positioning, imaging, and other related functions. Therefore, it is highly valuable to develop an ISAC terminal device that has a high degree of integration and energy efficiency. Here, we propose an ISAC chip that utilizes the coexistence of luminescence and detection properties of III-nitride multiple quantum wells for motion detection and visible light communication. The ISAC chip includes both a transmitter and a receiver of visible light and is fabricated on a sapphire wafer with InGaN/GaN multiple quantum wells. A rotating mirror is used as the object for motion detection and modulates the light signal emitted by the transmitter in a reflected light path. The variation period of the photocurrent curve generated by the modulated light signal is consistent with the rotation period of the mirror. We also investigate the performance of this chip as a transmitter and transceiver terminal of visible light communication systems. The results of the study provide a promising approach for the integration of motion sensing and visible light communication.
Collapse
Affiliation(s)
- Xin Li
- GaN
Optoelectronic Integration International Cooperation Joint Laboratory
of Jiangsu Province, Nanjing University
of Posts and Telecommunications, Nanjing 210003, China
- Key
Lab of Broadband Wireless Communication and Sensor Network Technology
(Nanjing University of Posts and Telecommunications), Ministry of
Education, Nanjing 210003, China
| | - Mingyu Han
- GaN
Optoelectronic Integration International Cooperation Joint Laboratory
of Jiangsu Province, Nanjing University
of Posts and Telecommunications, Nanjing 210003, China
| | - Meipeng Chen
- GaN
Optoelectronic Integration International Cooperation Joint Laboratory
of Jiangsu Province, Nanjing University
of Posts and Telecommunications, Nanjing 210003, China
| | - Yun Li
- GaN
Optoelectronic Integration International Cooperation Joint Laboratory
of Jiangsu Province, Nanjing University
of Posts and Telecommunications, Nanjing 210003, China
| | - Feifei Qin
- GaN
Optoelectronic Integration International Cooperation Joint Laboratory
of Jiangsu Province, Nanjing University
of Posts and Telecommunications, Nanjing 210003, China
| | - Gangyi Zhu
- GaN
Optoelectronic Integration International Cooperation Joint Laboratory
of Jiangsu Province, Nanjing University
of Posts and Telecommunications, Nanjing 210003, China
| | - Linning Wang
- GaN
Optoelectronic Integration International Cooperation Joint Laboratory
of Jiangsu Province, Nanjing University
of Posts and Telecommunications, Nanjing 210003, China
| | - Yongjin Wang
- GaN
Optoelectronic Integration International Cooperation Joint Laboratory
of Jiangsu Province, Nanjing University
of Posts and Telecommunications, Nanjing 210003, China
| |
Collapse
|
11
|
Zhang Y, Hu P, Li L, Cao R, Khadria A, Maslov K, Tong X, Zeng Y, Jiang L, Zhou Q, Wang LV. Single-shot 3D photoacoustic tomography using a single-element detector for ultrafast imaging of hemodynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532661. [PMID: 36993341 PMCID: PMC10055152 DOI: 10.1101/2023.03.14.532661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Imaging hemodynamics is crucial for the diagnosis, treatment, and prevention of vascular diseases. However, current imaging techniques are limited due to the use of ionizing radiation or contrast agents, short penetration depth, or complex and expensive data acquisition systems. Photoacoustic tomography shows promise as a solution to these issues. However, existing photoacoustic tomography methods collect signals either sequentially or through numerous detector elements, leading to either low imaging speed or high system complexity and cost. To address these issues, here we introduce a method to capture a 3D photoacoustic image of vasculature using a single laser pulse and a single-element detector that functions as 6,400 virtual ones. Our method enables ultrafast volumetric imaging of hemodynamics in the human body at up to 1 kHz and requires only a single calibration for different objects and for long-term operations. We demonstrate 3D imaging of hemodynamics at depth in humans and small animals, capturing the variability in blood flow speeds. This concept can inspire other imaging technologies and find applications such as home-care monitoring, biometrics, point-of-care testing, and wearable monitoring.
Collapse
Affiliation(s)
- Yide Zhang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Peng Hu
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lei Li
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rui Cao
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anjul Khadria
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Konstantin Maslov
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xin Tong
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yushun Zeng
- Department of Biomedical Engineering and Ophthalmology, University of Southern California, Los Angeles, CA 90089, USA
| | - Laiming Jiang
- Department of Biomedical Engineering and Ophthalmology, University of Southern California, Los Angeles, CA 90089, USA
| | - Qifa Zhou
- Department of Biomedical Engineering and Ophthalmology, University of Southern California, Los Angeles, CA 90089, USA
| | - Lihong V. Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
12
|
Jo J, Mills D, Dentinger A, Chamberland D, Abdulaziz NM, Wang X, Schiopu E, Gandikota G. Photoacoustic Imaging of COVID-19 Vaccine Site Inflammation of Autoimmune Disease Patients. SENSORS (BASEL, SWITZERLAND) 2023; 23:2789. [PMID: 36904999 PMCID: PMC10006996 DOI: 10.3390/s23052789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Based on the observations made in rheumatology clinics, autoimmune disease (AD) patients on immunosuppressive (IS) medications have variable vaccine site inflammation responses, whose study may help predict the long-term efficacy of the vaccine in this at-risk population. However, the quantitative assessment of the inflammation of the vaccine site is technically challenging. In this study analyzing AD patients on IS medications and normal control subjects, we imaged the inflammation of the vaccine site 24 h after mRNA COVID-19 vaccinations were administered using both the emerging photoacoustic imaging (PAI) method and the established Doppler ultrasound (US) method. A total of 15 subjects were involved, including 6 AD patients on IS and 9 normal control subjects, and the results from the two groups were compared. Compared to the results obtained from the control subjects, the AD patients on IS medications showed statistically significant reductions in vaccine site inflammation, indicating that immunosuppressed AD patients also experience local inflammation after mRNA vaccination but not in as clinically apparent of a manner when compared to non-immunosuppressed non-AD individuals. Both PAI and Doppler US were able to detect mRNA COVID-19 vaccine-induced local inflammation. PAI, based on the optical absorption contrast, shows better sensitivity in assessing and quantifying the spatially distributed inflammation in soft tissues at the vaccine site.
Collapse
Affiliation(s)
- Janggun Jo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - David Mills
- General Electric Research, Niskayuna, NY 12309, USA
| | | | - David Chamberland
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nada M. Abdulaziz
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Elena Schiopu
- Division of Rheumatology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Girish Gandikota
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Van Heumen S, Riksen JJ, Singh MKA, Van Soest G, Vasilic D. LED-based photoacoustic imaging for preoperative visualization of lymphatic vessels in patients with secondary limb lymphedema. PHOTOACOUSTICS 2023; 29:100446. [PMID: 36632606 PMCID: PMC9826814 DOI: 10.1016/j.pacs.2022.100446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Lymphedema is the accumulation of protein-rich fluid in the interstitium (i.e., dermal backflow (DBF)). Preoperative imaging of the lymphatic vessels is a prerequisite for lymphovenous bypass surgical planning. We investigated the visualization of lymphatic vessels and veins using light-emitting diode (LED)-based photoacoustic imaging (PAI). Indocyanine-green mediated near-infrared fluorescence lymphography (NIRF-L) was done in fifteen patients with secondary limb lymphedema. Photoacoustic images were acquired in locations where lymphatic vessels and DBF were observed with NIRF-L. We demonstrated that LED-based PAI can visualize and differentiate lymphatic vessels and veins even in the presence of DBF. We observed lymphatic and blood vessels up to depths of 8.3 and 8.6 mm, respectively. Superficial lymphatic vessels and veins can be visualized using LED-based PAI even in the presence of DBF showing the potential for pre-operative assessment. Further development of the technique is needed to improve its usability in clinical settings.
Collapse
Affiliation(s)
- Saskia Van Heumen
- Department of Plastic and Reconstructive Surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Cardiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Jonas J.M. Riksen
- Department of Cardiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | | - Gijs Van Soest
- Department of Cardiology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Dalibor Vasilic
- Department of Plastic and Reconstructive Surgery, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
14
|
Tsunoi Y, Sato N, Nishidate I, Ichihashi F, Saitoh D, Sato S. Burn depth assessment by dual-wavelength light emitting diodes-excited photoacoustic imaging in rats. Wound Repair Regen 2023; 31:69-76. [PMID: 36177703 DOI: 10.1111/wrr.13056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/14/2022] [Accepted: 09/11/2022] [Indexed: 02/01/2023]
Abstract
Accurate burn depth assessment is crucial to determine treatment plans for burn patients. We have previously proposed a method for performing burn depth assessments based on photoacoustic (PA) imaging, and we have demonstrated the validity of this method, which allows the successful detection of PA signals originating from the blood under the bloodless burned tissue, using rat burn models. Based on these findings, we started a clinical study in which we faced two technical issues: (1) When the burn depth was shallow, PA signals due to skin contamination and/or melanin in the epidermis (surface signals) could not be distinguished from PA signals originating from the blood in the dermis; (2) the size of the system was too large. To solve these issues, we propose a burn depth diagnosis based on dual-wavelength light emitting diodes (LEDs)-excited PA imaging. The use of LEDs rendered the system compact compared to the previous one that used a conventional solid-state laser. We replicated human burned skin by applying a titrated synthetic melanin solution onto the wound surface in albino rat burn models and measured their burn depths by PA excitation at 690 and 850 nm, where melanin and haemoglobin show greatly different absorption coefficients. As a result, the surface signals were eliminated by subtracting the PA signals at 690 nm from those at 850 nm. The resultant estimated burn depths were strongly correlated with the histological assessment results. The validity of the proposed method was also examined using a burn model of rats with real melanin.
Collapse
Affiliation(s)
- Yasuyuki Tsunoi
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Naoto Sato
- Research and Development Department, Cyberdyne, Inc, Tsukuba, Ibaraki, Japan
| | - Izumi Nishidate
- Graduate School of Bio-application and Systems Engineering, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Fumiyuki Ichihashi
- Research and Development Department, Cyberdyne, Inc, Tsukuba, Ibaraki, Japan
| | - Daizoh Saitoh
- Division of Basic Traumatology, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Shunichi Sato
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| |
Collapse
|
15
|
Laha S, Rajput A, Laha SS, Jadhav R. A Concise and Systematic Review on Non-Invasive Glucose Monitoring for Potential Diabetes Management. BIOSENSORS 2022; 12:965. [PMID: 36354474 PMCID: PMC9688383 DOI: 10.3390/bios12110965] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The current standard of diabetes management depends upon the invasive blood pricking techniques. In recent times, the availability of minimally invasive continuous glucose monitoring devices have made some improvements in the life of diabetic patients however it has its own limitations which include painful insertion, excessive cost, discomfort and an active risk due to the presence of a foreign body under the skin. Due to all these factors, the non-invasive glucose monitoring has remain a subject of research for the last two decades and multiple techniques of non-invasive glucose monitoring have been proposed. These proposed techniques have the potential to be evolved into a wearable device for non-invasive diabetes management. This paper reviews research advances and major challenges of such techniques or methods in recent years and broadly classifies them into four types based on their detection principles. These four methods are: optical spectroscopy, photoacoustic spectroscopy, electromagnetic sensing and nanomaterial based sensing. The paper primarily focuses on the evolution of non-invasive technology from bench-top equipment to smart wearable devices for personalized non-invasive continuous glucose monitoring in these four methods. With the rapid evolve of wearable technology, all these four methods of non-invasive blood glucose monitoring independently or in combination of two or more have the potential to become a reality in the near future for efficient, affordable, accurate and pain-free diabetes management.
Collapse
Affiliation(s)
- Soumyasanta Laha
- Department of Electrical and Computer Engineering, California State University, Fresno, Fresno, CA 93740, USA
| | - Aditi Rajput
- Department of Electrical and Computer Engineering, California State University, Fresno, Fresno, CA 93740, USA
| | - Suvra S Laha
- Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bangalore 560012, India
| | - Rohan Jadhav
- Department of Public Health, California State University, Fresno, Fresno, CA 93740, USA
| |
Collapse
|
16
|
Wen Y, Guo D, Zhang J, Liu X, Liu T, Li L, Jiang S, Wu D, Jiang H. Clinical photoacoustic/ultrasound dual-modal imaging: Current status and future trends. Front Physiol 2022; 13:1036621. [PMID: 36388111 PMCID: PMC9651137 DOI: 10.3389/fphys.2022.1036621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/05/2022] [Indexed: 08/24/2023] Open
Abstract
Photoacoustic tomography (PAT) is an emerging biomedical imaging modality that combines optical and ultrasonic imaging, providing overlapping fields of view. This hybrid approach allows for a natural integration of PAT and ultrasound (US) imaging in a single platform. Due to the similarities in signal acquisition and processing, the combination of PAT and US imaging creates a new hybrid imaging for novel clinical applications. Over the recent years, particular attention is paid to the development of PAT/US dual-modal systems highlighting mutual benefits in clinical cases, with an aim of substantially improving the specificity and sensitivity for diagnosis of diseases. The demonstrated feasibility and accuracy in these efforts open an avenue of translating PAT/US imaging to practical clinical applications. In this review, the current PAT/US dual-modal imaging systems are discussed in detail, and their promising clinical applications are presented and compared systematically. Finally, this review describes the potential impacts of these combined systems in the coming future.
Collapse
Affiliation(s)
- Yanting Wen
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Dan Guo
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Jing Zhang
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xiaotian Liu
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Ting Liu
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Lu Li
- Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Shixie Jiang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Dan Wu
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL, United States
| |
Collapse
|
17
|
Rajasekar B, Nirmala P, Bhuvaneswari P, Radhika R, Asha S, Kavitha KR, Belay SS. A Feasible Multimodal Photoacoustic Imaging Approach for Evaluating the Clinical Symptoms of Inflammatory Arthritis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7358575. [PMID: 36046441 PMCID: PMC9420593 DOI: 10.1155/2022/7358575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022]
Abstract
Numerous traditional medical imaging methods, including computed tomography with X-rays, positron emission tomography (PET), and magnetic resonance imaging (MRI), are utilized frequently in medical settings to screen for illnesses, diagnose patients, and track the effectiveness of treatments. When examining bone protrusions, CT is preferred over MRI for scanning connective tissue. Although the picture quality of PET is inferior to that of CT and MR, it is outstanding for detecting the molecular markers and metabolic functions of illnesses. To give high-resolution structural pictures and improved ailment sensitivity and specificity within another image, multimodal data and substantial therapeutic influence on advanced diagnostics and therapeutics have been used. The goal was to evaluate the clinical significance of multimodal photoacoustic/ultrasound (PA/US) articular imaging scoring, a cutting-edge image technique that may show the microvessels and oxygen levels of rheumatoid arthritis-related inflamed joints (RA). The PA/US imaging technology analyzed seven tiny joints. The PA and power Doppler (PD) impulses were semiquantified using a 0-3 grading scale, and the averages of the PA and PD scores for the seven joints are computed. Three PA+SO2 types were found determined by the relative oxygen levels (SO2) measurements of the affected joints. Researchers evaluated the relationships between the disease activity ratings and the PA/US imaging ratings. The PA scores and medical ratings that reflect the extent of the pain have strong relationships with each other, as do the PA+SO2 combinations. PA may be clinically useful in assessing RA. Thus, the research evaluated the clinical symptoms of inflammatory arthritis using a multimodal photoacoustic image process.
Collapse
Affiliation(s)
- B. Rajasekar
- Department of Electronics and Communication Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119 Tamil Nadu, India
| | - P. Nirmala
- Department of Electronics and Communication Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602 105 Tamil Nadu, India
| | - P. Bhuvaneswari
- Department of Electronics and Communication Engineering, Sri Venkateswara College of Engineering and Technology, Chittoor, Andhra Pradesh 517127, India
| | - R. Radhika
- Department of Electronics and Communication Engineering, S.A Engineering College, Chennai, 600077 Tamil Nadu, India
| | - S. Asha
- Department of Electronics and Communication Engineering, Saveetha Engineering College, Chennai, 602105 Tamil Nadu, India
| | - K. R. Kavitha
- Department of Electronics and Communication Engineering, Sona College of Technology, Salem, 636005 Tamil Nadu, India
| | - Semagn Shifere Belay
- School of Computing, Woldia Institute of Technology, Woldia University, Ethiopia
| |
Collapse
|
18
|
Spinella A, de Pinto M, Galluzzo C, Testoni S, Macripò P, Lumetti F, Parenti L, Magnani L, Sandri G, Bajocchi G, Starnoni M, De Santis G, Salvarani C, Giuggioli D. Photobiomodulation Therapy: A New Light in the Treatment of Systemic Sclerosis Skin Ulcers. Rheumatol Ther 2022; 9:891-905. [PMID: 35334095 PMCID: PMC9127012 DOI: 10.1007/s40744-022-00438-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Skin ulcers (SU) represent one of the most frequent manifestations of systemic sclerosis (SSc), occurring in almost 50% of scleroderma patients. SSc-SU are often particularly difficult to treat with conventional systemic and local therapies. In this study, a preliminary evaluation of the role and effectiveness of blue light photobiomodulation (PBM) therapy with EmoLED® in the treatment of scleroderma skin ulcers (SSc-SU) was performed. METHODS We retrospectively analyzed 12 consecutive SSc patients with a total of 15 SU on finger hands. All patients were treated with adequate systemic therapy and local treatment for SU; after a standard skin ulcer bed preparation with debridement of all lesions, EmoLED® was performed. All patients were locally treated every week during 2 months of follow-up; SU data were collected after 4 weeks (T4) and 8 weeks (T8). Eight SSc patients with comparable SU were also evaluated as controls. RESULTS The application of EmoLED® in addition to debridement apparently produced faster healing of SU. Complete healing of SU was recorded in 41.6% cases during EmoLED® treatment. Significant improvements in SU area, length, and width, wound bed, and related pain were observed in EmoLED® patients from T0 to T8. Control subjects treated with standard systemic/local therapies merely showed an amelioration of SU area and width at the end of the follow-up. No procedural or post-procedural adverse events were reported. CONCLUSIONS The positive clinical results and the absence of side effects suggest that EmoLED® could be a promising tool in the management of SSc-SU, with an interesting role to play in the healing process in addition to conventional systemic and local treatments.
Collapse
Affiliation(s)
- Amelia Spinella
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy
| | - Marco de Pinto
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy
| | - Claudio Galluzzo
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy
| | - Sofia Testoni
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy
| | - Pierluca Macripò
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy
| | - Federica Lumetti
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy
| | - Luca Parenti
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy
| | - Luca Magnani
- Unit of Rheumatology, AUSL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Gilda Sandri
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy
| | | | - Marta Starnoni
- Division of Plastic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Modena, Italy
| | - Giorgio De Santis
- Division of Plastic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Modena, Italy
| | - Carlo Salvarani
- Unit of Rheumatology, AUSL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Dilia Giuggioli
- Scleroderma Unit, Chair and Rheumatology Unit, Medical School, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria, Policlinico of Modena, Policlinico di Modena, Via del Pozzo, 71, 41125, Modena, Italy.
| |
Collapse
|
19
|
Xu G, Khan N, Almazroa A, Pawar M, Besirli C, Paulus YM, Wang X, Demirci H. Safety Evaluation of Photoacoustic Tomography System for Intraocular Tumors. Transl Vis Sci Technol 2022; 11:30. [PMID: 35344017 PMCID: PMC8976930 DOI: 10.1167/tvst.11.3.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Photoacoustic tomography (PAT) has demonstrated the ability to characterize molecular components and architectural heterogeneities of intraocular tumors in enucleated human globes and in animals in vivo. Although laser safety levels have been established for illumination through the cornea, the safety limit for PAT illumination through the sclera has not been investigated. The purpose of this study is to examine if the energy level used in intraocular PAT results in ocular damage. Methods Rabbit eyes were exposed to pulsed laser illumination at 20 mJ/cm2 at the scleral surface. Eyes were examined at 1, 7, and 28 days after the laser exposure. Examination procedures included white light and fluorescence fundus imaging, optical coherence tomography (OCT), electroretinography (ERG), and histology with hematoxylin and eosin (H&E) staining as well as terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL staining). Results Fundus imaging and OCT of rabbit eyes at 1, 7, and 28 days following exposure of the laser illumination of the PAT system did not reveal any damage to the retinal structures. ERG showed no significant difference between the experimental and control eyes. Similarly, H&E histology did not show abnormalities in either the scleral tissue where the laser illumination was delivered or in the retinal layers. No sign of apoptosis in the layers of the retina, choroid, or optic nerve was found on TUNEL staining. Conclusions Similar to the application of PAT to other organs, the proposed laser illumination energy level at 20 mJ/cm2 does not impose detectable harm to the ocular tissue. Translational Relevance This study addresses illumination safety issues for PAT.
Collapse
Affiliation(s)
- Guan Xu
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Naheed Khan
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ahmed Almazroa
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA.,King Abdullah International Medical Research Center/King Saud bin, Abdulaziz University for Health Science, Saudi Arabia
| | - Mercy Pawar
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Cagri Besirli
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yannis M Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hakan Demirci
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Choi W, Park EY, Jeon S, Yang Y, Park B, Ahn J, Cho S, Lee C, Seo DK, Cho JH, Kim C. Three-dimensional Multistructural Quantitative Photoacoustic and US Imaging of Human Feet in Vivo. Radiology 2022; 303:467-473. [PMID: 35191741 DOI: 10.1148/radiol.211029] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Monitoring the microcirculation in human feet is crucial in assessing peripheral vascular diseases, such as diabetic foot. However, conventional imaging modalities are more focused on diagnosis in major arteries, and there are limited methods to provide microvascular information in early stages of the disease. Purpose To investigate a three-dimensional (3D) noncontrast bimodal photoacoustic (PA)/US imaging system that visualizes the human foot morphologically and also reliably quantifies podiatric vascular parameters noninvasively. Materials and Methods A clinically relevant PA/US imaging system was combined with a foot scanner to obtain 3D PA and US images of the human foot in vivo. Healthy participants were recruited from September 2020 to June 2021. The collected 3D PA and US images were postprocessed to present structural information about the foot. The quantitative reliability was evaluated in five repeated scans of 10 healthy feet by calculating the intraclass correlation coefficient and minimal detectable change, and the detectability of microvascular changes was tested by imaging 10 healthy feet intentionally occluded with use of a pressure cuff (160 mm Hg). Statistically significant difference is indicated with P values. Results Ten feet from six healthy male volunteers (mean age ± standard deviation, 27 years ± 3) were included. The foot images clearly visualized the structure of the vasculature, bones, and skin and provided such functional information as the total hemoglobin concentration (HbT), hemoglobin oxygen saturation (SO2), vessel density, and vessel depth. Functional information from five independent measurements of 10 healthy feet was moderately reliable (intraclass correlation coefficient, 0.51-0.74). Significant improvements in HbT (P = .006) and vessel density (P = .046) as well as the retention of SO2 were observed, which accurately described the microvascular change due to venous occlusion. Conclusion Three-dimensional photoacoustic and US imaging was able to visualize morphologic and physiologic features of the human foot, including the peripheral microvasculature, in healthy volunteers. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Mezrich in this issue.
Collapse
Affiliation(s)
- Wonseok Choi
- From the Departments of Convergence IT Engineering (W.C., E.Y.P, S.J., B.P., J.A., C.K.), Electrical Engineering (C.K.), Mechanical Engineering (C.L., C.K.), School of Interdisciplinary Bioscience and Bioengineering (S.C.), and Medical Device Innovation Center (W.C., E.Y.P., S.J., B.P., J.A., S.C., C.L., C.K.), Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Catholic Smart Health Care Center, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Gangneung Asan Hospital, University of Ulsan College of Medicine, Seoul, Korea (D.K.S.); and Opticho, Pohang, Korea (C.K.)
| | - Eun-Yeong Park
- From the Departments of Convergence IT Engineering (W.C., E.Y.P, S.J., B.P., J.A., C.K.), Electrical Engineering (C.K.), Mechanical Engineering (C.L., C.K.), School of Interdisciplinary Bioscience and Bioengineering (S.C.), and Medical Device Innovation Center (W.C., E.Y.P., S.J., B.P., J.A., S.C., C.L., C.K.), Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Catholic Smart Health Care Center, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Gangneung Asan Hospital, University of Ulsan College of Medicine, Seoul, Korea (D.K.S.); and Opticho, Pohang, Korea (C.K.)
| | - Seungwan Jeon
- From the Departments of Convergence IT Engineering (W.C., E.Y.P, S.J., B.P., J.A., C.K.), Electrical Engineering (C.K.), Mechanical Engineering (C.L., C.K.), School of Interdisciplinary Bioscience and Bioengineering (S.C.), and Medical Device Innovation Center (W.C., E.Y.P., S.J., B.P., J.A., S.C., C.L., C.K.), Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Catholic Smart Health Care Center, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Gangneung Asan Hospital, University of Ulsan College of Medicine, Seoul, Korea (D.K.S.); and Opticho, Pohang, Korea (C.K.)
| | - Yeoree Yang
- From the Departments of Convergence IT Engineering (W.C., E.Y.P, S.J., B.P., J.A., C.K.), Electrical Engineering (C.K.), Mechanical Engineering (C.L., C.K.), School of Interdisciplinary Bioscience and Bioengineering (S.C.), and Medical Device Innovation Center (W.C., E.Y.P., S.J., B.P., J.A., S.C., C.L., C.K.), Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Catholic Smart Health Care Center, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Gangneung Asan Hospital, University of Ulsan College of Medicine, Seoul, Korea (D.K.S.); and Opticho, Pohang, Korea (C.K.)
| | - Byullee Park
- From the Departments of Convergence IT Engineering (W.C., E.Y.P, S.J., B.P., J.A., C.K.), Electrical Engineering (C.K.), Mechanical Engineering (C.L., C.K.), School of Interdisciplinary Bioscience and Bioengineering (S.C.), and Medical Device Innovation Center (W.C., E.Y.P., S.J., B.P., J.A., S.C., C.L., C.K.), Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Catholic Smart Health Care Center, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Gangneung Asan Hospital, University of Ulsan College of Medicine, Seoul, Korea (D.K.S.); and Opticho, Pohang, Korea (C.K.)
| | - Joongho Ahn
- From the Departments of Convergence IT Engineering (W.C., E.Y.P, S.J., B.P., J.A., C.K.), Electrical Engineering (C.K.), Mechanical Engineering (C.L., C.K.), School of Interdisciplinary Bioscience and Bioengineering (S.C.), and Medical Device Innovation Center (W.C., E.Y.P., S.J., B.P., J.A., S.C., C.L., C.K.), Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Catholic Smart Health Care Center, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Gangneung Asan Hospital, University of Ulsan College of Medicine, Seoul, Korea (D.K.S.); and Opticho, Pohang, Korea (C.K.)
| | - Seonghee Cho
- From the Departments of Convergence IT Engineering (W.C., E.Y.P, S.J., B.P., J.A., C.K.), Electrical Engineering (C.K.), Mechanical Engineering (C.L., C.K.), School of Interdisciplinary Bioscience and Bioengineering (S.C.), and Medical Device Innovation Center (W.C., E.Y.P., S.J., B.P., J.A., S.C., C.L., C.K.), Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Catholic Smart Health Care Center, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Gangneung Asan Hospital, University of Ulsan College of Medicine, Seoul, Korea (D.K.S.); and Opticho, Pohang, Korea (C.K.)
| | - Changyeop Lee
- From the Departments of Convergence IT Engineering (W.C., E.Y.P, S.J., B.P., J.A., C.K.), Electrical Engineering (C.K.), Mechanical Engineering (C.L., C.K.), School of Interdisciplinary Bioscience and Bioengineering (S.C.), and Medical Device Innovation Center (W.C., E.Y.P., S.J., B.P., J.A., S.C., C.L., C.K.), Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Catholic Smart Health Care Center, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Gangneung Asan Hospital, University of Ulsan College of Medicine, Seoul, Korea (D.K.S.); and Opticho, Pohang, Korea (C.K.)
| | - Dong-Kyo Seo
- From the Departments of Convergence IT Engineering (W.C., E.Y.P, S.J., B.P., J.A., C.K.), Electrical Engineering (C.K.), Mechanical Engineering (C.L., C.K.), School of Interdisciplinary Bioscience and Bioengineering (S.C.), and Medical Device Innovation Center (W.C., E.Y.P., S.J., B.P., J.A., S.C., C.L., C.K.), Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Catholic Smart Health Care Center, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Gangneung Asan Hospital, University of Ulsan College of Medicine, Seoul, Korea (D.K.S.); and Opticho, Pohang, Korea (C.K.)
| | - Jae-Hyoung Cho
- From the Departments of Convergence IT Engineering (W.C., E.Y.P, S.J., B.P., J.A., C.K.), Electrical Engineering (C.K.), Mechanical Engineering (C.L., C.K.), School of Interdisciplinary Bioscience and Bioengineering (S.C.), and Medical Device Innovation Center (W.C., E.Y.P., S.J., B.P., J.A., S.C., C.L., C.K.), Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Catholic Smart Health Care Center, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Gangneung Asan Hospital, University of Ulsan College of Medicine, Seoul, Korea (D.K.S.); and Opticho, Pohang, Korea (C.K.)
| | - Chulhong Kim
- From the Departments of Convergence IT Engineering (W.C., E.Y.P, S.J., B.P., J.A., C.K.), Electrical Engineering (C.K.), Mechanical Engineering (C.L., C.K.), School of Interdisciplinary Bioscience and Bioengineering (S.C.), and Medical Device Innovation Center (W.C., E.Y.P., S.J., B.P., J.A., S.C., C.L., C.K.), Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Catholic Smart Health Care Center, The Catholic University of Korea, Seoul, Korea (Y.Y., J.H.C.); Gangneung Asan Hospital, University of Ulsan College of Medicine, Seoul, Korea (D.K.S.); and Opticho, Pohang, Korea (C.K.)
| |
Collapse
|
21
|
Messas T, Messas A, Kroumpouzos G. Optoacoustic Imaging And Potential Applications Of Raster-Scan Optoacoustic Mesoscopy In Dermatology. Clin Dermatol 2021; 40:85-92. [PMID: 34923064 DOI: 10.1016/j.clindermatol.2021.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Optoacoustic imaging (OAI) is a hybrid imaging modality that integrates the benefits of optical contrast and ultrasound detection. Raster-scan optoacoustic mesoscopy (RSOM) is an emerging OAI method that provides information about several dermatological conditions' structural, functional, and molecular features. We searched PubMed and Google Scholar databases through September 2021 for articles relevant to OAI in the English language. This review contains 32 studies and other relevant literature. Several studies indicate that RSOM is helpful in inflammatory skin conditions such as psoriasis and eczema, especially as it allows more accurate quantification of inflammation-related alterations such as changes to the dermal vasculature. In psoriasis, RSOM can provide objective early diagnosis and monitoring of disease activity and treatment efficacy. Multispectral RSOM, a method in which skin is lightened at more than a single wavelength, is beneficial in diagnosing and monitoring hypoxia-associated conditions, such as systemic sclerosis and chronic wounds. OAI techniques can visualize the pathological vascularization of skin cancers and quantify their oxygenation status which helps differentiate them from normal skin. Also, they can measure the depth of malignant melanoma and detect the metastatic spread of melanoma cells to sentinel lymph nodes. As demonstrated in this article, there is a large spectrum of potential applications of OAI imaging, especially RSOM, in diagnosing, treating, and managing skin diseases.
Collapse
Affiliation(s)
- Tassahil Messas
- Department of Dermatology, University of Constantine III, University Hospital Centre, Constantine, Algeria
| | - Achraf Messas
- Faculty of Medicine, CHU Annaba, Badji Mokhtar University, Annaba, Algeria
| | - George Kroumpouzos
- Department of Dermatology, Alpert Medical School, Brown University, Providence, RI, USA; GK Dermatology, PC, S Weymouth, MA, USA.
| |
Collapse
|
22
|
Recent Technical Progression in Photoacoustic Imaging—Towards Using Contrast Agents and Multimodal Techniques. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11219804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For combining optical and ultrasonic imaging methodologies, photoacoustic imaging (PAI) is the most important and successful hybrid technique, which has greatly contributed to biomedical research and applications. Its theoretical background is based on the photoacoustic effect, whereby a modulated or pulsed light is emitted into tissue, which selectively absorbs the optical energy of the light at optical wavelengths. This energy produces a fast thermal expansion in the illuminated tissue, generating pressure waves (or photoacoustic waves) that can be detected by ultrasonic transducers. Research has shown that optical absorption spectroscopy offers high optical sensitivity and contrast for ingredient determination, for example, while ultrasound has demonstrated good spatial resolution in biomedical imaging. Photoacoustic imaging combines these advantages, i.e., high contrast through optical absorption and high spatial resolution due to the low scattering of ultrasound in tissue. In this review, we focus on advances made in PAI in the last five years and present categories and key devices used in PAI techniques. In particular, we highlight the continuously increasing imaging depth achieved by PAI, particularly when using exogenous reagents. Finally, we discuss the potential of combining PAI with other imaging techniques.
Collapse
|
23
|
Feng T, Zhu Y, Morris R, kozloff KM, Wang X. The feasibility study of the transmission mode photoacoustic measurement of human calcaneus bone in vivo. PHOTOACOUSTICS 2021; 23:100273. [PMID: 34745881 PMCID: PMC8552339 DOI: 10.1016/j.pacs.2021.100273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 05/26/2023]
Abstract
The photoacoustic (PA) technique is uniquely positioned for biomedical applications primarily due to its ability to visualize optical absorption contrast in deep tissue at ultrasound resolution. In this work, via both three-dimensional (3D) numerical simulations and in vivo experiments on human subjects, we investigated the possibility of PA measurement of human calcaneus bones in vivo in a non-invasive manner, as well as its feasibility to differentiate osteoporosis patients from normal subjects. The results from the simulations and the experiments both demonstrated that, when one side of the heel is illuminated by laser with light fluence under the ANSI safety limit, the PA signal generated in the human calcaneus bone can be detected by an ultrasonic transducer at the other side of the heel (i.e. transmission mode). Quantitative power spectral analyses of the calcaneus bone PA signals were also conducted, demonstrating that the microarchitectural changes in calcaneus bone due to osteoporosis can be detected, as reflected by enhanced high frequency components in detected PA bone signal. Further statistical analysis of the experimental results from 10 osteoporosis patients and 10 healthy volunteers showed that the weighted frequency as a quantified PA spectral parameter can differentiate the two subject groups with statistical significance.
Collapse
Affiliation(s)
- Ting Feng
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
| | - Yunhao Zhu
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
| | | | - Kenneth M. kozloff
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
- Department of Orthopaedic Surgery, University of Michigan Medical School, MI 48109, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan Medical School, MI 48109, USA
- Department of Radiology, University of Michigan Medical School, MI 48109, USA
| |
Collapse
|
24
|
Orfanakis M, Tserevelakis GJ, Zacharakis G. A Cost-Efficient Multiwavelength LED-Based System for Quantitative Photoacoustic Measurements. SENSORS 2021; 21:s21144888. [PMID: 34300627 PMCID: PMC8309896 DOI: 10.3390/s21144888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/30/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023]
Abstract
The unique ability of photoacoustic (PA) sensing to provide optical absorption information of biomolecules deep inside turbid tissues with high sensitivity has recently enabled the development of various novel diagnostic systems for biomedical applications. In many cases, PA setups can be bulky, complex, and costly, as they typically require the integration of expensive Q-switched nanosecond lasers, and also presents limited wavelength availability. This article presents a compact, cost-efficient, multiwavelength PA sensing system for quantitative measurements, by utilizing two high-power LED sources emitting at central wavelengths of 444 and 628 nm, respectively, and a single-element ultrasonic transducer at 3.5 MHz for signal detection. We investigate the performance of LEDs in pulsed mode and explore the dependence of PA responses on absorber's concentration and applied energy fluence using tissue-mimicking phantoms demonstrating both optical absorption and scattering properties. Finally, we apply the developed system on the spectral unmixing of two absorbers contained at various relative concentrations in the phantoms, to provide accurate estimations with absolute deviations ranging between 0.4 and 12.3%. An upgraded version of the PA system may provide valuable in-vivo multiparametric measurements of important biomarkers, such as hemoglobin oxygenation, melanin concentration, local lipid content, and glucose levels.
Collapse
Affiliation(s)
- Michalis Orfanakis
- Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, N. Plastira 100, GR-70013 Heraklion, Greece; (M.O.); (G.J.T.)
- School of Medicine, University of Crete, GR-71003 Heraklion, Greece
| | - George J. Tserevelakis
- Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, N. Plastira 100, GR-70013 Heraklion, Greece; (M.O.); (G.J.T.)
| | - Giannis Zacharakis
- Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, N. Plastira 100, GR-70013 Heraklion, Greece; (M.O.); (G.J.T.)
- Correspondence:
| |
Collapse
|
25
|
Joseph J, Ajith Singh MK, Sato N, Bohndiek SE. Technical validation studies of a dual-wavelength LED-based photoacoustic and ultrasound imaging system. PHOTOACOUSTICS 2021; 22:100267. [PMID: 33948434 PMCID: PMC8080074 DOI: 10.1016/j.pacs.2021.100267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/01/2021] [Accepted: 04/06/2021] [Indexed: 05/12/2023]
Abstract
Recent advances in high power, pulsed, light emitting diodes (LEDs) have shown potential as fast, robust and relatively inexpensive excitation sources for photoacoustic imaging (PAI), yet systematic characterization of performance for biomedical imaging is still lacking. We report here technical and biological validation studies of a commercial dual-wavelength LED-based PAI and ultrasound system. Phantoms and small animals were used to assess temporal precision. In phantom studies, we found high temporal stability of the LED-based PAI system, with no significant drift in performance observed during 6 h of operation or over 30 days of repeated measurements. In vivo dual-wavelength imaging was able to map the dynamics of changes in blood oxygenation during oxygen-enhanced imaging and reveal the kinetics of indocyanine green contrast agent inflow after intravenous administration (Tmax∼6 min). Taken together, these studies indicate that LED-based excitation could be promising for future application in functional and molecular PAI.
Collapse
Affiliation(s)
- James Joseph
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
- Now at School of Science and Engineering, Fulton Building, University of Dundee, DD1 4HN, UK
| | | | - Naoto Sato
- Research and Development Division, CYBERDYNE INC, Tsukuba, 305-0818, Japan
| | - Sarah E. Bohndiek
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|
26
|
Yao J, Wang LV. Perspective on fast-evolving photoacoustic tomography. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210105-PERR. [PMID: 34196136 PMCID: PMC8244998 DOI: 10.1117/1.jbo.26.6.060602] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/17/2021] [Indexed: 05/19/2023]
Abstract
SIGNIFICANCE Acoustically detecting the rich optical absorption contrast in biological tissues, photoacoustic tomography (PAT) seamlessly bridges the functional and molecular sensitivity of optical excitation with the deep penetration and high scalability of ultrasound detection. As a result of continuous technological innovations and commercial development, PAT has been playing an increasingly important role in life sciences and patient care, including functional brain imaging, smart drug delivery, early cancer diagnosis, and interventional therapy guidance. AIM Built on our 2016 tutorial article that focused on the principles and implementations of PAT, this perspective aims to provide an update on the exciting technical advances in PAT. APPROACH This perspective focuses on the recent PAT innovations in volumetric deep-tissue imaging, high-speed wide-field microscopic imaging, high-sensitivity optical ultrasound detection, and machine-learning enhanced image reconstruction and data processing. Representative applications are introduced to demonstrate these enabling technical breakthroughs in biomedical research. CONCLUSIONS We conclude the perspective by discussing the future development of PAT technologies.
Collapse
Affiliation(s)
- Junjie Yao
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Lihong V. Wang
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| |
Collapse
|
27
|
da Silva EJ, de Miranda EM, Mota CCBDO, Das A, Gomes ASL. Photoacoustic imaging of occlusal incipient caries in the visible and near-infrared range. Imaging Sci Dent 2021; 51:107-115. [PMID: 34235056 PMCID: PMC8219446 DOI: 10.5624/isd.20200259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
Purpose This study aimed to demonstrate the presence of dental caries through a photoacoustic imaging system with visible and near-infrared wavelengths, highlighting the differences between the 2 spectral regions. The depth at which carious tissue could be detected was also verified. Materials and Methods Fifteen permanent molars were selected and classified as being sound or having incipient or advanced caries by visual inspection, radiography, and optical coherence tomography analysis prior to photoacoustic scanning. A photoacoustic imaging system operating with a nanosecond pulsed laser as the light excitation source at either 532 nm or 1064 nm and an acoustic transducer at 5 MHz was developed, characterized, and used. En-face and lateral (depth) photoacoustic signals were detected. Results The results confirmed the potential of the photoacoustic method to detect caries. At both wavelengths, photoacoustic imaging effectively detected incipient and advanced caries. The reconstructed photoacoustic images confirmed that a higher intensity of the photoacoustic signal could be observed in regions with lesions, while sound surfaces showed much less photoacoustic signal. Photoacoustic signals at depths up to 4 mm at both 532 nm and 1064 nm were measured. Conclusion The results presented here are promising and corroborate that photoacoustic imaging can be applied as a diagnostic tool in caries research. New studies should focus on developing a clinical model of photoacoustic imaging applications in dentistry, including soft tissues. The use of inexpensive light-emitting diodes together with a miniaturized detector will make photoacoustic imaging systems more flexible, user-friendly, and technologically viable.
Collapse
Affiliation(s)
| | | | | | - Avishek Das
- Department of Physics, Universidade Federal de Pernambuco, Recife, Brazil
| | - Anderson Stevens Leônidas Gomes
- Graduate Program in Dentistry, Universidade Federal de Pernambuco, Recife, Brazil.,Department of Physics, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
28
|
Photoacoustic Imaging of Human Vasculature Using LED versus Laser Illumination: A Comparison Study on Tissue Phantoms and In Vivo Humans. SENSORS 2021; 21:s21020424. [PMID: 33435375 PMCID: PMC7827532 DOI: 10.3390/s21020424] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/15/2022]
Abstract
Vascular diseases are becoming an epidemic with an increasing aging population and increases in obesity and type II diabetes. Point-of-care (POC) diagnosis and monitoring of vascular diseases is an unmet medical need. Photoacoustic imaging (PAI) provides label-free multiparametric information of deep vasculature based on strong absorption of light photons by hemoglobin molecules. However, conventional PAI systems use bulky nanosecond lasers which hinders POC applications. Recently, light-emitting diodes (LEDs) have emerged as cost-effective and portable optical sources for the PAI of living subjects. However, state-of-art LED arrays carry significantly lower optical energy (<0.5 mJ/pulse) and high pulse repetition frequencies (PRFs) (4 KHz) compared to the high-power laser sources (100 mJ/pulse) with low PRFs of 10 Hz. Given these tradeoffs between portability, cost, optical energy and frame rate, this work systematically studies the deep tissue PAI performance of LED and laser illuminations to help select a suitable source for a given biomedical application. To draw a fair comparison, we developed a fiberoptic array that delivers laser illumination similar to the LED array and uses the same ultrasound transducer and data acquisition platform for PAI with these two illuminations. Several controlled studies on tissue phantoms demonstrated that portable LED arrays with high frame averaging show higher signal-to-noise ratios (SNRs) of up to 30 mm depth, and the high-energy laser source was found to be more effective for imaging depths greater than 30 mm at similar frame rates. Label-free in vivo imaging of human hand vasculature studies further confirmed that the vascular contrast from LED-PAI is similar to laser-PAI for up to 2 cm depths. Therefore, LED-PAI systems have strong potential to be a mobile health care technology for diagnosing vascular diseases such as peripheral arterial disease and stroke in POC and resource poor settings.
Collapse
|
29
|
Oxygen Saturation Imaging Using LED-Based Photoacoustic System. SENSORS 2021; 21:s21010283. [PMID: 33406653 PMCID: PMC7795655 DOI: 10.3390/s21010283] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 12/31/2022]
Abstract
Oxygen saturation imaging has potential in several preclinical and clinical applications. Dual-wavelength LED array-based photoacoustic oxygen saturation imaging can be an affordable solution in this case. For the translation of this technology, there is a need to improve its accuracy and validate it against ground truth methods. We propose a fluence compensated oxygen saturation imaging method, utilizing structural information from the ultrasound image, and prior knowledge of the optical properties of the tissue with a Monte-Carlo based light propagation model for the dual-wavelength LED array configuration. We then validate the proposed method with oximeter measurements in tissue-mimicking phantoms. Further, we demonstrate in vivo imaging on small animal and a human subject. We conclude that the proposed oxygen saturation imaging can be used to image tissue at a depth of 6–8 mm in both preclinical and clinical applications.
Collapse
|
30
|
Das D, Sharma A, Rajendran P, Pramanik M. Another decade of photoacoustic imaging. Phys Med Biol 2020; 66. [PMID: 33361580 DOI: 10.1088/1361-6560/abd669] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023]
Abstract
Photoacoustic imaging - a hybrid biomedical imaging modality finding its way to clinical practices. Although the photoacoustic phenomenon was known more than a century back, only in the last two decades it has been widely researched and used for biomedical imaging applications. In this review we focus on the development and progress of the technology in the last decade (2010-2020). From becoming more and more user friendly, cheaper in cost, portable in size, photoacoustic imaging promises a wide range of applications, if translated to clinic. The growth of photoacoustic community is steady, and with several new directions researchers are exploring, it is inevitable that photoacoustic imaging will one day establish itself as a regular imaging system in the clinical practices.
Collapse
Affiliation(s)
- Dhiman Das
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Arunima Sharma
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Praveenbalaji Rajendran
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, SINGAPORE
| | - Manojit Pramanik
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-11, Singapore, 637457, SINGAPORE
| |
Collapse
|
31
|
Li M, Nyayapathi N, Kilian HI, Xia J, Lovell JF, Yao J. Sound Out the Deep Colors: Photoacoustic Molecular Imaging at New Depths. Mol Imaging 2020; 19:1536012120981518. [PMID: 33336621 PMCID: PMC7750763 DOI: 10.1177/1536012120981518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Photoacoustic tomography (PAT) has become increasingly popular for molecular imaging due to its unique optical absorption contrast, high spatial resolution, deep imaging depth, and high imaging speed. Yet, the strong optical attenuation of biological tissues has traditionally prevented PAT from penetrating more than a few centimeters and limited its application for studying deeply seated targets. A variety of PAT technologies have been developed to extend the imaging depth, including employing deep-penetrating microwaves and X-ray photons as excitation sources, delivering the light to the inside of the organ, reshaping the light wavefront to better focus into scattering medium, as well as improving the sensitivity of ultrasonic transducers. At the same time, novel optical fluence mapping algorithms and image reconstruction methods have been developed to improve the quantitative accuracy of PAT, which is crucial to recover weak molecular signals at larger depths. The development of highly-absorbing near-infrared PA molecular probes has also flourished to provide high sensitivity and specificity in studying cellular processes. This review aims to introduce the recent developments in deep PA molecular imaging, including novel imaging systems, image processing methods and molecular probes, as well as their representative biomedical applications. Existing challenges and future directions are also discussed.
Collapse
Affiliation(s)
- Mucong Li
- Department of Biomedical Engineering, 3065Duke University, Durham, NC, USA
| | - Nikhila Nyayapathi
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Hailey I Kilian
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Jun Xia
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Junjie Yao
- Department of Biomedical Engineering, 3065Duke University, Durham, NC, USA
| |
Collapse
|
32
|
Jo J, Xu G, Schiopu E, Chamberland D, Gandikota G, Wang X. Imaging of enthesitis by an LED-based photoacoustic system. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200274RR. [PMID: 33331148 PMCID: PMC7744251 DOI: 10.1117/1.jbo.25.12.126005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/01/2020] [Indexed: 05/03/2023]
Abstract
SIGNIFICANCE One key pathological characteristic of seronegative spondyloarthropathy (SpA) is inflammation at the insertion of tendons and ligaments into the bone (enthesitis). AIM We explore the potential of the emerging photoacoustic (PA) imaging in diagnosis of SpA and review its feasibility in detecting SpA-associated Achilles tendon enthesitis. APPROACH A light-emitting diode (LED)-based PA and ultrasound combined system was employed. The PA images, both along the long and the short axes of each Achilles tendon insertion region, were acquired at 850-nm wavelength, which is sensitive in depicting increased blood volume (i.e., hyperemia). To assess the hyperemia indicating enthesis inflammation, two parameters were quantified in the imaged tendons, including the average intensity and the density of the color pixels in the pseudo-color PA images. Ten SpA patients, all of which met Assessment of SpA International Society (ASAS) criteria for SpA and were found to have Achilles enthesitis by clinical exam according to a board-certified rheumatologist, were included in the study. RESULTS The PA and Doppler ultrasound imaging of Achilles enthesitis resulting from these 10 SpA patients were compared to those from 10 healthy volunteers, leading to statistically significant differences (p < 0.05) in the applied t-tests. CONCLUSIONS This preliminary clinical study suggests that the LED-based PA imaging holds a promise for sensitive and objective assessment of SpA enthesitis in an outpatient setting of the rheumatology clinic.
Collapse
Affiliation(s)
- Janggun Jo
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, Michigan, United States
| | - Guan Xu
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, Michigan, United States
- University of Michigan, Department of Ophthalmology and Visual Sciences, Ann Arbor, Michigan, United States
| | - Elena Schiopu
- University of Michigan Medical School, Division of Rheumatology, Department of Internal Medicine, Ann Arbor, Michigan, United States
- Address all correspondence to Elena Schiopu, ; Girish Gandikota, ; Xueding Wang,
| | - David Chamberland
- University of Michigan Medical School, Division of Rheumatology, Department of Internal Medicine, Ann Arbor, Michigan, United States
| | - Girish Gandikota
- University of Michigan Medical School, Department of Radiology, Ann Arbor, Michigan, United States
- Address all correspondence to Elena Schiopu, ; Girish Gandikota, ; Xueding Wang,
| | - Xueding Wang
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, Michigan, United States
- University of Michigan Medical School, Department of Radiology, Ann Arbor, Michigan, United States
- Address all correspondence to Elena Schiopu, ; Girish Gandikota, ; Xueding Wang,
| |
Collapse
|
33
|
Agano T, Awazu K. Effect of Amplifier Gain on Photoacoustic SNR (Signal to Noise Ratio) in an LED-based Photoacoustic Imaging System. Laser Ther 2020; 29:77-85. [PMID: 34248275 DOI: 10.5978/islsm.20-or-09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/14/2018] [Indexed: 11/06/2022]
Abstract
The possibility of using photoacoustic imaging for functional diagnosis has attracted much attention especially in the clinical field. Among such imaging systems, a system, which offers real-time imaging using compact and low-priced LEDs as a light source, has appeared. Compared to solid state lasers, the LED pulse energy was extremely small, so it had been thought that imaging would be extremely difficult, but by adding a pre-amplifier, real time photoacoustic imaging became possible. However the signal-to-noise ratio (SNR) and the amplifier gain needed for making real time imaging possible have remained unclear. The present study was designed to clarify these data. The results showed that, using a tissue phantom and human fingers, an SNR > 4 and amplifier gain > 80dB were required, and demonstrated why making an image without a pre-amplifier had proved difficult.
Collapse
Affiliation(s)
| | - Kunio Awazu
- Graduate School of Engineering, Osaka University
| |
Collapse
|
34
|
Wen H, Tamarov K, Happonen E, Lehto V, Xu W. Inorganic Nanomaterials for Photothermal‐Based Cancer Theranostics. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Huang Wen
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Konstantin Tamarov
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Emilia Happonen
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Vesa‐Pekka Lehto
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| | - Wujun Xu
- Department of Applied Physics University of Eastern Finland Kuopio 70211 Finland
| |
Collapse
|
35
|
Multimodal photoacoustic/ultrasonic imaging system: a promising imaging method for the evaluation of disease activity in rheumatoid arthritis. Eur Radiol 2020; 31:3542-3552. [PMID: 33180165 PMCID: PMC8043900 DOI: 10.1007/s00330-020-07353-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/16/2020] [Accepted: 09/24/2020] [Indexed: 11/02/2022]
Abstract
OBJECTIVES We aimed to assess the clinical value of multimodal photoacoustic/ultrasound (PA/US) articular imaging scores, a novel imaging method which can reflect the micro-vessels and oxygenation level of inflamed joints of rheumatoid arthritis (RA). METHODS Seven small joints were examined by the PA/US imaging system. A 0-3 scoring system was used to semi-quantify the PA and power-Doppler (PD) signals, and the sums of PA and PD scores (PA-sum and PD-sum scores) of the seven joints were calculated. The relative oxygen saturation (SO2) values of the inflamed joints were measured and classified into 3 PA+SO2 patterns. The correlations between the PA/US imaging scores and the disease activity scores were assessed. RESULTS Thirty-one patients of RA and a total of 217 joints were examined using the PA/US system. The PA-sum had high positive correlations with the standard clinical scores of RA (DAS28 [ESR] ρ = 0.754, DAS28 [CRP] ρ = 0.796, SDAI ρ = 0.836, CDAI ρ = 0.837, p < 0.001), which were superior to the PD-sum (DAS28 [ESR] ρ = 0.651, DAS28 [CRP] ρ = 0.676, SDAI ρ = 0.716, CDAI ρ = 0.709, p < 0.001). For the patients with high PA-sum scores, significant differences between hypoxia and hyperoxia were identified in pain visual analog score (p = 0.020) and patient's global assessment (p = 0.026). The PA+SO2 patterns presented moderate and high correlation with PGA (ρ = 0.477, p = 0.0077) and VAS pain score (ρ = 0.717, p < 0.001). CONCLUSION The PA scores have significant correlations with standard clinical scores for RA, and the PA+SO2 patterns are also related with clinical scores that reflect pain severity. PA may have clinical potential in evaluating RA. KEY POINTS • Multimodal photoacoustic/ultrasound imaging is a novel method to assess micro-vessels and oxygenation of local lesions. • Significant correlations between multimodal imaging parameters and clinical scores of RA patients were verified. • The multimodal PA/US system can provide objective imaging parameters, including PA scores of micro-vessels and relative SO2 value, as a supplementary to disease activity evaluation.
Collapse
|
36
|
von Knorring T, Mogensen M. Photoacoustic tomography for assessment and quantification of cutaneous and metastatic malignant melanoma - A systematic review. Photodiagnosis Photodyn Ther 2020; 33:102095. [PMID: 33188938 DOI: 10.1016/j.pdpdt.2020.102095] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Photoacoustic tomography (PAT) is an emerging noninvasive imaging technique combining high sensitivity optical absorption contrast, such as melanin, with high-resolution ultrasound for deep tissue imaging. The ability of PAT to provide real-time images of skin structures at depth has been studied for diagnosis of primary and metastatic malignant melanoma (MM). OBJECTIVE To provide an overview of the rapidly expanding clinical use of PAT for determination of melanoma thickness and architecture, visualization of metastases in lymph nodes and detection of circulating melanoma cells. METHODS Medline, PubMed, EMBASE, Web of Science, Google Scholar, and Cochrane Library were searched for papers using PAT to assess cutaneous malignant melanoma and melanoma metastases in humans or human specimens. RESULTS The research resulted in 14 articles which met the search criteria. CONCLUSIONS Results from current studies suggest that PAT is a promising tool for assessing both primary and metastatic malignant melanoma in the clinic. The potential of PAT to noninvasively visualize tumour boundaries, as well as assist in the evaluation of metastatic status, could facilitate more effective treatment, resulting in better clearance and reducing the need for additional biopsies. However, larger and methodologically sound studies are warranted.
Collapse
Affiliation(s)
- Terese von Knorring
- Department of Dermatology, Bispebjerg University Hospital, University of Copenhagen, Bispebjerg Bakke 23, Copenhagen, 2400, NV, Denmark.
| | - Mette Mogensen
- Department of Dermatology, Bispebjerg University Hospital, University of Copenhagen, Bispebjerg Bakke 23, Copenhagen, 2400, NV, Denmark
| |
Collapse
|
37
|
Kuniyil Ajith Singh M, Xia W. Portable and Affordable Light Source-Based Photoacoustic Tomography. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6173. [PMID: 33138296 PMCID: PMC7663770 DOI: 10.3390/s20216173] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
Photoacoustic imaging is a hybrid imaging modality that offers the advantages of optical (spectroscopic contrast) and ultrasound imaging (scalable spatial resolution and imaging depth). This promising modality has shown excellent potential in a wide range of preclinical and clinical imaging and sensing applications. Even though photoacoustic imaging technology has matured in research settings, its clinical translation is not happening at the expected pace. One of the main reasons for this is the requirement of bulky and expensive pulsed lasers for excitation. To accelerate the clinical translation of photoacoustic imaging and explore its potential in resource-limited settings, it is of paramount importance to develop portable and affordable light sources that can be used as the excitation light source. In this review, we focus on the following aspects: (1) the basic theory of photoacoustic imaging; (2) inexpensive light sources and different implementations; and (3) important preclinical and clinical applications, demonstrated using affordable light source-based photoacoustics. The main focus will be on laser diodes and light-emitting diodes as they have demonstrated promise in photoacoustic tomography-the key technological developments in these areas will be thoroughly reviewed. We believe that this review will be a useful opus for both the beginners and experts in the field of biomedical photoacoustic imaging.
Collapse
Affiliation(s)
- Mithun Kuniyil Ajith Singh
- Research and Business Development Division, CYBERDYNE INC., Stationsplein 45, A4.004, 3013 AK Rotterdam, The Netherlands;
| | - Wenfeng Xia
- School of Biomedical Engineering& Imaging Sciences, King’s College London, King’s Health Partners, St Thomas’ Hospital, London SE1 7EH, UK
| |
Collapse
|
38
|
Zhan Y, Singh Rathore A, Milione G, Wang Y, Zheng W, Xu W, Xia J. 3D finger vein biometric authentication with photoacoustic tomography. APPLIED OPTICS 2020; 59:8751-8758. [PMID: 33104557 DOI: 10.1364/ao.400550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Biometric authentication is the recognition of human identity via unique anatomical features. The development of novel methods parallels widespread application by consumer devices, law enforcement, and access control. In particular, methods based on finger veins, as compared to face and fingerprints, obviate privacy concerns and degradation due to wear, age, and obscuration. However, they are two-dimensional (2D) and are fundamentally limited by conventional imaging and tissue-light scattering. In this work, for the first time, to the best of our knowledge, we demonstrate a method of three-dimensional (3D) finger vein biometric authentication based on photoacoustic tomography. Using a compact photoacoustic tomography setup and a novel recognition algorithm, the advantages of 3D are demonstrated via biometric authentication of index finger vessels with false acceptance, false rejection, and equal error rates <1.23%, <9.27%, and <0.13%, respectively, when comparing one finger, a false acceptance rateimprovement>10× when comparing multiple fingers, and <0.7% when rotating fingers ±30.
Collapse
|
39
|
Xavierselvan M, Singh MKA, Mallidi S. In Vivo Tumor Vascular Imaging with Light Emitting Diode-Based Photoacoustic Imaging System. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4503. [PMID: 32806575 PMCID: PMC7472236 DOI: 10.3390/s20164503] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
Photoacoustic (PA) imaging has shown tremendous promise for imaging tumor vasculature and its function at deeper penetration depths without the use of exogenous contrast agents. Traditional PA imaging systems employ expensive and bulky class IV lasers with low pulse repetition rate, due to which its availability for preclinical cancer research is hampered. In this study, we evaluated the capability of a Light-Emitting Diode (LED)-based PA and ultrasound (US) imaging system for monitoring heterogeneous microvasculature in tumors (up to 10 mm in depth) and quantitatively compared the PA images with gold standard histology images. We used a combination of a 7 MHz linear array US transducer and 850 nm excitation wavelength LED arrays to image blood vessels in a subcutaneous tumor model. After imaging, the tumors were sectioned and stained for endothelial cells to correlate with PA images across similar cross-sections. Analysis of 30 regions of interest in tumors from different mice showed a statistically significant R-value of 0.84 where the areas with high blood vessel density had high PA response while low blood vessel density regions had low PA response. Our results confirm that LED-based PA and US imaging can provide 2D and 3D images of tumor vasculature and the potential it has as a valuable tool for preclinical cancer research.
Collapse
Affiliation(s)
- Marvin Xavierselvan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA;
| | - Mithun Kuniyil Ajith Singh
- Research & Business Development Division, Cyberdyne INC, Cambridge Innovation Center, 3013 Rotterdam, The Netherlands;
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA;
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
40
|
Affiliation(s)
- Xinping Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing China
| | - Fu‐Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing China
| |
Collapse
|
41
|
Yang J, Zhang G, Chang W, Chi Z, Shang Q, Wu M, Pan T, Huang L, Jiang H. Photoacoustic imaging of hemodynamic changes in forearm skeletal muscle during cuff occlusion. BIOMEDICAL OPTICS EXPRESS 2020; 11:4560-4570. [PMID: 32923064 PMCID: PMC7449729 DOI: 10.1364/boe.392221] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 05/20/2023]
Abstract
Characterizations of circulatory and metabolic function in skeletal muscle are of great importance in clinical settings. Here in this study, we investigate the utility of photoacoustic tomography (PAT) to monitor the hemodynamic changes in forearm skeletal muscle during cuff occlusion. We show high quality photoacoustic (PA) images of human forearm in comparison with ultrasound images. Besides, we track the hemodynamic changes in the forearm during cuff occlusion cross-validated with near-infrared spectroscopy. Our study suggests that PAT, as a new tool, could be applied to common diseases affecting skeletal muscle in the future.
Collapse
Affiliation(s)
- Jinge Yang
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Guang Zhang
- School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu 611731, China
- Center for Information in Medicine, University of Electronic and Technology of China, Chengdu 611731, China
| | - Wu Chang
- School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu 611731, China
- Center for Information in Medicine, University of Electronic and Technology of China, Chengdu 611731, China
| | - Zihui Chi
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Qiquan Shang
- School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu 611731, China
- Center for Information in Medicine, University of Electronic and Technology of China, Chengdu 611731, China
| | - Man Wu
- School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu 611731, China
- Center for Information in Medicine, University of Electronic and Technology of China, Chengdu 611731, China
| | - Teng Pan
- School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu 611731, China
- Center for Information in Medicine, University of Electronic and Technology of China, Chengdu 611731, China
| | - Lin Huang
- School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu 611731, China
- Center for Information in Medicine, University of Electronic and Technology of China, Chengdu 611731, China
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa 33620, USA
| |
Collapse
|
42
|
Kuriakose M, Nguyen CD, Kuniyil Ajith Singh M, Mallidi S. Optimizing Irradiation Geometry in LED-Based Photoacoustic Imaging with 3D Printed Flexible and Modular Light Delivery System. SENSORS 2020; 20:s20133789. [PMID: 32640683 PMCID: PMC7374354 DOI: 10.3390/s20133789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 01/04/2023]
Abstract
Photoacoustic (PA) imaging–a technique combining the ability of optical imaging to probe functional properties of the tissue and deep structural imaging ability of ultrasound–has gained significant popularity in the past two decades for its utility in several biomedical applications. More recently, light-emitting diodes (LED) are being explored as an alternative to bulky and expensive laser systems used in PA imaging for their portability and low-cost. Due to the large beam divergence of LEDs compared to traditional laser beams, it is imperative to quantify the angular dependence of LED-based illumination and optimize its performance for imaging superficial or deep-seated lesions. A custom-built modular 3-D printed hinge system and tissue-mimicking phantoms with various absorption and scattering properties were used in this study to quantify the angular dependence of LED-based illumination. We also experimentally calculated the source divergence of the pulsed-LED arrays to be 58° ± 8°. Our results from point sources (pencil lead phantom) in non-scattering medium obey the cotangential relationship between the angle of irradiation and maximum PA intensity obtained at various imaging depths, as expected. Strong dependence on the angle of illumination at superficial depths (−5°/mm at 10 mm) was observed that becomes weaker at intermediate depths (−2.5°/mm at 20 mm) and negligible at deeper locations (−1.1°/mm at 30 mm). The results from the tissue-mimicking phantom in scattering media indicate that angles between 30–75° could be used for imaging lesions at various depths (12 mm–28 mm) where lower LED illumination angles (closer to being parallel to the imaging plane) are preferable for deep tissue imaging and superficial lesion imaging is possible with higher LED illumination angles (closer to being perpendicular to the imaging plane). Our results can serve as a priori knowledge for the future LED-based PA system designs employed for both preclinical and clinical applications.
Collapse
Affiliation(s)
- Maju Kuriakose
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (M.K.); (C.D.N.)
| | - Christopher D. Nguyen
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (M.K.); (C.D.N.)
| | | | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (M.K.); (C.D.N.)
- Correspondence:
| |
Collapse
|
43
|
Han M, Choi W, Ahn J, Ryu H, Seo Y, Kim C. In Vivo Dual-Modal Photoacoustic and Ultrasound Imaging of Sentinel Lymph Nodes Using a Solid-State Dye Laser System. SENSORS 2020; 20:s20133714. [PMID: 32630827 PMCID: PMC7374351 DOI: 10.3390/s20133714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022]
Abstract
Photoacoustic imaging (PAI) is being actively investigated as a non-invasive and non-radioactive imaging technique for sentinel lymph node (SLN) biopsy. By taking advantage of optical and ultrasound imaging, PAI probes SLNs non-invasively with methylene blue (MB) in both live animals and breast cancer patients. However, these PAI systems have limitations for widespread use in clinics and commercial marketplaces because the lasers used by the PAI systems, e.g., tunable liquid dye laser systems and optical parametric oscillator (OPO) lasers, are bulky in size, not economical, and use risky flammable and toxic liquid dyes. To overcome these limitations, we are proposing a novel dual-modal photoacoustic and ultrasound imaging system based on a solid-state dye laser (SD-PAUSI), which is compact, convenient, and carries far less risk of flammability and toxicity. Using a solid-state dye handpiece that generates 650-nm wavelength, we successfully imaged the MB tube positioned deeply (~3.9 cm) in chicken breast tissue. The SLNs were also photoacoustically detected in the in vivo rats beneath a 2.2-cm-thick layer of chicken breast, which is deeper than the typical depth of SLNs in humans (1.2 ± 0.5 cm). Furthermore, we showed the multispectral capability of the PAI by switching the dye handpiece, in which the MB-dyed SLN was selectively highlighted from the surrounding vasculature. These results demonstrated the great potential of the SD-PAUSI as an easy but effective modality for SLN detection.
Collapse
Affiliation(s)
- Moongyu Han
- Department of Electrical Engineering, Creative IT Engineering and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (M.H.); (W.C.); (J.A.)
| | - Wonseok Choi
- Department of Electrical Engineering, Creative IT Engineering and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (M.H.); (W.C.); (J.A.)
| | - Joongho Ahn
- Department of Electrical Engineering, Creative IT Engineering and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (M.H.); (W.C.); (J.A.)
| | - Hanyoung Ryu
- R&D Center, Wontech Co. Ltd., Daejeon 34028, Korea; (H.R.); (Y.S.)
| | - Youngseok Seo
- R&D Center, Wontech Co. Ltd., Daejeon 34028, Korea; (H.R.); (Y.S.)
| | - Chulhong Kim
- Department of Electrical Engineering, Creative IT Engineering and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (M.H.); (W.C.); (J.A.)
- Correspondence: ; Tel.: +82-54-279-8805
| |
Collapse
|
44
|
Qiu T, Yang J, Pan T, Peng C, Jiang H, Luo Y. Assessment of liver function reserve by photoacoustic tomography: a feasibility study. BIOMEDICAL OPTICS EXPRESS 2020; 11:3985-3995. [PMID: 33014580 DOI: 10.1364/boe.394344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/05/2023]
Abstract
Assessment of liver function reserve (LFR) is essential to determine liver resection scope and predict prognosis for patients with liver disease. Indocyanine green (ICG) concentration change is a classic marker to reflect liver function reserve as ICG is selectively taken up and eliminated by liver. Here we proposed a noninvasive approach for LFR assessment based on a real-time photoacoustic tomography (PAT) system. This feasibility study was to detect ICG concentration change by PAT in phantom and in vivo using both normal and partial hepatectomy (PH) rabbits. A linear relationship between photoacoustic signal intensity of ICG and ICG concentration was found in vitro. In vivo ICG concentration change over time after ICG injection was observed by PAT in normal rabbits, which was consistent with the findings measured by invasive spectrophotometry. Finally, clear difference in ICG clearance between the control and PH models was identified by PAT. Taken together, our study indicated the clinical potential of PAT to in vivo evaluate LFR noninvasively.
Collapse
Affiliation(s)
- Tingting Qiu
- Department of Medical Ultrasound, Sichuan University West China Hospital, Chengdu, China
| | - Jinge Yang
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Teng Pan
- School of Electronic Science and Engineering (National Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu 611731, China.,Center for Information in Medicine, University of Electronic and Technology of China, Chengdu 611731, China
| | - Chihan Peng
- Department of Medical Ultrasound, Sichuan University West China Hospital, Chengdu, China
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa 33620, USA
| | - Yan Luo
- Department of Medical Ultrasound, Sichuan University West China Hospital, Chengdu, China
| |
Collapse
|
45
|
An Automatic Unmixing Approach to Detect Tissue Chromophores from Multispectral Photoacoustic Imaging. SENSORS 2020; 20:s20113235. [PMID: 32517204 PMCID: PMC7308815 DOI: 10.3390/s20113235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Multispectral photoacoustic imaging has been widely explored as an emerging tool to visualize and quantify tissue chromophores noninvasively. This modality can capture the spectral absorption signature of prominent tissue chromophores, such as oxygenated, deoxygenated hemoglobin, and other biomarkers in the tissue by using spectral unmixing methods. Currently, most of the reported image processing algorithms use standard unmixing procedures, which include user interaction in the form of providing the expected spectral signatures. For translational research with patients, these types of supervised spectral unmixing can be challenging, as the spectral signature of the tissues can differ with respect to the disease condition. Imaging exogenous contrast agents and accessing their biodistribution can also be problematic, as some of the contrast agents are susceptible to change in spectral properties after the tissue interaction. In this work, we investigated the feasibility of an unsupervised spectral unmixing algorithm to detect and extract the tissue chromophores without any a-priori knowledge and user interaction. The algorithm has been optimized for multispectral photoacoustic imaging in the spectral range of 680-900 nm. The performance of the algorithm has been tested on simulated data, tissue-mimicking phantom, and also on the detection of exogenous contrast agents after the intravenous injection in mice. Our finding shows that the proposed automatic, unsupervised spectral unmixing method has great potential to extract and quantify the tissue chromophores, and this can be used in any wavelength range of the multispectral photoacoustic images.
Collapse
|
46
|
Ma X, Peng C, Yuan J, Cheng Q, Xu G, Wang X, Carson PL. Multiple Delay and Sum With Enveloping Beamforming Algorithm for Photoacoustic Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1812-1821. [PMID: 31831411 DOI: 10.1109/tmi.2019.2958838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Delay and Sum (DAS) is one of the most common beamforming algorithms for photoacoustic imaging (PAI) reconstruction. Based on calculating beamformed signal with simple delaying and summing, DAS can function in a quick response and is quite suitable for real-time PAI. However, high sidelobes and intense artifacts may appear when using DAS due to summing with unnecessary data. In this paper, a beamforming algorithm called Multiple Delay and Sum with Enveloping (multi-DASE) is introduced to solve this problem. Compared to DAS, the multi-DASE algorithm calculates not only the initial value of the beamformed signal but also the complete N-shaped photoacoustic signal for each pixel. Through computer simulation, a phantom experiment and experiment on human finger joint, the multi-DASE algorithm is compared with other beamforming methods in removing artifacts by evaluating the quality of the reconstructed images. Furthermore, by rearranging the calculation sequences, the multi-DASE algorithm can be computing in parallel using GPU acceleration to meet the needs of real-time clinical application.
Collapse
|
47
|
Tomographic Ultrasound and LED-Based Photoacoustic System for Preclinical Imaging. SENSORS 2020; 20:s20102793. [PMID: 32422995 PMCID: PMC7294432 DOI: 10.3390/s20102793] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 01/19/2023]
Abstract
Small animals are widely used as disease models in medical research. Noninvasive imaging modalities with functional capability play an important role in studying the disease state and treatment progress. Photoacoustics, being a noninvasive and functional modality, has the potential for small-animal imaging. However, the conventional photoacoustic tomographic systems use pulsed lasers, making it expensive, bulky, and require long acquisition time. In this work, we propose the use of photoacoustic and ultrasound tomographic imaging with LEDs as the light source and acoustic detection using a linear transducer array. We have demonstrated full-view tomographic imaging of a euthanized mouse and a potential application in liver fibrosis research.
Collapse
|
48
|
Farnia P, Najafzadeh E, Hariri A, Lavasani SN, Makkiabadi B, Ahmadian A, Jokerst JV. Dictionary learning technique enhances signal in LED-based photoacoustic imaging. BIOMEDICAL OPTICS EXPRESS 2020; 11:2533-2547. [PMID: 32499941 PMCID: PMC7249823 DOI: 10.1364/boe.387364] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 05/12/2023]
Abstract
There has been growing interest in low-cost light sources such as light-emitting diodes (LEDs) as an excitation source in photoacoustic imaging. However, LED-based photoacoustic imaging is limited by low signal due to low energy per pulse-the signal is easily buried in noise leading to low quality images. Here, we describe a signal de-noising approach for LED-based photoacoustic signals based on dictionary learning with an alternating direction method of multipliers. This signal enhancement method is then followed by a simple reconstruction approach delay and sum. This approach leads to sparse representation of the main components of the signal. The main improvements of this approach are a 38% higher contrast ratio and a 43% higher axial resolution versus the averaging method but with only 4% of the frames and consequently 49.5% less computational time. This makes it an appropriate option for real-time LED-based photoacoustic imaging.
Collapse
Affiliation(s)
- Parastoo Farnia
- Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Research Centre of Biomedical Technology and Robotics (RCBTR), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- These authors contributed equally to this paper
| | - Ebrahim Najafzadeh
- Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Research Centre of Biomedical Technology and Robotics (RCBTR), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- These authors contributed equally to this paper
| | - Ali Hariri
- Department of Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092, USA
| | - Saeedeh Navaei Lavasani
- Research Centre of Biomedical Technology and Robotics (RCBTR), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biomedical Engineering and Medical Physics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahador Makkiabadi
- Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Research Centre of Biomedical Technology and Robotics (RCBTR), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Ahmadian
- Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Research Centre of Biomedical Technology and Robotics (RCBTR), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Jesse V. Jokerst
- Department of Nano Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092, USA
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092, USA
- Department of Radiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092, USA
| |
Collapse
|
49
|
Towards Clinical Translation of LED-Based Photoacoustic Imaging: A Review. SENSORS 2020; 20:s20092484. [PMID: 32349414 PMCID: PMC7249023 DOI: 10.3390/s20092484] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Photoacoustic imaging, with the capability to provide simultaneous structural, functional, and molecular information, is one of the fastest growing biomedical imaging modalities of recent times. As a hybrid modality, it not only provides greater penetration depth than the purely optical imaging techniques, but also provides optical contrast of molecular components in the living tissue. Conventionally, photoacoustic imaging systems utilize bulky and expensive class IV lasers, which is one of the key factors hindering the clinical translation of this promising modality. Use of LEDs which are portable and affordable offers a unique opportunity to accelerate the clinical translation of photoacoustics. In this paper, we first review the development history of LED as an illumination source in biomedical photoacoustic imaging. Key developments in this area, from point-source measurements to development of high-power LED arrays, are briefly discussed. Finally, we thoroughly review multiple phantom, ex-vivo, animal in-vivo, human in-vivo, and clinical pilot studies and demonstrate the unprecedented preclinical and clinical potential of LED-based photoacoustic imaging.
Collapse
|
50
|
Joseph Francis K, Boink YE, Dantuma M, Ajith Singh MK, Manohar S, Steenbergen W. Tomographic imaging with an ultrasound and LED-based photoacoustic system. BIOMEDICAL OPTICS EXPRESS 2020; 11:2152-2165. [PMID: 32341873 PMCID: PMC7173893 DOI: 10.1364/boe.384548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 05/05/2023]
Abstract
Pulsed lasers in photoacoustic tomography systems are expensive, which limit their use to a few clinics and small animal labs. We present a method to realize tomographic ultrasound and photoacoustic imaging using a commercial LED-based photoacoustic and ultrasound system. We present two illumination configurations using LED array units and an optimal number of angular views for tomographic reconstruction. The proposed method can be a cost-effective solution for applications demanding tomographic imaging and can be easily integrated into conventional linear array-based ultrasound systems. We present a potential application for finger joint imaging in vivo, which can be used for point-of-care rheumatoid arthritis diagnosis and monitoring.
Collapse
Affiliation(s)
- Kalloor Joseph Francis
- Biomedical Photonic Imaging Group, Technical Medical Center, University of Twente, The Netherlands
- Multi-Modality Medical Imaging Group, Technical Medical Center, University of Twente, The Netherlands
| | - Yoeri E. Boink
- Multi-Modality Medical Imaging Group, Technical Medical Center, University of Twente, The Netherlands
- Department of Applied Mathematics, University of Twente, The Netherlands
| | - Maura Dantuma
- Biomedical Photonic Imaging Group, Technical Medical Center, University of Twente, The Netherlands
- Multi-Modality Medical Imaging Group, Technical Medical Center, University of Twente, The Netherlands
| | - Mithun Kuniyil Ajith Singh
- Research and Business Development Division, CYBERDYNE INC, Cambridge Innovation Center, Rotterdam, The Netherlands
| | - Srirang Manohar
- Multi-Modality Medical Imaging Group, Technical Medical Center, University of Twente, The Netherlands
| | - Wiendelt Steenbergen
- Biomedical Photonic Imaging Group, Technical Medical Center, University of Twente, The Netherlands
| |
Collapse
|