1
|
Reed L, Abraham J, Patel S, Dhar SS. Epigenetic Modifiers: Exploring the Roles of Histone Methyltransferases and Demethylases in Cancer and Neurodegeneration. BIOLOGY 2024; 13:1008. [PMID: 39765675 PMCID: PMC11673268 DOI: 10.3390/biology13121008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
Histone methyltransferases (HMTs) and histone demethylases (HDMs) are critical enzymes that regulate chromatin dynamics and gene expression through the addition and removal of methyl groups on histone proteins. HMTs, such as PRC2 and SETD2, are involved in the trimethylation of histone H3 at lysine 27 and lysine 36, influencing gene silencing and activation. Dysregulation of these enzymes often leads to abnormal gene expression and contributes to tumorigenesis. In contrast, HDMs including KDM7A and KDM2A reverse these methylation marks, and their dysfunction can drive disease progression. In cancer, the aberrant activity of specific HMTs and HDMs can lead to the silencing of tumor suppressor genes or the activation of oncogenes, facilitating tumor progression and resistance to therapy. Conversely, in neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), disruptions in histone methylation dynamics are associated with neuronal loss, altered gene expression, and disease progression. We aimed to comprehend the odd activity of HMTs and HDMs and how they contribute to disease pathogenesis, highlighting their potential as therapeutic targets. By advancing our understanding of these epigenetic regulators, this review provides new insights into their roles in cancer and neurodegenerative diseases, offering a foundation for future research.
Collapse
Affiliation(s)
| | | | | | - Shilpa S. Dhar
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (L.R.); (J.A.)
| |
Collapse
|
2
|
Amartumur S, Nguyen H, Huynh T, Kim TS, Woo RS, Oh E, Kim KK, Lee LP, Heo C. Neuropathogenesis-on-chips for neurodegenerative diseases. Nat Commun 2024; 15:2219. [PMID: 38472255 PMCID: PMC10933492 DOI: 10.1038/s41467-024-46554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Developing diagnostics and treatments for neurodegenerative diseases (NDs) is challenging due to multifactorial pathogenesis that progresses gradually. Advanced in vitro systems that recapitulate patient-like pathophysiology are emerging as alternatives to conventional animal-based models. In this review, we explore the interconnected pathogenic features of different types of ND, discuss the general strategy to modelling NDs using a microfluidic chip, and introduce the organoid-on-a-chip as the next advanced relevant model. Lastly, we overview how these models are being applied in academic and industrial drug development. The integration of microfluidic chips, stem cells, and biotechnological devices promises to provide valuable insights for biomedical research and developing diagnostic and therapeutic solutions for NDs.
Collapse
Affiliation(s)
- Sarnai Amartumur
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Huong Nguyen
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Thuy Huynh
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Testaverde S Kim
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Korea
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824, Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Anti-microbial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Luke P Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea.
- Harvard Medical School, Division of Engineering in Medicine and Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, 94720, USA.
| | - Chaejeong Heo
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea.
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Korea.
| |
Collapse
|
3
|
Creus-Muncunill J, Haure-Mirande JV, Mattei D, Bons J, Ramirez AV, Hamilton BW, Corwin C, Chowdhury S, Schilling B, Ellerby LM, Ehrlich ME. TYROBP/DAP12 knockout in Huntington's disease Q175 mice cell-autonomously decreases microglial expression of disease-associated genes and non-cell-autonomously mitigates astrogliosis and motor deterioration. J Neuroinflammation 2024; 21:66. [PMID: 38459557 PMCID: PMC10924371 DOI: 10.1186/s12974-024-03052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024] Open
Abstract
INTRODUCTION Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat in the Huntingtin gene (HTT). Immune activation is abundant in the striatum of HD patients. Detection of active microglia at presymptomatic stages suggests that microgliosis is a key early driver of neuronal dysfunction and degeneration. Recent studies showed that deletion of Tyrobp, a microglial protein, ameliorates neuronal dysfunction in Alzheimer's disease amyloidopathy and tauopathy mouse models while decreasing components of the complement subnetwork. OBJECTIVE While TYROBP/DAP12-mediated microglial activation is detrimental for some diseases such as peripheral nerve injury, it is beneficial for other diseases. We sought to determine whether the TYROBP network is implicated in HD and whether Tyrobp deletion impacts HD striatal function and transcriptomics. METHODS To test the hypothesis that Tyrobp deficiency would be beneficial in an HD model, we placed the Q175 HD mouse model on a Tyrobp-null background. We characterized these mice with a combination of behavioral testing, immunohistochemistry, transcriptomic and proteomic profiling. Further, we evaluated the gene signature in isolated Q175 striatal microglia, with and without Tyrobp. RESULTS Comprehensive analysis of publicly available human HD transcriptomic data revealed that the TYROBP network is overactivated in the HD putamen. The Q175 mice showed morphologic microglial activation, reduced levels of post-synaptic density-95 protein and motor deficits at 6 and 9 months of age, all of which were ameliorated on the Tyrobp-null background. Gene expression analysis revealed that lack of Tyrobp in the Q175 model does not prevent the decrease in the expression of striatal neuronal genes but reduces pro-inflammatory pathways that are specifically active in HD human brain, including genes identified as detrimental in neurodegenerative diseases, e.g. C1q and members of the Ccr5 signaling pathway. Integration of transcriptomic and proteomic data revealed that astrogliosis and complement system pathway were reduced after Tyrobp deletion, which was further validated by immunofluorescence analysis. CONCLUSIONS Our data provide molecular and functional support demonstrating that Tyrobp deletion prevents many of the abnormalities in the HD Q175 mouse model, suggesting that the Tyrobp pathway is a potential therapeutic candidate for Huntington's disease.
Collapse
Affiliation(s)
| | | | - Daniele Mattei
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Angie V Ramirez
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - B Wade Hamilton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Chuhyon Corwin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Sarah Chowdhury
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | | | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
4
|
Cano-Cano F, Martín-Loro F, Gallardo-Orihuela A, González-Montelongo MDC, Ortuño-Miquel S, Hervás-Corpión I, de la Villa P, Ramón-Marco L, Navarro-Calvo J, Gómez-Jaramillo L, Arroba AI, Valor LM. Retinal dysfunction in Huntington's disease mouse models concurs with local gliosis and microglia activation. Sci Rep 2024; 14:4176. [PMID: 38378796 PMCID: PMC10879138 DOI: 10.1038/s41598-024-54347-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
Huntington's disease (HD) is caused by an aberrant expansion of CAG repeats in the HTT gene that mainly affects basal ganglia. Although striatal dysfunction has been widely studied in HD mouse models, other brain areas can also be relevant to the pathology. In this sense, we have special interest on the retina as this is the most exposed part of the central nervous system that enable health monitoring of patients using noninvasive techniques. To establish the retina as an appropriate tissue for HD studies, we need to correlate the retinal alterations with those in the inner brain, i.e., striatum. We confirmed the malfunction of the transgenic R6/1 retinas, which underwent a rearrangement of their transcriptome as extensive as in the striatum. Although tissue-enriched genes were downregulated in both areas, a neuroinflammation signature was only clearly induced in the R6/1 retina in which the observed glial activation was reminiscent of the situation in HD patient's brains. The retinal neuroinflammation was confirmed in the slow progressive knock-in zQ175 strain. Overall, these results demonstrated the suitability of the mouse retina as a research model for HD and its associated glial activation.
Collapse
Affiliation(s)
- Fátima Cano-Cano
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Unidad de Investigación, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009, Cádiz, Spain
| | - Francisco Martín-Loro
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Unidad de Investigación, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009, Cádiz, Spain
| | - Andrea Gallardo-Orihuela
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Unidad de Investigación, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009, Cádiz, Spain
| | - María Del Carmen González-Montelongo
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Unidad de Investigación, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009, Cádiz, Spain
| | - Samanta Ortuño-Miquel
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Unidad de Bioinformática, Hospital General Universitario Dr. Balmis, 03010, Alicante, Spain
| | - Irati Hervás-Corpión
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Unidad de Investigación, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009, Cádiz, Spain
- Programa de Tumores Sólidos, Centro de Investigación Médica Aplicada (CIMA), Departamento de Pediatría, Clínica Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008, Pamplona, Spain
| | - Pedro de la Villa
- Departamento de Biología de Sistemas, Universidad de Alcalá de Henares, 28871, Alcalá de Henares, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Lucía Ramón-Marco
- Laboratorio de Investigación, Diagnostics Building, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Hospital General Universitario Dr. Balmis, Av. Pintor Baeza 12, 03010, Alicante, Spain
| | - Jorge Navarro-Calvo
- Laboratorio de Investigación, Diagnostics Building, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Hospital General Universitario Dr. Balmis, Av. Pintor Baeza 12, 03010, Alicante, Spain
| | - Laura Gómez-Jaramillo
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Unidad de Investigación, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009, Cádiz, Spain
| | - Ana I Arroba
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Unidad de Investigación, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009, Cádiz, Spain.
| | - Luis M Valor
- Laboratorio de Investigación, Diagnostics Building, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Hospital General Universitario Dr. Balmis, Av. Pintor Baeza 12, 03010, Alicante, Spain.
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), 03202, Elche, Spain.
| |
Collapse
|
5
|
Makeeva VS, Dyrkheeva NS, Lavrik OI, Zakian SM, Malakhova AA. Mutant-Huntingtin Molecular Pathways Elucidate New Targets for Drug Repurposing. Int J Mol Sci 2023; 24:16798. [PMID: 38069121 PMCID: PMC10706709 DOI: 10.3390/ijms242316798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The spectrum of neurodegenerative diseases known today is quite extensive. The complexities of their research and treatment lie not only in their diversity. Even many years of struggle and narrowly focused research on common pathologies such as Alzheimer's, Parkinson's, and other brain diseases have not brought cures for these illnesses. What can be said about orphan diseases? In particular, Huntington's disease (HD), despite affecting a smaller part of the human population, still attracts many researchers. This disorder is known to result from a mutation in the HTT gene, but having this information still does not simplify the task of drug development and studying the mechanisms of disease progression. Nonetheless, the data accumulated over the years and their analysis provide a good basis for further research. Here, we review studies devoted to understanding the mechanisms of HD. We analyze genes and molecular pathways involved in HD pathogenesis to describe the action of repurposed drugs and try to find new therapeutic targets.
Collapse
Affiliation(s)
- Vladlena S. Makeeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (V.S.M.); (S.M.Z.); (A.A.M.)
| | - Nadezhda S. Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia;
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia;
| | - Suren M. Zakian
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (V.S.M.); (S.M.Z.); (A.A.M.)
| | - Anastasia A. Malakhova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (V.S.M.); (S.M.Z.); (A.A.M.)
| |
Collapse
|
6
|
Tano V, Utami KH, Yusof NABM, Bégin J, Tan WWL, Pouladi MA, Langley SR. Widespread dysregulation of mRNA splicing implicates RNA processing in the development and progression of Huntington's disease. EBioMedicine 2023; 94:104720. [PMID: 37481821 PMCID: PMC10393612 DOI: 10.1016/j.ebiom.2023.104720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND In Huntington's disease (HD), a CAG repeat expansion mutation in the Huntingtin (HTT) gene drives a gain-of-function toxicity that disrupts mRNA processing. Although dysregulation of gene splicing has been shown in human HD post-mortem brain tissue, post-mortem analyses are likely confounded by cell type composition changes in late-stage HD, limiting the ability to identify dysregulation related to early pathogenesis. METHODS To investigate gene splicing changes in early HD, we performed alternative splicing analyses coupled with a proteogenomics approach to identify early CAG length-associated splicing changes in an established isogenic HD cell model. FINDINGS We report widespread neuronal differentiation stage- and CAG length-dependent splicing changes, and find an enrichment of RNA processing, neuronal function, and epigenetic modification-related genes with mutant HTT-associated splicing. When integrated with a proteomics dataset, we identified several of these differential splicing events at the protein level. By comparing with human post-mortem and mouse model data, we identified common patterns of altered splicing from embryonic stem cells through to post-mortem striatal tissue. INTERPRETATION We show that widespread splicing dysregulation in HD occurs in an early cell model of neuronal development. Importantly, we observe HD-associated splicing changes in our HD cell model that were also identified in human HD striatum and mouse model HD striatum, suggesting that splicing-associated pathogenesis possibly occurs early in neuronal development and persists to later stages of disease. Together, our results highlight splicing dysregulation in HD which may lead to disrupted neuronal function and neuropathology. FUNDING This research is supported by the Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Nanyang Assistant Professorship Start-Up Grant, the Singapore Ministry of Education under its Singapore Ministry of Education Academic Research Fund Tier 1 (RG23/22), the BC Children's Hospital Research Institute Investigator Grant Award (IGAP), and a Scholar Award from the Michael Smith Health Research BC.
Collapse
Affiliation(s)
- Vincent Tano
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Kagistia Hana Utami
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Nur Amirah Binte Mohammad Yusof
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Jocelyn Bégin
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Willy Wei Li Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore; Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Sarah R Langley
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore.
| |
Collapse
|
7
|
Mielcarek M, Isalan M. A minimal region of the HSP90AB1 promoter is suitable for ubiquitous expression in different somatic tissues with applicability for gene therapy. Front Mol Biosci 2023; 10:1175407. [PMID: 37138658 PMCID: PMC10149993 DOI: 10.3389/fmolb.2023.1175407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Huntington's disease (HD) is a multi-tissue failure disorder for which there is no cure. We have previously shown an effective therapeutic approach limited mainly to the central nervous system, based on a synthetic zinc finger (ZF) transcription repressor gene therapy, but it would be important to target other tissues as well. In this study, we identify a novel minimal HSP90AB1 promoter region that can efficiently control expression not only in the CNS but also in other affected HD tissues. This promoter-enhancer is effective in driving expression of ZF therapeutic molecules in both HD skeletal muscles and the heart, in the symptomatic R6/1 mouse model. Moreover, for the first time we show that ZF molecules repressing mutant HTT reverse transcriptional pathological remodelling in HD hearts. We conclude that this HSP90AB1 minimal promoter may be used to target multiple HD organs with therapeutic genes. The new promoter has the potential to be added to the portfolio of gene therapy promoters, for use where ubiquitous expression is needed.
Collapse
Affiliation(s)
- Michal Mielcarek
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
- *Correspondence: Mark Isalan,
| |
Collapse
|
8
|
Faragó A, Zsindely N, Farkas A, Neller A, Siági F, Szabó MR, Csont T, Bodai L. Acetylation State of Lysine 14 of Histone H3.3 Affects Mutant Huntingtin Induced Pathogenesis. Int J Mol Sci 2022; 23:15173. [PMID: 36499499 PMCID: PMC9738228 DOI: 10.3390/ijms232315173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Huntington's Disease (HD) is a fatal neurodegenerative disorder caused by the expansion of a polyglutamine-coding CAG repeat in the Huntingtin gene. One of the main causes of neurodegeneration in HD is transcriptional dysregulation that, in part, is caused by the inhibition of histone acetyltransferase (HAT) enzymes. HD pathology can be alleviated by increasing the activity of specific HATs or by inhibiting histone deacetylase (HDAC) enzymes. To determine which histone's post-translational modifications (PTMs) might play crucial roles in HD pathology, we investigated the phenotype-modifying effects of PTM mimetic mutations of variant histone H3.3 in a Drosophila model of HD. Specifically, we studied the mutations (K→Q: acetylated; K→R: non-modified; and K→M: methylated) of lysine residues K9, K14, and K27 of transgenic H3.3. In the case of H3.3K14Q modification, we observed the amelioration of all tested phenotypes (viability, longevity, neurodegeneration, motor activity, and circadian rhythm defects), while H3.3K14R had the opposite effect. H3.3K14Q expression prevented the negative effects of reduced Gcn5 (a HAT acting on H3K14) on HD pathology, while it only partially hindered the positive effects of heterozygous Sirt1 (an HDAC acting on H3K14). Thus, we conclude that the Gcn5-dependent acetylation of H3.3K14 might be an important epigenetic contributor to HD pathology.
Collapse
Affiliation(s)
- Anikó Faragó
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Nóra Zsindely
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Anita Farkas
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Alexandra Neller
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Fruzsina Siági
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Márton Richárd Szabó
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - Tamás Csont
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
9
|
Lipinski M, Niñerola S, Fuentes-Ramos M, Valor LM, Del Blanco B, López-Atalaya JP, Barco A. CBP Is Required for Establishing Adaptive Gene Programs in the Adult Mouse Brain. J Neurosci 2022; 42:7984-8001. [PMID: 36109165 PMCID: PMC9617619 DOI: 10.1523/jneurosci.0970-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/03/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Environmental factors and life experiences impinge on brain circuits triggering adaptive changes. Epigenetic regulators contribute to this neuroadaptation by enhancing or suppressing specific gene programs. The paralogous transcriptional coactivators and lysine acetyltransferases CREB binding protein (CBP) and p300 are involved in brain plasticity and stimulus-dependent transcription, but their specific roles in neuroadaptation are not fully understood. Here we investigated the impact of eliminating either CBP or p300 in excitatory neurons of the adult forebrain of mice from both sexes using inducible and cell type-restricted knock-out strains. The elimination of CBP, but not p300, reduced the expression and chromatin acetylation of plasticity genes, dampened activity-driven transcription, and caused memory deficits. The defects became more prominent in elderly mice and in paradigms that involved enduring changes in transcription, such as kindling and environmental enrichment, in which CBP loss interfered with the establishment of activity-induced transcriptional and epigenetic changes in response to stimulus or experience. These findings further strengthen the link between CBP deficiency in excitatory neurons and etiopathology in the nervous system.SIGNIFICANCE STATEMENT How environmental conditions and life experiences impinge on mature brain circuits to elicit adaptive responses that favor the survival of the organism remains an outstanding question in neurosciences. Epigenetic regulators are thought to contribute to neuroadaptation by initiating or enhancing adaptive gene programs. In this article, we examined the role of CREB binding protein (CBP) and p300, two paralogous transcriptional coactivators and histone acetyltransferases involved in cognitive processes and intellectual disability, in neuroadaptation in adult hippocampal circuits. Our experiments demonstrate that CBP, but not its paralog p300, plays a highly specific role in the epigenetic regulation of neuronal plasticity gene programs in response to stimulus and provide unprecedented insight into the molecular mechanisms underlying neuroadaptation.
Collapse
Affiliation(s)
- Michal Lipinski
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, 03550 Alicante, Spain
| | - Sergio Niñerola
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, 03550 Alicante, Spain
| | - Miguel Fuentes-Ramos
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, 03550 Alicante, Spain
| | - Luis M Valor
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, 03550 Alicante, Spain
| | - Beatriz Del Blanco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, 03550 Alicante, Spain
| | - Jose P López-Atalaya
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, 03550 Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, 03550 Alicante, Spain
| |
Collapse
|
10
|
Song S, Creus Muncunill J, Galicia Aguirre C, Tshilenge KT, Hamilton BW, Gerencser AA, Benlhabib H, Cirnaru MD, Leid M, Mooney SD, Ellerby LM, Ehrlich ME. Postnatal Conditional Deletion of Bcl11b in Striatal Projection Neurons Mimics the Transcriptional Signature of Huntington's Disease. Biomedicines 2022; 10:2377. [PMID: 36289639 PMCID: PMC9598565 DOI: 10.3390/biomedicines10102377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The dysregulation of striatal gene expression and function is linked to multiple diseases, including Huntington's disease (HD), Parkinson's disease, X-linked dystonia-parkinsonism (XDP), addiction, autism, and schizophrenia. Striatal medium spiny neurons (MSNs) make up 90% of the neurons in the striatum and are critical to motor control. The transcription factor, Bcl11b (also known as Ctip2), is required for striatal development, but the function of Bcl11b in adult MSNs in vivo has not been investigated. We conditionally deleted Bcl11b specifically in postnatal MSNs and performed a transcriptomic and behavioral analysis on these mice. Multiple enrichment analyses showed that the D9-Cre-Bcl11btm1.1Leid transcriptional profile was similar to the HD gene expression in mouse and human data sets. A Gene Ontology enrichment analysis linked D9-Cre-Bcl11btm1.1Leid to calcium, synapse organization, specifically including the dopaminergic synapse, protein dephosphorylation, and HDAC-signaling, commonly dysregulated pathways in HD. D9-Cre-Bcl11btm1.1Leid mice had decreased DARPP-32/Ppp1r1b in MSNs and behavioral deficits, demonstrating the dysregulation of a subtype of the dopamine D2 receptor expressing MSNs. Finally, in human HD isogenic MSNs, the mislocalization of BCL11B into nuclear aggregates points to a mechanism for BCL11B loss of function in HD. Our results suggest that BCL11B is important for the function and maintenance of mature MSNs and Bcl11b loss of function drives, in part, the transcriptomic and functional changes in HD.
Collapse
Affiliation(s)
- Sicheng Song
- Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jordi Creus Muncunill
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Galicia Aguirre
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90893, USA
| | | | - B. Wade Hamilton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Houda Benlhabib
- Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Maria-Daniela Cirnaru
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mark Leid
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Sean D. Mooney
- Department of Biomedical Informatics and Medical Education, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Lisa M. Ellerby
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90893, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
11
|
Martí-Martínez S, Valor LM. A Glimpse of Molecular Biomarkers in Huntington's Disease. Int J Mol Sci 2022; 23:ijms23105411. [PMID: 35628221 PMCID: PMC9142992 DOI: 10.3390/ijms23105411] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder that is caused by an abnormal expansion of CAG repeats in the Huntingtin (HTT) gene. Although the main symptomatology is explained by alterations at the level of the central nervous system, predominantly affecting the basal ganglia, a peripheral component of the disease is being increasingly acknowledged. Therefore, the manifestation of the disease is complex and variable among CAG expansion carriers, introducing uncertainty in the appearance of specific signs, age of onset and severity of disease. The monogenic nature of the disorder allows a precise diagnosis, but the use of biomarkers with prognostic value is still needed to achieve clinical management of the patients in an individual manner. In addition, we need tools to evaluate the patient's response to potential therapeutic approaches. In this review, we provide a succinct summary of the most interesting molecular biomarkers that have been assessed in patients, mostly obtained from body fluids such as cerebrospinal fluid, peripheral blood and saliva.
Collapse
Affiliation(s)
- Silvia Martí-Martínez
- Servicio de Neurología, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain;
| | - Luis M. Valor
- Laboratorio de Apoyo a la Investigación, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
- Correspondence: ; Tel.: +34-965-913-988
| |
Collapse
|
12
|
Environmental stimulation in Huntington disease patients and animal models. Neurobiol Dis 2022; 171:105725. [DOI: 10.1016/j.nbd.2022.105725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
|
13
|
Panes JD, Wendt A, Ramirez-Molina O, Castro PA, Fuentealba J. Deciphering the role of PGC-1α in neurological disorders: from mitochondrial dysfunction to synaptic failure. Neural Regen Res 2022; 17:237-245. [PMID: 34269182 PMCID: PMC8463972 DOI: 10.4103/1673-5374.317957] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The onset and mechanisms underlying neurodegenerative diseases remain uncertain. The main features of neurodegenerative diseases have been related with cellular and molecular events like neuronal loss, mitochondrial dysfunction and aberrant accumulation of misfolded proteins or peptides in specific areas of the brain. The most prevalent neurodegenerative diseases belonging to age-related pathologies are Alzheimer's disease, Huntington's disease, Parkinson's disease and amyotrophic lateral sclerosis. Interestingly, mitochondrial dysfunction has been observed to occur during the early onset of several neuropathological events associated to neurodegenerative diseases. The master regulator of mitochondrial quality control and energetic metabolism is the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Additionally, it has been observed that PGC-1α appears to be a key factor in maintaining neuronal survival and synaptic transmission. In fact, PGC-1α downregulation in different brain areas (hippocampus, substantia nigra, cortex, striatum and spinal cord) that occurs in function of neurological damage including oxidative stress, neuronal loss, and motor disorders has been seen in several animal and cellular models of neurodegenerative diseases. Current evidence indicates that PGC-1α upregulation may serve as a potent therapeutic approach against development and progression of neuronal damage. Remarkably, increasing evidence shows that PGC-1α deficient mice have neurodegenerative diseases-like features, as well as neurological abnormalities. Finally, we discuss recent studies showing novel specific PGC-1α isoforms in the central nervous system that appear to exert a key role in the age of onset of neurodegenerative diseases and have a neuroprotective function in the central nervous system, thus opening a new molecular strategy for treatment of neurodegenerative diseases. The purpose of this review is to provide an up-to-date overview of the PGC-1α role in the physiopathology of neurodegenerative diseases, as well as establish the importance of PGC-1α function in synaptic transmission and neuronal survival.
Collapse
Affiliation(s)
- Jessica D Panes
- Laboratorio de Screening de Compuestos Neuroactivos (LSCN), Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Aline Wendt
- Laboratorio de Screening de Compuestos Neuroactivos (LSCN), Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Oscar Ramirez-Molina
- Laboratorio de Screening de Compuestos Neuroactivos (LSCN), Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Patricio A Castro
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Laboratorio de Screening de Compuestos Neuroactivos (LSCN), Departamento de Fisiología; Centro de Investigaciones Avanzadas en Biomedicina (CIAB-UdeC), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
14
|
DNA Methylation in Huntington's Disease. Int J Mol Sci 2021; 22:ijms222312736. [PMID: 34884540 PMCID: PMC8657460 DOI: 10.3390/ijms222312736] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Methylation of cytosine in CpG dinucleotides is the major DNA modification in mammalian cells that is a key component of stable epigenetic marks. This modification, which on the one hand is reversible, while on the other hand, can be maintained through successive rounds of replication plays roles in gene regulation, genome maintenance, transgenerational epigenetic inheritance, and imprinting. Disturbed DNA methylation contributes to a wide array of human diseases from single-gene disorders to sporadic metabolic diseases or cancer. DNA methylation was also shown to affect several neurodegenerative disorders, including Huntington's disease (HD), a fatal, monogenic inherited disease. HD is caused by a polyglutamine repeat expansion in the Huntingtin protein that brings about a multifaceted pathogenesis affecting several cellular processes. Research of the last decade found complex, genome-wide DNA methylation changes in HD pathogenesis that modulate transcriptional activity and genome stability. This article reviews current evidence that sheds light on the role of DNA methylation in HD.
Collapse
|
15
|
Hervás-Corpión I, Gallardo-Orihuela A, Catalina-Fernández I, Iglesias-Lozano I, Soto-Torres O, Geribaldi-Doldán N, Domínguez-García S, Luna-García N, Romero-García R, Mora-López F, Iriarte-Gahete M, Morales JC, Campos-Caro A, Castro C, Gil-Salú JL, Valor LM. Potential Diagnostic Value of the Differential Expression of Histone H3 Variants between Low- and High-Grade Gliomas. Cancers (Basel) 2021; 13:cancers13215261. [PMID: 34771425 PMCID: PMC8582563 DOI: 10.3390/cancers13215261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive form of glioma and is characterized by poor prognosis and high recurrence despite intensive clinical interventions. To retrieve the key factors underlying the high malignancy of GB with potential diagnosis utility, we combined the analysis of The Cancer Gene Atlas and the REMBRANDT datasets plus a molecular examination of our own collection of surgical tumor resections. We determined a net reduction in the levels of the non-canonical histone H3 variant H3.3 in GB compared to lower-grade astrocytomas and oligodendrogliomas with a concomitant increase in the levels of the canonical histone H3 variants H3.1/H3.2. This increase can be potentially useful in the clinical diagnosis of high-grade gliomas, as evidenced by an immunohistochemistry screening of our cohort and can be at least partially explained by the induction of multiple histone genes encoding these canonical forms. Moreover, GBs showing low bulk levels of the H3.1/H3.2 proteins were more transcriptionally similar to low-grade gliomas than GBs showing high levels of H3.1/H3.2. In conclusion, this study identifies an imbalanced ratio between the H3 variants associated with glioma malignancy and molecular patterns relevant to the biology of gliomas, and proposes the examination of the H3.3 and H3.1/H3.2 levels to further refine diagnosis of low- and high-grade gliomas in future studies.
Collapse
Affiliation(s)
- Irati Hervás-Corpión
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain; (I.H.-C.); (A.G.-O.); (I.C.-F.); (I.I.-L.); (O.S.-T.); (N.G.-D.); (S.D.-G.); (N.L.-G.); (R.R.-G.); (F.M.-L.); (M.I.-G.); (J.C.M.); (A.C.-C.); (C.C.); (J.L.G.-S.)
- Unidad de Investigación, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009 Cádiz, Spain
| | - Andrea Gallardo-Orihuela
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain; (I.H.-C.); (A.G.-O.); (I.C.-F.); (I.I.-L.); (O.S.-T.); (N.G.-D.); (S.D.-G.); (N.L.-G.); (R.R.-G.); (F.M.-L.); (M.I.-G.); (J.C.M.); (A.C.-C.); (C.C.); (J.L.G.-S.)
- Unidad de Investigación, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009 Cádiz, Spain
| | - Inmaculada Catalina-Fernández
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain; (I.H.-C.); (A.G.-O.); (I.C.-F.); (I.I.-L.); (O.S.-T.); (N.G.-D.); (S.D.-G.); (N.L.-G.); (R.R.-G.); (F.M.-L.); (M.I.-G.); (J.C.M.); (A.C.-C.); (C.C.); (J.L.G.-S.)
- Unidad de Gestión Clínica de Anatomía Patológica, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009 Cádiz, Spain
| | - Irene Iglesias-Lozano
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain; (I.H.-C.); (A.G.-O.); (I.C.-F.); (I.I.-L.); (O.S.-T.); (N.G.-D.); (S.D.-G.); (N.L.-G.); (R.R.-G.); (F.M.-L.); (M.I.-G.); (J.C.M.); (A.C.-C.); (C.C.); (J.L.G.-S.)
- Unidad de Gestión Clínica de Neurocirugía, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009 Cádiz, Spain
| | - Olga Soto-Torres
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain; (I.H.-C.); (A.G.-O.); (I.C.-F.); (I.I.-L.); (O.S.-T.); (N.G.-D.); (S.D.-G.); (N.L.-G.); (R.R.-G.); (F.M.-L.); (M.I.-G.); (J.C.M.); (A.C.-C.); (C.C.); (J.L.G.-S.)
- Unidad de Gestión Clínica de Anatomía Patológica, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009 Cádiz, Spain
| | - Noelia Geribaldi-Doldán
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain; (I.H.-C.); (A.G.-O.); (I.C.-F.); (I.I.-L.); (O.S.-T.); (N.G.-D.); (S.D.-G.); (N.L.-G.); (R.R.-G.); (F.M.-L.); (M.I.-G.); (J.C.M.); (A.C.-C.); (C.C.); (J.L.G.-S.)
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Plaza Fragela, 11003 Cádiz, Spain
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, Plaza Fragela, 11003 Cádiz, Spain
| | - Samuel Domínguez-García
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain; (I.H.-C.); (A.G.-O.); (I.C.-F.); (I.I.-L.); (O.S.-T.); (N.G.-D.); (S.D.-G.); (N.L.-G.); (R.R.-G.); (F.M.-L.); (M.I.-G.); (J.C.M.); (A.C.-C.); (C.C.); (J.L.G.-S.)
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Plaza Fragela, 11003 Cádiz, Spain
| | - Nuria Luna-García
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain; (I.H.-C.); (A.G.-O.); (I.C.-F.); (I.I.-L.); (O.S.-T.); (N.G.-D.); (S.D.-G.); (N.L.-G.); (R.R.-G.); (F.M.-L.); (M.I.-G.); (J.C.M.); (A.C.-C.); (C.C.); (J.L.G.-S.)
- Unidad de Gestión Clínica de Anatomía Patológica, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009 Cádiz, Spain
| | - Raquel Romero-García
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain; (I.H.-C.); (A.G.-O.); (I.C.-F.); (I.I.-L.); (O.S.-T.); (N.G.-D.); (S.D.-G.); (N.L.-G.); (R.R.-G.); (F.M.-L.); (M.I.-G.); (J.C.M.); (A.C.-C.); (C.C.); (J.L.G.-S.)
- Unidad de Investigación, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009 Cádiz, Spain
| | - Francisco Mora-López
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain; (I.H.-C.); (A.G.-O.); (I.C.-F.); (I.I.-L.); (O.S.-T.); (N.G.-D.); (S.D.-G.); (N.L.-G.); (R.R.-G.); (F.M.-L.); (M.I.-G.); (J.C.M.); (A.C.-C.); (C.C.); (J.L.G.-S.)
- Servicio de Inmunología, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009 Cádiz, Spain
| | - Marianela Iriarte-Gahete
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain; (I.H.-C.); (A.G.-O.); (I.C.-F.); (I.I.-L.); (O.S.-T.); (N.G.-D.); (S.D.-G.); (N.L.-G.); (R.R.-G.); (F.M.-L.); (M.I.-G.); (J.C.M.); (A.C.-C.); (C.C.); (J.L.G.-S.)
- Servicio de Inmunología, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009 Cádiz, Spain
| | - Jorge C. Morales
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain; (I.H.-C.); (A.G.-O.); (I.C.-F.); (I.I.-L.); (O.S.-T.); (N.G.-D.); (S.D.-G.); (N.L.-G.); (R.R.-G.); (F.M.-L.); (M.I.-G.); (J.C.M.); (A.C.-C.); (C.C.); (J.L.G.-S.)
- Unidad de Investigación, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009 Cádiz, Spain
| | - Antonio Campos-Caro
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain; (I.H.-C.); (A.G.-O.); (I.C.-F.); (I.I.-L.); (O.S.-T.); (N.G.-D.); (S.D.-G.); (N.L.-G.); (R.R.-G.); (F.M.-L.); (M.I.-G.); (J.C.M.); (A.C.-C.); (C.C.); (J.L.G.-S.)
- Unidad de Investigación, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009 Cádiz, Spain
- Área de Genética, Departamento de Biomedicina, Biotecnología y Salud Pública, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Cádiz, Spain
| | - Carmen Castro
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain; (I.H.-C.); (A.G.-O.); (I.C.-F.); (I.I.-L.); (O.S.-T.); (N.G.-D.); (S.D.-G.); (N.L.-G.); (R.R.-G.); (F.M.-L.); (M.I.-G.); (J.C.M.); (A.C.-C.); (C.C.); (J.L.G.-S.)
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Plaza Fragela, 11003 Cádiz, Spain
| | - José L. Gil-Salú
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain; (I.H.-C.); (A.G.-O.); (I.C.-F.); (I.I.-L.); (O.S.-T.); (N.G.-D.); (S.D.-G.); (N.L.-G.); (R.R.-G.); (F.M.-L.); (M.I.-G.); (J.C.M.); (A.C.-C.); (C.C.); (J.L.G.-S.)
- Unidad de Gestión Clínica de Neurocirugía, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009 Cádiz, Spain
| | - Luis M. Valor
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain; (I.H.-C.); (A.G.-O.); (I.C.-F.); (I.I.-L.); (O.S.-T.); (N.G.-D.); (S.D.-G.); (N.L.-G.); (R.R.-G.); (F.M.-L.); (M.I.-G.); (J.C.M.); (A.C.-C.); (C.C.); (J.L.G.-S.)
- Unidad de Investigación, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009 Cádiz, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
- Laboratorio de Apoyo a la Investigación, Hospital General Universitario de Alicante, Av. Pintor Baeza 12, 03010 Alicante, Spain
- Correspondence: ; Tel.: +34-965-913-988
| |
Collapse
|
16
|
Malla B, Guo X, Senger G, Chasapopoulou Z, Yildirim F. A Systematic Review of Transcriptional Dysregulation in Huntington's Disease Studied by RNA Sequencing. Front Genet 2021; 12:751033. [PMID: 34721539 PMCID: PMC8554124 DOI: 10.3389/fgene.2021.751033] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) is a chronic neurodegenerative disorder caused by an expansion of polyglutamine repeats in exon 1 of the Huntingtin gene. Transcriptional dysregulation accompanied by epigenetic alterations is an early and central disease mechanism in HD yet, the exact mechanisms and regulators, and their associated gene expression programs remain incompletely understood. This systematic review investigates genome-wide transcriptional studies that were conducted using RNA sequencing (RNA-seq) technology in HD patients and models. The review protocol was registered at the Open Science Framework (OSF). The biomedical literature and gene expression databases, PubMed and NCBI BioProject, Array Express, European Nucleotide Archive (ENA), European Genome-Phenome Archive (EGA), respectively, were searched using the defined terms specified in the protocol following the PRISMA guidelines. We conducted a complete literature and database search to retrieve all RNA-seq-based gene expression studies in HD published until August 2020, retrieving 288 articles and 237 datasets from PubMed and the databases, respectively. A total of 27 studies meeting the eligibility criteria were included in this review. Collectively, comparative analysis of the datasets revealed frequent genes that are consistently dysregulated in HD. In postmortem brains from HD patients, DNAJB1, HSPA1B and HSPB1 genes were commonly upregulated across all brain regions and cell types except for medium spiny neurons (MSNs) at symptomatic disease stage, and HSPH1 and SAT1 genes were altered in expression in all symptomatic brain datasets, indicating early and sustained changes in the expression of genes related to heat shock response as well as response to misfolded proteins. Specifically in indirect pathway medium spiny neurons (iMSNs), mitochondria related genes were among the top uniquely dysregulated genes. Interestingly, blood from HD patients showed commonly differentially expressed genes with a number of brain regions and cells, with the highest number of overlapping genes with MSNs and BA9 region at symptomatic stage. We also found the differential expression and predicted altered activity of a set of transcription factors and epigenetic regulators, including BCL6, EGR1, FOSL2 and CREBBP, HDAC1, KDM4C, respectively, which may underlie the observed transcriptional changes in HD. Altogether, our work provides a complete overview of the transcriptional studies in HD, and by data synthesis, reveals a number of common and unique gene expression and regulatory changes across different cell and tissue types in HD. These changes could elucidate new insights into molecular mechanisms of differential vulnerability in HD. Systematic Review Registration: https://osf.io/pm3wq.
Collapse
Affiliation(s)
- Bimala Malla
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Xuanzong Guo
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gökçe Senger
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Zoi Chasapopoulou
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ferah Yildirim
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Janowski M, Milewska M, Zare P, Pękowska A. Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Pharmaceuticals (Basel) 2021; 14:765. [PMID: 34451862 PMCID: PMC8399958 DOI: 10.3390/ph14080765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/26/2022] Open
Abstract
Neurological disorders (NDs) comprise a heterogeneous group of conditions that affect the function of the nervous system. Often incurable, NDs have profound and detrimental consequences on the affected individuals' lives. NDs have complex etiologies but commonly feature altered gene expression and dysfunctions of the essential chromatin-modifying factors. Hence, compounds that target DNA and histone modification pathways, the so-called epidrugs, constitute promising tools to treat NDs. Yet, targeting the entire epigenome might reveal insufficient to modify a chosen gene expression or even unnecessary and detrimental to the patients' health. New technologies hold a promise to expand the clinical toolkit in the fight against NDs. (Epi)genome engineering using designer nucleases, including CRISPR-Cas9 and TALENs, can potentially help restore the correct gene expression patterns by targeting a defined gene or pathway, both genetically and epigenetically, with minimal off-target activity. Here, we review the implication of epigenetic machinery in NDs. We outline syndromes caused by mutations in chromatin-modifying enzymes and discuss the functional consequences of mutations in regulatory DNA in NDs. We review the approaches that allow modifying the (epi)genome, including tools based on TALENs and CRISPR-Cas9 technologies, and we highlight how these new strategies could potentially change clinical practices in the treatment of NDs.
Collapse
Affiliation(s)
| | | | | | - Aleksandra Pękowska
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Street, 02-093 Warsaw, Poland; (M.J.); (M.M.); (P.Z.)
| |
Collapse
|
18
|
Świtońska-Kurkowska K, Krist B, Delimata J, Figiel M. Juvenile Huntington's Disease and Other PolyQ Diseases, Update on Neurodevelopmental Character and Comparative Bioinformatic Review of Transcriptomic and Proteomic Data. Front Cell Dev Biol 2021; 9:642773. [PMID: 34277598 PMCID: PMC8281051 DOI: 10.3389/fcell.2021.642773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/10/2021] [Indexed: 01/18/2023] Open
Abstract
Polyglutamine (PolyQ) diseases are neurodegenerative disorders caused by the CAG repeat expansion mutation in affected genes resulting in toxic proteins containing a long chain of glutamines. There are nine PolyQ diseases: Huntington’s disease (HD), spinocerebellar ataxias (types 1, 2, 3, 6, 7, and 17), dentatorubral-pallidoluysian atrophy (DRPLA), and spinal bulbar muscular atrophy (SBMA). In general, longer CAG expansions and longer glutamine tracts lead to earlier disease presentations in PolyQ patients. Rarely, cases of extremely long expansions are identified for PolyQ diseases, and they consistently lead to juvenile or sometimes very severe infantile-onset polyQ syndromes. In apparent contrast to the very long CAG tracts, shorter CAGs and PolyQs in proteins seems to be the evolutionary factor enhancing human cognition. Therefore, polyQ tracts in proteins can be modifiers of brain development and disease drivers, which contribute neurodevelopmental phenotypes in juvenile- and adult-onset PolyQ diseases. Therefore we performed a bioinformatics review of published RNAseq polyQ expression data resulting from the presence of polyQ genes in search of neurodevelopmental expression patterns and comparison between diseases. The expression data were collected from cell types reflecting stages of development such as iPSC, neuronal stem cell, neurons, but also the adult patients and models for PolyQ disease. In addition, we extended our bioinformatic transcriptomic analysis by proteomics data. We identified a group of 13 commonly downregulated genes and proteins in HD mouse models. Our comparative bioinformatic review highlighted several (neuro)developmental pathways and genes identified within PolyQ diseases and mouse models responsible for neural growth, synaptogenesis, and synaptic plasticity.
Collapse
Affiliation(s)
| | - Bart Krist
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Joanna Delimata
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
19
|
Hyeon JW, Kim AH, Yano H. Epigenetic regulation in Huntington's disease. Neurochem Int 2021; 148:105074. [PMID: 34038804 DOI: 10.1016/j.neuint.2021.105074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/23/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022]
Abstract
Huntington's disease (HD) is a devastating and fatal monogenic neurodegenerative disorder characterized by progressive loss of selective neurons in the brain and is caused by an abnormal expansion of CAG trinucleotide repeats in a coding exon of the huntingtin (HTT) gene. Progressive gene expression changes that begin at premanifest stages are a prominent feature of HD and are thought to contribute to disease progression. Increasing evidence suggests the critical involvement of epigenetic mechanisms in abnormal transcription in HD. Genome-wide alterations of a number of epigenetic modifications, including DNA methylation and multiple histone modifications, are associated with HD, suggesting that mutant HTT causes complex epigenetic abnormalities and chromatin structural changes, which may represent an underlying pathogenic mechanism. The causal relationship of specific epigenetic changes to early transcriptional alterations and to disease pathogenesis require further investigation. In this article, we review recent studies on epigenetic regulation in HD with a focus on DNA and histone modifications. We also discuss the contribution of epigenetic modifications to HD pathogenesis as well as potential mechanisms linking mutant HTT and epigenetic alterations. Finally, we discuss the therapeutic potential of epigenetic-based treatments.
Collapse
Affiliation(s)
- Jae Wook Hyeon
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
20
|
Huntington's disease brain-derived small RNAs recapitulate associated neuropathology in mice. Acta Neuropathol 2021; 141:565-584. [PMID: 33547932 DOI: 10.1007/s00401-021-02272-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
Progressive motor alterations and selective death of striatal medium spiny neurons (MSNs) are key pathological hallmarks of Huntington's disease (HD), a neurodegenerative condition caused by a CAG trinucleotide repeat expansion in the coding region of the huntingtin (HTT) gene. Most research has focused on the pathogenic effects of the resultant protein product(s); however, growing evidence indicates that expanded CAG repeats within mutant HTT mRNA and derived small CAG repeat RNAs (sCAG) participate in HD pathophysiology. The individual contribution of protein versus RNA toxicity to HD pathophysiology remains largely uncharacterized and the role of other classes of small RNAs (sRNA) that are strongly perturbed in HD is uncertain. Here, we demonstrate that sRNA produced in the putamen of HD patients (HD-sRNA-PT) are sufficient to induce HD pathology in vivo. Mice injected with HD-sRNA-PT show motor abnormalities, decreased levels of striatal HD-related proteins, disruption of the indirect pathway, and strong transcriptional abnormalities, paralleling human HD pathology. Importantly, we show that the specific blockage of sCAG mitigates HD-sRNA-PT neurotoxicity only to a limited extent. This observation prompted us to identify other sRNA species enriched in HD putamen with neurotoxic potential. We detected high levels of tRNA fragments (tRFs) in HD putamen, and we validated the neurotoxic potential of an Alanine derived tRF in vitro. These results highlight that HD-sRNA-PT are neurotoxic, and suggest that multiple sRNA species contribute to striatal dysfunction and general transcriptomic changes, favoring therapeutic strategies based on the blockage of sRNA-mediated toxicity.
Collapse
|
21
|
Hecklau K, Mueller S, Koch SP, Mehkary MH, Kilic B, Harms C, Boehm-Sturm P, Yildirim F. The Effects of Selective Inhibition of Histone Deacetylase 1 and 3 in Huntington's Disease Mice. Front Mol Neurosci 2021; 14:616886. [PMID: 33679321 PMCID: PMC7925995 DOI: 10.3389/fnmol.2021.616886] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/27/2021] [Indexed: 01/15/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease characterized by a late clinical onset of psychiatric, cognitive, and motor symptoms. Transcriptional dysregulation is an early and central disease mechanism which is accompanied by epigenetic alterations in HD. Previous studies demonstrated that targeting transcriptional changes by inhibition of histone deacetylases (HDACs), especially the class I HDACs, provides therapeutic effects. Yet, their exact mechanisms of action and the features of HD pathology, on which these inhibitors act remain to be elucidated. Here, using transcriptional profiling, we found that selective inhibition of HDAC1 and HDAC3 by RGFP109 alleviated transcriptional dysregulation of a number of genes, including the transcription factor genes Neurod2 and Nr4a2, and gene sets and programs, especially those that are associated to insulin-like growth factor pathway, in the striatum of R6/1 mice. RGFP109 treatment led to a modest improvement of the motor skill learning and coordination deficit on the RotaRod test, while it did not alter the locomotor and anxiety-like phenotypes in R6/1 animals. We also found, by volumetric MRI, a widespread brain atrophy in the R6/1 mice at the symptomatic disease stage, on which RGFP109 showed no significant effects. Collectively, our combined work suggests that specific HDAC1 and HDAC3 inhibition may offer benefits for alleviating the motor phenotypic deficits and transcriptional dysregulation in HD.
Collapse
Affiliation(s)
- Katharina Hecklau
- Department of Neuropsychiatry, Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Mueller
- NeuroCure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité Core Facility 7T Experimental MRIs, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Paul Koch
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité Core Facility 7T Experimental MRIs, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Mustafa Hussain Mehkary
- Department of Neuropsychiatry, Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Busra Kilic
- Department of Neuropsychiatry, Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Harms
- NeuroCure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- NeuroCure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité – Universitätsmedizin Berlin, Berlin, Germany
- Charité Core Facility 7T Experimental MRIs, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Ferah Yildirim
- Department of Neuropsychiatry, Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
22
|
Bergonzoni G, Döring J, Biagioli M. D1R- and D2R-Medium-Sized Spiny Neurons Diversity: Insights Into Striatal Vulnerability to Huntington's Disease Mutation. Front Cell Neurosci 2021; 15:628010. [PMID: 33642998 PMCID: PMC7902492 DOI: 10.3389/fncel.2021.628010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder caused by an aberrant expansion of the CAG tract within the exon 1 of the HD gene, HTT. HD progressively impairs motor and cognitive capabilities, leading to a total loss of autonomy and ultimate death. Currently, no cure or effective treatment is available to halt the disease. Although the HTT gene is ubiquitously expressed, the striatum appears to be the most susceptible district to the HD mutation with Medium-sized Spiny Neurons (MSNs) (D1R and D2R) representing 95% of the striatal neuronal population. Why are striatal MSNs so vulnerable to the HD mutation? Particularly, why do D1R- and D2R-MSNs display different susceptibility to HD? Here, we highlight significant differences between D1R- and D2R-MSNs subpopulations, such as morphology, electrophysiology, transcriptomic, functionality, and localization in the striatum. We discuss possible reasons for their selective degeneration in the context of HD. Our review suggests that a better understanding of cell type-specific gene expression dysregulation within the striatum might reveal new paths to therapeutic intervention or prevention to ameliorate HD patients' life expectancy.
Collapse
Affiliation(s)
| | | | - Marta Biagioli
- NeuroEpigenetics Laboratory, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
23
|
Alcalá‐Vida R, Garcia‐Forn M, Castany‐Pladevall C, Creus‐Muncunill J, Ito Y, Blanco E, Golbano A, Crespí‐Vázquez K, Parry A, Slater G, Samarajiwa S, Peiró S, Di Croce L, Narita M, Pérez‐Navarro E. Neuron type-specific increase in lamin B1 contributes to nuclear dysfunction in Huntington's disease. EMBO Mol Med 2021; 13:e12105. [PMID: 33369245 PMCID: PMC7863407 DOI: 10.15252/emmm.202012105] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 01/08/2023] Open
Abstract
Lamins are crucial proteins for nuclear functionality. Here, we provide new evidence showing that increased lamin B1 levels contribute to the pathophysiology of Huntington's disease (HD), a CAG repeat-associated neurodegenerative disorder. Through fluorescence-activated nuclear suspension imaging, we show that nucleus from striatal medium-sized spiny and CA1 hippocampal neurons display increased lamin B1 levels, in correlation with altered nuclear morphology and nucleocytoplasmic transport disruption. Moreover, ChIP-sequencing analysis shows an alteration of lamin-associated chromatin domains in hippocampal nuclei, accompanied by changes in chromatin accessibility and transcriptional dysregulation. Supporting lamin B1 alterations as a causal role in mutant huntingtin-mediated neurodegeneration, pharmacological normalization of lamin B1 levels in the hippocampus of the R6/1 mouse model of HD by betulinic acid administration restored nuclear homeostasis and prevented motor and cognitive dysfunction. Collectively, our work points increased lamin B1 levels as a new pathogenic mechanism in HD and provides a novel target for its intervention.
Collapse
Affiliation(s)
- Rafael Alcalá‐Vida
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Present address:
Laboratory of Cognitive and Adaptive NeuroscienceUMR 7364 (CNRS/Strasbourg University)StrasbourgFrance
| | - Marta Garcia‐Forn
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Present address:
Seaver Autism Center for Research and TreatmentIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Carla Castany‐Pladevall
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Jordi Creus‐Muncunill
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Yoko Ito
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Arantxa Golbano
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Kilian Crespí‐Vázquez
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Aled Parry
- Epigenetics ProgrammeThe Babraham InstituteCambridgeUK
| | - Guy Slater
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Shamith Samarajiwa
- MRC Cancer UnitHutchison/MRC Research CentreUniversity of CambridgeCambridgeUK
| | - Sandra Peiró
- Vall d'Hebron Institute of OncologyBarcelonaSpain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- ICREABarcelonaSpain
| | - Masashi Narita
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Esther Pérez‐Navarro
- Departament de BiomedicinaFacultat de Medicina i Ciències de la SalutInstitut de NeurociènciesUniversitat de BarcelonaBarcelonaCatalonia
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCatalonia
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| |
Collapse
|
24
|
Chatterjee S, Angelakos CC, Bahl E, Hawk JD, Gaine ME, Poplawski SG, Schneider-Anthony A, Yadav M, Porcari GS, Cassel JC, Giese KP, Michaelson JJ, Lyons LC, Boutillier AL, Abel T. The CBP KIX domain regulates long-term memory and circadian activity. BMC Biol 2020; 18:155. [PMID: 33121486 PMCID: PMC7597000 DOI: 10.1186/s12915-020-00886-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/01/2020] [Indexed: 12/23/2022] Open
Abstract
Background CREB-dependent transcription necessary for long-term memory is driven by interactions with CREB-binding protein (CBP), a multi-domain protein that binds numerous transcription factors potentially affecting expression of thousands of genes. Identifying specific domain functions for multi-domain proteins is essential to understand processes such as cognitive function and circadian clocks. We investigated the function of the CBP KIX domain in hippocampal memory and gene expression using CBPKIX/KIX mice with mutations that prevent phospho-CREB (Ser133) binding. Results We found that CBPKIX/KIX mice were impaired in long-term memory, but not learning acquisition or short-term memory for the Morris water maze. Using an unbiased analysis of gene expression in the dorsal hippocampus after training in the Morris water maze or contextual fear conditioning, we discovered dysregulation of CREB, CLOCK, and BMAL1 target genes and downregulation of circadian genes in CBPKIX/KIX mice. Given our finding that the CBP KIX domain was important for transcription of circadian genes, we profiled circadian activity and phase resetting in CBPKIX/KIX mice. CBPKIX/KIX mice exhibited delayed activity peaks after light offset and longer free-running periods in constant dark. Interestingly, CBPKIX/KIX mice displayed phase delays and advances in response to photic stimulation comparable to wildtype littermates. Thus, this work delineates site-specific regulation of the circadian clock by a multi-domain protein. Conclusions These studies provide insight into the significance of the CBP KIX domain by defining targets of CBP transcriptional co-activation in memory and the role of the CBP KIX domain in vivo on circadian rhythms. Graphical abstract ![]()
Collapse
Affiliation(s)
- Snehajyoti Chatterjee
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France.,LNCA, CNRS UMR 7364, Strasbourg, France.,Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Christopher C Angelakos
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ethan Bahl
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Joshua D Hawk
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Marie E Gaine
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Shane G Poplawski
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.,Pharmacology Graduate Group, University of Pennsylvania, Philadelphia, USA
| | - Anne Schneider-Anthony
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France.,LNCA, CNRS UMR 7364, Strasbourg, France
| | - Manish Yadav
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Giulia S Porcari
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean-Christophe Cassel
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France
| | - K Peter Giese
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - Jacob J Michaelson
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, USA.,Department of Communication Sciences and Disorders, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa, USA.,Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, USA
| | - Lisa C Lyons
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Anne-Laurence Boutillier
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France. .,LNCA, CNRS UMR 7364, Strasbourg, France.
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
25
|
Alcalà-Vida R, Awada A, Boutillier AL, Merienne K. Epigenetic mechanisms underlying enhancer modulation of neuronal identity, neuronal activity and neurodegeneration. Neurobiol Dis 2020; 147:105155. [PMID: 33127472 DOI: 10.1016/j.nbd.2020.105155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases, including Huntington's disease (HD) and Alzheimer's disease (AD), are progressive conditions characterized by selective, disease-dependent loss of neuronal regions and/or subpopulations. Neuronal loss is preceded by a long period of neuronal dysfunction, during which glial cells also undergo major changes, including neuroinflammatory response. Those dramatic changes affecting both neuronal and glial cells associate with epigenetic and transcriptional dysregulations, characterized by defined cell-type-specific signatures. Notably, increasing studies support the view that altered regulation of transcriptional enhancers, which are distal regulatory regions of the genome capable of modulating the activity of promoters through chromatin looping, play a critical role in transcriptional dysregulation in HD and AD. We review current knowledge on enhancers in HD and AD, and highlight challenging issues to better decipher the epigenetic code of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rafael Alcalà-Vida
- LNCA, University of Strasbourg, France; CNRS UMR 7364, Strasbourg, France
| | - Ali Awada
- LNCA, University of Strasbourg, France; CNRS UMR 7364, Strasbourg, France
| | | | - Karine Merienne
- LNCA, University of Strasbourg, France; CNRS UMR 7364, Strasbourg, France.
| |
Collapse
|
26
|
Beaver M, Bhatnagar A, Panikker P, Zhang H, Snook R, Parmar V, Vijayakumar G, Betini N, Akhter S, Elefant F. Disruption of Tip60 HAT mediated neural histone acetylation homeostasis is an early common event in neurodegenerative diseases. Sci Rep 2020; 10:18265. [PMID: 33106538 PMCID: PMC7588445 DOI: 10.1038/s41598-020-75035-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetic dysregulation is a common mechanism shared by molecularly and clinically heterogenous neurodegenerative diseases (NDs). Histone acetylation homeostasis, maintained by the antagonistic activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs), is necessary for appropriate gene expression and neuronal function. Disruption of neural acetylation homeostasis has been implicated in multiple types of NDs including Alzheimer's disease (AD), yet mechanisms underlying alterations remain unclear. We show that like AD, disruption of Tip60 HAT/HDAC2 balance with concomitant epigenetic repression of common Tip60 target neuroplasticity genes occurs early in multiple types of Drosophila ND models such as Parkinson's Disease (PD), Huntington's Disease (HD) and Amyotrophic Lateral Sclerosis (ALS). Repressed neuroplasticity genes show reduced enrichment of Tip60 and epigentic acetylation signatures at all gene loci examined with certain genes showing inappropriate HDAC2 repressor enrichment. Functional neuronal consequences for these disease conditions are reminiscent of human pathology and include locomotion, synapse morphology, and short-term memory deficits. Increasing Tip60 HAT levels specifically in the mushroom body learning and memory center in the Drosophila brain protects against locomotion and short-term memory function deficits in multiple NDs. Together, our results support a model by which Tip60 protects against neurological impairments in different NDs via similar modes of action.
Collapse
Affiliation(s)
- Mariah Beaver
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Akanksha Bhatnagar
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Priyalakshmi Panikker
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Haolin Zhang
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Renee Snook
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Visha Parmar
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Gayathri Vijayakumar
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Niteesha Betini
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Sunya Akhter
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Felice Elefant
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA.
| |
Collapse
|
27
|
Narayan P, Reid S, Scotter EL, McGregor AL, Mehrabi NF, Singh-Bains MK, Glass M, Faull RLM, Snell RG, Dragunow M. Inconsistencies in histone acetylation patterns among different HD model systems and HD post-mortem brains. Neurobiol Dis 2020; 146:105092. [PMID: 32979507 DOI: 10.1016/j.nbd.2020.105092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/28/2020] [Accepted: 09/21/2020] [Indexed: 01/10/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in exon 1 of the huntingtin gene. Emerging evidence shows that additional epigenetic factors can modify disease phenotypes. Harnessing the ability of the epigenome to modify the disease for therapeutic purposes is therefore of interest. Epigenome modifiers, such as histone deacetylase inhibitors (HDACi), have improved pathology in a range of HD models. Yet in clinical trials, HDACi have failed to alleviate HD symptoms in patients. This study investigated potential reasons for the lack of translation of the therapeutic benefits of HDACi from lab to clinic. We analysed histone acetylation patterns of immuno-positive nuclei from brain sections and tissue microarrays from post-mortem human control and HD cases alongside several well-established HD models (OVT73 transgenic HD sheep, YAC128 mice, and an in vitro cell model expressing 97Q mutant huntingtin). Significant increases in histone H4 acetylation were observed in post-mortem HD cases, OVT73 transgenic HD sheep and in vitro models; these changes were absent in YAC128 mice. In addition, nuclear labelling for acetyl-histone H4 levels were inversely proportional to mutant huntingtin aggregate load in HD human cortex. Our data raise concerns regarding the utility of HDACi for the treatment of HD when regions of pathology exhibit already elevated histone acetylation patterns and emphasize the importance of searching for alternative epigenetic targets in future therapeutic strategies aiming to rescue HD phenotypes.
Collapse
Affiliation(s)
- Pritika Narayan
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
| | - Suzanne Reid
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
| | - Emma L Scotter
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand.
| | - Ailsa L McGregor
- School of Pharmacy, University of Otago, Dunedin 9016, New Zealand.
| | - Nasim F Mehrabi
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand.
| | | | - Michelle Glass
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand.
| | - Richard L M Faull
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand.
| | - Russell G Snell
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand; School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
| | - Mike Dragunow
- Centre for Brain Research, University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
28
|
Gallardo-Orihuela A, Hervás-Corpión I, Hierro-Bujalance C, Sanchez-Sotano D, Jiménez-Gómez G, Mora-López F, Campos-Caro A, Garcia-Alloza M, Valor LM. Transcriptional correlates of the pathological phenotype in a Huntington's disease mouse model. Sci Rep 2019; 9:18696. [PMID: 31822756 PMCID: PMC6904489 DOI: 10.1038/s41598-019-55177-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Huntington disease (HD) is a fatal neurodegenerative disorder without a cure that is caused by an aberrant expansion of CAG repeats in exon 1 of the huntingtin (HTT) gene. Although a negative correlation between the number of CAG repeats and the age of disease onset is established, additional factors may contribute to the high heterogeneity of the complex manifestation of symptoms among patients. This variability is also observed in mouse models, even under controlled genetic and environmental conditions. To better understand this phenomenon, we analysed the R6/1 strain in search of potential correlates between pathological motor/cognitive phenotypical traits and transcriptional alterations. HD-related genes (e.g., Penk, Plk5, Itpka), despite being downregulated across the examined brain areas (the prefrontal cortex, striatum, hippocampus and cerebellum), exhibited tissue-specific correlations with particular phenotypical traits that were attributable to the contribution of the brain region to that trait (e.g., striatum and rotarod performance, cerebellum and feet clasping). Focusing on the striatum, we determined that the transcriptional dysregulation associated with HD was partially exacerbated in mice that showed poor overall phenotypical scores, especially in genes with relevant roles in striatal functioning (e.g., Pde10a, Drd1, Drd2, Ppp1r1b). However, we also observed transcripts associated with relatively better outcomes, such as Nfya (CCAAT-binding transcription factor NF-Y subunit A) plus others related to neuronal development, apoptosis and differentiation. In this study, we demonstrated that altered brain transcription can be related to the manifestation of HD-like symptoms in mouse models and that this can be extrapolated to the highly heterogeneous population of HD patients.
Collapse
Affiliation(s)
- Andrea Gallardo-Orihuela
- Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain.,Unidad de Investigación, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009, Cádiz, Spain
| | - Irati Hervás-Corpión
- Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain.,Unidad de Investigación, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009, Cádiz, Spain
| | - Carmen Hierro-Bujalance
- Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain.,Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Plaza Fragela, 11003, Cádiz, Spain
| | - Daniel Sanchez-Sotano
- Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain.,Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Plaza Fragela, 11003, Cádiz, Spain
| | - Gema Jiménez-Gómez
- Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain.,Unidad de Investigación, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009, Cádiz, Spain
| | - Francisco Mora-López
- Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain.,Servicio de Inmunología, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009, Cádiz, Spain
| | - Antonio Campos-Caro
- Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain.,Unidad de Investigación, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009, Cádiz, Spain
| | - Monica Garcia-Alloza
- Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain.,Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Plaza Fragela, 11003, Cádiz, Spain
| | - Luis M Valor
- Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain. .,Unidad de Investigación, Hospital Universitario Puerta del Mar, Av. Ana de Viya 21, 11009, Cádiz, Spain.
| |
Collapse
|
29
|
Goodnight AV, Kremsky I, Khampang S, Jung YH, Billingsley JM, Bosinger SE, Corces VG, Chan AWS. Chromatin accessibility and transcription dynamics during in vitro astrocyte differentiation of Huntington's Disease Monkey pluripotent stem cells. Epigenetics Chromatin 2019; 12:67. [PMID: 31722751 PMCID: PMC6852955 DOI: 10.1186/s13072-019-0313-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Huntington's Disease (HD) is a fatal neurodegenerative disorder caused by a CAG repeat expansion, resulting in a mutant huntingtin protein. While it is now clear that astrocytes are affected by HD and significantly contribute to neuronal dysfunction and pathogenesis, the alterations in the transcriptional and epigenetic profiles in HD astrocytes have yet to be characterized. Here, we examine global transcription and chromatin accessibility dynamics during in vitro astrocyte differentiation in a transgenic non-human primate model of HD. RESULTS We found global changes in accessibility and transcription across different stages of HD pluripotent stem cell differentiation, with distinct trends first observed in neural progenitor cells (NPCs), once cells have committed to a neural lineage. Transcription of p53 signaling and cell cycle pathway genes was highly impacted during differentiation, with depletion in HD NPCs and upregulation in HD astrocytes. E2F target genes also displayed this inverse expression pattern, and strong associations between E2F target gene expression and accessibility at nearby putative enhancers were observed. CONCLUSIONS The results suggest that chromatin accessibility and transcription are altered throughout in vitro HD astrocyte differentiation and provide evidence that E2F dysregulation contributes to aberrant cell-cycle re-entry and apoptosis throughout the progression from NPCs to astrocytes.
Collapse
Affiliation(s)
- Alexandra V Goodnight
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
- Genetics and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, 1462 Clifton Rd, Atlanta, GA, 30322, USA
| | - Isaac Kremsky
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Sujittra Khampang
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, 30322, USA
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
- Embryonic Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Yoon Hee Jung
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - James M Billingsley
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Steven E Bosinger
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
- Genetics and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, 1462 Clifton Rd, Atlanta, GA, 30322, USA.
| | - Anthony W S Chan
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, 30322, USA.
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA.
- Genetics and Molecular Biology Program, Graduate Division of Biological and Biomedical Sciences, 1462 Clifton Rd, Atlanta, GA, 30322, USA.
| |
Collapse
|
30
|
Creus-Muncunill J, Ehrlich ME. Cell-Autonomous and Non-cell-Autonomous Pathogenic Mechanisms in Huntington's Disease: Insights from In Vitro and In Vivo Models. Neurotherapeutics 2019; 16:957-978. [PMID: 31529216 PMCID: PMC6985401 DOI: 10.1007/s13311-019-00782-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant disorder caused by an expansion in the trinucleotide CAG repeat in exon-1 in the huntingtin gene, located on chromosome 4. When the number of trinucleotide CAG exceeds 40 repeats, disease invariably is manifested, characterized by motor, cognitive, and psychiatric symptoms. The huntingtin (Htt) protein and its mutant form (mutant huntingtin, mHtt) are ubiquitously expressed but although multiple brain regions are affected, the most vulnerable brain region is the striatum. Striatal medium-sized spiny neurons (MSNs) preferentially degenerate, followed by the cortical pyramidal neurons located in layers V and VI. Proposed HD pathogenic mechanisms include, but are not restricted to, excitotoxicity, neurotrophic support deficits, collapse of the protein degradation mechanisms, mitochondrial dysfunction, transcriptional alterations, and disorders of myelin. Studies performed in cell type-specific and regionally selective HD mouse models implicate both MSN cell-autonomous properties and cell-cell interactions, particularly corticostriatal but also with non-neuronal cell types. Here, we review the intrinsic properties of MSNs that contribute to their selective vulnerability and in addition, we discuss how astrocytes, microglia, and oligodendrocytes, together with aberrant corticostriatal connectivity, contribute to HD pathophysiology. In addition, mHtt causes cell-autonomous dysfunction in cell types other than MSNs. These findings have implications in terms of therapeutic strategies aimed at preventing neuronal dysfunction and degeneration.
Collapse
Affiliation(s)
- Jordi Creus-Muncunill
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
31
|
Federspiel JD, Greco TM, Lum KK, Cristea IM. Hdac4 Interactions in Huntington's Disease Viewed Through the Prism of Multiomics. Mol Cell Proteomics 2019; 18:S92-S113. [PMID: 31040226 PMCID: PMC6692770 DOI: 10.1074/mcp.ra118.001253] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/27/2019] [Indexed: 12/29/2022] Open
Abstract
Huntington's disease (HD) is a monogenic disorder, driven by the expansion of a trinucleotide (CAG) repeat within the huntingtin (Htt) gene and culminating in neuronal degeneration in the brain, predominantly in the striatum and cortex. Histone deacetylase 4 (Hdac4) was previously found to contribute to the disease progression, providing a potential therapeutic target. Hdac4 knockdown reduced accumulation of misfolded Htt protein and improved HD phenotypes. However, the underlying mechanism remains unclear, given its independence on deacetylase activity and the predominant cytoplasmic Hdac4 localization in the brain. Here, we undertook a multiomics approach to uncover the function of Hdac4 in the context of HD pathogenesis. We characterized the interactome of endogenous Hdac4 in brains of HD mouse models. Alterations in interactions were investigated in response to Htt polyQ length, comparing mice with normal (Q20) and disease (Q140) Htt, at both pre- and post-symptomatic ages (2 and 10 months, respectively). Parallel analyses for Hdac5, a related class IIa Hdac, highlighted the unique interaction network established by Hdac4. To validate and distinguish interactions specifically enhanced in an HD-vulnerable brain region, we next characterized endogenous Hdac4 interactions in dissected striata from this HD mouse series. Hdac4 associations were polyQ-dependent in the striatum, but not in the whole brain, particularly in symptomatic mice. Hdac5 interactions did not exhibit polyQ dependence. To identify which Hdac4 interactions and functions could participate in HD pathogenesis, we integrated our interactome with proteome and transcriptome data sets generated from the striata. We discovered an overlap in enriched functional classes with the Hdac4 interactome, particularly in vesicular trafficking and synaptic functions, and we further validated the Hdac4 interaction with the Wiskott-Aldrich Syndrome Protein and SCAR Homolog (WASH) complex. This study expands the knowledge of Hdac4 regulation and functions in HD, adding to the understanding of the molecular underpinning of HD phenotypes.
Collapse
Affiliation(s)
- Joel D Federspiel
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544
| | - Krystal K Lum
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544.
| |
Collapse
|