1
|
Mafune KK, Kasson MT, Winkler MKH. Building blocks toward sustainable biofertilizers: variation in arbuscular mycorrhizal spore germination when immobilized with diazotrophic bacteria in biodegradable hydrogel beads. J Appl Microbiol 2024; 135:lxae167. [PMID: 38960411 DOI: 10.1093/jambio/lxae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/05/2024]
Abstract
AIM We investigated whether there was interspecies and intraspecies variation in spore germination of 12 strains of arbuscular mycorrhizal fungi when co-entrapped with the diazotrophic plant growth-promoting bacteria, Azospirillum brasilense Sp7 in alginate hydrogel beads. METHODS AND RESULTS Twelve Rhizophagus irregularis, Rhizophagus intraradices, and Funneliformis mosseae strains were separately combined with a live culture of Azospirillum brasilense Sp7. Each fungal-bacterial consortia was supplemented with sodium alginate to a 2% concentration (v/v) and cross-linked in calcium chloride (2% w/v) to form biodegradable hydrogel beads. One hundred beads from each combination (total of 1200) were fixed in solidified modified Strullu and Romand media. Beads were observed for successful spore germination and bacterial growth over 14 days. In all cases, successful growth of A. brasilense was observed. For arbuscular mycorrhizal fungi, interspecies variation in spore germination was observed, with R. intraradices having the highest germination rate (64.3%), followed by R. irregularis (45.5%) and F. mosseae (40.3%). However, a difference in intraspecies germination was only observed among strains of R. irregularis and F. mosseae. Despite having varying levels of germination, even the strains with the lowest potential were still able to establish with the plant host Brachypodium distachyon in a model system. CONCLUSIONS Arbuscular mycorrhizal spore germination varied across strains when co-entrapped with a diazotrophic plant growth-promoting bacteria. This demonstrates that hydrogel beads containing a mixed consortium hold potential as a sustainable biofertilizer and that compatibility tests remain an important building block when aiming to create a hydrogel biofertilizer that encases a diversity of bacteria and fungi. Moving forward, further studies should be conducted to test the efficacy of these hydrogel biofertilizers on different crops across varying climatic conditions in order to optimize their potential.
Collapse
Affiliation(s)
- Korena K Mafune
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98105, United States
| | - Matt T Kasson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, United States
| | - Mari-Karoliina H Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98105, United States
| |
Collapse
|
2
|
Corazon-Guivin MA, Rengifo del Aguila S, Corrêa RX, Cordova-Sinarahua D, Costa Maia L, Alves da Silva DK, Alves da Silva G, López-García Á, Coyne D, Oehl F. Native Arbuscular Mycorrhizal Fungi Promote Plukenetia volubilis Growth and Decrease the Infection Levels of Meloidogyne incognita. J Fungi (Basel) 2024; 10:451. [PMID: 39057336 PMCID: PMC11277566 DOI: 10.3390/jof10070451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The use of arbuscular mycorrhizal fungi (AMF) offers promising benefits to agriculture in the Amazon regions, where soils are characteristically acidic and nutrient-poor. The purpose of this research was to investigate the potential effects of two recently described species of AMF (Nanoglomus plukenetiae and Rhizoglomus variabile) native to the Peruvian Amazon for improving the plant growth of Plukenetia volubilis (inka nut or sacha inchi) and protecting the roots against soil pathogens. Two assays were simultaneously conducted under greenhouse conditions in Peru. The first focused on evaluating the biofertilizer effect of AMF inoculation, while the second examined the bioprotective effect against the root knot nematode, Meloidogyne incognita. Overall, the results showed that AMF inoculation of P. volubilis seedlings positively improved their development, particularly their biomass, height, and the leaf nutrient contents. When seedlings were exposed to M. incognita, plant growth was also noticeably higher for AMF-inoculated plants than those without AMF inoculation. Nematode reproduction was significantly suppressed by the presence of AMF, in particular R. variabile, and especially when inoculated prior to nematode exposure. The dual AMF inoculation did not necessarily lead to improved crop growth but notably improved P and K leaf contents. The findings provide strong justification for the development of products based on AMF as agro-inputs to catalyze nutrient use and uptake and protect crops against pests and diseases, especially those that are locally adapted to local crops and cropping conditions.
Collapse
Affiliation(s)
- Mike Anderson Corazon-Guivin
- Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Jr. Amorarca N° 315, Morales 22201, Peru;
- Center of Biotechnology and Genetics, Department of Biological Sciences, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado Km 16, Ilheus 45662-900, Brazil; (R.X.C.); (D.C.-S.)
| | - Sofía Rengifo del Aguila
- Laboratorio de Biología y Genética Molecular, Universidad Nacional de San Martín, Jr. Amorarca N° 315, Morales 22201, Peru;
| | - Ronan Xavier Corrêa
- Center of Biotechnology and Genetics, Department of Biological Sciences, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado Km 16, Ilheus 45662-900, Brazil; (R.X.C.); (D.C.-S.)
| | - Deyvis Cordova-Sinarahua
- Center of Biotechnology and Genetics, Department of Biological Sciences, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado Km 16, Ilheus 45662-900, Brazil; (R.X.C.); (D.C.-S.)
| | - Leonor Costa Maia
- Departamento de Micologia, Centro de Biociências, Universidade Federal de Pernambuco, Av. da Engenharia s/n, Recife 50740-600, Brazil; (L.C.M.); (D.K.A.d.S.); (G.A.d.S.)
| | - Danielle Karla Alves da Silva
- Departamento de Micologia, Centro de Biociências, Universidade Federal de Pernambuco, Av. da Engenharia s/n, Recife 50740-600, Brazil; (L.C.M.); (D.K.A.d.S.); (G.A.d.S.)
| | - Gladstone Alves da Silva
- Departamento de Micologia, Centro de Biociências, Universidade Federal de Pernambuco, Av. da Engenharia s/n, Recife 50740-600, Brazil; (L.C.M.); (D.K.A.d.S.); (G.A.d.S.)
| | - Álvaro López-García
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín (EEZ), CSIC, 18008 Granada, Spain;
| | - Danny Coyne
- International Institute of Tropical Agriculture (IITA), Ibadan 200113, Nigeria;
| | - Fritz Oehl
- Agroscope, Competence Division for Plants and Plant Products, Plant Protection Products-Impact and Assessment, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland;
| |
Collapse
|
3
|
Xiong X, Zeng J, Ning Q, Liu H, Bu Z, Zhang X, Zeng J, Zhuo R, Cui K, Qin Z, Gao Y, Liu X, Zhu Y. Ferroptosis induction in host rice by endophyte OsiSh-2 is necessary for mutualism and disease resistance in symbiosis. Nat Commun 2024; 15:5012. [PMID: 38866764 PMCID: PMC11169551 DOI: 10.1038/s41467-024-49099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
Ferroptosis is an iron-dependent cell death that was discovered recently. For beneficial microbes to establish mutualistic relationships with hosts, precisely controlled cell death in plant cells is necessary. However, whether ferroptosis is involved in the endophyte‒plant system is poorly understood. Here, we reported that endophytic Streptomyces hygroscopicus OsiSh-2, which established a sophisticated and beneficial interaction with host rice plants, caused ferroptotic cell death in rice characterized by ferroptosis- and immune-related markers. Treatments with ferroptosis inhibitors and inducers, different doses of OsiSh-2, and the siderophore synthesis-deficient mutant ΔcchH revealed that only moderate ferroptosis induced by endophytes is essential for the establishment of an optimal symbiont to enhance plant growth. Additionally, ferroptosis involved in a defence-primed state in rice, which contributed to improved resistance against rice blast disease. Overall, our study provides new insights into the mechanisms of endophyte‒plant interactions mediated by ferroptosis and suggests new directions for crop yield promotion.
Collapse
Affiliation(s)
- Xianqiu Xiong
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Jing Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Qing Ning
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Heqin Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Zhigang Bu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Xuan Zhang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Jiarui Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Rui Zhuo
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Kunpeng Cui
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Ziwei Qin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China
| | - Yan Gao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China.
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China.
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, PR China.
| |
Collapse
|
4
|
Carkner MK, Gao X, Entz MH. Ideotype breeding for crop adaptation to low phosphorus availability on extensive organic farms. FRONTIERS IN PLANT SCIENCE 2023; 14:1225174. [PMID: 37534288 PMCID: PMC10390776 DOI: 10.3389/fpls.2023.1225174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Organic farming in extensive production regions, such as the Canadian prairies have a particularly difficult challenge of replenishing soil reserves of phosphorus (P). Organic grains are exported off the farm while resupply of lost P is difficult due to limited availability of animal manures and low solubility of rock organic fertilizers. As a result, many organic farms on the prairies are deficient in plant-available P, leading to productivity breakdown. A portion of the solution may involve crop genetic improvement. A hypothetical 'catch and release' wheat ideotype for organic production systems is proposed to (i) enhance P uptake and use efficiency but (ii) translocate less P from the vegetative biomass into the grain. Root traits that would improve P uptake efficiency from less-available P pools under organic production are explored. The need to understand and classify 'phosphorus use efficiency' using appropriate indices for organic production is considered, as well as the appropriate efficiency indices for use if genetically selecting for the proposed ideotype. The implications for low seed P and high vegetative P are considered from a crop physiology, environmental, and human nutrition standpoint; considerations that are imperative for future feasibility of the ideotype.
Collapse
Affiliation(s)
| | - Xiaopeng Gao
- Department of Soil Science, University of Manitoba, Winnipeg, MB, Canada
| | - Martin H. Entz
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Johnson NC, Marín C. Microbial villages in the geography of arbuscular mycorrhizal symbioses. THE NEW PHYTOLOGIST 2023; 238:461-463. [PMID: 36853427 DOI: 10.1111/nph.18803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Nancy Collins Johnson
- Department of Biological Sciences, Northern Arizona University, 617 S Beaver St., Flagstaff, AZ, 86011, USA
- School of Earth and Sustainability, Northern Arizona University, 624 S Knoles Dr., Flagstaff, AZ, 86011, USA
| | - César Marín
- Centro de Investigación e Innovación para el Cambio Climatico (CiiCC), Universidad Santo Tomás, Ave Ramón Picarte 1130, Valdivia, 5090000, Chile
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands
| |
Collapse
|
6
|
Rodriguez-Morelos VH, Calonne-Salmon M, Declerck S. Anastomosis within and between networks of Rhizophagus irregularis is differentially influenced by fungicides. MYCORRHIZA 2023; 33:15-21. [PMID: 36680651 PMCID: PMC9938072 DOI: 10.1007/s00572-023-01103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi play key roles in soil fertility of agroecosystems. They develop dense extraradical mycelial (ERM) networks via mechanisms such as hyphal anastomosis. These connections between hyphae can be affected by agricultural practices such as the use of fungicides, but how these compounds affect anastomosis formation within and more importantly between networks of the same AM fungal strain remains poorly unexplored. Here, the impact of azoxystrobin, pencycuron, flutolanil, and fenpropimorph at 0.02 and 2 mg L-1 were tested in vitro on the anastomosis formation within and between networks of Rhizophagus irregularis MUCL 41833. Azoxystrobin and fenpropimorph had a particularly detrimental impact, at the highest concentration (2 mg L-1), on the number of anastomoses within and between networks, and for fenpropimorph in particular at both concentrations (0.02 and 2 mg L-1) on the number of anastomoses per length of hyphae. Curiously fenpropimorph at 0.02 mg L-1 significantly stimulated spore production, while with azoxystrobin, the reverse was observed at 2 mg L-1. The two other fungicides, pencycuron and flutolanil, had no detrimental effects on spore production or anastomosis formation within and between networks. These results suggest that fungicides with different modes of action and concentrations differentially affect anastomosis possibly by altering the hyphal tips of AM fungi and may thus affect the capacity of AM fungi to develop large hyphal networks exploring and exploiting the soil at the service of plants.
Collapse
Affiliation(s)
- Victor Hugo Rodriguez-Morelos
- Université Catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, Box L7.05.06, 1348 Louvain-La-Neuve, Belgium
| | - Maryline Calonne-Salmon
- Université Catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, Box L7.05.06, 1348 Louvain-La-Neuve, Belgium
| | - Stéphane Declerck
- Université Catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, Box L7.05.06, 1348 Louvain-La-Neuve, Belgium.
| |
Collapse
|
7
|
The Potential Applications of Commercial Arbuscular Mycorrhizal Fungal Inoculants and Their Ecological Consequences. Microorganisms 2022; 10:microorganisms10101897. [PMID: 36296173 PMCID: PMC9609176 DOI: 10.3390/microorganisms10101897] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Arbuscular mycorrhizal fungal (AMF) inoculants are sustainable biological materials that can provide several benefits to plants, especially in disturbed agroecosystems and in the context of phytomanagement interventions. However, it is difficult to predict the effectiveness of AMF inoculants and their impacts on indigenous AMF communities under field conditions. In this review, we examined the literature on the possible outcomes following the introduction of AMF-based inoculants in the field, including their establishment in soil and plant roots, persistence, and effects on the indigenous AMF community. Most studies indicate that introduced AMF can persist in the target field from a few months to several years but with declining abundance (60%) or complete exclusion (30%). Further analysis shows that AMF inoculation exerts both positive and negative impacts on native AMF species, including suppression (33%), stimulation (38%), exclusion (19%), and neutral impacts (10% of examined cases). The factors influencing the ecological fates of AMF inoculants, such as the inherent properties of the inoculum, dosage and frequency of inoculation, and soil physical and biological factors, are further discussed. While it is important to monitor the success and downstream impacts of commercial inoculants in the field, the sampling method and the molecular tools employed to resolve and quantify AMF taxa need to be improved and standardized to eliminate bias towards certain AMF strains and reduce discrepancies among studies. Lastly, inoculant producers must focus on selecting strains with a higher chance of success in the field, and having little or negligible downstream impacts.
Collapse
|
8
|
Cook K, Taylor AD, Sharma J, Taylor DL. Inter-annual Persistence of Canopy Fungi Driven by Abundance Despite High Spatial Turnover. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02104-7. [PMID: 36048179 DOI: 10.1007/s00248-022-02104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
While it is now well established that fungal community composition varies spatially at a variety of scales, temporal turnover of fungi is less well understood. Here we studied inter-annual community compositional changes of fungi in a rainforest tree canopy environment. We tracked fungal community shifts over 3 years in three substrate types (live bryophytes, dead bryophytes, and host tree bark) and compared these changes to amounts of community turnover seen at small spatial scales in the same system. The effect of substrate type on fungal community composition was stronger than that of sampling year, which was very small but significant. Although levels of temporal turnover varied among substrates, with greater turnover in live bryophytes than other substrates, the amount of turnover from year to year was comparable to what is seen at spatial distances between 5 and 9 cm for the same substrate. Stability of communities was largely driven by a few fungi with high relative abundances. A majority of fungal occurrences were at low relative abundances (≤ 0.1%). These fungi tended to be short lived and persisted to following years ≤ 50% of the time, depending on substrate. Their presence and persistence are likely impacted by stochastic processes like dispersal limitation and disturbance. Most samples contained only one or a few fungi at high relative abundance (≥ 10%) that persisted half or more of the time. These more abundant and persistent fungi are expected to have sustained functional interactions within the canopy ecosystem.
Collapse
Affiliation(s)
- Kel Cook
- Department of Biology, University of New Mexico, Castetter Hall 1480, MSC03-2020, 219 Yale Blvd NE, Albuquerque, NM, 87131-0001, USA.
| | - Andrew D Taylor
- Department of Biology, University of Hawai'i at Manoa, 2538 McCarthy Mall, Edmondson Hall 216, Honolulu, HI, 96822, USA
| | - Jyotsna Sharma
- Department of Plant and Soil Science, Texas Tech University, Bayer Plant Science Building, Room 219, 2911 15th Street, Mail Stop 2122, Lubbock, TX, 79409-2122, USA
| | - D Lee Taylor
- Department of Biology, University of New Mexico, Castetter Hall 1480, MSC03-2020, 219 Yale Blvd NE, Albuquerque, NM, 87131-0001, USA
| |
Collapse
|
9
|
Wang M, Tang W, Xiang L, Chen X, Shen X, Yin C, Mao Z. Involvement of MdWRKY40 in the defense of mycorrhizal apple against fusarium solani. BMC PLANT BIOLOGY 2022; 22:385. [PMID: 35918651 PMCID: PMC9344649 DOI: 10.1186/s12870-022-03753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 07/08/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Apple (Malus domestica Borkh.) is an important economic crop. The pathological effects of Fusarium solani, a species complex of soilborne pathogens, on the root systems of apple plants was unknown. It was unclear how mycorrhizal apple seedlings resist infection by F. solani. The transcriptional profiles of mycorrhizal and non-mycorrhizal plants infected by F. solani were compared using RNA-Seq. RESULTS Infection with F. solani significantly reduced the dry weight of apple roots, and the roots of mycorrhizal apple plants were less damaged when the plants were infected with F. solani. They also had enhanced activity of antioxidant enzymes and a reduction in the oxidation of membrane lipids. A total of 1839 differentially expressed genes (DEGs) were obtained after mycorrhizal and non-mycorrhizal apple plants were infected with F. solani. A gene ontogeny (GO) analysis showed that most of the DEGs were involved in the binding of ADP and calcium ions. In addition, based on a MapMan analysis, a large number of DEGs were found to be involved in the response of mycorrhizal plants to stress. Among them, the overexpressed transcription factor MdWRKY40 significantly improved the resistance of the apple 'Orin' callus to F. solani and the expression of the resistance gene MdGLU by binding the promoter of MdGLU. CONCLUSION This paper outlines how the inoculation of apple seedlings roots by arbuscular mycorrhizal fungi responded to infection with F. solani at the transcriptional level. In addition, MdWRKY40 played an important role in the resistance of mycorrhizal apple seedlings to infection with F. solani.
Collapse
Affiliation(s)
- Mei Wang
- State Key Laboratory of Crop Biology / College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
- Forestry College of Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Weixiao Tang
- State Key Laboratory of Crop Biology / College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Li Xiang
- State Key Laboratory of Crop Biology / College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology / College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Xiang Shen
- State Key Laboratory of Crop Biology / College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Chengmiao Yin
- State Key Laboratory of Crop Biology / College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| | - Zhiquan Mao
- State Key Laboratory of Crop Biology / College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
10
|
Sweeney CJ, Bottoms M, Ellis S, Ernst G, Kimmel S, Loutseti S, Schimera A, Carniel LSC, Sharples A, Staab F, Marx MT. Arbuscular Mycorrhizal Fungi and the Need for a Meaningful Regulatory Plant Protection Product Testing Strategy. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1808-1823. [PMID: 35678214 PMCID: PMC9543394 DOI: 10.1002/etc.5400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/23/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) perform key soil ecosystem services and, because of their symbiotic relationship with plant roots, may be exposed to the plant protection products (PPPs) applied to soils and crops. In 2017, the European Food Safety Authority (EFSA) released a scientific opinion addressing the state of the science on risk assessment of PPPs for in-soil organisms, recommending the inclusion of AMF ecotoxicological testing in the PPP regulatory process. However, it is not clear how this can be implemented in a tiered, robust, and ecologically relevant manner. Through a critical review of current literature, we examine the recommendations made within the EFSA report and the methodologies available to integrate AMF into the PPP risk assessment and provide perspective and commentary on their agronomic and ecological relevance. We conclude that considerable research questions remain to be addressed prior to the inclusion of AMF into the in-soil organism risk assessment, many of which stem from the unique challenges associated with including an obligate symbiont within the PPP risk assessment. Finally, we highlight critical knowledge gaps and the further research required to enable development of relevant, reliable, and robust scientific tests alongside pragmatic and scientifically sound guidance to ensure that any future risk-assessment paradigm is adequately protective of the ecosystem services it aims to preserve. Environ Toxicol Chem 2022;41:1808-1823. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Melanie Bottoms
- Syngenta, Jealott's Hill International Research Centre BracknellBracknellBerkshireUK
| | - Sian Ellis
- Corteva AgriscienceAbingdonOxfordshireUK
| | | | | | - Stefania Loutseti
- Syngenta, Jealott's Hill International Research Centre BracknellBracknellBerkshireUK
| | | | | | | | | | | |
Collapse
|
11
|
Arbuscular mycorrhizae: natural modulators of plant–nutrient relation and growth in stressful environments. Arch Microbiol 2022; 204:264. [DOI: 10.1007/s00203-022-02882-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 11/02/2022]
|
12
|
Floc’h JB, Hamel C, Laterrière M, Tidemann B, St-Arnaud M, Hijri M. Long-Term Persistence of Arbuscular Mycorrhizal Fungi in the Rhizosphere and Bulk Soils of Non-host Brassica napus and Their Networks of Co-occurring Microbes. FRONTIERS IN PLANT SCIENCE 2022; 13:828145. [PMID: 35283923 PMCID: PMC8914178 DOI: 10.3389/fpls.2022.828145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/25/2022] [Indexed: 05/25/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate plant symbionts that improve the nutrition and health of their host. Most, but not all the crops form a symbiosis with AMF. It is the case for canola (Brassica napus), an important crop in the Canadian Prairies that is known to not form this association. From 2008 to 2018, an experiment was replicated at three locations of the Canadian Prairies and it was used to assess the impact of canola on the community of AMF naturally occurring in three cropping systems, canola monoculture, or canola in two different rotation systems (2-years, canola-wheat and 3-years, barley-pea-canola). We sampled canola rhizosphere and bulk soils to: (i) determine diversity and community structure of AMF, we expected that canola will negatively impact AMF communities in function of its frequency in crop rotations and (ii) wanted to assess how these AMF communities interact with other fungi and bacteria. We detected 49 AMF amplicon sequence variants (ASVs) in canola rhizosphere and bulk soils, confirming the persistence of a diversified AMF community in canola-planted soil, even after 10 years of canola monoculture, which was unexpected considering that canola is among non-mycorrhizal plants. Network analysis revealed a broad range of potential interactions between canola-associated AMF and some fungal and bacterial taxa. We report for the first time that two AMF, Funneliformis mosseae and Rhizophagus iranicus, shared their bacterial cohort almost entirely in bulk soil. Our results suggest the existence of non-species-specific AMF-bacteria or AMF-fungi relationships that could benefit AMF in absence of host plants. The persistence of an AMF community in canola rhizosphere and bulk soils brings a new light on AMF ecology and leads to new perspectives for further studies about AMF and soil microbes interactions and AMF subsistence without mycotrophic host plants.
Collapse
Affiliation(s)
- Jean-Baptiste Floc’h
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Québec, QC, Canada
| | - Chantal Hamel
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Québec, QC, Canada
| | - Mario Laterrière
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Québec, QC, Canada
| | - Breanne Tidemann
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Marc St-Arnaud
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
| | - Mohamed Hijri
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
13
|
Sbrana C, Agnolucci M, Avio L, Giovannini L, Palla M, Turrini A, Giovannetti M. Mycorrhizal Symbionts and Associated Bacteria: Potent Allies to Improve Plant Phosphorus Availability and Food Security. Front Microbiol 2022; 12:797381. [PMID: 35082769 PMCID: PMC8784594 DOI: 10.3389/fmicb.2021.797381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cristiana Sbrana
- National Research Council (CNR), Institute of Agricultural Biology and Biotechnology, Pisa, Italy
| | - Monica Agnolucci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Luciano Avio
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Luca Giovannini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Michela Palla
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Alessandra Turrini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Raut JK, Baral K, Adhikari MK, Jha PK. Interaction of Mycorrhizal Fungi with Rhizospheric Microbes and Their Mode of Action. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Assemblage of indigenous arbuscular mycorrhizal fungi and green waste compost enhance drought stress tolerance in carob (Ceratonia siliqua L.) trees. Sci Rep 2021; 11:22835. [PMID: 34819547 PMCID: PMC8613250 DOI: 10.1038/s41598-021-02018-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/13/2021] [Indexed: 01/11/2023] Open
Abstract
In the current study, an eco-friendly management technology to improve young carob (Ceratonia siliqua L.) tree tolerance to water deficit was set up by using single or combined treatments of arbuscular mycorrhizal fungi (AMF) and/or compost (C). Two groups of young carob have been installed: (i) carob cultivated under well-watered conditions (WW; 70% field capacity (FC)) and (ii) where the plants were drought-stressed (DS; 35% FC) during 2, 4, 6, and 8 months. The effect of used biofertilizers on the course of growth, physiological (photosynthetic traits, water status, osmolytes, and mineral content), and biochemical (hydrogen peroxide (H2O2), oxidative damage to lipids (malondialdehyde (MDA), and membrane stability (MS)) traits in response to short- and long-term droughts were assessed. The dual application of AMF and C (C + AMF) boosted growth, physiological and biochemical parameters, and nutrient uptake in carob under WW and DS. After eight months, C + AMF significantly enhanced stomatal conductance by 20%, maximum photochemical efficiency of PSII by 7%, leaf water potential by 23%, chlorophyll and carotenoid by 40%, plant uptake of mineral nutrients (P by 75%, N by 46%, K+ by 35%, and Ca2+ by 40%), concentrations of soluble sugar by 40%, and protein content by 44% than controls under DS conditions. Notably, C + AMF reduced the accumulation of H2O2 and MDA content to a greater degree and increased MS. In contrast, enzyme activities (superoxide dismutase, catalase, peroxidase, and polyphenoloxidase) significantly increased in C + AMF plants under DS. Overall, our findings suggest that the pairing of C + AMF can mediate superior drought tolerance in young carob trees by increasing leaf stomatal conductance, cellular water content, higher solute concentration, and defense response against oxidative damage during the prolonged period of DS.
Collapse
|
16
|
Hupe A, Naether F, Haase T, Bruns C, Heß J, Dyckmans J, Joergensen RG, Wichern F. Evidence of considerable C and N transfer from peas to cereals via direct root contact but not via mycorrhiza. Sci Rep 2021; 11:11424. [PMID: 34075075 PMCID: PMC8169652 DOI: 10.1038/s41598-021-90436-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Intercropping of legumes and cereals is an important management method for improving yield stability, especially in organic farming systems. However, knowledge is restricted on the relevance of different nutrient transfer pathways. The objective of the study was to quantify nitrogen (N) and carbon (C) transfer from peas to triticale by (1) direct root contact (= R), (2) arbuscular mycorrhizal fungi (AMF; = A), and (3) diffusion (= D). Pea (Pisum sativum cv. Frisson and P2) and triticale (Triticum × Secale cv. Benetto) plants as intercrop were grown for 105 days. Treatment ADR enabled all transfer paths between the two crops. Treatment AD with root exclusion enabled AMF and diffusion transfer between peas and triticale. Treatment A with a diffusion gap barrier only allowed AMF transfer. Pea plants were labelled every 14 days with a 13C glucose and 15N urea solution, using the cotton wick technique. Direct root contact resulted in the highest pea rhizodeposition and thus the largest absolute amounts of N and C transfer to triticale. Root exclusion generally changed composition of rhizodeposits from fine root residues towards root exudates. Pea plant-N consisted of 17% N derived from rhizodeposition (NdfR) in treatment ADR but only 8% in the treatments AD and A, independently of pea variety, whereas pea plant-C consisted of 13% C derived from rhizodeposition (CdfR), without pea variety and transfer path treatment effects. Averaging all transfer path treatments, 6.7% of NdfR and 2.7% of CdfR was transferred from Frisson and P2 to triticale plants. Approximately 90% of this NdfR was transferred by direct root contact from Frisson to triticale and only 10% by AMF, whereas only 55% of CdfR was transferred to triticale by direct root contact, 40% by AMF and 5% by diffusion. Similar percentages were transferred from mutant P2 to triticale. Root exclusion generally changed RD composition from fine root residues towards root exudates.
Collapse
Affiliation(s)
- Anke Hupe
- grid.5155.40000 0001 1089 1036Soil Biology and Plant Nutrition, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany ,grid.5155.40000 0001 1089 1036Organic Farming and Cropping, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Franziska Naether
- grid.5155.40000 0001 1089 1036Organic Farming and Cropping, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Thorsten Haase
- grid.5155.40000 0001 1089 1036Organic Farming and Cropping, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany ,grid.506460.10000 0004 4679 6788Present Address: Landesbetrieb Landwirtschaft Hessen, Kassel, Germany
| | - Christian Bruns
- grid.5155.40000 0001 1089 1036Organic Farming and Cropping, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Jürgen Heß
- grid.5155.40000 0001 1089 1036Organic Farming and Cropping, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Jens Dyckmans
- grid.7450.60000 0001 2364 4210Centre for Stable Isotope Research Analysis, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Rainer Georg Joergensen
- grid.5155.40000 0001 1089 1036Organic Farming and Cropping, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Florian Wichern
- grid.449481.40000 0004 0427 2011Soil Science and Plant Nutrition, Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| |
Collapse
|
17
|
Rodriguez-Morelos VH, Calonne-Salmon M, Bremhorst V, Garcés-Ruiz M, Declerck S. Fungicides With Contrasting Mode of Action Differentially Affect Hyphal Healing Mechanism in Gigaspora sp. and Rhizophagus irregularis. FRONTIERS IN PLANT SCIENCE 2021; 12:642094. [PMID: 33777077 PMCID: PMC7989550 DOI: 10.3389/fpls.2021.642094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Fungicides are widely used in conventional agriculture to control fungal diseases, but may also affect non-target microorganisms such as arbuscular mycorrhizal (AM) fungi. These root symbionts develop extended mycelial networks within the soil via mechanisms such as anastomosis that indistinctly concerns intact and damaged hyphae, the latter being named hyphal healing mechanism (HHM). The HHM differs between Glomeraceae and Gigasporaceae. However, the effects of fungicides on this mechanism in unknown. Here, the impact of azoxystrobin, pencycuron, flutolanil, and fenpropimorph at 0.02 and 2 mg L-1 were tested in vitro on the HHM of Gigaspora sp. MUCL 52331 and Rhizophagus irregularis MUCL 41833, and repair events visualized carefully under a dissecting bright-field light microscope. Azoxystrobin was the more detrimental for both AM fungi at 2 mg L-1, while fenpropimorph impacted only R. irregularis (stimulating at low and inhibiting at high concentration). Conversely, flutolanil and pencycuron did not impact any of the two AM fungi. The mechanisms involved remains to be elucidated, but perturbation in the still-to-be firmly demonstrated spitzenkörper or in sterols content as well as a process of hormesis are possible avenues that deserve to be explored in view of a rationale management of chemicals to control fungal pathogens without harming the beneficial AM fungi.
Collapse
Affiliation(s)
| | - Maryline Calonne-Salmon
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Vincent Bremhorst
- Louvain Institute of Data Analysis and Modeling in Economics and Statistics, Statistical Methodology and Computing Service, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Mónica Garcés-Ruiz
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Laboratory of Mycology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
18
|
Netherway T, Bengtsson J, Krab EJ, Bahram M. Biotic interactions with mycorrhizal systems as extended nutrient acquisition strategies shaping forest soil communities and functions. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2020.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Pepe A, Giovannetti M, Sbrana C. Appressoria and phosphorus fluxes in mycorrhizal plants: connections between soil- and plant-based hyphae. MYCORRHIZA 2020; 30:589-600. [PMID: 32533256 DOI: 10.1007/s00572-020-00972-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) live in symbiosis with plant roots, facilitating mineral nutrient transfer from soil to hosts through large networks of extraradical hyphae. Limited data are available on the fungal structures (appressoria) connecting soil- to root-based mycelium, in relation to plant nutrition. Two in vivo systems were set up using three AMF, Funneliformis mosseae, Funneliformis coronatus and Rhizoglomus irregulare, grown in symbiosis with Cichorium intybus. The assessment of plant P content, number of appressoria, diameter of their subtending hyphae and length of colonized roots allowed calculation of the total cross-section area of appressorium-subtending hyphae, which differed among the three AMF and was correlated with plant P contents and with extraradical mycelium density. A conservative evaluation of P fluxes from soil- to plant-based hyphae occurring through appressoria gave values ranging from 1.7 to 4.2 × 10-8 mol cm-2 s-1 (moles per total cross-section area of the appressorium subtending hyphae per time elapsed), depending on AMF identity. This work suggests that, beyond intraradical colonization and extraradical mycelium extent, connections between extraradical and intraradical fungal mycelium through appressoria are important for mycorrhizal plant nutrition, as appressorium structural traits and density can be related to P transfer mediated by AMF.
Collapse
Affiliation(s)
- Alessandra Pepe
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, 56124, Pisa, Italy
| | - Cristiana Sbrana
- CNR-Institute of Agricultural Biology and Biotechnology, Pisa Unit, 56124, Pisa, Italy.
| |
Collapse
|
20
|
Vahter T, Bueno CG, Davison J, Herodes K, Hiiesalu I, Kasari‐Toussaint L, Oja J, Olsson PA, Sepp S, Zobel M, Vasar M, Öpik M. Co‐introduction of native mycorrhizal fungi and plant seeds accelerates restoration of post‐mining landscapes. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13663] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tanel Vahter
- Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | | | - John Davison
- Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Koit Herodes
- Institute of Chemistry University of Tartu Tartu Estonia
| | - Inga Hiiesalu
- Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | | | - Jane Oja
- Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Pål Axel Olsson
- Biodiversity Department of Biology Lund University Lund Sweden
| | - Siim‐Kaarel Sepp
- Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Martin Zobel
- Zoology Department College of Science King Saud University Riyadh Saudi Arabia
- Department of Botany University of Tartu Tartu Estonia
| | - Martti Vasar
- Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| |
Collapse
|
21
|
de Novais CB, Sbrana C, da Conceição Jesus E, Rouws LFM, Giovannetti M, Avio L, Siqueira JO, Saggin Júnior OJ, da Silva EMR, de Faria SM. Mycorrhizal networks facilitate the colonization of legume roots by a symbiotic nitrogen-fixing bacterium. MYCORRHIZA 2020; 30:389-396. [PMID: 32215759 DOI: 10.1007/s00572-020-00948-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/16/2020] [Indexed: 05/22/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) absorb and translocate nutrients from soil to their host plants by means of a wide network of extraradical mycelium (ERM). Here, we assessed whether nitrogen-fixing rhizobia can be transferred to the host legume Glycine max by ERM produced by Glomus formosanum isolate CNPAB020 colonizing the grass Urochloa decumbens. An H-bridge experimental system was developed to evaluate the migration of ERM and of the GFP-tagged Bradyrhizobium diazoefficiens USDA 110 strain across an air gap compartment. Mycorrhizal colonization, nodule formation in legumes, and occurrence of the GFP-tagged strain in root nodules were assessed by optical and confocal laser scanning microscopy. In the presence of non-mycorrhizal U. decumbens, legume roots were neither AMF-colonized nor nodulated. In contrast, G. formosanum ERM crossing the discontinuous compartment connected mycorrhizal U. decumbens and G. max roots, which showed 30-42% mycorrhizal colonization and 7-11 nodules per plant. Fluorescent B. diazoefficiens cells were detected in 94% of G. max root nodules. Our findings reveal that, besides its main activity in nutrient transfer, ERM produced by AMF may facilitate bacterial translocation and the simultaneous associations of plants with beneficial fungi and bacteria, representing an important structure, functional to the establishment of symbiotic relationships.
Collapse
Affiliation(s)
- Candido Barreto de Novais
- Instituto de Floresta, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23890-000, Brazil
| | - Cristiana Sbrana
- CNR-Institute of Agricultural Biology and Biotechnology UOS Pisa, Pisa, Italy.
| | | | | | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Luciano Avio
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - José Oswaldo Siqueira
- DCS-Laboratório de Microbiologia do Solo, Universidade Federal de Lavras, Caixa Postal 3037, Lavras, MG, 37200-000, Brazil
| | | | | | | |
Collapse
|
22
|
Arbuscular Mycorrhizal Fungi and Associated Microbiota as Plant Biostimulants: Research Strategies for the Selection of the Best Performing Inocula. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10010106] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) are beneficial soil microorganisms establishing mutualistic symbioses with the roots of the most important food crops and playing key roles in the maintenance of long-term soil fertility and health. The great inter- and intra-specific AMF diversity can be fully exploited by selecting AMF inocula on the basis of their colonization ability and efficiency, which are affected by fungal and plant genotypes and diverse environmental variables. The multiple services provided by AMF are the result of the synergistic activities of the bacterial communities living in the mycorrhizosphere, encompassing nitrogen fixation, P solubilization, and the production of phytohormones, siderophores, and antibiotics. The tripartite association among host plants, mycorrhizal symbionts, and associated bacteria show beneficial emerging properties which could be efficiently exploited in sustainable agriculture. Further in-depth studies, both in microcosms and in the field, performed on different AMF species and isolates, should evaluate their colonization ability, efficiency, and resilience. Transcriptomic studies can reveal the expression levels of nutrient transporter genes in fungal absorbing hyphae in the presence of selected bacterial strains. Eventually, newly designed multifunctional microbial consortia can be utilized as biofertilizers and biostimulants in sustainable and innovative production systems.
Collapse
|
23
|
A Whole-Plant Culture Method to Study Structural and Functional Traits of Extraradical Mycelium. Methods Mol Biol 2020; 2146:33-41. [PMID: 32415593 DOI: 10.1007/978-1-0716-0603-2_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An in vivo whole-plant bi-dimensional experimental system has been devised and tested with different host plants, in order to obtain extraradical mycelium (ERM) produced by different arbuscular mycorrhizal fungi (AMF). In this system, a host plant germling is inoculated with AMF to establish mycorrhizal symbiosis, and, after colonization, newly formed extraradical hyphae and spores are removed. Then the mycorrhizal root system is wrapped in a nylon net and placed between membranes in a Petri dish, allowing ERM to grow on the membrane surface. Such extraradical hyphae may be used for in situ morphometric analyses or collected for molecular or biochemical assays: in the latter case, the plant with its root sandwich may be reassembled to renew mycelium production. In this experimental system, which was tested with diverse host plant species and lines, values of explored membrane surface areas and densities of ERM showed wide ranges of variation, and its length ranged from 9.7 ± 2.0 to 48.8 ± 9.9 m per plant, depending on host and AMF identity. Across the different plant-AMF combinations tested, the whole-plant system produced 2.0 ± 0.6 to 5.3 ± 0.3 mg of ERM fresh biomass per plant per harvest. This experimental system can be used for a wide range of AMF and host plants species, either establishing arbuscular mycorrhizas or other mycorrhizal interactions. ERM produced and collected in the whole-plant system is suitable for morphological, physiological, and molecular analyses, facilitating studies on the different aspects of mycorrhizal symbiotic interactions.
Collapse
|
24
|
A Review of Studies from the Last Twenty Years on Plant–Arbuscular Mycorrhizal Fungi Associations and Their Uses for Wheat Crops. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9120840] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of this work was to summarize the most recent research focused on the study of plant–arbuscular mycorrhizal fungi (AMF) symbiosis, both in a generic context and in the specific context of wheat cultivation. Taking into account the last 20 years, the most significant studies on the main plant advantages taken from this association are reviewed herein. Positive advances that have been reported stem from the mutualistic relationship between the plant and the mycorrhizal fungus, revealing better performance for the host in terms of nutrient uptake and protection from salinity, lack of water, and excess phytotoxic elements. Mycorrhiza studies and the recent progress in research in this sector have shown a possible solution for environmental sustainability: AMF represent a valid alternative to overcome the loss of biological fertility of soils, reduce chemical inputs, and alleviate the effects of biotic and abiotic stress.
Collapse
|
25
|
The role of in vitro cultivation on symbiotic trait and function variation in a single species of arbuscular mycorrhizal fungus. Fungal Biol 2019; 123:732-744. [DOI: 10.1016/j.funbio.2019.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 11/23/2022]
|
26
|
de Novais CB, Giovannetti M, de Faria SM, Sbrana C. Two herbicides, two fungicides and spore-associated bacteria affect Funneliformis mosseae extraradical mycelium structural traits and viability. MYCORRHIZA 2019; 29:341-349. [PMID: 31190279 DOI: 10.1007/s00572-019-00901-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
The extraradical mycelium (ERM) produced by arbuscular mycorrhizal fungi is fundamental for the maintenance of biological fertility in agricultural soils, representing an important inoculum source, together with spores and mycorrhizal root fragments. Its viability and structural traits, such as density, extent and interconnectedness, which are positively correlated with the growth and nutrition of host plants, may be affected by different agronomic practices, including the use of pesticides and by different mycorrhizospheric communities. This work, carried out using a whole-plant experimental model system, showed that structural traits of ERM, such as length and density, were strongly decreased by the herbicides dicamba and glufosinolate and the fungicides benomyl and fenhexamid, while anastomosis frequency and hyphal branching were differentially modulated by singly inoculated mycorrhizospheric bacteria, depending on their identity.
Collapse
Affiliation(s)
- Candido Barreto de Novais
- Department of Agriculture, Food and Environment, University of Pisa, 56126, Pisa, PI, Italy
- Forestry Institute, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, 56126, Pisa, PI, Italy
| | - Sergio Miana de Faria
- Brazilian Agricultural Research Corporation - Embrapa Agrobiologia, Seropédica, Brazil
| | - Cristiana Sbrana
- CNR-Institute of Agricultural Biology and Biotechnology UOS Pisa, Pisa, Italy.
| |
Collapse
|
27
|
|