1
|
Dannhorn A, Kazanc E, Flint L, Guo F, Carter A, Hall AR, Jones SA, Poulogiannis G, Barry ST, Sansom OJ, Bunch J, Takats Z, Goodwin RJA. Morphological and molecular preservation through universal preparation of fresh-frozen tissue samples for multimodal imaging workflows. Nat Protoc 2024; 19:2685-2711. [PMID: 38806741 DOI: 10.1038/s41596-024-00987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/14/2024] [Indexed: 05/30/2024]
Abstract
The landscape of tissue-based imaging modalities is constantly and rapidly evolving. While formalin-fixed, paraffin-embedded material is still useful for histological imaging, the fixation process irreversibly changes the molecular composition of the sample. Therefore, many imaging approaches require fresh-frozen material to get meaningful results. This is particularly true for molecular imaging techniques such as mass spectrometry imaging, which are widely used to probe the spatial arrangement of the tissue metabolome. As high-quality fresh-frozen tissues are limited in their availability, any sample preparation workflow they are subjected to needs to ensure morphological and molecular preservation of the tissues and be compatible with as many of the established and emerging imaging techniques as possible to obtain the maximum possible insights from the tissues. Here we describe a universal sample preparation workflow, from the initial step of freezing the tissues to the cold embedding in a new hydroxypropyl methylcellulose/polyvinylpyrrolidone-enriched hydrogel and the generation of thin tissue sections for analysis. Moreover, we highlight the optimized storage conditions that limit molecular and morphological degradation of the sections. The protocol is compatible with human and plant tissues and can be easily adapted for the preparation of alternative sample formats (e.g., three-dimensional cell cultures). The integrated workflow is universally compatible with histological tissue analysis, mass spectrometry imaging and imaging mass cytometry, as well as spatial proteomic, genomic and transcriptomic tissue analysis. The protocol can be completed within 4 h and requires minimal prior experience in the preparation of tissue samples for multimodal imaging experiments.
Collapse
Affiliation(s)
- Andreas Dannhorn
- Imaging and Data analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
- Department of Digestion, Metabolism and Reproduction, Sir Alexander Fleming Building, Imperial College London, London, UK
| | - Emine Kazanc
- Department of Digestion, Metabolism and Reproduction, Sir Alexander Fleming Building, Imperial College London, London, UK
| | - Lucy Flint
- Imaging and Data analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Fei Guo
- Imaging and Data analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
- Safety Innovations, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Alfie Carter
- Imaging and Data analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
- Safety Innovations, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Andrew R Hall
- Safety Innovations, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Stewart A Jones
- Imaging and Data analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | - Simon T Barry
- Bioscience, Discovery, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Josephine Bunch
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington, UK
| | - Zoltan Takats
- Department of Digestion, Metabolism and Reproduction, Sir Alexander Fleming Building, Imperial College London, London, UK
| | - Richard J A Goodwin
- Imaging and Data analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK.
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
2
|
Fitzpatrick PA, Johansson J, Maglennon G, Wallace I, Hendrickx R, Stamou M, Balogh Sivars K, Busch S, Johansson L, Van Zuydam N, Patten K, Åberg PM, Ollerstam A, Hornberg JJ. A novel in vitro high-content imaging assay for the prediction of drug-induced lung toxicity. Arch Toxicol 2024; 98:2985-2998. [PMID: 38806719 PMCID: PMC11324770 DOI: 10.1007/s00204-024-03800-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024]
Abstract
The development of inhaled drugs for respiratory diseases is frequently impacted by lung pathology in non-clinical safety studies. To enable design of novel candidate drugs with the right safety profile, predictive in vitro lung toxicity assays are required that can be applied during drug discovery for early hazard identification and mitigation. Here, we describe a novel high-content imaging-based screening assay that allows for quantification of the tight junction protein occludin in A549 cells, as a model for lung epithelial barrier integrity. We assessed a set of compounds with a known lung safety profile, defined by clinical safety or non-clinical in vivo toxicology data, and were able to correctly identify 9 of 10 compounds with a respiratory safety risk and 9 of 9 compounds without a respiratory safety risk (90% sensitivity, 100% specificity). The assay was sensitive at relevant compound concentrations to influence medicinal chemistry optimization programs and, with an accessible cell model in a 96-well plate format, short protocol and application of automated imaging analysis algorithms, this assay can be readily integrated in routine discovery safety screening to identify and mitigate respiratory toxicity early during drug discovery. Interestingly, when we applied physiologically-based pharmacokinetic (PBPK) modelling to predict epithelial lining fluid exposures of the respiratory tract after inhalation, we found a robust correlation between in vitro occludin assay data and lung pathology in vivo, suggesting the assay can inform translational risk assessment for inhaled small molecules.
Collapse
Affiliation(s)
- Paul A Fitzpatrick
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden.
| | - Julia Johansson
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Gareth Maglennon
- AstraZeneca Pathology, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Cambridge, UK
| | - Ian Wallace
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Ramon Hendrickx
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory and Immunology (R and I), R and D, AstraZeneca, Gothenburg, Sweden
| | - Marianna Stamou
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Kinga Balogh Sivars
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Susann Busch
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Linnea Johansson
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Natalie Van Zuydam
- Data Sciences and Quantitative Biology, Discovery Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Kelley Patten
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Per M Åberg
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Anna Ollerstam
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| | - Jorrit J Hornberg
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R and D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
3
|
Kang S, Chen EC, Cifuentes H, Co JY, Cole G, Graham J, Hsia R, Kiyota T, Klein JA, Kroll KT, Nieves Lopez LM, Norona LM, Peiris H, Potla R, Romero-Lopez M, Roth JG, Tseng M, Fullerton AM, Homan KA. Complex in vitromodels positioned for impact to drug testing in pharma: a review. Biofabrication 2024; 16:042006. [PMID: 39189069 DOI: 10.1088/1758-5090/ad6933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Recent years have seen the creation and popularization of various complexin vitromodels (CIVMs), such as organoids and organs-on-chip, as a technology with the potential to reduce animal usage in pharma while also enhancing our ability to create safe and efficacious drugs for patients. Public awareness of CIVMs has increased, in part, due to the recent passage of the FDA Modernization Act 2.0. This visibility is expected to spur deeper investment in and adoption of such models. Thus, end-users and model developers alike require a framework to both understand the readiness of current models to enter the drug development process, and to assess upcoming models for the same. This review presents such a framework for model selection based on comparative -omics data (which we term model-omics), and metrics for qualification of specific test assays that a model may support that we term context-of-use (COU) assays. We surveyed existing healthy tissue models and assays for ten drug development-critical organs of the body, and provide evaluations of readiness and suggestions for improving model-omics and COU assays for each. In whole, this review comes from a pharma perspective, and seeks to provide an evaluation of where CIVMs are poised for maximum impact in the drug development process, and a roadmap for realizing that potential.
Collapse
Affiliation(s)
- Serah Kang
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Eugene C Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Helen Cifuentes
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julia Y Co
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Gabrielle Cole
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica Graham
- Product Quality & Occupational Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of Americaica
| | - Rebecca Hsia
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Tomomi Kiyota
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Jessica A Klein
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Katharina T Kroll
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Lenitza M Nieves Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Leah M Norona
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Heshan Peiris
- Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Ratnakar Potla
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Monica Romero-Lopez
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Julien G Roth
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Min Tseng
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Aaron M Fullerton
- Investigative Toxicology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| | - Kimberly A Homan
- Complex in vitro Systems Group, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States of America
| |
Collapse
|
4
|
Koukorava C, Ahmed K, Almaghrabi S, Pointon A, Haddrick M, Cross MJ. Anticancer drugs and cardiotoxicity: the role of cardiomyocyte and non-cardiomyocyte cells. Front Cardiovasc Med 2024; 11:1372817. [PMID: 39081368 PMCID: PMC11287221 DOI: 10.3389/fcvm.2024.1372817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/31/2024] [Indexed: 08/02/2024] Open
Abstract
Cardiotoxicity can be defined as "chemically induced heart disease", which can occur with many different drug classes treating a range of diseases. It is the primary cause of drug attrition during pre-clinical development and withdrawal from the market. Drug induced cardiovascular toxicity can result from both functional effects with alteration of the contractile and electrical regulation in the heart and structural changes with morphological changes to cardiomyocytes and other cardiac cells. These adverse effects result in conditions such as arrhythmia or a more serious reduction in left ventricular ejection fraction (LVEF), which can lead to heart failure and death. Anticancer drugs can adversely affect cardiomyocyte function as well as cardiac fibroblasts and cardiac endothelial cells, interfering in autocrine and paracrine signalling between these cell types and ultimately altering cardiac cellular homeostasis. This review aims to highlight potential toxicity mechanisms involving cardiomyocytes and non-cardiomyocyte cells by first introducing the physiological roles of these cells within the myocardium and secondly, identifying the physiological pathways perturbed by anticancer drugs in these cells.
Collapse
Affiliation(s)
- Chrysa Koukorava
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Katie Ahmed
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Shrouq Almaghrabi
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Michael J. Cross
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, Liverpool, United Kingdom
| |
Collapse
|
5
|
Owais A, Barney M, Ly OT, Brown G, Chen H, Sridhar A, Pavel A, Khetani SR, Darbar D. Genetics and Pharmacogenetics of Atrial Fibrillation: A Mechanistic Perspective. JACC Basic Transl Sci 2024; 9:918-934. [PMID: 39170958 PMCID: PMC11334418 DOI: 10.1016/j.jacbts.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 08/23/2024]
Abstract
The heritability of atrial fibrillation (AF) is well established. Over the last decade genetic architecture of AF has been unraveled by genome-wide association studies and family-based studies. However, the translation of these genetic discoveries has lagged owing to an incomplete understanding of the pathogenic mechanisms underlying the genetic variants, challenges in classifying variants of uncertain significance (VUS), and limitations of existing disease models. We review the mechanistic insight provided by basic science studies regarding AF mechanisms, recent developments in high-throughput classification of VUS, and advances in bioengineered cardiac models for developing personalized therapy for AF.
Collapse
Affiliation(s)
- Asia Owais
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Miles Barney
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Olivia Thao Ly
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois, Chicago, Illinois, USA
| | - Grace Brown
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois, Chicago, Illinois, USA
| | - Hanna Chen
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Arvind Sridhar
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Arif Pavel
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Salman R. Khetani
- Department of Biomedical Engineering, University of Illinois, Chicago, Illinois, USA
| | - Dawood Darbar
- Division of Cardiology, Department of Medicine, University of Illinois, Chicago, Illinois, USA
- Department of Biomedical Engineering, University of Illinois, Chicago, Illinois, USA
- Department of Physiology and Biophysics, University of Illinois, Chicago, Illinois, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
6
|
Rosell-Hidalgo A, Bruhn C, Shardlow E, Barton R, Ryder S, Samatov T, Hackmann A, Aquino GR, Fernandes Dos Reis M, Galatenko V, Fritsch R, Dohrmann C, Walker PA. In-depth mechanistic analysis including high-throughput RNA sequencing in the prediction of functional and structural cardiotoxicants using hiPSC cardiomyocytes. Expert Opin Drug Metab Toxicol 2024; 20:685-707. [PMID: 37995132 DOI: 10.1080/17425255.2023.2273378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Cardiotoxicity remains one of the most reported adverse drug reactions that lead to drug attrition during pre-clinical and clinical drug development. Drug-induced cardiotoxicity may develop as a functional change in cardiac electrophysiology (acute alteration of the mechanical function of the myocardium) and/or as a structural change, resulting in loss of viability and morphological damage to cardiac tissue. RESEARCH DESIGN AND METHODS Non-clinical models with better predictive value need to be established to improve cardiac safety pharmacology. To this end, high-throughput RNA sequencing (ScreenSeq) was combined with high-content imaging (HCI) and Ca2+ transience (CaT) to analyze compound-treated human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). RESULTS Analysis of hiPSC-CMs treated with 33 cardiotoxicants and 9 non-cardiotoxicants of mixed therapeutic indications facilitated compound clustering by mechanism of action, scoring of pathway activities related to cardiomyocyte contractility, mitochondrial integrity, metabolic state, diverse stress responses and the prediction of cardiotoxicity risk. The combination of ScreenSeq, HCI and CaT provided a high cardiotoxicity prediction performance with 89% specificity, 91% sensitivity and 90% accuracy. CONCLUSIONS Overall, this study introduces mechanism-driven risk assessment approach combining structural, functional and molecular high-throughput methods for pre-clinical risk assessment of novel compounds.
Collapse
|
7
|
Au Yeung VPW, Obrezanova O, Zhou J, Yang H, Bowen TJ, Ivanov D, Saffadi I, Carter AS, Subramanian V, Dillmann I, Hall A, Corrigan A, Viant MR, Pointon A. Computational approaches identify a transcriptomic fingerprint of drug-induced structural cardiotoxicity. Cell Biol Toxicol 2024; 40:50. [PMID: 38940987 PMCID: PMC11213733 DOI: 10.1007/s10565-024-09880-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/15/2024] [Indexed: 06/29/2024]
Abstract
Structural cardiotoxicity (SCT) presents a high-impact risk that is poorly tolerated in drug discovery unless significant benefit is anticipated. Therefore, we aimed to improve the mechanistic understanding of SCT. First, we combined machine learning methods with a modified calcium transient assay in human-induced pluripotent stem cell-derived cardiomyocytes to identify nine parameters that could predict SCT. Next, we applied transcriptomic profiling to human cardiac microtissues exposed to structural and non-structural cardiotoxins. Fifty-two genes expressed across the three main cell types in the heart (cardiomyocytes, endothelial cells, and fibroblasts) were prioritised in differential expression and network clustering analyses and could be linked to known mechanisms of SCT. This transcriptomic fingerprint may prove useful for generating strategies to mitigate SCT risk in early drug discovery.
Collapse
Affiliation(s)
- Victoria P W Au Yeung
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK.
- Phenomics, Data Sciences & Quantitative Biology, R&D AstraZeneca, Cambridge, UK.
| | - Olga Obrezanova
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Jiarui Zhou
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Hongbin Yang
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Tara J Bowen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Delyan Ivanov
- High-Throughput Screening, R&D, AstraZeneca, Alderley Park, UK
| | - Izzy Saffadi
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Alfie S Carter
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Vigneshwari Subramanian
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Inken Dillmann
- Disease Molecular Profiling, Discovery Biology, R&D AstraZeneca, Gothenburg, Sweden
| | - Andrew Hall
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Adam Corrigan
- Phenomics, Data Sciences & Quantitative Biology, R&D AstraZeneca, Cambridge, UK
| | - Mark R Viant
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, UK
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
8
|
Lee SW, Song M, Woo DH, Jeong GS. Proposal for considerations during human iPSC-derived cardiac organoid generation for cardiotoxicity drug testing. Biomed Pharmacother 2024; 174:116511. [PMID: 38574616 DOI: 10.1016/j.biopha.2024.116511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
Human iPSC-derived cardiac organoids (hiPSC-COs) for cardiotoxicity drug testing via the variety of cell lines and unestablished protocols may lead to differences in response results due to a lack of criteria for generation period and size. To ensure reliable drug testing, it is important for researchers to set optimal generation period and size of COs according to the cell line and protocol applied in their studies. Hence, we sought to propose a process to establish minimum criteria for the generation duration and size of hiPSC-COs for cardiotoxic drug testing. We generated hiPSC-COs of different sizes based on our protocol and continuously monitored organoids until they indicated a minimal beating rate change as a control that could lead to more accurate beating rate changes on drug testing. Calcium transients and physiological tests to assess the functionality of hiPSC-COs on selected generation period, which showed regular cardiac beating, and immunostaining assays to compare characteristics were performed. We explained the generation period and size that exhibited and maintained regular beating rate changes on hiPSC-COs, and lead to reliable response results to cardiotoxicity drugs. We anticipate that this study will offer valuable insights into considering the appropriate generation period and size of hiPSC-COs ensuring reliable outcomes in cardiotoxicity drug testing.
Collapse
Affiliation(s)
- Sang Woo Lee
- Biomedical Engineering Research Center, Asan Medical Center, Seoul 05505, Republic of Korea; Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
| | - MyeongJin Song
- Department of Commercializing iPSC Technology, NEXEL Co., Ltd., Seoul 07802, Republic of Korea
| | - Dong-Hun Woo
- Department of Commercializing iPSC Technology, NEXEL Co., Ltd., Seoul 07802, Republic of Korea
| | - Gi Seok Jeong
- Biomedical Engineering Research Center, Asan Medical Center, Seoul 05505, Republic of Korea; Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea.
| |
Collapse
|
9
|
Raniga K, Nasir A, Vo NTN, Vaidyanathan R, Dickerson S, Hilcove S, Mosqueira D, Mirams GR, Clements P, Hicks R, Pointon A, Stebbeds W, Francis J, Denning C. Strengthening cardiac therapy pipelines using human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 2024; 31:292-311. [PMID: 38366587 DOI: 10.1016/j.stem.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 01/19/2024] [Indexed: 02/18/2024]
Abstract
Advances in hiPSC isolation and reprogramming and hPSC-CM differentiation have prompted their therapeutic application and utilization for evaluating potential cardiovascular safety liabilities. In this perspective, we showcase key efforts toward the large-scale production of hiPSC-CMs, implementation of hiPSC-CMs in industry settings, and recent clinical applications of this technology. The key observations are a need for traceable gender and ethnically diverse hiPSC lines, approaches to reduce cost of scale-up, accessible clinical trial datasets, and transparent guidelines surrounding the safety and efficacy of hiPSC-based therapies.
Collapse
Affiliation(s)
- Kavita Raniga
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; Pathology, Non-Clinical Safety, GlaxoSmithKline R&D, Stevenage SG1 2NY, UK.
| | - Aishah Nasir
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Nguyen T N Vo
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | - Diogo Mosqueira
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Gary R Mirams
- Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Peter Clements
- Pathology, Non-Clinical Safety, GlaxoSmithKline R&D, Stevenage SG1 2NY, UK
| | - Ryan Hicks
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London WC2R 2LS, UK
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | | | - Jo Francis
- Mechanstic Biology and Profiling, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Chris Denning
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
10
|
Trettner KJ, Hsieh J, Xiao W, Lee JSH, Armani AM. Nondestructive, quantitative viability analysis of 3D tissue cultures using machine learning image segmentation. APL Bioeng 2024; 8:016121. [PMID: 38566822 PMCID: PMC10985731 DOI: 10.1063/5.0189222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Ascertaining the collective viability of cells in different cell culture conditions has typically relied on averaging colorimetric indicators and is often reported out in simple binary readouts. Recent research has combined viability assessment techniques with image-based deep-learning models to automate the characterization of cellular properties. However, further development of viability measurements to assess the continuity of possible cellular states and responses to perturbation across cell culture conditions is needed. In this work, we demonstrate an image processing algorithm for quantifying features associated with cellular viability in 3D cultures without the need for assay-based indicators. We show that our algorithm performs similarly to a pair of human experts in whole-well images over a range of days and culture matrix compositions. To demonstrate potential utility, we perform a longitudinal study investigating the impact of a known therapeutic on pancreatic cancer spheroids. Using images taken with a high content imaging system, the algorithm successfully tracks viability at the individual spheroid and whole-well level. The method we propose reduces analysis time by 97% in comparison with the experts. Because the method is independent of the microscope or imaging system used, this approach lays the foundation for accelerating progress in and for improving the robustness and reproducibility of 3D culture analysis across biological and clinical research.
Collapse
Affiliation(s)
| | - Jeremy Hsieh
- Pasadena Polytechnic High School, Pasadena, California 91106, USA
| | - Weikun Xiao
- Ellison Institute of Technology, Los Angeles, California 90064, USA
| | | | | |
Collapse
|
11
|
Kerr CM, Silver SE, Choi YS, Floy ME, Bradshaw AD, Cho SW, Palecek SP, Mei Y. Decellularized heart extracellular matrix alleviates activation of hiPSC-derived cardiac fibroblasts. Bioact Mater 2024; 31:463-474. [PMID: 37701451 PMCID: PMC10493503 DOI: 10.1016/j.bioactmat.2023.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Human induced pluripotent stem cell derived cardiac fibroblasts (hiPSC-CFs) play a critical role in modeling human cardiovascular diseases in vitro. However, current culture substrates used for hiPSC-CF differentiation and expansion, such as Matrigel and tissue culture plastic (TCPs), are tissue mismatched and may provide pathogenic cues. Here, we report that hiPSC-CFs differentiated on Matrigel and expanded on tissue culture plastic (M-TCP-iCFs) exhibit transcriptomic hallmarks of activated fibroblasts limiting their translational potential. To alleviate pathogenic activation of hiPSC-CFs, we utilized decellularized extracellular matrix derived from porcine heart extracellular matrix (HEM) to provide a biomimetic substrate for improving hiPSC-CF phenotypes. We show that hiPSC-CFs differentiated and expanded on HEM (HEM-iCFs) exhibited reduced expression of hallmark activated fibroblast markers versus M-TCP-iCFs while retaining their cardiac fibroblast phenotype. HEM-iCFs also maintained a reduction in expression of hallmark genes associated with pathogenic fibroblasts when seeded onto TCPs. Further, HEM-iCFs more homogenously integrated into an hiPSC-derived cardiac organoid model, resulting in improved cardiomyocyte sarcomere development. In conclusion, HEM provides an improved substrate for the differentiation and propagation of hiPSC-CFs for disease modeling.
Collapse
Affiliation(s)
- Charles M. Kerr
- Molecular Cell Biology and Pathobiology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Yi Sun Choi
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Martha E. Floy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Amy D. Bradshaw
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson Veterans Affairs Medical Center, SC, USA
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Sean P. Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
12
|
Zhu Y, Yang S, Zhang T, Ge Y, Wan X, Liang G. Cardiac Organoids: A 3D Technology for Disease Modeling and Drug Screening. Curr Med Chem 2024; 31:4987-5003. [PMID: 37497713 DOI: 10.2174/0929867331666230727104911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Cardiovascular diseases remain the leading cause of death worldwide; therefore, there is increasing attention to developing physiological-related in vitro cardiovascular tissue models suitable for personalized healthcare and preclinical test. Recently, more complex and powerful in vitro models have emerged for cardiac research. Human cardiac organoids (HCOs) are three-dimensional (3D) cellular constructs similar to in vivo organs. They are derived from pluripotent stem cells and can replicate the structure, function, and biogenetic information of primitive tissues. High-fidelity HCOs are closer to natural human myocardial tissue than animal and cell models to some extent, which helps to study better the development process of the heart and the occurrence of related diseases. In this review, we introduce the methods for constructing HCOs and the application of them, especially in cardiovascular disease modeling and cardiac drug screening. In addition, we propose the prospects and limitations of HCOs. In summary, we have introduced the research progress of HCOs and described their innovation and practicality of them in the biomedical field.
Collapse
Affiliation(s)
- Yuxin Zhu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Tianyi Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yiling Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xin Wan
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
13
|
Aitova A, Berezhnoy A, Tsvelaya V, Gusev O, Lyundup A, Efimov AE, Agapov I, Agladze K. Biomimetic Cardiac Tissue Models for In Vitro Arrhythmia Studies. Biomimetics (Basel) 2023; 8:487. [PMID: 37887618 PMCID: PMC10604593 DOI: 10.3390/biomimetics8060487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiac arrhythmias are a major cause of cardiovascular mortality worldwide. Many arrhythmias are caused by reentry, a phenomenon where excitation waves circulate in the heart. Optical mapping techniques have revealed the role of reentry in arrhythmia initiation and fibrillation transition, but the underlying biophysical mechanisms are still difficult to investigate in intact hearts. Tissue engineering models of cardiac tissue can mimic the structure and function of native cardiac tissue and enable interactive observation of reentry formation and wave propagation. This review will present various approaches to constructing cardiac tissue models for reentry studies, using the authors' work as examples. The review will highlight the evolution of tissue engineering designs based on different substrates, cell types, and structural parameters. A new approach using polymer materials and cellular reprogramming to create biomimetic cardiac tissues will be introduced. The review will also show how computational modeling of cardiac tissue can complement experimental data and how such models can be applied in the biomimetics of cardiac tissue.
Collapse
Affiliation(s)
- Aleria Aitova
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, 129110 Moscow, Russia
- Almetyevsk State Oil Institute, 423450 Almetyevsk, Russia
| | - Andrey Berezhnoy
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, 129110 Moscow, Russia
- Almetyevsk State Oil Institute, 423450 Almetyevsk, Russia
| | - Valeriya Tsvelaya
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, 129110 Moscow, Russia
- Almetyevsk State Oil Institute, 423450 Almetyevsk, Russia
| | - Oleg Gusev
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420018 Kazan, Russia
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russia
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | | | - Anton E. Efimov
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Igor Agapov
- Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 123182 Moscow, Russia
| | - Konstantin Agladze
- Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- M.F. Vladimirsky Moscow Regional Clinical Research Institute, 129110 Moscow, Russia
| |
Collapse
|
14
|
Bernava G, Iop L. Advances in the design, generation, and application of tissue-engineered myocardial equivalents. Front Bioeng Biotechnol 2023; 11:1247572. [PMID: 37811368 PMCID: PMC10559975 DOI: 10.3389/fbioe.2023.1247572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Due to the limited regenerative ability of cardiomyocytes, the disabling irreversible condition of myocardial failure can only be treated with conservative and temporary therapeutic approaches, not able to repair the damage directly, or with organ transplantation. Among the regenerative strategies, intramyocardial cell injection or intravascular cell infusion should attenuate damage to the myocardium and reduce the risk of heart failure. However, these cell delivery-based therapies suffer from significant drawbacks and have a low success rate. Indeed, cardiac tissue engineering efforts are directed to repair, replace, and regenerate native myocardial tissue function. In a regenerative strategy, biomaterials and biomimetic stimuli play a key role in promoting cell adhesion, proliferation, differentiation, and neo-tissue formation. Thus, appropriate biochemical and biophysical cues should be combined with scaffolds emulating extracellular matrix in order to support cell growth and prompt favorable cardiac microenvironment and tissue regeneration. In this review, we provide an overview of recent developments that occurred in the biomimetic design and fabrication of cardiac scaffolds and patches. Furthermore, we sift in vitro and in situ strategies in several preclinical and clinical applications. Finally, we evaluate the possible use of bioengineered cardiac tissue equivalents as in vitro models for disease studies and drug tests.
Collapse
Affiliation(s)
| | - Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, Padua Medical School, University of Padua, Padua, Italy
| |
Collapse
|
15
|
Freires IA, Morelo DFC, Soares LFF, Costa IS, de Araújo LP, Breseghello I, Abdalla HB, Lazarini JG, Rosalen PL, Pigossi SC, Franchin M. Progress and promise of alternative animal and non-animal methods in biomedical research. Arch Toxicol 2023; 97:2329-2342. [PMID: 37394624 DOI: 10.1007/s00204-023-03532-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
Cell culture and invertebrate animal models reflect a significant evolution in scientific research by providing reliable evidence on the physiopathology of diseases, screening for new drugs, and toxicological tests while reducing the need for mammals. In this review, we discuss the progress and promise of alternative animal and non-animal methods in biomedical research, with a special focus on drug toxicity.
Collapse
Affiliation(s)
- Irlan Almeida Freires
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
| | - David Fernando Colon Morelo
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | | | | | | | | | - Henrique Ballassini Abdalla
- Laboratory of Neuroimmune Interface of Pain Research, São Leopoldo Mandic Institute and Research Center, Campinas, SP, Brazil
| | - Josy Goldoni Lazarini
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Pedro Luiz Rosalen
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
- Graduate Program in Biological Sciences, Federal University of Alfenas, Alfenas, Brazil
| | | | - Marcelo Franchin
- School of Dentistry, Federal University of Alfenas, Alfenas, Brazil
- Bioactivity and Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
16
|
Muniyandi P, O’Hern C, Popa MA, Aguirre A. Biotechnological advances and applications of human pluripotent stem cell-derived heart models. Front Bioeng Biotechnol 2023; 11:1214431. [PMID: 37560538 PMCID: PMC10407810 DOI: 10.3389/fbioe.2023.1214431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023] Open
Abstract
In recent years, significant biotechnological advancements have been made in engineering human cardiac tissues and organ-like models. This field of research is crucial for both basic and translational research due to cardiovascular disease being the leading cause of death in the developed world. Additionally, drug-associated cardiotoxicity poses a major challenge for drug development in the pharmaceutical and biotechnological industries. Progress in three-dimensional cell culture and microfluidic devices has enabled the generation of human cardiac models that faithfully recapitulate key aspects of human physiology. In this review, we will discuss 3D pluripotent stem cell (PSC)-models of the human heart, such as engineered heart tissues and organoids, and their applications in disease modeling and drug screening.
Collapse
Affiliation(s)
- Priyadharshni Muniyandi
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Colin O’Hern
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| | - Mirel Adrian Popa
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
- Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Aitor Aguirre
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
17
|
Abstract
The heart is the first functional organ established during embryogenesis. Investigating heart development and disease is a fascinating and crucial field of research because cardiovascular diseases remain the leading cause of morbidity and mortality worldwide. Therefore, there is great interest in establishing in vitro models for recapitulating both physiological and pathological aspects of human heart development, tissue function and malfunction. Derived from pluripotent stem cells, a large variety of three-dimensional cardiac in vitro models have been introduced in recent years. In this At a Glance article, we discuss the available methods to generate such models, grouped according to the following classification: cardiac organoids, cardiac microtissues and engineered cardiac tissues. For these models, we provide a systematic overview of their applications for disease modeling and therapeutic development, as well as their advantages and limitations to assist scientists in choosing the most suitable model for their research purpose.
Collapse
Affiliation(s)
- Lika Drakhlis
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover 30625, Germany
- Authors for correspondence (; )
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover 30625, Germany
- Authors for correspondence (; )
| |
Collapse
|
18
|
Pognan F, Beilmann M, Boonen HCM, Czich A, Dear G, Hewitt P, Mow T, Oinonen T, Roth A, Steger-Hartmann T, Valentin JP, Van Goethem F, Weaver RJ, Newham P. The evolving role of investigative toxicology in the pharmaceutical industry. Nat Rev Drug Discov 2023; 22:317-335. [PMID: 36781957 PMCID: PMC9924869 DOI: 10.1038/s41573-022-00633-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 02/15/2023]
Abstract
For decades, preclinical toxicology was essentially a descriptive discipline in which treatment-related effects were carefully reported and used as a basis to calculate safety margins for drug candidates. In recent years, however, technological advances have increasingly enabled researchers to gain insights into toxicity mechanisms, supporting greater understanding of species relevance and translatability to humans, prediction of safety events, mitigation of side effects and development of safety biomarkers. Consequently, investigative (or mechanistic) toxicology has been gaining momentum and is now a key capability in the pharmaceutical industry. Here, we provide an overview of the current status of the field using case studies and discuss the potential impact of ongoing technological developments, based on a survey of investigative toxicologists from 14 European-based medium-sized to large pharmaceutical companies.
Collapse
Affiliation(s)
- Francois Pognan
- Discovery and Investigative Safety, Novartis Pharma AG, Basel, Switzerland.
| | - Mario Beilmann
- Nonclinical Drug Safety Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Harrie C M Boonen
- Drug Safety, Dept of Exploratory Toxicology, Lundbeck A/S, Valby, Denmark
| | | | - Gordon Dear
- In Vitro In Vivo Translation, GlaxoSmithKline David Jack Centre for Research, Ware, UK
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Tomas Mow
- Safety Pharmacology and Early Toxicology, Novo Nordisk A/S, Maaloev, Denmark
| | - Teija Oinonen
- Preclinical Safety, Orion Corporation, Espoo, Finland
| | - Adrian Roth
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | | | - Freddy Van Goethem
- Predictive, Investigative & Translational Toxicology, Nonclinical Safety, Janssen Research & Development, Beerse, Belgium
| | - Richard J Weaver
- Innovation Life Cycle Management, Institut de Recherches Internationales Servier, Suresnes, France
| | - Peter Newham
- Clinical Pharmacology and Safety Sciences, AstraZeneca R&D, Cambridge, UK.
| |
Collapse
|
19
|
Martin M, Gähwiler EKN, Generali M, Hoerstrup SP, Emmert MY. Advances in 3D Organoid Models for Stem Cell-Based Cardiac Regeneration. Int J Mol Sci 2023; 24:ijms24065188. [PMID: 36982261 PMCID: PMC10049446 DOI: 10.3390/ijms24065188] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The adult human heart cannot regain complete cardiac function following tissue injury, making cardiac regeneration a current clinical unmet need. There are a number of clinical procedures aimed at reducing ischemic damage following injury; however, it has not yet been possible to stimulate adult cardiomyocytes to recover and proliferate. The emergence of pluripotent stem cell technologies and 3D culture systems has revolutionized the field. Specifically, 3D culture systems have enhanced precision medicine through obtaining a more accurate human microenvironmental condition to model disease and/or drug interactions in vitro. In this study, we cover current advances and limitations in stem cell-based cardiac regenerative medicine. Specifically, we discuss the clinical implementation and limitations of stem cell-based technologies and ongoing clinical trials. We then address the advent of 3D culture systems to produce cardiac organoids that may better represent the human heart microenvironment for disease modeling and genetic screening. Finally, we delve into the insights gained from cardiac organoids in relation to cardiac regeneration and further discuss the implications for clinical translation.
Collapse
Affiliation(s)
- Marcy Martin
- Institute for Regenerative Medicine (IREM), University of Zurich, 8952 Schlieren, Switzerland
| | - Eric K. N. Gähwiler
- Institute for Regenerative Medicine (IREM), University of Zurich, 8952 Schlieren, Switzerland
| | - Melanie Generali
- Institute for Regenerative Medicine (IREM), University of Zurich, 8952 Schlieren, Switzerland
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, 8952 Schlieren, Switzerland
- Wyss Zurich Translational Center, University of Zurich and ETH Zurich, 8092 Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, 8952 Schlieren, Switzerland
- Wyss Zurich Translational Center, University of Zurich and ETH Zurich, 8092 Zurich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- Correspondence: ; Tel.: +41-44-634-5610
| |
Collapse
|
20
|
Paz-Artigas L, Montero-Calle P, Iglesias-García O, Mazo MM, Ochoa I, Ciriza J. Current approaches for the recreation of cardiac ischaemic environment in vitro. Int J Pharm 2023; 632:122589. [PMID: 36623742 DOI: 10.1016/j.ijpharm.2023.122589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Myocardial ischaemia is one of the leading dead causes worldwide. Although animal experiments have historically provided a wealth of information, animal models are time and money consuming, and they usually miss typical human patient's characteristics associated with ischemia prevalence, including aging and comorbidities. Generating reliable in vitro models that recapitulate the human cardiac microenvironment during an ischaemic event can boost the development of new drugs and therapeutic strategies, as well as our understanding of the underlying cellular and molecular events, helping the optimization of therapeutic approaches prior to animal and clinical testing. Although several culture systems have emerged for the recreation of cardiac physiology, mimicking the features of an ischaemic heart tissue in vitro is challenging and certain aspects of the disease process remain poorly addressed. Here, current in vitro cardiac culture systems used for modelling cardiac ischaemia, from self-aggregated organoids to scaffold-based constructs and heart-on-chip platforms are described. The advantages of these models to recreate ischaemic hallmarks such as oxygen gradients, pathological alterations of mechanical strength or fibrotic responses are highlighted. The new models represent a step forward to be considered, but unfortunately, we are far away from recapitulating all complexity of the clinical situations.
Collapse
Affiliation(s)
- Laura Paz-Artigas
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain; Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Pilar Montero-Calle
- Regenerative Medicine Program, Cima Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Olalla Iglesias-García
- Regenerative Medicine Program, Cima Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Manuel M Mazo
- Regenerative Medicine Program, Cima Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Hematology and Cell Therapy, Clínica Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain; Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain; CIBER-BBN, ISCIII, Zaragoza, Spain.
| | - Jesús Ciriza
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain; Institute for Health Research Aragón (IIS Aragón), 50009 Zaragoza, Spain; CIBER-BBN, ISCIII, Zaragoza, Spain.
| |
Collapse
|
21
|
Vascularized Tissue Organoids. Bioengineering (Basel) 2023; 10:bioengineering10020124. [PMID: 36829618 PMCID: PMC9951914 DOI: 10.3390/bioengineering10020124] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Tissue organoids hold enormous potential as tools for a variety of applications, including disease modeling and drug screening. To effectively mimic the native tissue environment, it is critical to integrate a microvasculature with the parenchyma and stroma. In addition to providing a means to physiologically perfuse the organoids, the microvasculature also contributes to the cellular dynamics of the tissue model via the cells of the perivascular niche, thereby further modulating tissue function. In this review, we discuss current and developing strategies for vascularizing organoids, consider tissue-specific vascularization approaches, discuss the importance of perfusion, and provide perspectives on the state of the field.
Collapse
|
22
|
Lyu Q, Gong S, Lees JG, Yin J, Yap LW, Kong AM, Shi Q, Fu R, Zhu Q, Dyer A, Dyson JM, Lim SY, Cheng W. A soft and ultrasensitive force sensing diaphragm for probing cardiac organoids instantaneously and wirelessly. Nat Commun 2022; 13:7259. [PMID: 36433978 PMCID: PMC9700778 DOI: 10.1038/s41467-022-34860-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
Time-lapse mechanical properties of stem cell derived cardiac organoids are important biological cues for understanding contraction dynamics of human heart tissues, cardiovascular functions and diseases. However, it remains difficult to directly, instantaneously and accurately characterize such mechanical properties in real-time and in situ because cardiac organoids are topologically complex, three-dimensional soft tissues suspended in biological media, which creates a mismatch in mechanics and topology with state-of-the-art force sensors that are typically rigid, planar and bulky. Here, we present a soft resistive force-sensing diaphragm based on ultrasensitive resistive nanocracked platinum film, which can be integrated into an all-soft culture well via an oxygen plasma-enabled bonding process. We show that a reliable organoid-diaphragm contact can be established by an 'Atomic Force Microscope-like' engaging process. This allows for instantaneous detection of the organoids' minute contractile forces and beating patterns during electrical stimulation, resuscitation, drug dosing, tissue culture, and disease modelling.
Collapse
Affiliation(s)
- Quanxia Lyu
- grid.1002.30000 0004 1936 7857Department of Chemical & Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Shu Gong
- grid.1002.30000 0004 1936 7857Department of Chemical & Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Jarmon G. Lees
- grid.1073.50000 0004 0626 201XO’Brien Institute Department, St. Vincent’s Institute of Medical Research, Fitzroy, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine and Surgery, University of Melbourne, Melbourne, VIC Australia
| | - Jialiang Yin
- grid.1002.30000 0004 1936 7857Department of Chemical & Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Lim Wei Yap
- grid.1002.30000 0004 1936 7857Department of Chemical & Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Anne M. Kong
- grid.1073.50000 0004 0626 201XO’Brien Institute Department, St. Vincent’s Institute of Medical Research, Fitzroy, VIC Australia
| | - Qianqian Shi
- grid.1002.30000 0004 1936 7857Department of Chemical & Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Runfang Fu
- grid.1002.30000 0004 1936 7857Department of Chemical & Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Qiang Zhu
- grid.410660.5The Melbourne Centre for Nanofabrication, Clayton, VIC 3800 Australia
| | - Ash Dyer
- grid.410660.5The Melbourne Centre for Nanofabrication, Clayton, VIC 3800 Australia
| | - Jennifer M. Dyson
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Clayton, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Faculty of Engineering, Monash Institute of Medical Engineering (MIME), Monash University, Clayton, VIC 3800 Australia
| | - Shiang Y. Lim
- grid.1073.50000 0004 0626 201XO’Brien Institute Department, St. Vincent’s Institute of Medical Research, Fitzroy, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine and Surgery, University of Melbourne, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia ,grid.419385.20000 0004 0620 9905National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
| | - Wenlong Cheng
- grid.1002.30000 0004 1936 7857Department of Chemical & Biological Engineering, Monash University, Clayton, VIC 3800 Australia ,grid.410660.5The Melbourne Centre for Nanofabrication, Clayton, VIC 3800 Australia
| |
Collapse
|
23
|
Chunduri V, Maddi S. Role of in vitro two-dimensional (2D) and three-dimensional (3D) cell culture systems for ADME-Tox screening in drug discovery and development: a comprehensive review. ADMET & DMPK 2022; 11:1-32. [PMID: 36778905 PMCID: PMC9909725 DOI: 10.5599/admet.1513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/07/2022] [Indexed: 11/18/2022]
Abstract
Drug discovery and development have become a very time-consuming and expensive process. Preclinical animal models have become the gold standard for studying drug pharmacokinetic and toxicity parameters. However, the involvement of a huge number of animal subjects and inter-species pathophysiological variations between animals and humans has provoked a lot of debate, particularly because of ethical concerns. Although many efforts are being established by biotech and pharmaceutical companies for screening new chemical entities in vitro before preclinical trials, failures during clinical trials are still involved. Currently, a large number of two- dimensional (2D) in vitro assays have been developed and are being developed by researchers for the screening of compounds. Although these assays are helpful in screening a huge library of compounds and have shown perception, there is a significant lack in predicting human Absorption, Distribution, Metabolism, Excretion and Toxicology (ADME-Tox). As a result, these assays cannot completely replace animal models. The recent inventions in three-dimensional (3D) cell culture-based assays like organoids and micro-physiological systems have shown great potential alternative tools for predicting the compound pharmacokinetic and pharmacodynamic fate in humans. In this comprehensive review, we have summarized some of the most commonly used 2D in vitro assays and emphasized the achievements in next-generation 3D cell culture-based systems for predicting the compound ADME-Tox.
Collapse
|
24
|
Charwat V, Charrez B, Siemons BA, Finsberg H, Jæger KH, Edwards AG, Huebsch N, Wall S, Miller E, Tveito A, Healy KE. Validating the Arrhythmogenic Potential of High-, Intermediate-, and Low-Risk Drugs in a Human-Induced Pluripotent Stem Cell-Derived Cardiac Microphysiological System. ACS Pharmacol Transl Sci 2022; 5:652-667. [PMID: 35983280 PMCID: PMC9380217 DOI: 10.1021/acsptsci.2c00088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/28/2022]
Abstract
Evaluation of arrhythmogenic drugs is required by regulatory agencies before any new compound can obtain market approval. Despite rigorous review, cardiac disorders remain the second most common cause for safety-related market withdrawal. On the other hand, false-positive preclinical findings prohibit potentially beneficial candidates from moving forward in the development pipeline. Complex in vitro models using cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CM) have been identified as a useful tool that allows for rapid and cost-efficient screening of proarrhythmic drug risk. Currently available hiPSC-CM models employ simple two-dimensional (2D) culture formats with limited structural and functional relevance to the human heart muscle. Here, we present the use of our 3D cardiac microphysiological system (MPS), composed of a hiPSC-derived heart micromuscle, as a platform for arrhythmia risk assessment. We employed two different hiPSC lines and tested seven drugs with known ion channel effects and known clinical risk: dofetilide and bepridil (high risk); amiodarone and terfenadine (intermediate risk); and nifedipine, mexiletine, and lidocaine (low risk). The cardiac MPS successfully predicted drug cardiotoxicity risks based on changes in action potential duration, beat waveform (i.e., shape), and occurrence of proarrhythmic events of healthy patient hiPSC lines in the absence of risk cofactors. We showcase examples where the cardiac MPS outperformed existing hiPSC-CM 2D models.
Collapse
Affiliation(s)
- Verena Charwat
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, United States
| | - Bérénice Charrez
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, United States
| | - Brian A. Siemons
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, United States
| | | | | | | | - Nathaniel Huebsch
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, United States
| | - Samuel Wall
- Simula Research Laboratory, 0164 Oslo, Norway
| | - Evan Miller
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | | | - Kevin E. Healy
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
25
|
Assessing Drug-Induced Mitochondrial Toxicity in Cardiomyocytes: Implications for Preclinical Cardiac Safety Evaluation. Pharmaceutics 2022; 14:pharmaceutics14071313. [PMID: 35890211 PMCID: PMC9319223 DOI: 10.3390/pharmaceutics14071313] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
Drug-induced cardiotoxicity not only leads to the attrition of drugs during development, but also contributes to the high morbidity and mortality rates of cardiovascular diseases. Comprehensive testing for proarrhythmic risks of drugs has been applied in preclinical cardiac safety assessment for over 15 years. However, other mechanisms of cardiac toxicity have not received such attention. Of them, mitochondrial impairment is a common form of cardiotoxicity and is known to account for over half of cardiovascular adverse-event-related black box warnings imposed by the U.S. Food and Drug Administration. Although it has been studied in great depth, mitochondrial toxicity assessment has not yet been incorporated into routine safety tests for cardiotoxicity at the preclinical stage. This review discusses the main characteristics of mitochondria in cardiomyocytes, drug-induced mitochondrial toxicities, and high-throughput screening strategies for cardiomyocytes, as well as their proposed integration into preclinical safety pharmacology. We emphasize the advantages of using adult human primary cardiomyocytes for the evaluation of mitochondrial morphology and function, and the need for a novel cardiac safety testing platform integrating mitochondrial toxicity and proarrhythmic risk assessments in cardiac safety evaluation.
Collapse
|
26
|
Abstract
An ensemble of in vitro cardiac tissue models has been developed over the past several decades to aid our understanding of complex cardiovascular disorders using a reductionist approach. These approaches often rely on recapitulating single or multiple clinically relevant end points in a dish indicative of the cardiac pathophysiology. The possibility to generate disease-relevant and patient-specific human induced pluripotent stem cells has further leveraged the utility of the cardiac models as screening tools at a large scale. To elucidate biological mechanisms in the cardiac models, it is critical to integrate physiological cues in form of biochemical, biophysical, and electromechanical stimuli to achieve desired tissue-like maturity for a robust phenotyping. Here, we review the latest advances in the directed stem cell differentiation approaches to derive a wide gamut of cardiovascular cell types, to allow customization in cardiac model systems, and to study diseased states in multiple cell types. We also highlight the recent progress in the development of several cardiovascular models, such as cardiac organoids, microtissues, engineered heart tissues, and microphysiological systems. We further expand our discussion on defining the context of use for the selection of currently available cardiac tissue models. Last, we discuss the limitations and challenges with the current state-of-the-art cardiac models and highlight future directions.
Collapse
Affiliation(s)
- Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.)
| | - Suji Choi
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA (S.C., K.K.P.)
| | - Christina Alamana
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.)
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA (S.C., K.K.P.).,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, Wyss Institute for Biologically Inspired Engineering, Boston, MA (K.K.P.)
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Greenstone Biosciences, Palo Alto, CA (J.C.W.)
| |
Collapse
|
27
|
Xuan W, Tipparaju SM, Ashraf M. Transformational Applications of Human Cardiac Organoids in Cardiovascular Diseases. Front Cell Dev Biol 2022; 10:936084. [PMID: 35813193 PMCID: PMC9261984 DOI: 10.3389/fcell.2022.936084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Organoid technology has significantly advanced in recent years and revolutionized the field for generation of organs using in vitro systems (a.k.a "organs in a dish"). The use of pluripotent stem cells or tissue derived cells for generating a 3-dimensional culture system to recapitulate the architecture and function of the organ is central in achieving and improving organoid systems. Unlike most organs in the body, very little progress has been made in cardiac organoid due to its structural complexity and vascularization. In this review, we will discuss the current applications of human cardiac organoids for cardiac disease modeling, drug discovery, drug cardiotoxicity testing, and clinical applications.
Collapse
Affiliation(s)
- Wanling Xuan
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Srinivas M. Tipparaju
- Department of Pharmaceutical Sciences, USF Health Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Muhammad Ashraf
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
28
|
Daley MC, Mende U, Choi BR, McMullen PD, Coulombe KLK. Beyond pharmaceuticals: Fit-for-purpose new approach methodologies for environmental cardiotoxicity testing. ALTEX 2022; 40:103-116. [PMID: 35648122 PMCID: PMC10502740 DOI: 10.14573/altex.2109131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
Abstract
Environmental factors play a substantial role in determining cardiovascular health, but data informing the risks presented by environmental toxicants is insufficient. In vitro new approach methodologies (NAMs) offer a promising approach with which to address the limitations of traditional in vivo and in vitro assays for assessing cardiotoxicity. Driven largely by the needs of pharmaceutical toxicity testing, considerable progress in developing NAMs for cardiotoxicity analysis has already been made. As the scientific and regulatory interest in NAMs for environmental chemicals continues to grow, a thorough understanding of the unique features of environmental cardiotoxicants and their associated cardiotoxicities is needed. Here, we review the key characteristics of as well as important regulatory and biological considerations for fit-for-purpose NAMs for environmental cardiotoxicity. By emphasizing the challenges and opportunities presented by NAMs for environmental cardiotoxicity we hope to accelerate their development, acceptance, and application.
Collapse
Affiliation(s)
- Mark C Daley
- Center for Biomedical Engineering, School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Ulrike Mende
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Bum-Rak Choi
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
29
|
Bremner SB, Gaffney KS, Sniadecki NJ, Mack DL. A Change of Heart: Human Cardiac Tissue Engineering as a Platform for Drug Development. Curr Cardiol Rep 2022; 24:473-486. [PMID: 35247166 PMCID: PMC8897733 DOI: 10.1007/s11886-022-01668-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Human cardiac tissue engineering holds great promise for early detection of drug-related cardiac toxicity and arrhythmogenicity during drug discovery and development. We describe shortcomings of the current drug development pathway, recent advances in the development of cardiac tissue constructs as drug testing platforms, and the challenges remaining in their widespread adoption. RECENT FINDINGS Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have been used to develop a variety of constructs including cardiac spheroids, microtissues, strips, rings, and chambers. Several ambitious studies have used these constructs to test a significant number of drugs, and while most have shown proper negative inotropic and arrhythmogenic responses, few have been able to demonstrate positive inotropy, indicative of relative hPSC-CM immaturity. Several engineered human cardiac tissue platforms have demonstrated native cardiac physiology and proper drug responses. Future studies addressing hPSC-CM immaturity and inclusion of patient-specific cell lines will further advance the utility of such models for in vitro drug development.
Collapse
Affiliation(s)
- Samantha B. Bremner
- Department of Bioengineering, University of Washington, Seattle, WA USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - Karen S. Gaffney
- Department of Bioengineering, University of Washington, Seattle, WA USA
| | - Nathan J. Sniadecki
- Department of Bioengineering, University of Washington, Seattle, WA USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - David L. Mack
- Department of Bioengineering, University of Washington, Seattle, WA USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA USA
| |
Collapse
|
30
|
Varzideh F, Mone P, Santulli G. Bioengineering Strategies to Create 3D Cardiac Constructs from Human Induced Pluripotent Stem Cells. Bioengineering (Basel) 2022; 9:168. [PMID: 35447728 PMCID: PMC9028595 DOI: 10.3390/bioengineering9040168] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) can be used to generate various cell types in the human body. Hence, hiPSC-derived cardiomyocytes (hiPSC-CMs) represent a significant cell source for disease modeling, drug testing, and regenerative medicine. The immaturity of hiPSC-CMs in two-dimensional (2D) culture limit their applications. Cardiac tissue engineering provides a new promise for both basic and clinical research. Advanced bioengineered cardiac in vitro models can create contractile structures that serve as exquisite in vitro heart microtissues for drug testing and disease modeling, thereby promoting the identification of better treatments for cardiovascular disorders. In this review, we will introduce recent advances of bioengineering technologies to produce in vitro cardiac tissues derived from hiPSCs.
Collapse
Affiliation(s)
- Fahimeh Varzideh
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pasquale Mone
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Gaetano Santulli
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
31
|
Cho J, Lee H, Rah W, Chang HJ, Yoon YS. From engineered heart tissue to cardiac organoid. Theranostics 2022; 12:2758-2772. [PMID: 35401829 PMCID: PMC8965483 DOI: 10.7150/thno.67661] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
The advent of human pluripotent stem cells (hPSCs) presented a new paradigm to employ hPSC-derived cardiomyocytes (hPSC-CMs) in drug screening and disease modeling. However, hPSC-CMs differentiated in conventional two-dimensional systems are structurally and functionally immature. Moreover, these differentiation systems generate predominantly one type of cell. Since the heart includes not only CMs but other cell types, such monolayer cultures have limitations in simulating the native heart. Accordingly, three-dimensional (3D) cardiac tissues have been developed as a better platform by including various cardiac cell types and extracellular matrices. Two advances were made for 3D cardiac tissue generation. One type is engineered heart tissues (EHTs), which are constructed by 3D cell culture of cardiac cells using an engineering technology. This system provides a convenient real-time analysis of cardiac function, as well as a precise control of the input/output flow and mechanical/electrical stimulation. The other type is cardiac organoids, which are formed through self-organization of differentiating cardiac lineage cells from hPSCs. While mature cardiac organoids are more desirable, at present only primitive forms of organoids are available. In this review, we discuss various models of hEHTs and cardiac organoids emulating the human heart, focusing on their unique features, utility, and limitations.
Collapse
Affiliation(s)
- Jaeyeaon Cho
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyein Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Woongchan Rah
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyuk Jae Chang
- Division of Cardiology, Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Young-sup Yoon
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Karis Bio Inc., Seoul, Republic of Korea
| |
Collapse
|
32
|
Arslan U, Moruzzi A, Nowacka J, Mummery CL, Eckardt D, Loskill P, Orlova VV. Microphysiological stem cell models of the human heart. Mater Today Bio 2022; 14:100259. [PMID: 35514437 PMCID: PMC9062349 DOI: 10.1016/j.mtbio.2022.100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/10/2022] Open
Abstract
Models of heart disease and drug responses are increasingly based on human pluripotent stem cells (hPSCs) since their ability to capture human heart (dys-)function is often better than animal models. Simple monolayer cultures of hPSC-derived cardiomyocytes, however, have shortcomings. Some of these can be overcome using more complex, multi cell-type models in 3D. Here we review modalities that address this, describe efforts to tailor readouts and sensors for monitoring tissue- and cell physiology (exogenously and in situ) and discuss perspectives for implementation in industry and academia.
Collapse
Affiliation(s)
- Ulgu Arslan
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Alessia Moruzzi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Joanna Nowacka
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Peter Loskill
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- 3R-Center for in Vitro Models and Alternatives to Animal Testing, Tübingen, Germany
| | - Valeria V. Orlova
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
33
|
Liu C, Feng X, Li G, Gokulnath P, Xiao J. Generating 3D human cardiac constructs from pluripotent stem cells. EBioMedicine 2022; 76:103813. [PMID: 35093634 PMCID: PMC8804169 DOI: 10.1016/j.ebiom.2022.103813] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/11/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
Human pluripotent stem cell (hPSC) technology has offered nearly infinite opportunities to model all kinds of human diseases in vitro. Cardiomyocytes derived from hPSCs have proved to be efficient tools for cardiac disease modeling, drug screening and pathological mechanism studies. In this review, we discuss the advantages and limitations of 2D hPSC-cardiomyocyte (hPSC-CM) system, and introduce the recent development of three-dimensional (3D) culture platforms derived from hPSCs. Although the development of bioengineering technologies has greatly improved 3D platform construction, there are certainly challenges and room for development for further in-depth research.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xing Feng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
34
|
Gintant G. Assessing the Fidelity of Translation of Nonclinical Assays: A Pharma Perspective. Br J Pharmacol 2022; 179:2564-2576. [PMID: 35032025 DOI: 10.1111/bph.15796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022] Open
Abstract
Advances in nonclinical in vitro models, higher throughput approaches and the promise of human-derived preparations require methods to reliably assess the fidelity of translation of assays compared to in vivo models and clinical studies. This review discusses general principles and parameters useful to evaluate the value of nonclinical assays typically used to guide compound progression. I first consider the biological characteristics (including sensitivity and ability to recapitulate relevant responses) of models that form the foundation of an assay based on the questions posed. I then discuss the quantitative assessment of diagnostic performance and assay utility, including sensitivity and specificity, receiver-operator characteristic curves, positive and negative predictive values, likelihood ratios, along with advantages of combining two independent assays. Understanding the strengths and limitations of the biological model employed along with assay performance and context of use is essential to selecting the best assays supporting the best drug candidates.
Collapse
Affiliation(s)
- Gary Gintant
- Dept Integrative Pharmacology (ZR-13, Dept. AP-9A), AbbVie, North Chicago, IL, USA
| |
Collapse
|
35
|
Kofron CM, Choi BR, Coulombe KLK. Arrhythmia Assessment in Heterotypic Human Cardiac Myocyte-Fibroblast Microtissues. Methods Mol Biol 2022; 2485:147-157. [PMID: 35618904 PMCID: PMC10502739 DOI: 10.1007/978-1-0716-2261-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Risk assessment assays for chemically induced arrhythmia are critical, but significant limitations exist with current cardiotoxicity testing, including a focus on single select ion channels, the use of non-human species in vitro and in vivo, and limited direct physiological translation. To be predictive of actual adverse clinical arrhythmic risk, arrhythmia assessment models for chemicals and drugs should be fit-for-purpose and suited for evaluating compounds in which the mechanism of action may not be entirely known. Here, we describe methods for efficient and reliable screening for arrhythmogenic cardiotoxicity with a 3D human cardiac microtissue model using purified human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and human cardiac fibroblasts. Applying optical mapping of voltage and calcium-sensitive dyes-an established approach to evaluate cardiac action potentials and calcium transients-to 3D heterotypic cardiac myocyte-fibroblast tissues allows for the generation and functional analysis of a large number of individual microtissues to provide greater throughput and high statistical power in analyses. Hundreds of microtissues in standard cell culture plates can be produced with low variability beat-to-beat, microtissue-to-microtissue, and across hiPSC-cardiomyocyte differentiation batches, reducing the number of microtissues required per condition for predictive outputs. The platform described here can be used as a sensitive, efficient, and predictive preclinical model validated for the purpose of assessing human pro-arrhythmic risk.
Collapse
Affiliation(s)
- Celinda M Kofron
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI, USA
| | - Bum-Rak Choi
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Kareen L K Coulombe
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI, USA.
| |
Collapse
|
36
|
Moore J, Emili A. Mass-Spectrometry-Based Functional Proteomic and Phosphoproteomic Technologies and Their Application for Analyzing Ex Vivo and In Vitro Models of Hypertrophic Cardiomyopathy. Int J Mol Sci 2021; 22:13644. [PMID: 34948439 PMCID: PMC8709159 DOI: 10.3390/ijms222413644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an autosomal dominant disease thought to be principally caused by mutations in sarcomeric proteins. Despite extensive genetic analysis, there are no comprehensive molecular frameworks for how single mutations in contractile proteins result in the diverse assortment of cellular, phenotypic, and pathobiological cascades seen in HCM. Molecular profiling and system biology approaches are powerful tools for elucidating, quantifying, and interpreting dynamic signaling pathways and differential macromolecule expression profiles for a wide range of sample types, including cardiomyopathy. Cutting-edge approaches combine high-performance analytical instrumentation (e.g., mass spectrometry) with computational methods (e.g., bioinformatics) to study the comparative activity of biochemical pathways based on relative abundances of functionally linked proteins of interest. Cardiac research is poised to benefit enormously from the application of this toolkit to cardiac tissue models, which recapitulate key aspects of pathogenesis. In this review, we evaluate state-of-the-art mass-spectrometry-based proteomic and phosphoproteomic technologies and their application to in vitro and ex vivo models of HCM for global mapping of macromolecular alterations driving disease progression, emphasizing their potential for defining the components of basic biological systems, the fundamental mechanistic basis of HCM pathogenesis, and treating the ensuing varied clinical outcomes seen among affected patient cohorts.
Collapse
Affiliation(s)
- Jarrod Moore
- Center for Network Systems Biology, Boston University School of Medicine, Boston, MA 02118, USA;
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
- MD-PhD Program, Boston University School of Medicine, Boston, MA 02118, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University School of Medicine, Boston, MA 02118, USA;
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
37
|
Lee SJ, Kim HA, Kim SJ, Lee HA. Improving Generation of Cardiac Organoids from Human Pluripotent Stem Cells Using the Aurora Kinase Inhibitor ZM447439. Biomedicines 2021; 9:biomedicines9121952. [PMID: 34944767 PMCID: PMC8698385 DOI: 10.3390/biomedicines9121952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 01/21/2023] Open
Abstract
Drug-induced cardiotoxicity reduces the success rates of drug development. Thus, the limitations of current evaluation methods must be addressed. Human cardiac organoids (hCOs) derived from induced pluripotent stem cells (hiPSCs) are useful as an advanced drug-testing model; they demonstrate similar electrophysiological functionality and drug reactivity as the heart. How-ever, similar to other organoid models, they have immature characteristics compared to adult hearts, and exhibit batch-to-batch variation. As the cell cycle is important for the mesodermal differentiation of stem cells, we examined the effect of ZM447439, an aurora kinase inhibitor that regulates the cell cycle, on cardiogenic differentiation. We determined the optimal concentration and timing of ZM447439 for the differentiation of hCOs from hiPSCs and developed a novel protocol for efficiently and reproducibly generating beating hCOs with improved electrophysiological functionality, contractility, and yield. We validated their maturity through electro-physiological- and image-based functional assays and gene profiling with next-generation sequencing, and then applied these cells to multi-electrode array platforms to monitor the cardio-toxicity of drugs related to cardiac arrhythmia; the results confirmed the drug reactivity of hCOs. These findings may enable determination of the regulatory mechanism of cell cycles underlying the generation of iPSC-derived hCOs, providing a valuable drug testing platform.
Collapse
Affiliation(s)
- Su-Jin Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon 34114, Korea; (S.-J.L.); (H.-A.K.)
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyeon-A Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon 34114, Korea; (S.-J.L.); (H.-A.K.)
| | - Sung-Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: (S.-J.K.); (H.-A.L.); Tel.: +82-2-740-8230 (S.-J.K.); +82-42-610-8093 (H.-A.L.)
| | - Hyang-Ae Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon 34114, Korea; (S.-J.L.); (H.-A.K.)
- Correspondence: (S.-J.K.); (H.-A.L.); Tel.: +82-2-740-8230 (S.-J.K.); +82-42-610-8093 (H.-A.L.)
| |
Collapse
|
38
|
Nguyen OTP, Misun PM, Lohasz C, Lee J, Wang W, Schroeder T, Hierlemann A. An Immunocompetent Microphysiological System to Simultaneously Investigate Effects of Anti-Tumor Natural Killer Cells on Tumor and Cardiac Microtissues. Front Immunol 2021; 12:781337. [PMID: 34925361 PMCID: PMC8675866 DOI: 10.3389/fimmu.2021.781337] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/16/2021] [Indexed: 12/26/2022] Open
Abstract
Existing first-line cancer therapies often fail to cope with the heterogeneity and complexity of cancers, so that new therapeutic approaches are urgently needed. Among novel alternative therapies, adoptive cell therapy (ACT) has emerged as a promising cancer treatment in recent years. The limited clinical applications of ACT, despite its advantages over standard-of-care therapies, can be attributed to (i) time-consuming and cost-intensive procedures to screen for potent anti-tumor immune cells and the corresponding targets, (ii) difficulties to translate in-vitro and animal-derived in-vivo efficacies to clinical efficacy in humans, and (iii) the lack of systemic methods for the safety assessment of ACT. Suitable experimental models and testing platforms have the potential to accelerate the development of ACT. Immunocompetent microphysiological systems (iMPS) are microfluidic platforms that enable complex interactions of advanced tissue models with different immune cell types, bridging the gap between in-vitro and in-vivo studies. Here, we present a proof-of-concept iMPS that supports a triple culture of three-dimensional (3D) colorectal tumor microtissues, 3D cardiac microtissues, and human-derived natural killer (NK) cells in the same microfluidic network. Different aspects of tumor-NK cell interactions were characterized using this iMPS including: (i) direct interaction and NK cell-mediated tumor killing, (ii) the development of an inflammatory milieu through enrichment of soluble pro-inflammatory chemokines and cytokines, and (iii) secondary effects on healthy cardiac microtissues. We found a specific NK cell-mediated tumor-killing activity and elevated levels of tumor- and NK cell-derived chemokines and cytokines, indicating crosstalk and development of an inflammatory milieu. While viability and morphological integrity of cardiac microtissues remained mostly unaffected, we were able to detect alterations in their beating behavior, which shows the potential of iMPS for both, efficacy and early safety testing of new candidate ACTs.
Collapse
Affiliation(s)
- Oanh T. P. Nguyen
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Patrick M. Misun
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Christian Lohasz
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Jihyun Lee
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Weijia Wang
- Cell Systems Dynamics Group, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Timm Schroeder
- Cell Systems Dynamics Group, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Andreas Hierlemann
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
39
|
Matsui T, Shinozawa T. Human Organoids for Predictive Toxicology Research and Drug Development. Front Genet 2021; 12:767621. [PMID: 34790228 PMCID: PMC8591288 DOI: 10.3389/fgene.2021.767621] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Organoids are three-dimensional structures fabricated in vitro from pluripotent stem cells or adult tissue stem cells via a process of self-organization that results in the formation of organ-specific cell types. Human organoids are expected to mimic complex microenvironments and many of the in vivo physiological functions of relevant tissues, thus filling the translational gap between animals and humans and increasing our understanding of the mechanisms underlying disease and developmental processes. In the last decade, organoid research has attracted increasing attention in areas such as disease modeling, drug development, regenerative medicine, toxicology research, and personalized medicine. In particular, in the field of toxicology, where there are various traditional models, human organoids are expected to blaze a new path in future research by overcoming the current limitations, such as those related to differences in drug responses among species. Here, we discuss the potential usefulness, limitations, and future prospects of human liver, heart, kidney, gut, and brain organoids from the viewpoints of predictive toxicology research and drug development, providing cutting edge information on their fabrication methods and functional characteristics.
Collapse
Affiliation(s)
- Toshikatsu Matsui
- Drug Safety Research and Evaluation, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Tadahiro Shinozawa
- Drug Safety Research and Evaluation, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
40
|
Hwang JJ, Choi J, Rim YA, Nam Y, Ju JH. Application of Induced Pluripotent Stem Cells for Disease Modeling and 3D Model Construction: Focus on Osteoarthritis. Cells 2021; 10:cells10113032. [PMID: 34831254 PMCID: PMC8622662 DOI: 10.3390/cells10113032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Since their discovery in 2006, induced pluripotent stem cells (iPSCs) have shown promising potential, specifically because of their accessibility and plasticity. Hence, the clinical applicability of iPSCs was investigated in various fields of research. However, only a few iPSC studies pertaining to osteoarthritis (OA) have been performed so far, despite the high prevalence rate of degenerative joint disease. In this review, we discuss some of the most recent applications of iPSCs in disease modeling and the construction of 3D models in various fields, specifically focusing on osteoarthritis and OA-related conditions. Notably, we comprehensively reviewed the successful results of iPSC-derived disease models in recapitulating OA phenotypes for both OA and early-onset OA to encompass their broad etiology. Moreover, the latest publications with protocols that have used iPSCs to construct 3D models in recapitulating various conditions, particularly the OA environment, were further discussed. With the overall optimistic results seen in both fields, iPSCs are expected to be more widely used for OA disease modeling and 3D model construction, which could further expand OA drug screening, risk assessment, and therapeutic capabilities.
Collapse
Affiliation(s)
- Joel Jihwan Hwang
- College of Public Health and Social Justice, Saint Louis University, St. Louis, MO 63103, USA;
| | - Jinhyeok Choi
- YiPSCELL, Inc., 39 Banpo-daero, Seocho-gu, Seoul 06579, Korea; (J.C.); (Y.N.)
| | - Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Yoojun Nam
- YiPSCELL, Inc., 39 Banpo-daero, Seocho-gu, Seoul 06579, Korea; (J.C.); (Y.N.)
| | - Ji Hyeon Ju
- YiPSCELL, Inc., 39 Banpo-daero, Seocho-gu, Seoul 06579, Korea; (J.C.); (Y.N.)
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Division of Rheumatology, Department of Internal Medicine, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul St. Mary’s Hospital, Seoul 06591, Korea
- Correspondence:
| |
Collapse
|
41
|
Bassan A, Alves VM, Amberg A, Anger LT, Beilke L, Bender A, Bernal A, Cronin MT, Hsieh JH, Johnson C, Kemper R, Mumtaz M, Neilson L, Pavan M, Pointon A, Pletz J, Ruiz P, Russo DP, Sabnis Y, Sandhu R, Schaefer M, Stavitskaya L, Szabo DT, Valentin JP, Woolley D, Zwickl C, Myatt GJ. In silico approaches in organ toxicity hazard assessment: Current status and future needs for predicting heart, kidney and lung toxicities. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 20:100188. [PMID: 35721273 PMCID: PMC9205464 DOI: 10.1016/j.comtox.2021.100188] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The kidneys, heart and lungs are vital organ systems evaluated as part of acute or chronic toxicity assessments. New methodologies are being developed to predict these adverse effects based on in vitro and in silico approaches. This paper reviews the current state of the art in predicting these organ toxicities. It outlines the biological basis, processes and endpoints for kidney toxicity, pulmonary toxicity, respiratory irritation and sensitization as well as functional and structural cardiac toxicities. The review also covers current experimental approaches, including off-target panels from secondary pharmacology batteries. Current in silico approaches for prediction of these effects and mechanisms are described as well as obstacles to the use of in silico methods. Ultimately, a commonly accepted protocol for performing such assessment would be a valuable resource to expand the use of such approaches across different regulatory and industrial applications. However, a number of factors impede their widespread deployment including a lack of a comprehensive mechanistic understanding, limited in vitro testing approaches and limited in vivo databases suitable for modeling, a limited understanding of how to incorporate absorption, distribution, metabolism, and excretion (ADME) considerations into the overall process, a lack of in silico models designed to predict a safe dose and an accepted framework for organizing the key characteristics of these organ toxicants.
Collapse
Affiliation(s)
- Arianna Bassan
- Innovatune srl, Via Giulio Zanon 130/D, 35129 Padova, Italy
| | - Vinicius M. Alves
- The National Institute of Environmental Health Sciences, Division of the National Toxicology Program, Research Triangle Park, NC 27709, United States
| | - Alexander Amberg
- Sanofi, R&D Preclinical Safety Frankfurt, Industriepark Hoechst, D-65926 Frankfurt am Main, Germany
| | - Lennart T. Anger
- Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Lisa Beilke
- Toxicology Solutions Inc., San Diego, CA, United States
| | - Andreas Bender
- AI and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United States
| | | | - Mark T.D. Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Jui-Hua Hsieh
- The National Institute of Environmental Health Sciences, Division of the National Toxicology Program, Research Triangle Park, NC 27709, United States
| | | | - Raymond Kemper
- Nuvalent, One Broadway, 14th floor, Cambridge, MA 02142, United States
| | - Moiz Mumtaz
- Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, GA, United States
| | - Louise Neilson
- Broughton Nicotine Services, Oak Tree House, West Craven Drive, Earby, Lancashire BB18 6JZ UK
| | - Manuela Pavan
- Innovatune srl, Via Giulio Zanon 130/D, 35129 Padova, Italy
| | - Amy Pointon
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Julia Pletz
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Patricia Ruiz
- Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, GA, United States
| | - Daniel P. Russo
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, United States
- Department of Chemistry, Rutgers University, Camden, NJ 08102, United States
| | - Yogesh Sabnis
- UCB Biopharma SRL, Chemin du Foriest, B-1420 Braine-l’Alleud, Belgium
| | - Reena Sandhu
- SafeDose Ltd., 20 Dundas Street West, Suite 921, Toronto, Ontario M5G2H1, Canada
| | - Markus Schaefer
- Sanofi, R&D Preclinical Safety Frankfurt, Industriepark Hoechst, D-65926 Frankfurt am Main, Germany
| | - Lidiya Stavitskaya
- US Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD 20993, USA
| | | | | | - David Woolley
- ForthTox Limited, PO Box 13550, Linlithgow, EH49 7YU, UK
| | - Craig Zwickl
- Transendix LLC, 1407 Moores Manor, Indianapolis, IN 46229, United States
| | - Glenn J. Myatt
- Instem, 1393 Dublin Road, Columbus, OH 43215, United States
| |
Collapse
|
42
|
Bowen TJ, Hall AR, Lloyd GR, Weber RJM, Wilson A, Pointon A, Viant MR. An Extensive Metabolomics Workflow to Discover Cardiotoxin-Induced Molecular Perturbations in Microtissues. Metabolites 2021; 11:644. [PMID: 34564460 PMCID: PMC8470535 DOI: 10.3390/metabo11090644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022] Open
Abstract
Discovering modes of action and predictive biomarkers of drug-induced structural cardiotoxicity offers the potential to improve cardiac safety assessment of lead compounds and enhance preclinical to clinical translation during drug development. Cardiac microtissues are a promising, physiologically relevant, in vitro model, each composed of ca. 500 cells. While untargeted metabolomics is capable of generating hypotheses on toxicological modes of action and discovering metabolic biomarkers, applying this technology to low-biomass microtissues in suspension is experimentally challenging. Thus, we first evaluated a filtration-based approach for harvesting microtissues and assessed the sensitivity and reproducibility of nanoelectrospray direct infusion mass spectrometry (nESI-DIMS) measurements of intracellular extracts, revealing samples consisting of 28 pooled microtissues, harvested by filtration, are suitable for profiling the intracellular metabolome and lipidome. Subsequently, an extensive workflow combining nESI-DIMS untargeted metabolomics and lipidomics of intracellular extracts with ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) analysis of spent culture medium, to profile the metabolic footprint and quantify drug exposure concentrations, was implemented. Using the synthetic drug and model cardiotoxin sunitinib, time-resolved metabolic and lipid perturbations in cardiac microtissues were investigated, providing valuable data for generating hypotheses on toxicological modes of action and identifying putative biomarkers such as disruption of purine metabolism and perturbation of polyunsaturated fatty acid levels.
Collapse
Affiliation(s)
- Tara J. Bowen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (T.J.B.); (R.J.M.W.)
| | - Andrew R. Hall
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (A.R.H.); (A.P.)
| | - Gavin R. Lloyd
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Ralf J. M. Weber
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (T.J.B.); (R.J.M.W.)
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Amanda Wilson
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB4 0WG, UK;
| | - Amy Pointon
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (A.R.H.); (A.P.)
| | - Mark R. Viant
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (T.J.B.); (R.J.M.W.)
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| |
Collapse
|
43
|
Grubb ML, Caliari SR. Fabrication approaches for high-throughput and biomimetic disease modeling. Acta Biomater 2021; 132:52-82. [PMID: 33716174 PMCID: PMC8433272 DOI: 10.1016/j.actbio.2021.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022]
Abstract
There is often a tradeoff between in vitro disease modeling platforms that capture pathophysiologic complexity and those that are amenable to high-throughput fabrication and analysis. However, this divide is closing through the application of a handful of fabrication approaches-parallel fabrication, automation, and flow-driven assembly-to design sophisticated cellular and biomaterial systems. The purpose of this review is to highlight methods for the fabrication of high-throughput biomaterial-based platforms and showcase examples that demonstrate their utility over a range of throughput and complexity. We conclude with a discussion of future considerations for the continued development of higher-throughput in vitro platforms that capture the appropriate level of biological complexity for the desired application. STATEMENT OF SIGNIFICANCE: There is a pressing need for new biomedical tools to study and understand disease. These platforms should mimic the complex properties of the body while also permitting investigation of many combinations of cells, extracellular cues, and/or therapeutics in high-throughput. This review summarizes emerging strategies to fabricate biomimetic disease models that bridge the gap between complex tissue-mimicking microenvironments and high-throughput screens for personalized medicine.
Collapse
Affiliation(s)
- Mackenzie L Grubb
- Department of Biomedical Engineering, University of Virginia, Unites States
| | - Steven R Caliari
- Department of Biomedical Engineering, University of Virginia, Unites States; Department of Chemical Engineering, University of Virginia, Unites States.
| |
Collapse
|
44
|
Dasí A, Hernández-Romero I, Gomez JF, Climent AM, Ferrero JM, Trenor B. Analysis of the response of human iPSC-derived cardiomyocyte tissue to I CaL block. A combined in vitro and in silico approach. Comput Biol Med 2021; 137:104796. [PMID: 34461502 DOI: 10.1016/j.compbiomed.2021.104796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/02/2021] [Accepted: 08/22/2021] [Indexed: 11/19/2022]
Abstract
The high incidence of cardiac arrythmias underlines the need for the assessment of pharmacological therapies. In this field of drug efficacy, as in the field of drug safety highlighted by the Comprehensive in Vitro Proarrhythmia Assay initiative, new pillars for research have become crucial: firstly, the integration of in-silico experiments, and secondly the evaluation of fully integrated biological systems, such as human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). In this study, we therefore aimed to combine in-vitro experiments and in-silico simulations to evaluate the antiarrhythmic effect of L-type calcium current (ICaL) block in hiPSC-CMs. For this, hiPSC-CM preparations were cultured and an equivalent virtual tissue was modeled. Re-entry patterns of electrical activation were induced and several biomarkers were obtained before and after ICaL block. The virtual hiPSC-CM simulations were also reproduced using a tissue composed of adult ventricular cardiomyocytes (hAdultV-CMs). The analysis of phases, currents and safety factor for propagation showed an increased size of the re-entry core when ICaL was blocked as a result of depressed cellular excitability. The bigger wavefront curvature yielded reductions of 12.2%, 6.9%, and 4.2% in the frequency of the re-entry for hiPSC-CM cultures, virtual hiPSC-CM, and hAdultV-CM tissues, respectively. Furthermore, ICaL block led to a 47.8% shortening of the vulnerable window for re-entry in the virtual hiPSC-CM tissue and to re-entry vanishment in hAdultV-CM tissue. The consistent behavior between in-vitro and in-silico hiPSC-CMs and between in-silico hiPSC-CMs and hAdultV-CMs evidences that virtual hiPSC-CM tissues are suitable for assessing cardiac efficacy, as done in the present study through the analysis of ICaL block.
Collapse
Affiliation(s)
- Albert Dasí
- Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de València, Valencia, Spain
| | - Ismael Hernández-Romero
- Department of Signal Theory and Communications and Telematics Systems and Computing, Rey Juan Carlos University, Fuenlabrada, Spain
| | - Juan F Gomez
- Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de València, Valencia, Spain; Valencian International University, Valencia, Spain
| | - Andreu M Climent
- Instituto ITACA, Universitat Politècnica de València, Valencia, Spain
| | - Jose M Ferrero
- Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de València, Valencia, Spain
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
45
|
Abstract
Cardiac congenital disabilities are the most common organ malformations, but we still do not understand how they arise in the human embryo. Moreover, although cardiovascular disease is the most common cause of death globally, the development of new therapies is lagging compared with other fields. One major bottleneck hindering progress is the lack of self-organizing human cardiac models that recapitulate key aspects of human heart development, physiology and disease. Current in vitro cardiac three-dimensional systems are either engineered constructs or spherical aggregates of cardiomyocytes and other cell types. Although tissue engineering enables the modeling of some electro-mechanical properties, it falls short of mimicking heart development, morphogenetic defects and many clinically relevant aspects of cardiomyopathies. Here, we review different approaches and recent efforts to overcome these challenges in the field using a new generation of self-organizing embryonic and cardiac organoids.
Collapse
Affiliation(s)
- Pablo Hofbauer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Stefan M Jahnel
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | - Sasha Mendjan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
46
|
Kwon SP, Song SY, Yoo J, Kim HY, Lee JR, Kang M, Sohn HS, Go S, Jung M, Hong J, Lim S, Kim C, Moon S, Char K, Kim BS. Multilayered Cell Sheets of Cardiac Reprogrammed Cells for the Evaluation of Drug Cytotoxicity. Tissue Eng Regen Med 2021; 18:807-818. [PMID: 34251653 DOI: 10.1007/s13770-021-00363-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Various cell-culture systems have been used to evaluate drug toxicity in vitro. However, factors that affect cytotoxicity outcomes in drug toxicity evaluation systems remain elusive. In this study, we used multilayered sheets of cardiac-mimetic cells, which were reprogrammed from human fibroblasts, to investigate the effects of the layer number on drug cytotoxicity outcomes. METHODS Cell sheets of cardiac-mimetic cells were fabricated by reprogramming of human fibroblasts into cardiac-mimetic cells via coculture with cardiac cells and electric stimulation, as previously described. Double-layered cell sheets were prepared by stacking the cell sheets. The mono- and double-layered cell sheets were treated with 5-fluorouracil (5-FU), an anticancer drug, in vitro. Subsequently, apoptosis and lipid peroxidation were analyzed. Furthermore, effects of cardiac-mimetic cell density on cytotoxicity outcomes were evaluated by culturing cells in monolayer at various cell densities. RESULTS The double-layered cell sheets exhibited lower cytotoxicity in terms of apoptosis and lipid peroxidation than the mono-layered sheets at the same 5-FU dose. In addition, the double-layered cell sheets showed better preservation of mitochondrial function and plasma membrane integrity than the monolayer sheets. The lower cytotoxicity outcomes in the double-layered cell sheets may be due to the higher intercellular interactions, as the cytotoxicity of 5-FU decreased with cell density in monolayer cultures of cardiac-mimetic cells. CONCLUSION The layer number of cardiac-mimetic cell sheets affects drug cytotoxicity outcomes in drug toxicity tests. The in vitro cellular configuration that more closely mimics the in vivo configuration in the evaluation systems seems to exhibit lower cytotoxicity in response to drug.
Collapse
Affiliation(s)
- Sung Pil Kwon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seuk Young Song
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Yoo
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Han Young Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju-Ro Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mikyung Kang
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee Su Sohn
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seokhyoung Go
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihye Hong
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Songhyun Lim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheesue Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangjun Moon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kookheon Char
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea. .,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea. .,Institute of Chemical Processes, Institute of Engineering Research, BioMAX, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
47
|
Gähwiler EKN, Motta SE, Martin M, Nugraha B, Hoerstrup SP, Emmert MY. Human iPSCs and Genome Editing Technologies for Precision Cardiovascular Tissue Engineering. Front Cell Dev Biol 2021; 9:639699. [PMID: 34262897 PMCID: PMC8273765 DOI: 10.3389/fcell.2021.639699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) originate from the reprogramming of adult somatic cells using four Yamanaka transcription factors. Since their discovery, the stem cell (SC) field achieved significant milestones and opened several gateways in the area of disease modeling, drug discovery, and regenerative medicine. In parallel, the emergence of clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) revolutionized the field of genome engineering, allowing the generation of genetically modified cell lines and achieving a precise genome recombination or random insertions/deletions, usefully translated for wider applications. Cardiovascular diseases represent a constantly increasing societal concern, with limited understanding of the underlying cellular and molecular mechanisms. The ability of iPSCs to differentiate into multiple cell types combined with CRISPR-Cas9 technology could enable the systematic investigation of pathophysiological mechanisms or drug screening for potential therapeutics. Furthermore, these technologies can provide a cellular platform for cardiovascular tissue engineering (TE) approaches by modulating the expression or inhibition of targeted proteins, thereby creating the possibility to engineer new cell lines and/or fine-tune biomimetic scaffolds. This review will focus on the application of iPSCs, CRISPR-Cas9, and a combination thereof to the field of cardiovascular TE. In particular, the clinical translatability of such technologies will be discussed ranging from disease modeling to drug screening and TE applications.
Collapse
Affiliation(s)
- Eric K. N. Gähwiler
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Sarah E. Motta
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Marcy Martin
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA, United States
| | - Bramasta Nugraha
- Molecular Parasitology Lab, Institute of Parasitology, University of Zurich, Zurich, Switzerland
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| |
Collapse
|
48
|
Guo F, Hall AR, Tape CJ, Ling S, Pointon A. Intra- and intercellular signaling pathways associated with drug-induced cardiac pathophysiology. Trends Pharmacol Sci 2021; 42:675-687. [PMID: 34092416 DOI: 10.1016/j.tips.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 11/30/2022]
Abstract
Cardiac physiology and homeostasis are maintained by the interaction of multiple cell types, via both intra- and intercellular signaling pathways. Perturbations in these signaling pathways induced by oncology therapies can reduce cardiac function, ultimately leading to heart failure. As cancer survival increases, related cardiovascular complications are becoming increasingly prevalent, thus identifying the perturbations and cell signaling drivers of cardiotoxicity is increasingly important. Here, we discuss the homotypic and heterotypic cellular interactions that form the basis of intra- and intercellular cardiac signaling pathways, and how oncological agents disrupt these pathways, leading to heart failure. We also highlight the emerging systems biology techniques that can be applied, enabling a deeper understanding of the intra- and intercellular signaling pathways across multiple cell types associated with cardiovascular toxicity.
Collapse
Affiliation(s)
- Fei Guo
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, Research and Development, AstraZeneca, Cambridge, UK; Cell Communication Laboratory, Department of Oncology, University College London Cancer Institute, London, WC1E 6DD, UK
| | - Andrew R Hall
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, Research and Development, AstraZeneca, Cambridge, UK
| | - Christopher J Tape
- Cell Communication Laboratory, Department of Oncology, University College London Cancer Institute, London, WC1E 6DD, UK
| | - Stephanie Ling
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, Research and Development, AstraZeneca, Cambridge, UK
| | - Amy Pointon
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, Research and Development, AstraZeneca, Cambridge, UK.
| |
Collapse
|
49
|
Palmer JA, Smith AM, Gryshkova V, Donley ELR, Valentin JP, Burrier RE. A Targeted Metabolomics-Based Assay Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Identifies Structural and Functional Cardiotoxicity Potential. Toxicol Sci 2021; 174:218-240. [PMID: 32040181 DOI: 10.1093/toxsci/kfaa015] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Implementing screening assays that identify functional and structural cardiotoxicity earlier in the drug development pipeline has the potential to improve safety and decrease the cost and time required to bring new drugs to market. In this study, a metabolic biomarker-based assay was developed that predicts the cardiotoxicity potential of a drug based on changes in the metabolism and viability of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Assay development and testing was conducted in 2 phases: (1) biomarker identification and (2) targeted assay development. In the first phase, metabolomic data from hiPSC-CM spent media following exposure to 66 drugs were used to identify biomarkers that identified both functional and structural cardiotoxicants. Four metabolites that represent different metabolic pathways (arachidonic acid, lactic acid, 2'-deoxycytidine, and thymidine) were identified as indicators of cardiotoxicity. In phase 2, a targeted, exposure-based biomarker assay was developed that measured these metabolites and hiPSC-CM viability across an 8-point concentration curve. Metabolite-specific predictive thresholds for identifying the cardiotoxicity potential of a drug were established and optimized for balanced accuracy or sensitivity. When predictive thresholds were optimized for balanced accuracy, the assay predicted the cardiotoxicity potential of 81 drugs with 86% balanced accuracy, 83% sensitivity, and 90% specificity. Alternatively, optimizing the thresholds for sensitivity yields a balanced accuracy of 85%, 90% sensitivity, and 79% specificity. This new hiPSC-CM-based assay provides a paradigm that can identify structural and functional cardiotoxic drugs that could be used in conjunction with other endpoints to provide a more comprehensive evaluation of a drug's cardiotoxicity potential.
Collapse
Affiliation(s)
| | - Alan M Smith
- Stemina Biomarker Discovery, Inc, Madison, Wisconsin
| | - Vitalina Gryshkova
- UCB Biopharma SPRL, Investigative Toxicology, Development Science, B-1420 Braine L'Alleud, Belgium
| | | | - Jean-Pierre Valentin
- UCB Biopharma SPRL, Investigative Toxicology, Development Science, B-1420 Braine L'Alleud, Belgium
| | | |
Collapse
|
50
|
A predictive in vitro risk assessment platform for pro-arrhythmic toxicity using human 3D cardiac microtissues. Sci Rep 2021; 11:10228. [PMID: 33986332 PMCID: PMC8119415 DOI: 10.1038/s41598-021-89478-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiotoxicity of pharmaceutical drugs, industrial chemicals, and environmental toxicants can be severe, even life threatening, which necessitates a thorough evaluation of the human response to chemical compounds. Predicting risks for arrhythmia and sudden cardiac death accurately is critical for defining safety profiles. Currently available approaches have limitations including a focus on single select ion channels, the use of non-human species in vitro and in vivo, and limited direct physiological translation. We have advanced the robustness and reproducibility of in vitro platforms for assessing pro-arrhythmic cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes and human cardiac fibroblasts in 3-dimensional microtissues. Using automated algorithms and statistical analyses of eight comprehensive evaluation metrics of cardiac action potentials, we demonstrate that tissue-engineered human cardiac microtissues respond appropriately to physiological stimuli and effectively differentiate between high-risk and low-risk compounds exhibiting blockade of the hERG channel (E4031 and ranolazine, respectively). Further, we show that the environmental endocrine disrupting chemical bisphenol-A (BPA) causes acute and sensitive disruption of human action potentials in the nanomolar range. Thus, this novel human 3D in vitro pro-arrhythmic risk assessment platform addresses critical needs in cardiotoxicity testing for both environmental and pharmaceutical compounds and can be leveraged to establish safe human exposure levels.
Collapse
|