1
|
López-Dávila AJ, Lomonte B, Gutiérrez JM. Alterations of the skeletal muscle contractile apparatus in necrosis induced by myotoxic snake venom phospholipases A 2: a mini-review. J Muscle Res Cell Motil 2024; 45:69-77. [PMID: 38063951 PMCID: PMC11096208 DOI: 10.1007/s10974-023-09662-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/07/2023] [Indexed: 05/16/2024]
Abstract
Skeletal muscle necrosis is a common clinical manifestation of snakebite envenoming. The predominant myotoxic components in snake venoms are catalytically-active phospholipases A2 (PLA2) and PLA2 homologs devoid of enzymatic activity, which have been used as models to investigate various aspects of muscle degeneration. This review addresses the changes in the contractile apparatus of skeletal muscle induced by these toxins. Myotoxic components initially disrupt the integrity of sarcolemma, generating a calcium influx that causes various degenerative events, including hypercontraction of myofilaments. There is removal of specific sarcomeric proteins, owing to the hydrolytic action of muscle calpains and proteinases from invading inflammatory cells, causing an initial redistribution followed by widespread degradation of myofibrillar material. Experiments using skinned cardiomyocytes and skeletal muscle fibers show that these myotoxins do not directly affect the contractile apparatus, implying that hypercontraction is due to cytosolic calcium increase secondary to sarcolemmal damage. Such drastic hypercontraction may contribute to muscle damage by generating mechanical stress and further sarcolemmal damage.
Collapse
Affiliation(s)
- Alfredo Jesús López-Dávila
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| |
Collapse
|
2
|
Montoya-Gómez A, Tonello F, Spolaore B, Massimino ML, Montealegre-Sánchez L, Castillo A, Rivera Franco N, Sevilla-Sánchez MJ, Solano-Redondo LM, Mosquera-Escudero M, Jiménez-Charris E. Pllans-II: Unveiling the Action Mechanism of a Promising Chemotherapeutic Agent Targeting Cervical Cancer Cell Adhesion and Survival Pathways. Cells 2023; 12:2715. [PMID: 38067143 PMCID: PMC10705806 DOI: 10.3390/cells12232715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023] Open
Abstract
Despite advances in chemotherapeutic drugs used against cervical cancer, available chemotherapy treatments adversely affect the patient's quality of life. For this reason, new molecules from natural sources with antitumor potential and few side effects are required. In previous research, Pllans-II, a phospholipase A2 type-Asp49 from Porthidium lansbergii lansbergii snake venom, has shown selective attack against the HeLa and Ca Ski cervical cancer cell lines. This work suggests that the cytotoxic effect generated by Pllans-II on HeLa cells is triggered without affecting the integrity of the cytoplasmic membrane or depolarizing the mitochondrial membranes. The results allow us to establish that cell death in HeLa is related to the junction blockage between α5β1 integrins and fibronectin of the extracellular matrix. Pllans-II reduces the cells' ability of adhesion and affects survival and proliferation pathways mediated by intracellular communication with the external environment. Our findings confirmed Pllans-II as a potential prototype for developing a selective chemotherapeutic drug against cervical cancer.
Collapse
Affiliation(s)
- Alejandro Montoya-Gómez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (L.M.-S.); (M.J.S.-S.); (L.M.S.-R.); (M.M.-E.)
| | - Fiorella Tonello
- Istituto di Neuroscienze, CNR, Via Ugo Bassi 58/B, 35131 Padova, Italy; (F.T.); (M.L.M.)
| | - Barbara Spolaore
- Dipartimento di Scienze del Farmaco, Università di Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Maria Lina Massimino
- Istituto di Neuroscienze, CNR, Via Ugo Bassi 58/B, 35131 Padova, Italy; (F.T.); (M.L.M.)
| | - Leonel Montealegre-Sánchez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (L.M.-S.); (M.J.S.-S.); (L.M.S.-R.); (M.M.-E.)
- Grupo de Investigación en Ingeniería Biomédica-GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia
| | - Andrés Castillo
- TAO-Lab, Centre for Bioinformatics and Photonics-CIBioFi, Department of Biology, Universidad del Valle, Cali 760032, Colombia; (A.C.); (N.R.F.)
| | - Nelson Rivera Franco
- TAO-Lab, Centre for Bioinformatics and Photonics-CIBioFi, Department of Biology, Universidad del Valle, Cali 760032, Colombia; (A.C.); (N.R.F.)
| | - María José Sevilla-Sánchez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (L.M.-S.); (M.J.S.-S.); (L.M.S.-R.); (M.M.-E.)
| | - Luis Manuel Solano-Redondo
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (L.M.-S.); (M.J.S.-S.); (L.M.S.-R.); (M.M.-E.)
| | - Mildrey Mosquera-Escudero
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (L.M.-S.); (M.J.S.-S.); (L.M.S.-R.); (M.M.-E.)
| | - Eliécer Jiménez-Charris
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (L.M.-S.); (M.J.S.-S.); (L.M.S.-R.); (M.M.-E.)
| |
Collapse
|
3
|
López-Dávila AJ, Weber N, Nayak A, Fritz L, Moustafa KR, Gand LV, Wehry E, Kraft T, Thum T, Fernández J, Gutiérrez JM, Lomonte B. Skeletal muscle fiber hypercontraction induced by Bothrops asper myotoxic phospholipases A 2 ex vivo does not involve a direct action on the contractile apparatus. Pflugers Arch 2023; 475:1193-1202. [PMID: 37474774 PMCID: PMC10499977 DOI: 10.1007/s00424-023-02840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Myonecrosis is a frequent clinical manifestation of envenomings by Viperidae snakes, mainly caused by the toxic actions of secreted phospholipase A2 (sPLA2) enzymes and sPLA2-like homologs on skeletal muscle fibers. A hallmark of the necrotic process induced by these myotoxins is the rapid appearance of hypercontracted muscle fibers, attributed to the massive influx of Ca2+ resulting from cell membrane damage. However, the possibility of myotoxins having, in addition, a direct effect on the contractile machinery of skeletal muscle fibers when internalized has not been investigated. This question is here addressed by using an ex vivo model of single-skinned muscle fibers, which lack membranes but retain an intact contractile apparatus. Rabbit psoas skinned fibers were exposed to two types of myotoxins of Bothrops asper venom: Mt-I, a catalytically active Asp49 sPLA2 enzyme, and Mt-II, a Lys49 sPLA2-like protein devoid of phospholipolytic activity. Neither of these myotoxins affected the main parameters of force development in striated muscle sarcomeres of the skinned fibers. Moreover, no microscopical alterations were evidenced after their exposure to Mt-I or Mt-II. In contrast to the lack of effects on skinned muscle fibers, both myotoxins induced a strong hypercontraction in myotubes differentiated from murine C2C12 myoblasts, with drastic morphological alterations that reproduce those described in myonecrotic tissue in vivo. As neither Mt-I nor Mt-II showed direct effects upon the contractile apparatus of skinned fibers, it is concluded that the mechanism of hypercontraction triggered by both myotoxins in patients involves indirect effects, i.e., the large cytosolic Ca2+ increase after sarcolemma permeabilization.
Collapse
Affiliation(s)
- Alfredo Jesús López-Dávila
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Natalie Weber
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Arnab Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Leon Fritz
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Kian Rami Moustafa
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Luis Vincens Gand
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Enke Wehry
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| |
Collapse
|
4
|
Dias EHV, de Sousa Simamoto BB, da Cunha Pereira DF, Ribeiro MSM, Santiago FM, de Oliveira F, Yokosawa J, Mamede CCN. Effect of BaltPLA 2, a phospholipase A 2 from Bothrops alternatus snake venom, on the viability of cells infected with dengue virus. Toxicol In Vitro 2023; 88:105562. [PMID: 36690282 DOI: 10.1016/j.tiv.2023.105562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Dengue fever is considered a major public health problem in tropical and subtropical regions. Our study analyzed the effect of BaltPLA2, a phospholipase A2 from Bothrops alternatus snake venom, on the viability of cells infected with Dengue virus. In presence of BaltPLA2, the viability of infected cells increased significantly in virucidal, post-treatment, and adsorption assays. Although preliminary these results reveal the need for further studies to investigated whether BaltPLA2 has antiviral activity against Dengue virus.
Collapse
Affiliation(s)
| | | | | | | | - Fernanda Maria Santiago
- Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil.
| | - Fábio de Oliveira
- Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil.
| | - Jonny Yokosawa
- Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | | |
Collapse
|
5
|
Lomonte B. Lys49 myotoxins, secreted phospholipase A 2-like proteins of viperid venoms: A comprehensive review. Toxicon 2023; 224:107024. [PMID: 36632869 DOI: 10.1016/j.toxicon.2023.107024] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Muscle necrosis is a potential clinical complication of snakebite envenomings, which in severe cases can lead to functional or physical sequelae such as disability or amputation. Snake venom proteins with the ability to directly damage skeletal muscle fibers are collectively referred to as myotoxins, and include three main types: cytolysins of the "three-finger toxin" protein family expressed in many elapid venoms, the so-called "small" myotoxins found in a number of rattlesnake venoms, and the widespread secreted phospholipase A2 (sPLA2) molecules. Among the latter, protein variants that conserve the sPLA2 structure, but lack such enzymatic activity, have been increasingly found in the venoms of many viperid species. Intriguingly, these sPLA2-like proteins are able to induce muscle necrosis by a mechanism independent of phospholipid hydrolysis. They are commonly referred to as "Lys49 myotoxins" since they most often present, among other substitutions, the replacement of the otherwise invariant residue Asp49 of sPLA2s by Lys. This work comprehensively reviews the historical developments and current knowledge towards deciphering the mechanism of action of Lys49 sPLA2-like myotoxins, and points out main gaps to be filled for a better understanding of these multifaceted snake venom proteins, to hopefully lead to improved treatments for snakebites.
Collapse
Affiliation(s)
- Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| |
Collapse
|
6
|
The secretory phenotypes of envenomed cells: Insights into venom cytotoxicity. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:193-230. [PMID: 36707202 DOI: 10.1016/bs.apcsb.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Snake envenomation is listed as Category A Neglected Tropical Diseases (NTD) by World Health Organization, indicates a severe public health problem. The global figures for envenomation cases are estimated to be more than 1.8 million annually. Even if the affected victims survive the envenomation, they might suffer from permanent morbidity due to local envenomation. One of the most prominent local envenomation is dermonecrosis. Dermonecrosis is a pathophysiological outcome of envenomation that often causes disability in the victims due to surgical amputations, deformities, contracture, and chronic ulceration. The key venom toxins associated with this local symptom are mainly attributed to substantial levels of enzymatic and non-enzymatic toxins as well as their possible synergistic actions. Despite so, the severity of the local tissue damage is based on macroscopic observation of the bite areas. Furthermore, limited knowledge is known about the key biomarkers involved in the pathogenesis of dermonecrosis. The current immunotherapy with antivenom is also ineffective against dermonecrosis. These local effects eventually end up as sequelae. There is also a global shortage of toxins-targeted therapeutics attributed to inadequate knowledge of the actual molecular mechanisms of cytotoxicity. This chapter discusses the characterization of secretory phenotypes of dermonecrosis as an advanced tool to indicate its severity and pathogenesis in envenomation. Altogether, the secretory phenotypes of envenomed cells and tissues represent the precise characteristics of dermonecrosis caused by venom toxins.
Collapse
|
7
|
Secretory Phospholipases A2, from Snakebite Envenoming to a Myriad of Inflammation Associated Human Diseases-What Is the Secret of Their Activity? Int J Mol Sci 2023; 24:ijms24021579. [PMID: 36675102 PMCID: PMC9863470 DOI: 10.3390/ijms24021579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Secreted phospholipases of type A2 (sPLA2s) are proteins of 14-16 kDa present in mammals in different forms and at different body sites. They are involved in lipid transformation processes, and consequently in various immune, inflammatory, and metabolic processes. sPLA2s are also major components of snake venoms, endowed with various toxic and pharmacological properties. The activity of sPLA2s is not limited to the enzymatic one but, through interaction with different types of molecules, they exert other activities that are still little known and explored, both outside and inside the cells, as they can be endocytosed. The aim of this review is to analyze three features of sPLA2s, yet under-explored, knowledge of which could be crucial to understanding the activity of these proteins. The first feature is their disulphide bridge pattern, which has always been considered immutable and necessary for their stability, but which might instead be modulable. The second characteristic is their ability to undergo various post-translational modifications that would control their interaction with other molecules. The third feature is their ability to participate in active molecular condensates both on the surface and within the cell. Finally, the implications of these features in the design of anti-inflammatory drugs are discussed.
Collapse
|
8
|
Mora-Obando D, Lomonte B, Pla D, Guerrero-Vargas JA, Ayerbe-González S, Gutiérrez JM, Sasa M, Calvete JJ. Half a century of research on Bothrops asper venom variation: Biological and biomedical implications. Toxicon 2022; 221:106983. [DOI: 10.1016/j.toxicon.2022.106983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
|
9
|
Busch L, Eggert S, Endres K, Bufe B. The Hidden Role of Non-Canonical Amyloid β Isoforms in Alzheimer's Disease. Cells 2022; 11:3421. [PMID: 36359817 PMCID: PMC9654995 DOI: 10.3390/cells11213421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Recent advances have placed the pro-inflammatory activity of amyloid β (Aβ) on microglia cells as the focus of research on Alzheimer's Disease (AD). Researchers are confronted with an astonishing spectrum of over 100 different Aβ variants with variable length and chemical modifications. With the exception of Aβ1-42 and Aβ1-40, the biological significance of most peptides for AD is as yet insufficiently understood. We therefore aim to provide a comprehensive overview of the contributions of these neglected Aβ variants to microglia activation. First, the impact of Aβ receptors, signaling cascades, scavenger mechanisms, and genetic variations on the physiological responses towards various Aβ species is described. Furthermore, we discuss the importance of different types of amyloid precursor protein processing for the generation of these Aβ variants in microglia, astrocytes, oligodendrocytes, and neurons, and highlight how alterations in secondary structures and oligomerization affect Aβ neurotoxicity. In sum, the data indicate that gene polymorphisms in Aβ-driven signaling pathways in combination with the production and activity of different Aβ variants might be crucial factors for the initiation and progression of different forms of AD. A deeper assessment of their interplay with glial cells may pave the way towards novel therapeutic strategies for individualized medicine.
Collapse
Affiliation(s)
- Lukas Busch
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| | - Simone Eggert
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, D-37075 Goettingen, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Centre of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernd Bufe
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| |
Collapse
|
10
|
Urra FA, Vivas-Ruiz DE, Sanchez EF, Araya-Maturana R. An Emergent Role for Mitochondrial Bioenergetics in the Action of Snake Venom Toxins on Cancer Cells. Front Oncol 2022; 12:938749. [PMID: 35924151 PMCID: PMC9343075 DOI: 10.3389/fonc.2022.938749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Beyond the role of mitochondria in apoptosis initiation/execution, some mitochondrial adaptations support the metastasis and chemoresistance of cancer cells. This highlights mitochondria as a promising target for new anticancer strategies. Emergent evidence suggests that some snake venom toxins, both proteins with enzymatic and non-enzymatic activities, act on the mitochondrial metabolism of cancer cells, exhibiting unique and novel mechanisms that are not yet fully understood. Currently, six toxin classes (L-amino acid oxidases, thrombin-like enzymes, secreted phospholipases A2, three-finger toxins, cysteine-rich secreted proteins, and snake C-type lectin) that alter the mitochondrial bioenergetics have been described. These toxins act through Complex IV activity inhibition, OXPHOS uncoupling, ROS-mediated permeabilization of inner mitochondrial membrane (IMM), IMM reorganization by cardiolipin interaction, and mitochondrial fragmentation with selective migrastatic and cytotoxic effects on cancer cells. Notably, selective internalization and direct action of snake venom toxins on tumor mitochondria can be mediated by cell surface proteins overexpressed in cancer cells (e.g. nucleolin and heparan sulfate proteoglycans) or facilitated by the elevated Δψm of cancer cells compared to that non-tumor cells. In this latter case, selective mitochondrial accumulation, in a Δψm-dependent manner, of compounds linked to cationic snake peptides may be explored as a new anti-cancer drug delivery system. This review analyzes the effect of snake venom toxins on mitochondrial bioenergetics of cancer cells, whose mechanisms of action may offer the opportunity to develop new anticancer drugs based on toxin scaffolds.
Collapse
Affiliation(s)
- Félix A. Urra
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Clínica y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, Chile
- *Correspondence: Félix A. Urra,
| | - Dan E. Vivas-Ruiz
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Ciudad Universitaria, Lima, Peru
| | - Eladio Flores Sanchez
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte, Brazil
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, Chile
- Laboratorio de Productos Bioactivos, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
| |
Collapse
|
11
|
Tonello F, Massimino ML, Peggion C. Nucleolin: a cell portal for viruses, bacteria, and toxins. Cell Mol Life Sci 2022; 79:271. [PMID: 35503380 PMCID: PMC9064852 DOI: 10.1007/s00018-022-04300-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
Abstract
The main localization of nucleolin is the nucleolus, but this protein is present in multiple subcellular sites, and it is unconventionally secreted. On the cell surface, nucleolin acts as a receptor for various viruses, some bacteria, and some toxins. Aim of this review is to discuss the characteristics that make nucleolin able to act as receptor or co-receptor of so many and different pathogens. The important features that emerge are its multivalence, and its role as a bridge between the cell surface and the nucleus. Multiple domains, short linear motifs and post-translational modifications confer and modulate nucleolin ability to interact with nucleic acids, with proteins, but also with carbohydrates and lipids. This modular multivalence allows nucleolin to participate in different types of biomolecular condensates and to move to various subcellular locations, where it can act as a kind of molecular glue. It moves from the nucleus to the cell surface and can accompany particles in the reverse direction, from the cell surface into the nucleus, which is the destination of several pathogens to manipulate the cell in their favour.
Collapse
Affiliation(s)
- Fiorella Tonello
- CNR of Italy, Neuroscience Institute, viale G. Colombo 3, 35131, Padua, Italy.
| | | | - Caterina Peggion
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi, 58/B, 35131, Padua, Italy
| |
Collapse
|
12
|
Proleón A, Torrejón D, Urra FA, Lazo F, López-Torres C, Fuentes-Retamal S, Quispe E, Bautista L, Agurto A, Gavilan RG, Sandoval GA, Rodríguez E, Sánchez EF, Yarlequé A, Vivas-Ruiz DE. Functional, immunological characterization, and anticancer activity of BaMtx: A new Lys49- PLA 2 homologue isolated from the venom of Peruvian Bothrops atrox snake (Serpentes: Viperidae). Int J Biol Macromol 2022; 206:990-1002. [PMID: 35321814 DOI: 10.1016/j.ijbiomac.2022.03.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/17/2022] [Indexed: 12/13/2022]
Abstract
Bothorps atrox is responsible for most of the ophidism cases in Perú. As part of the envenoming, myotoxicity is one of the most recurrent and destructive effects. In this study, a myotoxin, named BaMtx, was purified from B. atrox venom to elucidate its biological, immunological, and molecular characteristics. BaMtx was purified using CM-Sephadex-C-25 ion-exchange resin and SDS-PAGE analysis showed a unique protein band of 13 kDa or 24 kDa under reducing or non-reducing conditions, respectively. cDNA sequence codified a 122-aa mature protein with high homology with other Lys49-PLA2s; modeled structure showed a N-terminal helix, a β-wing region, and a C-terminal random coil. This protein has a poor phospholipase A2 enzymatic activity. BaMtx has myotoxic (DMM = 12.30 ± 0.95 μg) and edema-forming (DEM = 26.00 ± 1.15 μg) activities. Rabbit immunization with purified enzyme produced anti-BaMtx antibodies that reduced 50.28 ± 10.15% of myotoxic activity and showed significant cross-reactivity against B. brazili and B pictus venoms. On the other hand, BaMtx exhibits mild anti-proliferative and anti-migratory effects on breast cancer cells, affecting the ROS and NADH levels, which may reduce mitochondrial respiration. These results contribute to the understanding of B. atrox Lys49-PLA2 effects and establish the anticancer potential de BaMtx.
Collapse
Affiliation(s)
- Alex Proleón
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Daniel Torrejón
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Felix A Urra
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Clínica y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Fanny Lazo
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Camila López-Torres
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Clínica y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Sebastián Fuentes-Retamal
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Clínica y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Edwin Quispe
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Lorgio Bautista
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Andrés Agurto
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Ronnie G Gavilan
- Centro Nacional de Salud Pública, Instituto Nacional de Salud-Perú, Jesús María, Lima, Peru; Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| | - Gustavo A Sandoval
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Edith Rodríguez
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Eladio F Sánchez
- Research and Development Center, Ezequiel Dias Foundation, 30510-010 Belo Horizonte, MG, Brazil
| | - Armando Yarlequé
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú
| | - Dan E Vivas-Ruiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Perú.
| |
Collapse
|
13
|
Kirman DC, Renganathan B, Chui WK, Chen MW, Kaya NA, Ge R. Cell surface nucleolin is a novel ADAMTS5 receptor mediating endothelial cell apoptosis. Cell Death Dis 2022; 13:172. [PMID: 35197459 PMCID: PMC8866485 DOI: 10.1038/s41419-022-04618-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022]
Abstract
A Disintegrin and Metalloproteinase with ThromboSpondin motif (ADAMTS) 5 functions as an anti-angiogenic and anti-cancer protein independent of its metalloproteinase activity. Both full-length ADAMTS5 and TS5-p45, the autocatalytically cleaved C-terminal 45 kDa truncate of ADAMTS5, inhibits angiogenesis, and induces endothelial cell (EC) apoptosis. However, how ADAMTS5 triggers EC apoptosis remains unclear. This work shows that caspase-8 (Cas-8) and caspase-9 (Cas-9) are involved in TS5-p45-induced EC apoptosis. We identify cell surface nucleolin (NCL) as a novel high-affinity receptor for TS5-p45 in ECs, mediating TS5-p45's cell surface binding and pro-apoptotic function. We show that the central RNA-binding domain (RBD) of NCL is essential and sufficient for its binding to TS5-p45. Upon interacting with EC surface NCL, TS5-p45 is internalized through clathrin- and caveolin-dependent endocytosis and trafficked to the nucleus via late endosomes (LEs). We demonstrate that the nuclear trafficking of TS5-p45 is important for its pro-apoptotic activity as disruption of LE membrane integrity with an endosomolytic peptide suppressed both nuclear trafficking and pro-apoptotic activity of TS5-p45. Through cell surface biotinylation, we revealed that cell surface NCL shuttles extracellular TS5-p45 to the nucleus to mediate apoptosis. Furthermore, blocking the importin α1/ß1 receptor hindered the nuclear trafficking of TS5-p45, suggesting the involvement of the nuclear importing machinery for this nuclear translocation. RNA-seq identified many apoptosis-related genes that are differentially expressed at least two-fold in TS5-p45-treated ECs, with 10 of them qRT-PCR-validated and at least 5 of these genes potentially contributing to TS5-p45-NCL-induced apoptosis. Altogether, our work identifies NCL as a novel cell surface receptor for ADAMTS5 and demonstrates the critical role of NCL-mediated internalization and nuclear trafficking for ADAMTS5-induced EC apoptosis. These findings reveal novel mechanistic insights of the secreted metalloproteinase ADAMTS5 in angiogenesis inhibition.
Collapse
Affiliation(s)
- Dogan Can Kirman
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Bhuvanasundar Renganathan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Wai Kit Chui
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Ming Wei Chen
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Neslihan Arife Kaya
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138672, Singapore
| | - Ruowen Ge
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
14
|
Van Petten de Vasconcelos Azevedo F, Lopes DS, Zóia MAP, Correia LIV, Saito N, Fonseca BB, Polloni L, Teixeira SC, Goulart LR, de Melo Rodrigues Ávila V. A New Approach to Inhibiting Triple-Negative Breast Cancer: In Vitro, Ex Vivo and In Vivo Antiangiogenic Effect of BthTx-II, a PLA 2-Asp-49 from Bothrops jararacussu Venom. Biomolecules 2022; 12:258. [PMID: 35204758 PMCID: PMC8961627 DOI: 10.3390/biom12020258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 12/10/2022] Open
Abstract
Phospholipases A2 (PLA2) represent a superfamily of enzymes widely distributed in living organisms, with a broad spectrum of pharmacological activities and therapeutic potential. Anti-angiogenic strategies have become one of the main tools in fighting cancer. In this sense, the present work reports the inhibition of tumor angiogenesis induced by Asp-49 BthTX-II using in vitro, ex vivo and in vivo approaches. We demonstrate that BthTx-II inhibited cell adhesion, proliferation, and migration of human umbilical vein endothelial cells (HUVEC), as well as caused a reduction in the levels of endothelial growth factor (VEGF) during in vitro angiogenesis assays. BthTx-II was also able to inhibit the sprouting angiogenic process, by the ex vivo germination assay of the aortic ring; in addition, this toxin inhibited the migration and proliferation of HUVEC in co-culture with triple-negative breast cancer cells (e.g., MDA-MB-231 cells). Finally, in vivo tumor suppression and anti-angiogenic activities were analyzed using MDA-MB-231 cells with Matrigel injected into the chorioallantoic membrane of chicken embryo (CAM) for 7 days treatment with BthTx-II, showing a considerable reduction in vessel caliber, on the size and weight of tumors. Together, these results suggest an important antiangiogenic and antitumor role for BthTx-II, as a potential prototype for the development of new tools and antitumor drugs in cancer therapy.
Collapse
Affiliation(s)
- Fernanda Van Petten de Vasconcelos Azevedo
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (L.I.V.C.); (L.P.)
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (M.A.P.Z.); (N.S.); (L.R.G.)
| | - Daiana Silva Lopes
- Multidisciplinary Institute of Health, Federal University of Bahia, Vitoria da Conquista, Salvador 40170-110, BA, Brazil;
| | - Mariana Alves Pereira Zóia
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (M.A.P.Z.); (N.S.); (L.R.G.)
| | - Lucas Ian Veloso Correia
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (L.I.V.C.); (L.P.)
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (M.A.P.Z.); (N.S.); (L.R.G.)
| | - Natieli Saito
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (M.A.P.Z.); (N.S.); (L.R.G.)
| | | | - Lorena Polloni
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (L.I.V.C.); (L.P.)
| | - Samuel Cota Teixeira
- Department of Immunology, Biomedical Sciences Institute, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil;
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (M.A.P.Z.); (N.S.); (L.R.G.)
| | - Veridiana de Melo Rodrigues Ávila
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (L.I.V.C.); (L.P.)
| |
Collapse
|
15
|
Ivanušec A, Šribar J, Križaj I. Secreted Phospholipases A 2 - not just Enzymes: Revisited. Int J Biol Sci 2022; 18:873-888. [PMID: 35002531 PMCID: PMC8741859 DOI: 10.7150/ijbs.68093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Secreted phospholipases A2 (sPLA2s) participate in a very broad spectrum of biological processes through their enzymatic activity and as ligands for membrane and soluble receptors. The physiological roles of sPLA2s as enzymes have been very well described, while their functions as ligands are still poorly known. Since the last overview of sPLA2-binding proteins (sPLA2-BPs) 10 years ago, several important discoveries have occurred in this area. New and more sensitive analytical tools have enabled the discovery of additional sPLA2-BPs, which are presented and critically discussed here. The structural diversity of sPLA2-BPs reveals sPLA2s as very promiscuous proteins, and we offer some structural explanations for this nature that makes these proteins evolutionarily highly advantageous. Three areas of physiological engagement of sPLA2-BPs have appeared most clearly: cellular transport and signalling, and regulation of the enzymatic activity of sPLA2s. Due to the multifunctionality of sPLA2s, they appear to be exceptional pharmacological targets. We reveal the potential to exploit interactions of sPLA2s with other proteins in medical terms, for the development of original diagnostic and therapeutic procedures. We conclude this survey by suggesting the priority questions that need to be answered.
Collapse
Affiliation(s)
- Adrijan Ivanušec
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Antiprotozoal Effect of Snake Venoms and Their Fractions: A Systematic Review. Pathogens 2021; 10:pathogens10121632. [PMID: 34959587 PMCID: PMC8707848 DOI: 10.3390/pathogens10121632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Protozoal infection is a lingering public health issue of great concern, despite efforts to produce drugs and vaccines against it. Recent breakthrough research has discovered alternative antiprotozoal agents encompassing the use of snake venoms and their components to cure these infections. This study collated the existing literature to examine the antiprotozoal effect of snake venoms and their fractions. Methods: We conducted a systematic review following the PRISMA guidelines. The PubMed and Embase databases were searched from their inception until 13 October 2021. Articles were screened at the title, abstract and full-text phases. Some additional studies were obtained through the manual search process. Results: We identified 331 studies via the electronic database and manual searches, of which 55 reporting the antiprotozoal effect of snake venoms and their components were included in the review. Around 38% of studies examined the effect of whole crude venoms, and a similar percentage evaluated the effect of a proportion of enzymatic phospholipase A2 (PLA2). In particular, this review reports around 36 PLA2 activities and 29 snake crude venom activities. We also report the notable phenomenon of synergism with PLA2 isoforms of Bothrops asper. Importantly, limited attention has been given so far to the antiprotozoal efficacies of metalloproteinase, serine protease and three-finger toxins, although these venom components have been identified as significant components of the dominant venom families. Conclusion: This study highlights the impact of snake venoms and their fractions on controlling protozoal infections and suggests the need to examine further the effectiveness of other venom components, such as metalloproteinase, serine protease and three-finger toxins. Future research questions in this field must be redirected toward synergism in snake venom components, based on pharmacological usage and in the context of toxicology. Ascertaining the effects of snake venoms and their components on other protozoal species that have not yet been studied is imperative.
Collapse
|
17
|
López-Dávila AJ, Weber N, Kraft T, Matinmehr F, Arias-Hidalgo M, Fernández J, Lomonte B, Gutiérrez JM. Cytotoxicity of snake venom Lys49 PLA2-like myotoxin on rat cardiomyocytes ex vivo does not involve a direct action on the contractile apparatus. Sci Rep 2021; 11:19452. [PMID: 34593882 PMCID: PMC8484475 DOI: 10.1038/s41598-021-98594-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/07/2021] [Indexed: 11/09/2022] Open
Abstract
Viperid snake venoms contain a unique family of cytotoxic proteins, the Lys49 PLA2 homologs, which are devoid of enzymatic activity but disrupt the integrity of cell membranes. They are known to induce skeletal muscle damage and are therefore named 'myotoxins'. Single intact and skinned (devoid of membranes and cytoplasm but with intact sarcomeric proteins) rat cardiomyocytes were used to analyze the cytotoxic action of a myotoxin, from the venom of Bothrops asper. The toxin induced rapid hypercontraction of intact cardiomyocytes, associated with an increase in the cytosolic concentration of calcium and with cell membrane disruption. Hypercontraction of intact cardiomyocytes was abrogated by the myosin inhibitor para-aminoblebbistatin (AmBleb). No toxin-induced changes of key parameters of force development were observed in skinned cardiomyocytes. Thus, although myosin is a key effector of the observed hypercontraction, a direct effect of the toxin on the sarcomeric proteins -including the actomyosin complex- is not part of the mechanism of cytotoxicity. Owing to the sensitivity of intact cardiomyocytes to the cytotoxic action of myotoxin, this ex vivo model is a valuable tool to explore in further detail the mechanism of action of this group of snake venom toxins.
Collapse
Affiliation(s)
| | - Natalie Weber
- Institute of Molecular and Cell Physiology, Hannover Medical School, 30625, Hannover, Germany
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, 30625, Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, 30625, Hannover, Germany
| | - Faramarz Matinmehr
- Institute of Molecular and Cell Physiology, Hannover Medical School, 30625, Hannover, Germany
| | - Mariela Arias-Hidalgo
- Departamento de Fisiología, Escuela de Medicina, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| |
Collapse
|
18
|
Teixeira SC, da Silva MS, Gomes AAS, Moretti NS, Lopes DS, Ferro EAV, Rodrigues VDM. Panacea within a Pandora's box: the antiparasitic effects of phospholipases A 2 (PLA 2s) from snake venoms. Trends Parasitol 2021; 38:80-94. [PMID: 34364805 DOI: 10.1016/j.pt.2021.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Parasitic diseases affect millions of individuals worldwide, mainly in low-income regions. There is no cure for most of these diseases, and the treatment relies on drugs that have side effects and lead to drug resistance, emphasizing the urgency to find new treatments. Snake venom has been gaining prominence as a rich source of molecules with antiparasitic potentials, such as phospholipases A2 (PLA2s). Here, we compile the findings involving PLA2s with antiparasitic activities against helminths, Plasmodium, Toxoplasma, and trypanosomatids. We indicate their molecular features, highlighting the possible antiparasitic mechanisms of action of these proteins. We also demonstrate interactions between PLA2s and some parasite membrane components, shedding light on potential targets for drug design that may provide better treatment for the illnesses caused by parasites.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia (UFU), MG, Brazil.
| | - Marcelo Santos da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Nilmar Silvio Moretti
- Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Daiana Silva Lopes
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | - Eloisa Amália Vieira Ferro
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia (UFU), MG, Brazil
| | - Veridiana de Melo Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil.
| |
Collapse
|
19
|
Vargas-Valerio S, Robleto J, Chaves-Araya S, Monturiol-Gross L, Lomonte B, Tonello F, Fernández J. Localization of Myotoxin I and Myotoxin II from the venom of Bothrops asper in a murine model. Toxicon 2021; 197:48-54. [PMID: 33862027 DOI: 10.1016/j.toxicon.2021.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/22/2021] [Accepted: 04/10/2021] [Indexed: 12/01/2022]
Abstract
Phospholipases A2 (PLA2s) and PLA2-like proteins are significant components of snake venoms. Some of these proteins act as potent toxins causing muscle necrosis, which may lead to amputation in severe envenomings. Fundamental aspects of the mechanism of action of these toxins are still not completely known. Myotoxin-I is a catalytically active Asp49 PLA2 from the venom of Bothrops asper, a medically relevant pit viper from Central America. Myotoxin-II is a catalytically inactive Lys49 PLA2-homolog also present in the venom of this snake. For the first time, the in vivo cellular localization of these myotoxins was studied in mouse skeletal muscle using immunofluorescence. Results showed that after 5 min of injection in the gastrocnemius muscle, both toxins initially interacted with the sarcolemma, and some colocalization with nuclei was already evident, especially for Mt-II. After 3 h of injection, a significant colocalization with the nuclei was observed for both toxins. These in vivo results confirm the importance of the initial interaction of these toxins with the sarcolemma and furthermore highlight the internalization and interaction of the toxins with nuclei during their pathophysiological activities, as observed in recent studies using cell culture.
Collapse
Affiliation(s)
- Sofía Vargas-Valerio
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Joby Robleto
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Stephanie Chaves-Araya
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Laura Monturiol-Gross
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Fiorella Tonello
- Istituto di Neuroscienze, CNR, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| |
Collapse
|
20
|
Short Linear Motifs Characterizing Snake Venom and Mammalian Phospholipases A2. Toxins (Basel) 2021; 13:toxins13040290. [PMID: 33923919 PMCID: PMC8073766 DOI: 10.3390/toxins13040290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Snake venom phospholipases A2 (PLA2s) have sequences and structures very similar to those of mammalian group I and II secretory PLA2s, but they possess many toxic properties, ranging from the inhibition of coagulation to the blockage of nerve transmission, and the induction of muscle necrosis. The biological properties of these proteins are not only due to their enzymatic activity, but also to protein–protein interactions which are still unidentified. Here, we compare sequence alignments of snake venom and mammalian PLA2s, grouped according to their structure and biological activity, looking for differences that can justify their different behavior. This bioinformatics analysis has evidenced three distinct regions, two central and one C-terminal, having amino acid compositions that distinguish the different categories of PLA2s. In these regions, we identified short linear motifs (SLiMs), peptide modules involved in protein–protein interactions, conserved in mammalian and not in snake venom PLA2s, or vice versa. The different content in the SLiMs of snake venom with respect to mammalian PLA2s may result in the formation of protein membrane complexes having a toxic activity, or in the formation of complexes whose activity cannot be blocked due to the lack of switches in the toxic PLA2s, as the motif recognized by the prolyl isomerase Pin1.
Collapse
|
21
|
Fang L, Wang KK, Huang Q, Cheng F, Huang F, Liu WW. Nucleolin Mediates LPS-induced Expression of Inflammatory Mediators and Activation of Signaling Pathways. Curr Med Sci 2020; 40:646-653. [PMID: 32862374 DOI: 10.1007/s11596-020-2229-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 05/05/2020] [Indexed: 12/19/2022]
Abstract
In this study, we investigated the effects of nucleolin on lipopolysaccharide (LPS)-induced activation of MAPK and NF-KappaB (NF-κB) signaling pathways and secretion of TNF-α, IL-1β and HMGB1 in THP-1 monocytes. Immunofluorescence assay and Western blotting were used to identify the nucleolin expression in cell membrane, cytoplasm and nucleus of THP-1 monocytes. Inactivation of nucleolin was induced by neutralizing antibody against nucleolin. THP-1 monocytes were pretreated with anti-nucleolin antibody for 1 h prior to LPS challenge. The irrelevant IgG group was used as control. Secretion of inflammatory mediators (TNF-α, IL-1β and HMGB1) and activation of MAPK and NF-κB/I-κB signaling pathways were examined to assess the effects of nucleolin on LPS-mediated inflammatory response. Nucleolin existed in cell membrane, cytoplasm and nucleus of THP-1 monocytes. Pretreatment of anti-nucleolin antibody significantly inhibited the LPS-induced secretion of TNF-α, IL-1β and HMGB1. P38, JNK, ERK and NF-κB subunit p65 inhibitors could significantly inhibit the secretion of IL-1β, TNF-α and HMGB1 induced by LPS. Moreover, the phosphorylation of p38, JNK, ERK and p65 (or nuclear translocation of p65) was significantly increased after LPS challenge. In contrast, pretreatment of anti-nucleolin antibody could significantly inhibit the LPS-induced phosphorylation of p38, JNK, ERK and p65 (or nuclear translocation of p65). However, the irrelevant IgG, as a negative control, had no effect on LPS-induced secretion of TNF-α and IL-1β and phosphorylation of p38, JNK, ERK and p65 (or nuclear translocation of p65). We demonstrated that nucleolin mediated the LPS-induced activation of MAPK and NF-κB signaling pathways, and regulated the secretion of inflammatory mediators (TNF-α, IL-1β and HMGB1).
Collapse
Affiliation(s)
- Li Fang
- Department of Cardiology, the First Hospital of Changsha, Changsha, 410008, China.
| | - Kang-Kai Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Qing Huang
- Department of Cardiology, the First Hospital of Changsha, Changsha, 410008, China
| | - Feng Cheng
- Department of Cardiology, the First Hospital of Changsha, Changsha, 410008, China
| | - Fang Huang
- Department of Cardiology, the First Hospital of Changsha, Changsha, 410008, China
| | - Wei-Wei Liu
- Department of Cardiology, the First Hospital of Changsha, Changsha, 410008, China
| |
Collapse
|
22
|
Teixeira SC, Borges BC, Oliveira VQ, Carregosa LS, Bastos LA, Santos IA, Jardim ACG, Melo FF, Freitas LM, Rodrigues VM, Lopes DS. Insights into the antiviral activity of phospholipases A 2 (PLA 2s) from snake venoms. Int J Biol Macromol 2020; 164:616-625. [PMID: 32698062 PMCID: PMC7368918 DOI: 10.1016/j.ijbiomac.2020.07.178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022]
Abstract
Viruses are associated with several human diseases that infect a large number of individuals, hence directly affecting global health and economy. Owing to the lack of efficient vaccines, antiviral therapy and emerging resistance strains, many viruses are considered as a potential threat to public health. Therefore, researches have been developed to identify new drug candidates for future treatments. Among them, antiviral research based on natural molecules is a promising approach. Phospholipases A2 (PLA2s) isolated from snake venom have shown significant antiviral activity against some viruses such as Dengue virus, Human Immunodeficiency virus, Hepatitis C virus and Yellow fever virus, and have emerged as an attractive alternative strategy for the development of novel antiviral therapy. Thus, this review provides an overview of remarkable findings involving PLA2s from snake venom that possess antiviral activity, and discusses the mechanisms of action mediated by PLA2s against different stages of virus replication cycle. Additionally, molecular docking simulations were performed by interacting between phospholipids from Dengue virus envelope and PLA2s from Bothrops asper snake venom. Studies on snake venom PLA2s highlight the potential use of these proteins for the development of broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- S C Teixeira
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - B C Borges
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - V Q Oliveira
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - L S Carregosa
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - L A Bastos
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - I A Santos
- Laboratory of Virology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - A C G Jardim
- Laboratory of Virology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - F F Melo
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - L M Freitas
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - V M Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - D S Lopes
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil; Institute of Health Sciences, Department of Bio-Function, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
23
|
Vivas-Ruiz DE, Sandoval GA, Gonzalez-Kozlova E, Zarria-Romero J, Lazo F, Rodríguez E, Magalhães HPB, Chávez-Olortegui C, Oliveira LS, Alvarenga VG, Urra FA, Toledo J, Yarlequé A, Eble JA, Sanchez EF. Fibrinogen-clotting enzyme, pictobin, from Bothrops pictus snake venom. Structural and functional characterization. Int J Biol Macromol 2020; 153:779-795. [PMID: 32169454 DOI: 10.1016/j.ijbiomac.2020.03.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
A thrombin-like enzyme, pictobin, was purified from Bothrops pictus snake venom. It is a 41-kDa monomeric glycoprotein as showed by mass spectrometry and contains approx. 45% carbohydrate by mass which could be removed with N-glycosidase. Pictobin coagulates plasma and fibrinogen, releasing fibrinopeptide A and induces the formation of a friable/porous fibrin network as visualized by SEM. The enzyme promoted platelet aggregation in human PRP and defibrination in mouse model and showed catalytic activity on chromogenic substrates S-2266, S-2366, S-2160 and S-2238. Pictobin interacts with the plasma inhibitor α2-macroglobulin, which blocks its interaction with fibrinogen but not with the small substrate BApNA. Heparin does not affect its enzymatic activity. Pictobin cross reacted with polyvalent bothropic antivenom, and its deglycosylated form reduced its catalytic action and antivenom reaction. In breast and lung cancer cells, pictobin inhibits the fibronectin-stimulated migration. Moreover, it produces strong NADH oxidation, mitochondrial depolarization, ATP decrease and fragmentation of mitochondrial network. These results suggest by first time that a snake venom serinprotease produces mitochondrial dysfunction by affecting mitochondrial dynamics and bioenergetics. Structural model of pictobin reveals a conserved chymotrypsin fold β/β hydrolase. These data indicate that pictobin has therapeutic potential in the treatment of cardiovascular disorders and metastatic disease.
Collapse
Affiliation(s)
- Dan E Vivas-Ruiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru.
| | - Gustavo A Sandoval
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru
| | - Edgar Gonzalez-Kozlova
- Department of Genetics and Genomic Sciences, Icahn School for Data Science and Genomic Technology, New York, NYC, USA
| | - Jacquelyne Zarria-Romero
- Laboratorio de Reproducción y Biología del Desarrollo, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú, Av. Venezuela ra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru
| | - Fanny Lazo
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru
| | - Edith Rodríguez
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru
| | - Henrique P B Magalhães
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Carlos Chávez-Olortegui
- Departamento de Bioquímica-Inmunología, Instituto de Ciências Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Luciana S Oliveira
- Research and Development Center, Ezequiel Dias Foundation, 30510-010 Belo Horizonte, MG, Brazil
| | - Valeria G Alvarenga
- Research and Development Center, Ezequiel Dias Foundation, 30510-010 Belo Horizonte, MG, Brazil
| | - Félix A Urra
- Programa de Farmacología Clínica y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 7800003, Chile
| | - Jorge Toledo
- Instituto de Neurociencia Biomédica, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile; Facultad de Ciencias de la Salud, Universidad San Sebastián, Lota 2465, Providencia, Santiago 7510157, Chile
| | - Armando Yarlequé
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Lima, Peru
| | - Johannes A Eble
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Eladio F Sanchez
- Research and Development Center, Ezequiel Dias Foundation, 30510-010 Belo Horizonte, MG, Brazil
| |
Collapse
|
24
|
Urra FA, Araya-Maturana R. Putting the brakes on tumorigenesis with snake venom toxins: New molecular insights for cancer drug discovery. Semin Cancer Biol 2020; 80:195-204. [PMID: 32428714 DOI: 10.1016/j.semcancer.2020.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 01/09/2023]
Abstract
Cancer cells exhibit molecular characteristics that confer them different proliferative capacities and survival advantages to adapt to stress conditions, such as deregulation of cellular bioenergetics, genomic instability, ability to promote angiogenesis, invasion, cell dormancy, immune evasion, and cell death resistance. In addition to these hallmarks of cancer, the current cytostatic drugs target the proliferation of malignant cells, being ineffective in metastatic disease. These aspects highlight the need to identify promising therapeutic targets for new generations of anti-cancer drugs. Toxins isolated from snake venoms are a natural source of useful molecular scaffolds to obtain agents with a selective effect on cancer cells. In this article, we discuss the recent advances in the molecular mechanisms of nine classes of snake toxins that suppress the hallmarks of cancer by induction of oxidative phosphorylation dysfunction, reactive oxygen species-dependent DNA damage, blockage of extracellular matrix-integrin signaling, disruption of cytoskeleton network and inhibition of growth factor-dependent signaling. The possible therapeutic implications of toxin-based anti-cancer drug development are also highlighted.
Collapse
Affiliation(s)
- Félix A Urra
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 7800003, Chile; Network for Snake Venom Research and Drug Discovery, Santiago 7800003, Chile.
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago 7800003, Chile; Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile; Programa de Investigación Asociativa en Cáncer Gástrico, Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
25
|
Pucca MB, Ahmadi S, Cerni FA, Ledsgaard L, Sørensen CV, McGeoghan FTS, Stewart T, Schoof E, Lomonte B, Auf dem Keller U, Arantes EC, Çalışkan F, Laustsen AH. Unity Makes Strength: Exploring Intraspecies and Interspecies Toxin Synergism between Phospholipases A 2 and Cytotoxins. Front Pharmacol 2020; 11:611. [PMID: 32457615 PMCID: PMC7221120 DOI: 10.3389/fphar.2020.00611] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
Toxin synergism is a complex biochemical phenomenon, where different animal venom proteins interact either directly or indirectly to potentiate toxicity to a level that is above the sum of the toxicities of the individual toxins. This provides the animals possessing venoms with synergistically enhanced toxicity with a metabolic advantage, since less venom is needed to inflict potent toxic effects in prey and predators. Among the toxins that are known for interacting synergistically are cytotoxins from snake venoms, phospholipases A2 from snake and bee venoms, and melittin from bee venom. These toxins may derive a synergistically enhanced toxicity via formation of toxin complexes by hetero-oligomerization. Using a human keratinocyte assay mimicking human epidermis in vitro, we demonstrate and quantify the level of synergistically enhanced toxicity for 12 cytotoxin/melittin-PLA2 combinations using toxins from elapids, vipers, and bees. Moreover, by utilizing an interaction-based assay and by including a wealth of information obtained via a thorough literature review, we speculate and propose a mechanistic model for how toxin synergism in relation to cytotoxicity may be mediated by cytotoxin/melittin and PLA2 complex formation.
Collapse
Affiliation(s)
- Manuela B Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.,Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Felipe A Cerni
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.,Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christoffer V Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Farrell T S McGeoghan
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Trenton Stewart
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.,Department of Biology, Lund University, Lund, Sweden
| | - Erwin Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bruno Lomonte
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Eliane C Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Figen Çalışkan
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskişehir Osmangazi University, Eskişehir, Turkey.,Department of Biology, Faculty of Science and Art, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
26
|
Bustillo S, Fernández J, Chaves-Araya S, Angulo Y, Leiva LC, Lomonte B. Isolation of two basic phospholipases A2 from Bothrops diporus snake venom: Comparative characterization and synergism between Asp49 and Lys49 variants. Toxicon 2019; 168:113-121. [DOI: 10.1016/j.toxicon.2019.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/31/2019] [Accepted: 07/16/2019] [Indexed: 11/29/2022]
|
27
|
Spolaore B, Fernández J, Lomonte B, Massimino ML, Tonello F. Enzymatic labelling of snake venom phospholipase A 2 toxins. Toxicon 2019; 170:99-107. [PMID: 31563525 DOI: 10.1016/j.toxicon.2019.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/02/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Almost all animal venoms contain secretory phospholipases A2 (PLA2s), 14 kDa disulfide-rich enzymes that hydrolyze membrane phospholipids at the sn-2 position, releasing lysophospholipids and fatty acids. These proteins, depending on their sequence, show a wide variety of biochemical, toxic and pharmacological effects and deserve to be studied for their numerous possible applications, and to improve antivenom drugs. The cellular localization and activity of a protein can be studied by conjugating it with a tag. In this work, we applied an enzymatic labelling method, using Streptomyces mobaraense transglutaminase, on three snake venom PLA2s: a recombinant neuro- and myotoxic group I PLA2 from Notechis scutatus scutatus, and two myotoxic group II PLA2s from Bothrops asper - one of them a natural catalytically inactive variant. We demonstrate that TGase can be used to produce active mono- or bi-derivatives of these three PLA2s modified at specific Lys residues, and that all three of these proteins, conjugated with fluorescent peptides, are internalized in primary myotubes.
Collapse
Affiliation(s)
- Barbara Spolaore
- Dipartimento di Scienze del Farmaco, Università di Padova, Via F. Marzolo, 5, 35131, Padova, Italy.
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| | | | - Fiorella Tonello
- Istituto di Neuroscienze, CNR, Viale G. Colombo, 3, 35121, Padova, Italy.
| |
Collapse
|
28
|
Dutta S, Sinha A, Dasgupta S, Mukherjee AK. Binding of a Naja naja venom acidic phospholipase A 2 cognate complex to membrane-bound vimentin of rat L6 cells: Implications in cobra venom-induced cytotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:958-977. [PMID: 30776333 DOI: 10.1016/j.bbamem.2019.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 01/28/2023]
Abstract
An acidic phospholipase A2 enzyme (NnPLA2-I) interacts with three finger toxins (cytotoxin and neurotoxin) from Naja naja venom to form cognate complexes to enhance its cytotoxicity towards rat L6 myogenic cells. The cytotoxicity was further enhanced in presence of trace quantity of venom nerve growth factor. The purified rat myoblast cell membrane protein showing interaction with NnPLA2-I was identified as vimentin by LC-MS/MS analysis. The ELISA, immunoblot and spectrofluorometric analyses showed greater binding of NnPLA2-I cognate complex to vimentin as compared to the binding of individual NnPLA2-I. The immunofluorescence and confocal microscopy studies evidenced the internalization of NnPLA2-I to partially differentiated myoblasts post binding with vimentin in a time-dependent manner. Pre-incubation of polyvalent antivenom with NnPLA2-I cognate complex demonstrated better neutralization of cytotoxicity towards L6 cells as compared to exogenous addition of polyvalent antivenom 60-240 min post treatment of L6 cells with cognate complex suggesting clinical advantage of early antivenom treatment to prevent cobra venom-induced cytotoxicity. The in silico analysis showed that 19-22 residues, inclusive of Asp48 residue, of NnPLA2-I preferentially binds with the rod domain (99-189 and 261-335 regions) of vimentin with a predicted free binding energy (ΔG) and dissociation constant (KD) values of -12.86 kcal/mol and 3.67 × 10-10 M, respectively; however, NnPLA2-I cognate complex showed greater binding with the same regions of vimentin indicating the pathophysiological significance of cognate complex in cobra venom-induced cytotoxicity.
Collapse
Affiliation(s)
- Sumita Dutta
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Archana Sinha
- Molecular Endocrinology and Metabolism Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Suman Dasgupta
- Molecular Endocrinology and Metabolism Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India.
| |
Collapse
|
29
|
Joo EJ, Wasik BR, Parrish C, Paz H, Mϋhlenhoff M, Abdel-Azim H, Groffen J, Heisterkamp N. Pre-B acute lymphoblastic leukemia expresses cell surface nucleolin as a 9-O-acetylated sialoglycoprotein. Sci Rep 2018; 8:17174. [PMID: 30464179 PMCID: PMC6249323 DOI: 10.1038/s41598-018-33873-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/28/2018] [Indexed: 12/21/2022] Open
Abstract
Precursor B acute lymphoblastic leukemias (pre-B ALLs) abnormally express a specific glycan structure, 9-O-acetylated sialic acid (9-O-Ac-Sia), on their cell surface, but glycoproteins that carry this modification have not been identified. Using three different lectins that specifically recognize this structure, we establish that nucleolin (NCL), a protein implicated in cancer, contains 9-O-Ac-Sia. Surprisingly, antibodies against the glycolipid 9-O-Ac-Sia GD3 also detected 9-O-Ac-Sia NCL. NCL is present on the surface of pre-B ALL cells as a sialoglycoprotein that is partly 9-O-acetylated and conversely, 9-O-Ac-Sia-containing structures other than NCL are present on these cells as well. Interestingly, NCL and the 9-O-Ac-Sia signal had less co-localization on normal pre-B cells. We also investigated regulation of NCL on the cell surface and found that sialidase treatment increased the percentage of cells positive for cell surface NCL, suggesting that sialylation of NCL promotes internalization. Treatment of pre-B ALL cells with the chemotherapy drug vincristine also increased the percentage of cells with surface NCL and correlated with increased 9-O-Ac-Sia expression. All tested leukemia cells including primary samples expressed NCL, suggesting it as a possible therapeutic target. We confirmed this by showing inhibition of cell proliferation in some pre-B ALLs by exposure to a NCL-specific aptamer AS1411.
Collapse
Affiliation(s)
- Eun Ji Joo
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA, USA
| | - Brian R Wasik
- Department of Microbiology and Immunology, Baker Institute for Animal Health and Feline Health Center, Cornell University, Ithaca, NY, USA
| | - Colin Parrish
- Department of Microbiology and Immunology, Baker Institute for Animal Health and Feline Health Center, Cornell University, Ithaca, NY, USA
| | - Helicia Paz
- Section of Molecular Carcinogenesis, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, USA
- University of California, Los Angeles, CA, 90095, USA
| | - Martina Mϋhlenhoff
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Hisham Abdel-Azim
- Division of Hematology/Oncology and Bone Marrow Transplant, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - John Groffen
- Section of Molecular Carcinogenesis, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, USA
- Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nora Heisterkamp
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA, USA.
- Division of Hematology/Oncology and Bone Marrow Transplant, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Departments of Pediatrics and Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|