1
|
Rodríguez E, Porcel M, Lara L, Cabello T, Gámez M, Navarro L, Domingo A, Burguillo FJ, Del Mar Téllez M. Role of eggplant trichome in whitefly oviposition and its relevance to biological control under greenhouse conditions. Sci Rep 2024; 14:22718. [PMID: 39349953 PMCID: PMC11442667 DOI: 10.1038/s41598-024-73327-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
The combined release of the predatory mite Amblyseius swirskii (Athias-Henriot) and the mirid Nesidiocoris tenuis (Reuter) provides effective biological control of the tobacco whitefly (Bemisia tabaci (Gennadius)) in greenhouse eggplant. However, knowing how plants' trichomes affect pest-predator interactions could improve whitefly management. Here, the effect of two varieties with either the presence or absence of trichomes was assessed on naturally occurring whitefly populations and predator abundance in a first experiment under field conditions. Predator-prey models were developed to assess the effect of trichomes on pest and predator population dynamics under field conditions. In a second semi-field experiment, the occurrence and oviposition preferences of B. tabaci and A. swirskii in the same eggplant varieties were compared. Significantly higher numbers of whitefly and mite, adults and eggs, were found on the hairy variety in both experiments. However, no differences were found in N. tenuis abundance between varieties under field conditions. Predator-prey models showed that whitefly growth rate increased in the hairy variety. N. tenuis and A. swirskii showed different fitness parameters according to the variety, with the former displaying better performance in the hairless variety and the latter in the hairy variety. Both predators effectively controlled the increase in whitefly populations in both varieties. Overall, the findings suggest that the hairless variety is more effective in deterring whiteflies. Additionally, the higher population of A. swirskii on the hairy variety indicates that this predator benefited from both the presence of trichomes and the prey.
Collapse
Affiliation(s)
- Estefanía Rodríguez
- Department of Sustainable Crop Protection, IFAPA, La Mojonera- Centre, Almería, Spain.
| | - Mario Porcel
- Department of Sustainable Crop Protection, IFAPA, Churriana-Centre, Málaga, Spain
| | - Lidia Lara
- Department of Sustainable Crop Protection, IFAPA, La Mojonera- Centre, Almería, Spain
| | - Tomás Cabello
- Department of Biology and Geology, University of Almeria, Almería, Spain
| | - Manuel Gámez
- Department of Mathematics, University of Almería, Almería, Spain
| | | | | | | | - María Del Mar Téllez
- Department of Sustainable Crop Protection, IFAPA, La Mojonera- Centre, Almería, Spain
| |
Collapse
|
2
|
Gorb EV, Gorb SN. The Greasy Pole Syndrome in Alliaria petiolata (Brassicaceae): The Pubescence and Wax Coverage on Stems Reduce Invasion by Lasius niger Ants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1932. [PMID: 39065459 PMCID: PMC11280409 DOI: 10.3390/plants13141932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
To reduce negative effects of floral visitation by ants, which do not serve as reliable cross-pollinators, some plants have developed a non-floral, stem-based defense mechanism called greasy pole syndrome. In the present study, we examined the effects of two surface features (trichomes and three-dimensional epicuticular wax coverage) on stems of Alliaria petiolata plants on visiting frequencies, travelled distances, and running velocities of Lasius niger ants. The experiments were performed with stem samples prepared from different (apical and basal) stem portions showing different surface morphologies (smooth control, covered by wax and trichomes + wax, respectively). The control, mechanically wiped stem samples lacking any surface features were significantly more often visited by ants, where they travelled significantly longer distances and moved with significantly higher velocities, compared to the intact stems. The apical and basal stem portions showed no significant differences in the measured parameters. Based on data obtained, we conclude about the main contribution of the wax to the greasy pole function of the A. petiolata stem via reduction of ant adhesion to the wax-bearing stem surface, whereas trichomes presumably serve as the first barrier for ants approaching usually from the ground level and protect the fragile wax coverage from an excessive deterioration.
Collapse
Affiliation(s)
- Elena V. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24098 Kiel, Germany
| | | |
Collapse
|
3
|
Yoshida T, Choh Y. Leaf trichome-mediated predator effects on the distribution of herbivorous mites within a kidney bean plant. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:155-167. [PMID: 38600348 DOI: 10.1007/s10493-024-00915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
Some predators prefer to settle on leaf patches with microstructures (e.g., trichomes and domatia), leaving traces on the patches. Herbivorous arthropods, in turn, select leaf patches in response to these traces left by predators. It remains unclear whether traces of predators on leaf patches affect the distribution of herbivorous prey within plants through plant microstructure. Therefore, we examined the distribution of herbivorous mite (Tetranychus urticae) and predatory mite (Phytoseiulus persimilis) by investigating their oviposition pattern. We used a kidney bean plant (Phaseolus vulgaris) with two expanded primary leaves and the first trifoliate leaf, focusing on leaf trichomes as the microstructure. The density of trichomes was higher on the first trifoliate leaf than on the primary leaves and on the abaxial surface of the leaves than on the adaxial surface. Adult female P. persimilis laid more eggs on the first trifoliate leaf to the primary leaves. Although adult female T. urticae preferred to oviposit on the abaxial surface of primary leaves, previous exposure of plants to predators diminished this preference. The altered egg distribution would be a response to the traces of P. persimilis rather than eggs of P. persimilis. Our findings indicate that T. urticae reproduces on leaf patches with traces of predators without altering their oviposition preference. Given that the presence of predator traces is known to reduce the reproduction of T. urticae, it may have a substantial effect on the population of T. urticae in the next generations on kidney bean plants.
Collapse
Affiliation(s)
- Tatsuya Yoshida
- Laboratory of Applied Entomology, Department of Horticulture, Chiba University, 648, Matsudo, Chiba, 271-8510, Japan
| | - Yasuyuki Choh
- Laboratory of Applied Entomology, Department of Horticulture, Chiba University, 648, Matsudo, Chiba, 271-8510, Japan.
| |
Collapse
|
4
|
Gorb EV, Gorb SN. Insect attachment on waxy plant surfaces: the effect of pad contamination by different waxes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:385-395. [PMID: 38633766 PMCID: PMC11022371 DOI: 10.3762/bjnano.15.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
This study focuses on experimental testing of the contamination hypothesis and examines how the contamination of insect adhesive pads with three-dimensional epicuticular waxes of different plant species contributes to the reduction of insect attachment. We measured traction forces of tethered Chrysolina fastuosa male beetles having hairy adhesive pads on nine wax-bearing plant surfaces differing in both shape and dimensions of the wax structures and examined insect adhesive organs after they have contacted waxy substrates. For comparison, we performed the experiments with the same beetle individuals on a clean glass sample just before (gl1) and immediately after (gl2) the test on a plant surface. The tested insects showed a strong reduction of the maximum traction force on all waxy plant surfaces compared to the reference experiment on glass (gl1). After beetles have walked on waxy plant substrates, their adhesive pads were contaminated with wax material, however, to different extents depending on the plant species. The insects demonstrated significantly lower values of both the maximum traction force and the first peak of the traction force and needed significantly longer time to reach the maximum force value in the gl2 test than in the gl1 test. These effects were especially pronounced in cases of the plant surfaces covered with wax projections having higher aspect ratios. The data obtained clearly indicated the impact of waxy plant surfaces on the insect ability to subsequently attach to the clean smooth surface. This effect is caused by the contamination of adhesive pads and experimentally supports the contamination hypothesis.
Collapse
Affiliation(s)
- Elena V Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
5
|
Sun SJ, Chen S, Federle W, Kilner RM. Biomechanical adaptations enable phoretic mite species to occupy distinct spatial niches on host burying beetles. Proc Biol Sci 2024; 291:20240230. [PMID: 38503335 PMCID: PMC10950469 DOI: 10.1098/rspb.2024.0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
Niche theory predicts that ecologically similar species coexist by minimizing interspecific competition through niche partitioning. Therefore, understanding the mechanisms of niche partitioning is essential for predicting interactions and coexistence between competing organisms. Here, we study two phoretic mite species, Poecilochirus carabi and Macrocheles nataliae that coexist on the same host burying beetle Nicrophorus vespilloides and use it to 'hitchhike' between reproductive sites. Field observations revealed clear spatial partitioning between species in distinct host body parts. Poecilochirus carabi preferred the ventral side of the thorax, whereas M. nataliae were exclusively found ventrally at the hairy base of the abdomen. Experimental manipulations of mite density showed that each species preferred these body parts, largely regardless of the density of the other mite species on the host beetle. Force measurements indicated that this spatial distribution is mediated by biomechanical adaptations, because each mite species required more force to be removed from their preferred location on the beetle. While P. carabi attached with large adhesive pads to the smooth thorax cuticle, M. nataliae gripped abdominal setae with their chelicerae. Our results show that specialist biomechanical adaptations for attachment can mediate spatial niche partitioning among species sharing the same host.
Collapse
Affiliation(s)
- Syuan-Jyun Sun
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- International Degree Program in Climate Change and Sustainable Development, National Taiwan University, Taipei 10617, Taiwan
| | - Simon Chen
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Walter Federle
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Rebecca M. Kilner
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
6
|
Salerno G, Rebora M, Gorb E, Gorb S. Mechanoecology: biomechanical aspects of insect-plant interactions. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:249-265. [PMID: 38480551 PMCID: PMC10994878 DOI: 10.1007/s00359-024-01698-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 04/05/2024]
Abstract
Plants and herbivorous insects as well as their natural enemies, such as predatory and parasitoid insects, are united by intricate relationships. During the long period of co-evolution with insects, plants developed a wide diversity of features to defence against herbivores and to attract pollinators and herbivores' natural enemies. The chemical basis of insect-plant interactions is established and many examples are studied, where feeding and oviposition site selection of phytophagous insects are dependent on the plant's secondary chemistry. However, often overlooked mechanical interactions between insects and plants can be rather crucial. In the context of mechanoecology, the evolution of plant surfaces and insect adhesive pads is an interesting example of competition between insect attachment systems and plant anti-attachment surfaces. The present review is focused on mechanical insect-plant interactions of some important pest species, such as the polyphagous Southern Green Stinkbug Nezara viridula and two frugivorous pest species, the polyphagous Mediterranean fruit fly Ceratitis capitata and the monophagous olive fruit fly Bactrocera oleae. Their ability to attach to plant surfaces characterised by different features such as waxes and trichomes is discussed. Some attention is paid also to Coccinellidae, whose interaction with plant leaf surfaces is substantial across all developmental stages in both phytophagous and predatory species that feed on herbivorous insects. Finally, the role of different kinds of anti-adhesive nanomaterials is discussed. They can reduce the attachment ability of insect pests to natural and artificial surfaces, potentially representing environmental friendly alternative methods to reduce insect pest impact in agriculture.
Collapse
Affiliation(s)
- Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo XX Giugno, Perugia, 06121, Italy
| | - Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, Perugia, 06121, Italy.
| | - Elena Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24098, Kiel, Germany
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24098, Kiel, Germany
| |
Collapse
|
7
|
Salerno G, Rebora M, Piersanti S, Saitta V, Gorb E, Gorb S. Coleoptera claws and trichome interlocking. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:299-312. [PMID: 35616716 PMCID: PMC10006029 DOI: 10.1007/s00359-022-01554-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
The present study tests the hypothesis that the specialized claws with a basal tooth found in some coccinellid beetles represent an adaptation to interlock with flexible unbranched trichomes of different plants. We compared the attachment ability of three Coleoptera species, Chnootriba elaterii, Harmonia axyridis (both Coleoptera: Coccinellidae), and Chrysolina herbacea (Coleoptera: Chrysomelidae) with claws of different shape. The attachment ability of insect individuals with or without claws to a plant with leaves bearing straight non-branched trichomes (Cucurbita moschata) and to a plant with smooth leaves (Prunus laurocerasus) was measured in traction force experiments. Insect attachment ability was also tested on a resin replica of C. moschata leaf, to variate trichome stiffness, and on glass as a reference surface. Centrifugal force tester experiments were performed to compare the attachment ability of the two ladybird species to glass and to the leaf of C. moschata. Natural and artificial substrates were characterized in cryo-SEM. The collected data reveal that plant trichomes can enhance insect attachment to plant surface compared with smooth glass by increasing insect friction force, but this is directly related to the trichome stiffness. To effectively grasp soft trichomes, insects evolved special claws-associated structures, such as the dentate claws observed in Coccinellidae.
Collapse
Affiliation(s)
- Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo XX Giugno, 74, 06121, Perugia, Italy
| | - Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto, 8, 06123, Perugia, Italy.
| | - Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto, 8, 06123, Perugia, Italy
| | - Valerio Saitta
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo XX Giugno, 74, 06121, Perugia, Italy
| | - Elena Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24098, Kiel, Germany
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24098, Kiel, Germany
| |
Collapse
|
8
|
Souza RFA, Leite GLD, Soares MA, Teixeira DL, Silva JL, Sampaio RA, Guanabens REM, Santos MM, Faustino Júnior W, Silva RSD, Zanuncio JC. Spatial distribution, ecological indices and interactions of arthropods on Sapindus saponaria (Sapindaceae) plants. BRAZ J BIOL 2023; 83:e265435. [PMID: 36700592 DOI: 10.1590/1519-6984.265435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/12/2022] [Indexed: 01/27/2023] Open
Abstract
Sapindus saponaria L. (Sapindaceae) is a pioneer species used in programs to recover degraded areas. The trees also assist in the pest control of some insects due to the composition of saponins on their leaves. In addition, these chemical components are important to pharmaceutical product production. The objective was to evaluate the impact of spatial distribution, indices and ecological relationship of arthropods on S. saponaria leaves to preserve the balance of biodiversity. Aggregated distribution of arthropods was observed; the numbers of phytophagous arthropods were higher on the adaxial leaf face than on the abaxial part. Only Aleyrodidae (Hemiptera) had a higher presence on the abaxial leaf face of S. saponaria saplings. Abundance, diversity, and species richness of natural enemies correlated positively with phytophagous and pollinators insects. On the other hand, the number of Lyriomyza sp. mines correlated negatively with Pseudomyrmex termitarius (Smith) (Hymenoptera: Formicidae). All this information can assist and guide integrated pest management programs.
Collapse
Affiliation(s)
- R F A Souza
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - G L D Leite
- Universidade Federal de Minas Gerais, Instituto de Ciências Agrárias, Montes Claros, MG, Brasil
| | - M A Soares
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - D L Teixeira
- Universidade Federal de Minas Gerais, Instituto de Ciências Agrárias, Montes Claros, MG, Brasil
| | - J L Silva
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - R A Sampaio
- Universidade Federal de Minas Gerais, Instituto de Ciências Agrárias, Montes Claros, MG, Brasil
| | - R E M Guanabens
- Instituto Federal de Educação Ciência e Tecnologia de Minas Gerais, São João Evangelista, MG, Brasil
| | - M M Santos
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - W Faustino Júnior
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - R S da Silva
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - J C Zanuncio
- Universidade Federal de Viçosa, Departamento de Entomologia - BIOAGRO, Viçosa, MG, Brasil
| |
Collapse
|
9
|
Saitta V, Rebora M, Piersanti S, Gorb E, Gorb S, Salerno G. Effect of Leaf Trichomes in Different Species of Cucurbitaceae on Attachment Ability of the Melon Ladybird Beetle Chnootriba elaterii. INSECTS 2022; 13:1123. [PMID: 36555032 PMCID: PMC9787368 DOI: 10.3390/insects13121123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
This study investigates the attachment ability of the oligophagous melon ladybird beetle Chnootriba elaterii to leaves of several Cucurbitaceae species. Using cryo-SEM, we described adult and larva tarsal attachment devices and leaf surface structures (glandular and non-glandular trichomes) in Citrullus lanatus, Cucumis melo, Cucumis sativus, Cucurbita moschata, Cucurbita pepo, Ecballium elaterium, Lagenaria siceraria and Luffa aegyptiaca. Using traction force experiments and centrifugal force tests, we measured the friction force exerted by females and larvae on plant leaves. We observed that Cucurbitaceae glandular trichomes do not affect insect attachment ability at both developmental stages, suggesting some adaptation of C. elaterii to its host plants, while non-glandular trichomes, when they are dense, short and flexible, heavily reduce the attachment ability of both insect stages. When trichomes are dense but stiff, only the larval force is reduced, probably because the larva has a single claw, in contrast to the adult having paired bifid dentate claws. The data on the mechanical interaction of C. elaterii at different developmental stages with different Cucurbitaceae species, combined with data on the chemical cues involved in the host plant selection, can help to unravel the complex factors driving the coevolution between an oligophagous insect and its host plant species.
Collapse
Affiliation(s)
- Valerio Saitta
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06121 Perugia, Italy
| | - Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06121 Perugia, Italy
| | - Elena Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24098 Kiel, Germany
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24098 Kiel, Germany
| | - Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| |
Collapse
|
10
|
Büscher TH, Gorb SN. Convergent Evolution of Adhesive Properties in Leaf Insect Eggs and Plant Seeds: Cross-Kingdom Bioinspiration. Biomimetics (Basel) 2022; 7:biomimetics7040173. [PMID: 36412700 PMCID: PMC9680409 DOI: 10.3390/biomimetics7040173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 12/14/2022] Open
Abstract
Plants and animals are often used as a source for inspiration in biomimetic engineering. However, stronger engagement of biologists is often required in the field of biomimetics. The actual strength of using biological systems as a source of inspiration for human problem solving does not lie in a perfect copy of a single system but in the extraction of core principles from similarly functioning systems that have convergently solved the same problem in their evolution. Adhesive systems are an example of such convergent traits that independently evolved in different organisms. We herein compare two analogous adhesive systems, one from plants seeds and one from insect eggs, to test their properties and functional principles for differences and similarities in order to evaluate the input that can be potentially used for biomimetics. Although strikingly similar, the eggs of the leaf insect Phyllium philippinicum and the seeds of the ivy gourd Coccinia grandis make use of different surface structures for the generation of adhesion. Both employ a water-soluble glue that is spread on the surface via reinforcing fibrous surface structures, but the morphology of these structures is different. In addition to microscopic analysis of the two adhesive systems, we mechanically measured the actual adhesion generated by both systems to quantitatively compare their functional differences on various standardized substrates. We found that seeds can generate much stronger adhesion in some cases but overall provided less reliable adherence in comparison to eggs. Furthermore, eggs performed better regarding repetitive attachment. The similarities of these systems, and their differences resulting from their different purposes and different structural/chemical features, can be informative for engineers working on technical adhesive systems.
Collapse
|
11
|
Burack J, Gorb SN, Büscher TH. Attachment Performance of Stick Insects (Phasmatodea) on Plant Leaves with Different Surface Characteristics. INSECTS 2022; 13:952. [PMID: 36292904 PMCID: PMC9604322 DOI: 10.3390/insects13100952] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 05/25/2023]
Abstract
Herbivorous insects and plants exemplify a longstanding antagonistic coevolution, resulting in the development of a variety of adaptations on both sides. Some plant surfaces evolved features that negatively influence the performance of the attachment systems of insects, which adapted accordingly as a response. Stick insects (Phasmatodea) have a well-adapted attachment system with paired claws, pretarsal arolium and tarsal euplantulae. We measured the attachment ability of Medauroidea extradentata with smooth surface on the euplantulae and Sungaya inexpectata with nubby microstructures of the euplantulae on different plant substrates, and their pull-off and traction forces were determined. These species represent the two most common euplantulae microstructures, which are also the main difference between their respective attachment systems. The measurements were performed on selected plant leaves with different properties (smooth, trichome-covered, hydrophilic and covered with crystalline waxes) representing different types among the high diversity of plant surfaces. Wax-crystal-covered substrates with fine roughness revealed the lowest, whereas strongly structured substrates showed the highest attachment ability of the Phasmatodea species studied. Removal of the claws caused lower attachment due to loss of mechanical interlocking. Interestingly, the two species showed significant differences without claws on wax-crystal-covered leaves, where the individuals with nubby euplantulae revealed stronger attachment. Long-lasting effects of the leaves on the attachment ability were briefly investigated, but not confirmed.
Collapse
Affiliation(s)
| | | | - Thies H. Büscher
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
12
|
van den Boogaart LM, Langowski JKA, Amador GJ. Studying Stickiness: Methods, Trade-Offs, and Perspectives in Measuring Reversible Biological Adhesion and Friction. Biomimetics (Basel) 2022; 7:biomimetics7030134. [PMID: 36134938 PMCID: PMC9496521 DOI: 10.3390/biomimetics7030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Controlled, reversible attachment is widely spread throughout the animal kingdom: from ticks to tree frogs, whose weights span from 2 mg to 200 g, and from geckos to mosquitoes, who stick under vastly different situations, such as quickly climbing trees and stealthily landing on human hosts. A fascinating and complex interplay of adhesive and frictional forces forms the foundation of attachment of these highly diverse systems to various substrates. In this review, we present an overview of the techniques used to quantify the adhesion and friction of terrestrial animals, with the aim of informing future studies on the fundamentals of bioadhesion, and motivating the development and adoption of new or alternative measurement techniques. We classify existing methods with respect to the forces they measure, including magnitude and source, i.e., generated by the whole body, single limbs, or by sub-structures. Additionally, we compare their versatility, specifically what parameters can be measured, controlled, and varied. This approach reveals critical trade-offs of bioadhesion measurement techniques. Beyond stimulating future studies on evolutionary and physicochemical aspects of bioadhesion, understanding the fundamentals of biological attachment is key to the development of biomimetic technologies, from soft robotic grippers to gentle surgical tools.
Collapse
Affiliation(s)
- Luc M. van den Boogaart
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
- Department of BioMechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Julian K. A. Langowski
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
- Correspondence: (J.K.A.L.); (G.J.A.)
| | - Guillermo J. Amador
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
- Correspondence: (J.K.A.L.); (G.J.A.)
| |
Collapse
|
13
|
Gorb SN, Gorb EV. Anti-icing strategies of plant surfaces: the ice formation on leaves visualized by Cryo-SEM experiments. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2022; 109:24. [PMID: 35377000 PMCID: PMC8979935 DOI: 10.1007/s00114-022-01789-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/06/2022]
Abstract
This paper presents an experimental study on surface icing on leaves in six plant species having different surface micromorphology and wettability properties. Contrary to previous studies on ice crystallization, which have been mainly performed by using infrared video thermography, we applied a Cryo-SEM approach allowing not only characterization of plant surfaces in their native conditions but also visualization of ice crystal formation on the native plant surfaces at the micro- and nanoscales. The Cryo-SEM was also used as an experimental device to freeze water vapor, thaw ice crystals, and freeze fluid water on the plant surface again. The experiments clearly demonstrate that trichome coverage (especially with several distinct layers) and 3D wax projections can be recognized as anti-icing strategies of plants. Trichomes can prevent and delay ice formation by being nucleation points for the formation of ice from vapor and protect the plant surface from overcooling, when fluid water freezes in contact with the leaf surface. The study shows for the first time two important effects that might reduce plant cell freezing rate: the presence of air pockets between wax projections that protect from direct contact between ice crystals and the plant cuticle and elimination of fluid water after thawing and preventing further re-freezing on the surface. The detailed knowledge obtained here is not only important for plant ecology, evolution, and plant protection but also for looking for potential biomimetic strategies that reduce/avoid icing of cultural plants and artificial technical surfaces.
Collapse
Affiliation(s)
- Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany
| | - Elena V Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118, Kiel, Germany.
| |
Collapse
|
14
|
Abstract
Plant epidermis are multifunctional surfaces that directly affect how plants interact with animals or microorganisms and influence their ability to harvest or protect from abiotic factors. To do this, plants rely on minuscule structures that confer remarkable properties to their outer layer. These microscopic features emerge from the hierarchical organization of epidermal cells with various shapes and dimensions combined with different elaborations of the cuticle, a protective film that covers plant surfaces. Understanding the properties and functions of those tridimensional elements as well as disentangling the mechanisms that control their formation and spatial distribution warrant a multidisciplinary approach. Here we show how interdisciplinary efforts of coupling modern tools of experimental biology, physics, and chemistry with advanced computational modeling and state-of-the art microscopy are yielding broad new insights into the seemingly arcane patterning processes that sculpt the outer layer of plants.
Collapse
Affiliation(s)
- Lucie Riglet
- The Sainsbury Laboratory, Bateman Street, CB2 1LR, University of Cambridge, Cambridge, UK
| | - Stefano Gatti
- The Sainsbury Laboratory, Bateman Street, CB2 1LR, University of Cambridge, Cambridge, UK
| | - Edwige Moyroud
- The Sainsbury Laboratory, Bateman Street, CB2 1LR, University of Cambridge, Cambridge, UK
- Department of Genetics, Downing Site, CB2 3EJ, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Gomes GN, Leite GLD, Soares MA, Guanãbens REM, Lemes PG, Zanuncio JC. Arthropod fauna on the abaxial and adaxial surfaces of Acacia mangium (Fabaceae) leaves. BRAZ J BIOL 2021; 83:e245536. [PMID: 34669792 DOI: 10.1590/1519-6984.245536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/14/2021] [Indexed: 11/21/2022] Open
Abstract
Acacia mangium (Willd., 1806) (Fabales: Fabaceae) is a fast growing, rustic, pioneer species, with potential to fix nitrogen, and for programs to recover degraded areas. The objective was to evaluate the distribution and the functional diversity of interactions and the K-dominance of arthropod groups on A. mangium saplings. The number of individuals of eleven species of phytophagous insects, three bee species, and fourteen natural enemy species were highest on the adaxial leaf surface of this plant. Abundance, diversity and species richness of phytophagous insects and natural enemies, and abundance and species richness of pollinators were highest on the adaxial A. mangium leaf surface. The distribution of five species of sap-sucking hemipterans and six of protocooperating ants (Hymenoptera), with positive interaction between these groups, and three bee species (Hymenoptera) were aggregated on leaves of A. mangium saplings. Aethalion reticulatum (L.) (Hemiptera: Aethalionidae) and Bemisia sp. (Hemiptera: Aleyrodidae); Brachymyrmex sp. and Camponotus sp. (Hymenoptera: Formicidae); and Trigona spinipes Fabricius (Hymenoptera: Apidae) were the most dominant phytophagous insects, natural enemies, and pollinators, respectively, on A. mangium leaves. Knowledge of preferred leaf surfaces could help integrated pest management programs.
Collapse
Affiliation(s)
- G N Gomes
- Universidade Federal dos Vales do Jequitinhonha e Mucuri - UFVJM, Departamento de Agronomia, Programa de Pós-graduação em Produção Vegetal, Diamantina, MG, Brasil
| | - G L D Leite
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias - ICA, Montes Claros, MG, Brasil
| | - M A Soares
- Universidade Federal dos Vales do Jequitinhonha e Mucuri - UFVJM, Departamento de Agronomia, Programa de Pós-graduação em Produção Vegetal, Diamantina, MG, Brasil
| | - R E M Guanãbens
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias - ICA, Montes Claros, MG, Brasil
| | - P G Lemes
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias - ICA, Montes Claros, MG, Brasil
| | - J C Zanuncio
- Universidade Federal de Viçosa - UFV, Departamento de Entomologia/BIOAGRO, Viçosa, MG, Brasil
| |
Collapse
|
16
|
Silva LF, Silva FWS, Demolin-Leite GL, Soares MA, Lemes PG, Zanuncio JC. Distribution pattern of arthropods on the leaf surfaces of Acacia auriculiformis saplings. BRAZ J BIOL 2021; 83:e243651. [PMID: 34431904 DOI: 10.1590/1519-6984.243651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/21/2021] [Indexed: 11/22/2022] Open
Abstract
Acacia auriculiformis A. Cunn. Ex Benth. (Fabaceae), a non-native pioneer species in Brazil with fast growth and rusticity, is used in restoration programs. Our goal was to assess during a 24-month survey the pattern of arthropods (phytophagous insects, bees, spiders, and predator insects) on the leaf surfaces of A. auriculiformis saplings. Fourteen species of phytophagous, two of bees and eleven of predators were most abundant on the adaxial surface. The values of the ecological indexes (abundance, diversity, and species richness) and the rarefaction, and k-dominance curves of phytophagous, bees and arthropod predators were highest on the adaxial leaf surface of A. auriculiformis. The k-dominance and abundance of Aleyrodidae (Hemiptera) (both leaf surfaces), the native stingless bee Tetragonisca angustula Latreille (Hymenoptera: Apidae) (both leaf surfaces) and the ant Brachymyrmex sp. (adaxial surface) and Pheidole sp. (Hymenoptera: Formicidae) (abaxial surface) were the highest between the taxonomic groups of phytophagous, bees, and predators, respectively on A. auriculiformis saplings. The ecological indexes and rarefaction, abundance, and k-dominance curves of phytophagous insects, bees, and predators were highest on the adaxial leaf surface. The preference of phytophagous insects for the adaxial leaf surface is probably due to the lower effort required to move on this surface. Understanding the arthropod preferences between leaf surfaces may help to develop sampling and pest management plans for the most abundant phytophagous insects on A. auriculiformis saplings. Also, knowledge on the preference pattern of bees and predators may be used to favour their conservation.
Collapse
Affiliation(s)
- L F Silva
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias, Montes Claros, MG, Brasil
| | - F W S Silva
- Universidade Federal do Acre - UFAC, Centro de Ciências Biológicas e da Natureza, Rio Branco, AC, Brasil
| | - G L Demolin-Leite
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias, Montes Claros, MG, Brasil
| | - M A Soares
- Universidade Federal dos Vales do Jequitinhonha e Mucuri - UFVJM, Departamento de Agronomia, Diamantina, MG, Brasil
| | - P G Lemes
- Universidade Federal de Minas Gerais - UFMG, Instituto de Ciências Agrárias, Montes Claros, MG, Brasil
| | - J C Zanuncio
- Universidade Federal de Viçosa - UFV, Departamento de Entomologia/BIOAGRO, Viçosa, MG, Brasil
| |
Collapse
|
17
|
Reduction in Insect Attachment Caused by Different Nanomaterials Used as Particle Films (Kaolin, Zeolite, Calcium Carbonate). SUSTAINABILITY 2021. [DOI: 10.3390/su13158250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the present investigation, we compared the reduction in attachment ability of the southern green stinkbug Nezara viridula (Hemiptera: Pentatomidae) to glass induced by three different nanoparticle (kaolin, zeolite, and calcium carbonate) films. Using traction force experiments, behavioral experiments, and scanning electron microscopy observations, we analyzed the insect attachment ability and linear speed on untreated and treated glass with the three particle films. The three nanomaterials strongly reduced insect attachment ability mainly owing to contamination of attachment pads. The ability to reduce insect attachment was different for the three tested particle films: kaolin and zeolite induced a significantly higher reduction in N. viridula safety factor than calcium carbonate. The coating of the surface was more uniform and compact in kaolin and zeolite compared to calcium carbonate particle film. Moreover, kaolin and zeolite particles can more readily adhere to N. viridula attachment devices, whereas calcium carbonate particles appeared less adherent to the cuticular surface compared to the two aluminosilicate (kaolin and zeolite) particles. Only the application of kaolin reduced insect linear speed during locomotion. Nanoparticle films have a great potential to reduce insect attachment ability and represent a good alternative to the use of insecticides for the control of pentatomid bugs and other pest insects.
Collapse
|
18
|
Büscher TH, Gorb SN. Physical constraints lead to parallel evolution of micro- and nanostructures of animal adhesive pads: a review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:725-743. [PMID: 34354900 PMCID: PMC8290099 DOI: 10.3762/bjnano.12.57] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/30/2021] [Indexed: 05/25/2023]
Abstract
Adhesive pads are functional systems with specific micro- and nanostructures which evolved as a response to specific environmental conditions and therefore exhibit convergent traits. The functional constraints that shape systems for the attachment to a surface are general requirements. Different strategies to solve similar problems often follow similar physical principles, hence, the morphology of attachment devices is affected by physical constraints. This resulted in two main types of attachment devices in animals: hairy and smooth. They differ in morphology and ultrastructure but achieve mechanical adaptation to substrates with different roughness and maximise the actual contact area with them. Species-specific environmental surface conditions resulted in different solutions for the specific ecological surroundings of different animals. As the conditions are similar in discrete environments unrelated to the group of animals, the micro- and nanostructural adaptations of the attachment systems of different animal groups reveal similar mechanisms. Consequently, similar attachment organs evolved in a convergent manner and different attachment solutions can occur within closely related lineages. In this review, we present a summary of the literature on structural and functional principles of attachment pads with a special focus on insects, describe micro- and nanostructures, surface patterns, origin of different pads and their evolution, discuss the material properties (elasticity, viscoelasticity, adhesion, friction) and basic physical forces contributing to adhesion, show the influence of different factors, such as substrate roughness and pad stiffness, on contact forces, and review the chemical composition of pad fluids, which is an important component of an adhesive function. Attachment systems are omnipresent in animals. We show parallel evolution of attachment structures on micro- and nanoscales at different phylogenetic levels, focus on insects as the largest animal group on earth, and subsequently zoom into the attachment pads of the stick and leaf insects (Phasmatodea) to explore convergent evolution of attachment pads at even smaller scales. Since convergent events might be potentially interesting for engineers as a kind of optimal solution by nature, the biomimetic implications of the discussed results are briefly presented.
Collapse
Affiliation(s)
- Thies H Büscher
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
19
|
Yao FL, Lin S, Wang LX, Mei WJ, Monticelli LS, Zheng Y, Desneux N, He YX, Weng QY. Oviposition preference and adult performance of the whitefly predator Serangium japonicum (Coleoptera: Coccinellidae): effect of leaf microstructure associated with ladybeetle attachment ability. PEST MANAGEMENT SCIENCE 2021; 77:113-125. [PMID: 32776685 DOI: 10.1002/ps.6042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The leaf surface microstructure can greatly influence predator feeding behavior. However, its effects on predator oviposition preference, which is crucial for arthropod fitness at the population level, are largely unknown. This study aimed to test leaf discs and plants of five common host plant species of Bemisia tabaci, including Chinese kale, cotton, cucumber, eggplant, and sweetpotato, to determine the oviposition preference and offspring and adult performance of the whitefly predator Serangium japonicum. Cannibalism risk, attachment force, microstructure of the abaxial leaf surface (ALS), and ladybeetle tarsal morphology were examined. RESULTS Ladybeetle's oviposition preference had no correlation with offspring performance but positively correlated with fecundity. Further, oviposition preference to leaf discs and fecundity positively correlated with attachment force. The cannibalism risk was not significantly different between plant species. The ALS of Chinese kale and eggplant supported the smallest and the largest attachment forces, respectively. The first one had epicuticular wax crystals, whereas the latter had stellate trichomes. The ALS of cotton and sweetpotato did not bear wax crystals or long trichomes. Cucumber leaves were covered with tapered trichomes. Tenant setae on the distal second tarsomere and a pair of curved, tapered claws on the distal fourth tarsomere were the attachment structures of S. japonicum, which interacted with the plant surface structures and generated the attachment force. CONCLUSION Plant morphological traits, associated with ladybeetle attachment force and adult performance might be key factors in ladybeetle oviposition preference, and are expected to occur in other host plant herbivore-predator systems.
Collapse
Affiliation(s)
- Feng-Luan Yao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, Nice, France
| | - Shuo Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| | - Li-Xin Wang
- School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Wen-Juan Mei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| | | | - Yu Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| | | | - Yu-Xian He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| | - Qi-Yong Weng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| |
Collapse
|
20
|
Salerno G, Rebora M, Piersanti S, Matsumura Y, Gorb E, Gorb S. Variation of attachment ability of Nezara viridula (Hemiptera: Pentatomidae) during nymphal development and adult aging. JOURNAL OF INSECT PHYSIOLOGY 2020; 127:104117. [PMID: 33002513 DOI: 10.1016/j.jinsphys.2020.104117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/02/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The present investigation reports data on the attachment ability of the Southern green stink bug Nezara viridula (Hemiptera: Pentatomidae), a relevant pest in the world, along its whole life cycle. Using a centrifugal force tester, we evaluated a) the differences in the attachment ability among the four active nymphal developmental instars (N2-N5 nymphs) and adult to hydrophilic glass, showing an increased attachment ability during ontogenesis, owing to increased pulvilli size and efficiency; b) the possible role of growth and body shape on insect attachment ability on hydrophilic glass during the intermoult period, revealing that N. viridula nymphs attach stronger (higher safety factor) in the first part of the intermoult period; c) the age-specific differences in the attachment ability of adults of both sexes on hydrophilic glass, showing the best performance at an intermediate age, in agreement with a higher proportion of resilin in comparison with younger or older insects; d) the difference in attachment ability on hydrophilic vs. hydrophobic glass along the insect development, revealing a strong effect of surface hydrophobicity on reducing the attachment of N. viridula nymphs and adults. The results on the attachment ability of a hemimetabolous insect along its life cycle are relevant because they 1) shed light on different adaptations of attachment pads in relation to insect size, shape and age; 2) deepen the knowledge on the functional morphological adaptations, thus potentially contributing to the development of suitable control systems for this important pest insect.
Collapse
Affiliation(s)
- Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo XX Giugno, Perugia, Italy
| | - Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06121 Perugia, Italy.
| | - Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06121 Perugia, Italy
| | - Yoko Matsumura
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Elena Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
21
|
Borne F, Kovalev A, Gorb S, Courtier-Orgogozo V. The glue produced by Drosophila melanogaster for pupa adhesion is universal. J Exp Biol 2020; 223:jeb220608. [PMID: 32165432 DOI: 10.1242/jeb.220608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/03/2020] [Indexed: 11/20/2022]
Abstract
Insects produce a variety of adhesives for diverse functions such as locomotion, mating, and egg or pupal anchorage to substrates. Although they are important for the biology of organisms and potentially represent a great resource for developing new materials, insect adhesives have been little studied so far. Here, we examined the adhesive properties of the larval glue of Drosophila melanogaster This glue is made of glycosylated proteins and allows the animal to adhere to a substrate during metamorphosis. We designed an adhesion test to measure the pull-off force required to detach a pupa from a substrate and to evaluate the contact area covered by the glue. We found that the pupa adheres with similar forces to a variety of substrates (with distinct roughness, hydrophilic and charge properties). We obtained an average pull-off force of 217 mN, corresponding to 15,500 times the weight of a pupa and an adhesion strength of 137-244 kPa. Surprisingly, the pull-off forces did not depend on the contact area. Our study paves the way for a genetic dissection of the components of D. melanogaster glue that confer its particular adhesive properties.
Collapse
Affiliation(s)
- Flora Borne
- Institut Jacques Monod, CNRS, Université de Paris, 75013 Paris, France
| | - Alexander Kovalev
- Department of Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute of the University of Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| | | |
Collapse
|
22
|
Rebora M, Salerno G, Piersanti S, Gorb E, Gorb S. Role of Fruit Epicuticular Waxes in Preventing Bactrocera oleae (Diptera: Tephritidae) Attachment in Different Cultivars of Olea europaea. INSECTS 2020; 11:E189. [PMID: 32192070 PMCID: PMC7142657 DOI: 10.3390/insects11030189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/15/2020] [Indexed: 02/03/2023]
Abstract
The olive fruit fly Bactrocera oleae (Diptera: Tephritidae) is the major pest of cultivated olives (Olea europaea L.), and a serious threat in all of the Mediterranean Region. In the present investigation, we demonstrated with traction force experiments that B. oleae female adhesion is reduced by epicuticular waxes (EWs) fruit surface, and that the olive fruit fly shows a different ability to attach to the ripe olive surface of different cultivars of O. europaea (Arbequina, Carolea, Dolce Agogia, Frantoio, Kalamata, Leccino, Manzanilla, Picholine, Nostrale di Rigali, Pendolino and San Felice) in terms of friction force and adhesion, in relation with different mean values of olive surface wettability. Cryo-scanning morphological investigation revealed that the EW present on the olive surface of the different analyzed cultivars are represented by irregular platelets varying in the orientation, thus contributing to affect the surface microroughness and wettability in the different cultivars, and consequently the olive fruit fly attachment. Further investigations to elucidate the role of EW in olive varietal resistance to the olive fruit fly in relation to the olive developmental stage and environmental conditions could be relevant to develop control methods alternative to the use of harmful pesticides.
Collapse
Affiliation(s)
- Manuela Rebora
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06121 Perugia, Italy; (M.R.); (S.P.)
| | - Gianandrea Salerno
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| | - Silvana Piersanti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06121 Perugia, Italy; (M.R.); (S.P.)
| | - Elena Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24098 Kiel, Germany; (E.G.); (S.G.)
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24098 Kiel, Germany; (E.G.); (S.G.)
| |
Collapse
|
23
|
Salerno G, Rebora M, Piersanti S, Gorb E, Gorb S. Mechanical ecology of fruit-insect interaction in the adult Mediterranean fruit fly Ceratitis capitata (Diptera: Tephritidae). ZOOLOGY 2020; 139:125748. [PMID: 32078916 DOI: 10.1016/j.zool.2020.125748] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/21/2022]
Abstract
Fruit features represent a trade-off between dispersal and protection against frugivore insects. To prevent insect attack, plants evolved chemical and physical barriers, mainly studied in leaves, while limited knowledge is available for fruits, especially concerning mechanical barriers. We used the Mediterranean fruit fly to shed light on the mechanical ecology of insect-fruit attachment in a pest species. We tested the following hypotheses: is there any sexual dimorphism in attachment devices and attachment ability? Can the attachment ability of females of Ceratitis capitata to fruits of various host plants vary according to fruit surfaces with different morphology (smooth, hairy, waxy) or physico-chemical properties? The tarsal attachment devices were studied using Cryo-SEM and TEM. The maximum friction forces of C. capitata females on fruit surfaces of typical host plants were evaluated using a load cell force transducer. The attachment ability of both sexes on artificial surfaces was evaluated using a centrifugal force tester. Our data revealed sexual dimorphism in the size of pulvilli, which are wider in females. A higher friction force is exerted by females in comparison with males, in agreement with the need to firmly adhere to the host plant fruit during oviposition. Among the tested fruits, the stronger friction force was recorded on hairy or rough surfaces while a force reduction was recorded on waxy fruits. To unravel the mechanical ecology of insect-plant interaction between plants and species of Tephritidae can be useful to develop non-chemical methods to control these important crop pests.
Collapse
Affiliation(s)
- Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Borgo XX Giugno 74, Perugia, 06121, Italy
| | - Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06121, Perugia, Italy.
| | - Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Via Elce di Sotto 8, 06121, Perugia, Italy
| | - Elena Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24098, Kiel, Germany
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 9, 24098, Kiel, Germany
| |
Collapse
|
24
|
Rebora M, Salerno G, Piersanti S, Michels J, Gorb S. Structure and biomechanics of the antennal grooming mechanism in the southern green stink bug Nezara viridula. JOURNAL OF INSECT PHYSIOLOGY 2019; 112:57-67. [PMID: 30521769 DOI: 10.1016/j.jinsphys.2018.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
Insects devote a large amount of time to self-groom to remove foreign material, especially from their sensory appendages. Using various microscopy techniques and behavioural experiments on intact and ablated insects, the present study investigates the antennal grooming of the southern green stinkbug Nezara viridula, which represents a serious pest of different crops in most areas of the world. The antennal grooming behaviour encompasses an action of scraping involving the tibial comb complex (tibial comb + fossula) of both forelegs, generally followed by the tibial comb complex grooming of one leg using the tarsal hairy adhesive pad of the opposite leg (rubbing). From our observations, we can exclude a role in the antennal grooming of other structures such as the foretibial apparatus, while we show an involvement of this last structure in repositioning the stylets inside the labium. The external and internal morphology (cryo-scanning and transmission electron microscopy) and the evidence for the presence of large proportions of the elastic protein resilin (confocal laser scanning microscopy) in some parts of both the tibial comb complex and the foretibial apparatus are shown, and their functional roles are discussed. For the first time we demonstrated here the multipurpose role of the basitarsal hairy adhesive pad that is involved in both antennal grooming and adhesion to the substrate.
Collapse
Affiliation(s)
- Manuela Rebora
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Italy
| | - Gianandrea Salerno
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Italy.
| | - Silvana Piersanti
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Italy
| | - Jan Michels
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Germany
| | - Stanislav Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Germany
| |
Collapse
|