1
|
Ye L, Hu H, Wang Y, Cai Z, Yu W, Lu X. In vitro digestion and colonic fermentation characteristics of media-milled purple sweet potato particle-stabilized Pickering emulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5064-5076. [PMID: 38284773 DOI: 10.1002/jsfa.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Pickering emulsions stabilized by multicomponent particles have attracted increasing attention. Research on characterizing the digestion and health benefit effects of these emulsions in the human gastrointestinal tract are quite limited. This work aims to reveal the digestive characteristics of media-milled purple sweet potato particle-stabilized Pickering emulsions (PSPP-Es) during in vitro digestion and colonic fermentation. RESULTS The media-milling process improved the in vitro digestibility and fermentability of PSPP-Es by reaching afree fatty acids release rate of 43.11 ± 4.61% after gastrointestinal digestion and total phenolic content release of 101.00 ± 1.44 μg gallic acid equivalents/mL after fermentation. In addition, PSPP-Es exhibited good antioxidative activity (2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant power assays), α-glucosidase inhibitory activity (half-maximal inhibitory concentration: 6.70%, v/v), and prebiotic effects, reaching a total short-chain fatty acids production of 9.90 ± 0.12 mol L-1, boosting the growth of Akkermansia, Bifidobacterium, and Blautia and inhibiting the growth of Escherichia-Shigella. CONCLUSIONS These findings indicate that the media-milling process enhances the potential health benefits of purple sweet potato particle-stabilized Pickering emulsions, which is beneficial for their application as a bioactive component delivery system in food and pharmaceutical products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liuyu Ye
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Hong Hu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou, China
- Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou, China
| | - Zizhe Cai
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Wenwen Yu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Xuanxuan Lu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou, China
- Guangdong Joint International Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou, China
| |
Collapse
|
2
|
Tang S, Dong X, Ma Y, Zhou H, He Y, Ren D, Li X, Cai Y, Wang Q, Wu L. Highly crystalline cellulose microparticles from dealginated seaweed waste ameliorate high fat-sugar diet-induced hyperlipidemia in mice by modulating gut microbiota. Int J Biol Macromol 2024; 263:130485. [PMID: 38423434 DOI: 10.1016/j.ijbiomac.2024.130485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/10/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
The effects of seaweed cellulose (SC) on high fat-sugar diet (HFSD)-induced glucolipid metabolism disorders in mice and potential mechanisms were investigated. SC was isolated from dealginated residues of giant kelp (Macrocystis pyrifera), with a crystallinity index of 85.51 % and an average particle size of 678.2 nm. Administering SC to C57BL/6 mice at 250 or 500 mg/kg BW/day via intragastric gavage for six weeks apparently inhibited the development of HFSD-induced obesity, dyslipidemia, insulin resistance, oxidative stress and liver damage. Notably, SC intervention partially restored the structure and composition of the gut microbiota altered by the HFSD, substantially lowering the Firmicutes to Bacteroidetes ratio, and greatly increasing the relative abundance of Lactobacillus, Bifidobacterium, Oscillospira, Bacteroides and Akkermansia, which contributed to improved short-chain fatty acid (SCFA) production. Supplementing with a higher dose of SC led to more significant increases in total SCFA (67.57 %), acetate (64.56 %), propionate (73.52 %) and butyrate (66.23 %) concentrations in the rectal contents of HFSD-fed mice. The results indicated that highly crystalline SC microparticles could modulate gut microbiota dysbiosis and ameliorate HFSD-induced obesity and related metabolic syndrome in mice. Furthermore, particle size might have crucial impact on the prebiotic effects of cellulose as insoluble dietary fiber.
Collapse
Affiliation(s)
- Shiying Tang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Xiuyu Dong
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Yueyun Ma
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Hui Zhou
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China.
| | - Yunhai He
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China.
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China.
| | - Xiang Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yidi Cai
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Qiukuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China.
| | - Long Wu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
3
|
Bai Y, Zhang Y, Chao C, Yu J, Zhao J, Han D, Wang J, Wang S. Molecular Mechanisms Underlying the Effects of Small Intestinal Fermentation on Enhancement of Prebiotic Characteristics of Cellulose in the Large Intestine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3596-3605. [PMID: 38270580 DOI: 10.1021/acs.jafc.3c09146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Knowledge about the prebiotic characteristics of cellulose by in vitro fermentation is not complete due to the neglect of small intestinal fermentation. This study investigated the effects of small intestinal fermentation on the prebiotic characteristics of cellulose in the large intestine and potential mechanisms through an approach of combined in vivo small intestinal fermentation and in vitro fermentation. The structural similarity between cellulose in feces and after processing by the approach of this study confirmed the validity of the approach employed. Results showed that small intestinal fermentation of cellulose increased both acetate and propionate content and enriched Corynebacterium selectively. Compared to in vitro fermentation after in vitro digestion of cellulose, the in vitro fermentation of cellulose after in vivo small intestinal fermentation produced higher contents of acetate and propionate as well as the abundance of probiotics like Ruminococcaceae_UCG-002, Blautia, and Bifidobaterium. The changes in the structural features of cellulose after in vivo small intestinal fermentation were more obvious than those after in vitro digestion, which may account for the greater production of short-chain fatty acids (SCFAs) and the abundance of probiotics. In summary, small intestinal fermentation enhanced the prebiotic characteristics of cellulose in the large intestine by predisrupting its structure.
Collapse
Affiliation(s)
- Yu Bai
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yiming Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chen Chao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
4
|
Ramu Ganesan A, Hoellrigl P, Mayr H, Martini Loesch D, Tocci N, Venir E, Conterno L. The Rheology and Textural Properties of Bakery Products Upcycling Brewers' Spent Grain. Foods 2023; 12:3524. [PMID: 37835177 PMCID: PMC10572393 DOI: 10.3390/foods12193524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
This study aimed to evaluate the rheological properties of doughs with 50% brewers' spent grain (BSG) derived from a rye-based (RBSG) and barley-based (BBSG) beer added, and the textural profile of the related baked products. Simple model systems using BSG flour mixed with water were studied. Two bakery products, focaccia and cookies, were made as food systems using BSG in a 1:1 ratio with wheat flour (WF). Their rheological properties and texture after baking were characterized. BSG-added dough exhibited viscoelastic properties with a solid gel-like behavior. The addition of BSG increased G' > G″ and decreased the dough flexibility. BSG addition in baked RBSG focaccia increased the hardness, gumminess, and chewiness by 10%, 9%, and 12%, respectively. BBSG cookies had a 20% increase in fracturability. A positive correlation was found between the rheological metrics of the dough and the textural parameters of BBSG-added cookies. PCA analysis revealed that complex viscosity, G', G″, and cohesiveness separated BBSG focaccia from RBSG focaccia and the control. Therefore, the rheological properties of BSG dough will have industrial relevance for 3D-printed customized food products with fiber. Adding RBSG and BBSG to selected foods will increase the up-cycling potential by combining techno-functional properties.
Collapse
Affiliation(s)
- Abirami Ramu Ganesan
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Kudalsveien 6, NO-8027 Bodø, Norway;
- Food Technology Area, Institute for Mountain Agriculture and Food Technology Laimburg Research Centre, Laimburg 6, 39051 Pfatten/Vadena, BZ, Italy; (P.H.); (H.M.); (D.M.L.); (N.T.); (E.V.)
| | - Philipp Hoellrigl
- Food Technology Area, Institute for Mountain Agriculture and Food Technology Laimburg Research Centre, Laimburg 6, 39051 Pfatten/Vadena, BZ, Italy; (P.H.); (H.M.); (D.M.L.); (N.T.); (E.V.)
| | - Hannah Mayr
- Food Technology Area, Institute for Mountain Agriculture and Food Technology Laimburg Research Centre, Laimburg 6, 39051 Pfatten/Vadena, BZ, Italy; (P.H.); (H.M.); (D.M.L.); (N.T.); (E.V.)
| | - Demian Martini Loesch
- Food Technology Area, Institute for Mountain Agriculture and Food Technology Laimburg Research Centre, Laimburg 6, 39051 Pfatten/Vadena, BZ, Italy; (P.H.); (H.M.); (D.M.L.); (N.T.); (E.V.)
| | - Noemi Tocci
- Food Technology Area, Institute for Mountain Agriculture and Food Technology Laimburg Research Centre, Laimburg 6, 39051 Pfatten/Vadena, BZ, Italy; (P.H.); (H.M.); (D.M.L.); (N.T.); (E.V.)
| | - Elena Venir
- Food Technology Area, Institute for Mountain Agriculture and Food Technology Laimburg Research Centre, Laimburg 6, 39051 Pfatten/Vadena, BZ, Italy; (P.H.); (H.M.); (D.M.L.); (N.T.); (E.V.)
| | - Lorenza Conterno
- Food Technology Area, Institute for Mountain Agriculture and Food Technology Laimburg Research Centre, Laimburg 6, 39051 Pfatten/Vadena, BZ, Italy; (P.H.); (H.M.); (D.M.L.); (N.T.); (E.V.)
| |
Collapse
|
5
|
Zhou L, Luo J, Xie Q, Huang L, Shen D, Li G. Dietary Fiber from Navel Orange Peel Prepared by Enzymatic and Ultrasound-Assisted Deep Eutectic Solvents: Physicochemical and Prebiotic Properties. Foods 2023; 12:foods12102007. [PMID: 37238825 DOI: 10.3390/foods12102007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Dietary fiber (DF) was extracted from navel orange peel residue by enzyme (E-DF) and ultrasound-assisted deep eutectic solvent (US-DES-DF), and its physicochemical and prebiotic properties were characterized. Based on Fourier-transform infrared spectroscopy, all DF samples exhibited typical polysaccharide absorption spectra, indicating that DES could separate lignin while leaving the chemical structure of DF unchanged, yielding significantly higher extraction yields (76.69 ± 1.68%) compared to enzymatic methods (67.27 ± 0.13%). Moreover, ultrasound-assisted DES extraction improved the properties of navel orange DFs by significantly increasing the contents of soluble dietary fiber and total dietary fiber (3.29 ± 1.33% and 10.13 ± 0.78%, respectively), as well as a notable improvement in the values of water-holding capacity, oil-holding capacity, and water swelling capacity. US-DES-DF outperformed commercial citrus fiber in stimulating the proliferation of probiotic Bifidobacteria strains in vitro. Overall, ultrasound-assisted DES extraction exhibited potential as an industrial extraction method, and US-DES-DF could serve as a valuable functional food ingredient. These results provide a new perspective on the prebiotic properties of dietary fibers and the preparation process of prebiotics.
Collapse
Affiliation(s)
- Liling Zhou
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Jiaqian Luo
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Qiutao Xie
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Lvhong Huang
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Dan Shen
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha 410125, China
| |
Collapse
|
6
|
Binte Abdul Halim FN, Taheri A, Abdol Rahim Yassin Z, Chia KF, Goh KKT, Goh SM, Du J. Effects of Incorporating Alkaline Hydrogen Peroxide Treated Sugarcane Fibre on The Physical Properties and Glycemic Potency of White Bread. Foods 2023; 12:foods12071460. [PMID: 37048281 PMCID: PMC10094325 DOI: 10.3390/foods12071460] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/14/2023] Open
Abstract
The consumption of dietary fibres can affect glycemic power and control diabetes. Sugarcane fibre (SCF) is known as insoluble dietary fibre, the properties of which can be affected by physical, chemical, and enzymatic treatments. In this study, alkaline hydrogen peroxide (AHP) treatments were conducted over time (0.5, 1, 3, and 5 h) at 12.6% (w/v) SCF and the effects on the physicochemical and structural properties of the SCF were evaluated. After making dough and bread with the SCF, with and without AHP treatments, the glycemic responses of the bread samples were evaluated. Shorter durations of AHP treatment (0.5 and 1 h) reduced lignin effectively (37.3 and 40.4%, respectively), whereas AHP treatment at 1 and 3 h duration was more effective in increasing particle sizes (50.9 and 50.1 μm, respectively). The sugar binding capacity, water holding capacity (from 2.98 to 3.86 g water/g SCF), and oil holding capacity (from 2.47 to 3.66 g oil/g SCF) increased in all AHP samples. Results from Fourier-transform infrared spectroscopy (FTIR) confirmed the polymorphism transition of cellulose (cellulose I to cellulose II). The morphology of SCF detected under scanning electron microscopy (SEM) indicated the conversion of the surface to a more porous, rough structure due to the AHP treatment. Adding SCF decreased dough extensibility but increased bread hardness and chewiness. All SCF-incorporated bread samples have reduced glycemic response. Incorporation of 1, 3, and 5 h AHP-treated SCF was effective in reducing the glycemic potency than 0.5 h AHP-treated SCF, but not significantly different from the untreated SCF. Overall, this study aims to valorize biomass as AHP is commonly applied to bagasse to produce value-added chemicals and fuels.
Collapse
Affiliation(s)
| | - Afsaneh Taheri
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Zawanah Abdol Rahim Yassin
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Kai Feng Chia
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Kelvin Kim Tha Goh
- School of Food & Advanced Technology, Massey University, Private Bag 11222, Palmerston North 4410, New Zealand
| | - Suk Meng Goh
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Juan Du
- Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| |
Collapse
|
7
|
Decreasing the Crystallinity and Degree of Polymerization of Cellulose Increases Its Susceptibility to Enzymatic Hydrolysis and Fermentation by Colon Microbiota. Foods 2023; 12:foods12051100. [PMID: 36900616 PMCID: PMC10000603 DOI: 10.3390/foods12051100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Cellulose can be isolated from various raw materials and agricultural side streams and might help to reduce the dietary fiber gap in our diets. However, the physiological benefits of cellulose upon ingestion are limited beyond providing fecal bulk. It is barely fermented by the microbiota in the human colon due to its crystalline character and high degree of polymerization. These properties make cellulose inaccessible to microbial cellulolytic enzymes in the colon. In this study, amorphized and depolymerized cellulose samples with an average degree of polymerization of less than 100 anhydroglucose units and a crystallinity index below 30% were made from microcrystalline cellulose using mechanical treatment and acid hydrolysis. This amorphized and depolymerized cellulose showed enhanced digestibility by a cellulase enzyme blend. Furthermore, the samples were fermented more extensively in batch fermentations using pooled human fecal microbiota, with minimal fermentation degrees up to 45% and a more than eight-fold increase in short-chain fatty acid production. While this enhanced fermentation turned out to be highly dependent on the microbial composition of the fecal pool, the potential of engineering cellulose properties to increased physiological benefit was demonstrated.
Collapse
|
8
|
Tang X, Wang Z, Zheng J, Kan J, Chen G, Du M. Physicochemical, structure properties and in vitro hypoglycemic activity of soluble dietary fiber from adlay ( Coix lachryma-jobi L. var. ma-yuen Stapf) bran treated by steam explosion. Front Nutr 2023; 10:1124012. [PMID: 36819706 PMCID: PMC9937059 DOI: 10.3389/fnut.2023.1124012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
To enhance the content of adlay bran soluble dietary fiber (SDF) and improve its functionality, we investigated the influences of steam explosion (SE) on the physicochemical, structural properties, and in vitro hypoglycemic activities of adlay bran SDF. The cellulose, hemicellulose, and lignin contents of adlay bran decreased significantly after SE treatment. When the SE strength was 0.8 MPa for 3 min, the SDF content was 9.37%, which was a significant increase of 27.48% compared to the control. Under these conditions, SDF showed the highest oil-holding capacity (OHC) (2.18 g/g), cholesterol adsorption capacity (CAC) (27.29 mg/g), glucose adsorption capacity (GAC) (15.54 mg/g), glucose dialysis retardation index (GDRI) (36.57%), and α-Amylase activity inhibition ratio (α-AAIR) (74.14%). Compared with SDF from untreated adlay bran, SDF from SE-treated adlay bran showed lower weight molecular. In addition, differential scanning calorimetry (DSC) measurement showed that the peak temperature of SDF from adlay bran treated by SE increased by 4.19°C compared to the untreated SDF sample. The structure of SDF from adlay bran treated by SE showed that the SDF surface was rough and poriferous and the specific surface areas increased. In conclusion, SE pretreatment increases the content of SDF in adlay bran and improves its physicochemical, structural properties, and biological activities, which will be beneficial for the further exploitation of adlay bran.
Collapse
Affiliation(s)
- Xinjing Tang
- College of Food Science, Southwest University, Chongqing, China,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, China,Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
| | - Zhirong Wang
- College of Food Science, Southwest University, Chongqing, China,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, China
| | - Jiong Zheng
- College of Food Science, Southwest University, Chongqing, China
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing, China,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, China
| | - Guangjing Chen
- College of Food Science, Southwest University, Chongqing, China,College of Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, Guizhou, China
| | - Muying Du
- College of Food Science, Southwest University, Chongqing, China,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, China,Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China,*Correspondence: Muying Du,
| |
Collapse
|
9
|
Ahmed AA, Musa HH, Essa MEA, Mollica A, Zengin G, Ahmad H, Adam SY. Inhibition of obesity through alterations of C/EBP- α gene expression by gum Arabic in mice with a high-fat feed diet. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
10
|
Tian M, Pak S, Ma C, Ma L, Rengasamy KRR, Xiao J, Hu X, Li D, Chen F. Chemical features and biological functions of water-insoluble dietary fiber in plant-based foods. Crit Rev Food Sci Nutr 2022; 64:928-942. [PMID: 36004568 DOI: 10.1080/10408398.2022.2110565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Insoluble dietary fiber (IDF) is a nutritional component constituting the building block of plant cell walls. Our understanding of the role of IDF in plant-based foods has advanced dramatically in recent years. In this Review, we summarize research progress on the subtypes, structure, analysis, and extraction methods of IDF. The impact of different food processing methods on the properties of IDF is discussed. The role of gut microbiota in the health benefits of IDF is introduced. This review provides a better understanding of the chemical features and biological functions of IDF, which may promote the future application of IDF in functional food products. Further investigation of the mechanisms underlying the health benefits of IDF enables the development of effective strategies for the prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Meiling Tian
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - SolJu Pak
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Chen Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Kannan R R Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India, Sovenga, South Africa
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Daotong Li
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
- Health Science Center, Department of Anatomy, Histology and Embryology, Peking University, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Edible Oleogels Fabricated by Dispersing Cellulose Particles in Oil Phase: Effects from the Water Addition. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Ultrafine Jujube Powder Enhances the Infiltration of Immune Cells during Anti-PD-L1 Treatment against Murine Colon Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13163987. [PMID: 34439144 PMCID: PMC8394940 DOI: 10.3390/cancers13163987] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/26/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary While modulating gut microbiota using dietary intervention with natural nutrients has proven to be effective in improving the response rate of immune checkpoint inhibitors (ICIs), the underpinning mechanism is poorly understood. This work demonstrates that the oral administration of ultrafine jujube powder (JP) let to a significant alteration of gut microbiota, an increased abundance of Clostridiales, including Ruminococcaceae and Lachnospiraceae, an elevated SCFA production, an intensified infiltration of CD8+ T cells to the tumor microenvironment, and a greatly improved response of anti-PD-L1 treatment against murine colon adenocarcinoma. Moreover, the size of the JP particles had a significant impact on the abovementioned attributes. The present study demonstrates that dietary intervention with nutrients is highly effective in modulating the gut microbiota for an improved immune checkpoint blockage therapy. Abstract Whereas dietary intervention with natural nutrients plays an important role in activating the immune response and holds unprecedented application potential, the underpinning mechanism is poorly understood. The present work was dedicated to comprehensively examine the effects of ultrafine jujube powder (JP) on the gut microbiota and, consequentially, the effects associated with the response rate to anti-PD-L1 treatment against murine colon adenocarcinoma. A murine colon adenocarcinoma model with anti-PD-L1 immunotherapy was established to evaluate how dietary interventions affect the microbiota. In vitro and in vivo experiments confirmed the role of SCFAs in the immune response. Oral administration of JP greatly improves the response of anti-PD-L1 treatment against murine colon adenocarcinoma. Such an improvement is associated with the alteration of gut microbiota which leads to an increased abundance of Clostridiales, including Ruminococcaceae and Lachnospiraceae, an elevated SCFA production, and an intensified infiltration of CD8+ T cells to the tumor microenvironment. This work demonstrates that JP is particularly effective in modulating the gut microbiota for an improved immune checkpoint blockage therapy by boosting cytotoxic CD8+ T cells in tumor-infiltrating lymphocytes. The experimental findings of the present study are helpful for the development of dietary intervention methods for cancer immunotherapy using natural nutrients.
Collapse
|
13
|
Gum Arabic modifies anti-inflammatory cytokine in mice fed with high fat diet induced obesity. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.bcdf.2020.100258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Fang D, Wang Q, Chen C, Li Z, Li S, Chen W, Zheng Y. Structural characteristics, physicochemical properties and prebiotic potential of modified dietary fibre from the basal part of bamboo shoot. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Dongya Fang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou350002China
| | - Qi Wang
- Institute of Agricultural Engineering Fujian Academy of Agriculture Sciences Fuzhou350003China
| | - Canhui Chen
- College of Food Science Fujian Agriculture and Forestry University Fuzhou350002China
| | - Zhengyi Li
- College of Food Science Fujian Agriculture and Forestry University Fuzhou350002China
| | - Shuting Li
- College of Food Science Fujian Agriculture and Forestry University Fuzhou350002China
| | - Wen Chen
- College of Food Science Fujian Agriculture and Forestry University Fuzhou350002China
| | - Yafeng Zheng
- College of Food Science Fujian Agriculture and Forestry University Fuzhou350002China
- China‐Ireland International Cooperation Centre for Food Material Science and Structure Design Fujian Agriculture and Forestry University Fuzhou350002China
| |
Collapse
|
15
|
Nagano T, Arai Y, Yano H, Aoki T, Kurihara S, Hirano R, Nishinari K. Improved physicochemical and functional properties of okara, a soybean residue, by nanocellulose technologies for food development – A review. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Vázquez-Vuelvas OF, Chávez-Camacho FA, Meza-Velázquez JA, Mendez-Merino E, Ríos-Licea MM, Contreras-Esquivel JC. A comparative FTIR study for supplemented agavin as functional food. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
17
|
Nsor-Atindana J, Zhou YX, Saqib MN, Chen M, Douglas Goff H, Ma J, Zhong F. Enhancing the prebiotic effect of cellulose biopolymer in the gut by physical structuring via particle size manipulation. Food Res Int 2019; 131:108935. [PMID: 32247486 DOI: 10.1016/j.foodres.2019.108935] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 01/01/2023]
Abstract
Cellulose is generally recognised as dietary fibre with no limit of permissible quantity in food, and its consumption may modulate digesta content and impact positively on the gastrointestinal physiology and gut microflora. However, cellulose in its native form possessed inherent undesirable physical properties, making it unattractive for food applications. Here, we postulate that by changing cellulose size to nanometric scale, its prebiotic effect would be altered and fermented differently in contrast with micro size cellulose by the gut microbiome and promote the yield of metabolites such as short chain fatty acids (SCFAs). Using faecal matter from three healthy human donors as microbial source, in vitro fermentation of variable size fractions of cellulose from the same were fermented under anaerobic conditions, and SCFAs as well Bifidobacterium selectively isolated and analysed. The increase in production of acetate (194%), butyrate (224%) and propionate (211%) after 24 h of fermentation was significantly promoted by the size reduction and revealed size-dependent relationship as exemplified R2 values >0.83. Consequently, gavaging rats with nanometric size cellulose (125 nm) significantly (p < 0.05) increased these SCFAs yields as well Bifidobacterium counts in contrast with both control and the micro scale size cellulose. Therefore, engineered nanocellulose might have beneficial physiological impact on the gut with improved prebiotic effect.
Collapse
Affiliation(s)
- John Nsor-Atindana
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Department of Nutrition and Dietetics, University of Health Allied Sciences, Ho, Volta Region PMB 31, Ghana
| | - Ya Xing Zhou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Md Nazmus Saqib
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Maoshen Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - H Douglas Goff
- Department of Food Science, University of Guelph, ON N1G 2W1, Canada
| | - Jianguo Ma
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Fang Zhong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
18
|
Thiol-based chemistry as versatile routes for the effective functionalization of cellulose nanofibers. Carbohydr Polym 2019; 226:115259. [DOI: 10.1016/j.carbpol.2019.115259] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 11/17/2022]
|
19
|
Adebowale TO, Yao K, Oso AO. Major cereal carbohydrates in relation to intestinal health of monogastric animals: A review. ACTA ACUST UNITED AC 2019; 5:331-339. [PMID: 31890909 PMCID: PMC6920401 DOI: 10.1016/j.aninu.2019.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/09/2019] [Accepted: 09/05/2019] [Indexed: 01/10/2023]
Abstract
Type, quality, and origin of cereals in diets of poultry and pigs could influence gut microbes and affect their diversity and function, thereby impacting the intestinal function of the monogastric animal. In this review, we focus on the major carbohydrates in cereals that interact directly with gut microbes and lead to the production of key metabolites such as short-chain fatty acids (SCFA), and discuss how cereal fiber impact intestinal health of poultry and pigs. An overview of how the cereals and cereals-derived carbohydrates such as beta-glucans, resistant starch, cellulose, and arabinoxylans could promote intestinal health and reduce the use of in-feed antibiotics in animal production are presented. The metabolic pathway utilized by microbes and the mechanism of action underlying the produced SCFA on intestinal health of monogastric animals is also discussed.
Collapse
Affiliation(s)
- Tolulope O. Adebowale
- University of the Chinese Academy of Sciences, Beijing, 10008, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125, China
- Corresponding authors.
| | - Kang Yao
- University of the Chinese Academy of Sciences, Beijing, 10008, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125, China
- Corresponding authors.
| | - Abimbola O. Oso
- Department of Animal Nutrition, Federal University of Agriculture, Abeokuta, PMB 2240, Nigeria
| |
Collapse
|
20
|
Potential of water dropwort (Oenanthe javanica DC.) powder as an ingredient in beverage: Functional, thermal, dissolution and dispersion properties after superfine grinding. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.05.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Vizireanu S, Panaitescu DM, Nicolae CA, Frone AN, Chiulan I, Ionita MD, Satulu V, Carpen LG, Petrescu S, Birjega R, Dinescu G. Cellulose defibrillation and functionalization by plasma in liquid treatment. Sci Rep 2018; 8:15473. [PMID: 30341312 PMCID: PMC6195520 DOI: 10.1038/s41598-018-33687-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/03/2018] [Indexed: 11/13/2022] Open
Abstract
Submerged liquid plasma (SLP) is a new and promising method to modify powder materials. Up to now, this technique has been mostly applied to carbonaceous materials, however, SLP shows great potential as a low-cost and environmental-friendly method to modify cellulose. In this work we demonstrate the modification of microcrystalline cellulose (MCC) by applying the SLP combined with ultrasonication treatments. The plasma generated either in an inert (argon) or reactive (argon: oxygen or argon:nitrogen) gas was used in MCC dispersions in water or acetonitrile:water mixtures. An enhanced defibrillation of MCC has been observed following the application of SLP. Furthermore, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy have been applied to investigate the surface functionalization of MCC with oxygen or nitrogen moieties. Depending on the plasma treatment applied, poly (3-hydroxybutyrate) composites fabricated with the plasma modified cellulose fibers showed better thermal stability and mechanical properties than pristine PHB. This submerged liquid plasma processing method offers a unique approach for the activation of cellulose for defibrillation and functionalization, aiming towards an improved reinforcing ability of biopolymers.
Collapse
Affiliation(s)
- Sorin Vizireanu
- National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, Magurele, Bucharest, Ilfov, 077125, Romania
| | - Denis Mihaela Panaitescu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, Bucharest, 060021, Romania.
| | - Cristian Andi Nicolae
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, Bucharest, 060021, Romania
| | - Adriana Nicoleta Frone
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, Bucharest, 060021, Romania
| | - Ioana Chiulan
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, Bucharest, 060021, Romania
| | - Maria Daniela Ionita
- National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, Magurele, Bucharest, Ilfov, 077125, Romania
| | - Veronica Satulu
- National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, Magurele, Bucharest, Ilfov, 077125, Romania
| | - Lavinia Gabriela Carpen
- National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, Magurele, Bucharest, Ilfov, 077125, Romania
| | - Simona Petrescu
- Institute of Physical Chemistry "Ilie Murgulescu", Romanian Academy of Sciences, 202 Spl. Independentei, Bucharest, 060021, Romania
| | - Ruxandra Birjega
- National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, Magurele, Bucharest, Ilfov, 077125, Romania
| | - Gheorghe Dinescu
- National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, Magurele, Bucharest, Ilfov, 077125, Romania
| |
Collapse
|