1
|
Wu CC, Yang J, Wang XQ. Analgesic effect of dance movement therapy: An fNIRS study. Neuroimage 2024; 301:120880. [PMID: 39362506 DOI: 10.1016/j.neuroimage.2024.120880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/12/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
OBJECTIVE This study aims to explores the physiological and psychological mechanisms of exercise-induced hypoalgesia (EIH) by combining the behavioral results with neuroimaging data on changes oxy-hemoglobin (HbO) in prefrontal cortex (PFC). METHODS A total of 97 healthy participants were recruited and randomly divided into three groups: a single dance movement therapy (DMT) group, a double DMT group, and control group. Evaluation indicators included the pressure pain threshold (PPT) test, the color-word stroop task (CWST) for wearing functional near-infrared spectroscopy (fNIRS), and the self-assessment manikin (SAM). The testing time is before intervention, after intervention, and one hour of sit rest after intervention. RESULTS 1) Repeated measures ANOVA revealed that, there is a time * group effect on the PPT values of the three groups of participants at three time points. After 30 min of acute dance intervention, an increase in the PPT values of 10 test points occurred in the entire body of the participants in the experimental group with a significant difference than the control group. 2) In terms of fNIRS signals, bilateral DLPFC and left VLPFC channels were significantly activated in the experimental group. 3) DMT significantly awakened participants and brought about pleasant emotions, but cognitive improvement was insignificant. 4) Mediation effect analysis found that the change in HbO concentration in DLPFC may be a mediator in predicting the degree of improvement in pressure pain threshold through dance intervention (total effect β = 0.7140). CONCLUSION In healthy adults, DMT can produce a diffuse EIH effect on improving pressure pain threshold, emotional experience but only showing an improvement trend in cognitive performance. Dance intervention significantly activates the left ventrolateral and bilateral dorsolateral prefrontal cortex. This study explores the central nervous system mechanism of EIH from a physiological and psychological perspective.
Collapse
Affiliation(s)
- Cheng-Cheng Wu
- Department of Education Office, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jin Yang
- Department of Education Office, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Xue-Qiang Wang
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; School of Rehabilitation Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
2
|
Liu S, Li Q, Wang H, Zhang H, Zhao Q, Su J, Zou J, Feng P, Zhang A. Exercise as a promising alternative for sciatic nerve injury pain relief: a meta-analysis. Front Neurol 2024; 15:1424050. [PMID: 39144705 PMCID: PMC11323690 DOI: 10.3389/fneur.2024.1424050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
Objective The efficacy of drug therapies in managing neuropathic pain is constrained by their limited effectiveness and potential for adverse effects. In contrast, exercise has emerged as a promising alternative for pain relief. In this study, we conducted a systematic evaluation of the therapeutic impact of exercise on neuropathic pain resulting from sciatic nerve injury in rodent models. Methods The PubMed, Embase, and Web of Science databases were retrieved before April 2024. A series of studies regarding the effect of treadmill, swimming, wheel and other exercises on neuropathic pain induced by sciatic nerve injury in rats and mice were collected. Using predefined inclusion criteria, two researchers independently performed literature screening, data extraction, and methodological quality assessment utilizing SYRCLE's risk of bias tool for animal studies. Statistical analysis was conducted using RevMan 5.3 and STATA 12.0 analysis software. Results A total of 12 relevant academic sources were included in the analysis of controlled animal studies, with 133 rodents in the exercise group and 135 rodents in the sedentary group. The meta-analysis revealed that exercise was associated with a significant increase in paw withdrawal mechanical threshold [Standard Mean Difference (SMD) = 0.84, 95% confidence interval (CI): 0.28-1.40, p = 0.003] and paw withdrawal thermal latency (SMD = 1.54, 95%CI: 0.93-2.15, p < 0.0001) in rats and mice with sciatic nerve injury. Subgroup analyses were conducted to evaluate the impact of exercise duration on heterogeneity. The results showed that postoperative exercise duration ≤3 weeks could significantly elevate paw withdrawal mechanical threshold (SMD = 1.04, 95% CI: 0.62-1.46, p < 0.00001). Postoperative exercise duration ≤4 weeks could significantly improve paw withdrawal thermal latency (SMD = 1.93, 95% CI:1.19-2.67, p < 0.00001). Conclusion Exercise represents an effective method for improving mechanical and thermal hypersensitivity resulting from sciatic nerve injury in rodents. Factors such as pain models, the initiation of exercise, the type of exercise, and the species of rodent do not significantly impact the development of exercise-induced hypoalgesia. However, the duration of postoperative exercise plays a crucial role in the onset of exercise-induced hypoalgesia.
Collapse
Affiliation(s)
- Shunxin Liu
- Guangxi University of Chinese Medicine, Nanning, China
| | - Qin Li
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Huaiming Wang
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hongwei Zhang
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Zhao
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jinjun Su
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jiang Zou
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Pengjiu Feng
- Guangxi University of Chinese Medicine, Nanning, China
- Department of Anesthesiology, Liuzhou Traditional Chinese Medicine Hospital, The Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou, China
| | - Aimin Zhang
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Wang W, Qiu D, Mei Y, Bai X, Yuan Z, Zhang X, Xiong Z, Tang H, Zhang P, Zhang Y, Yu X, Wang Z, Ge Z, Sui B, Wang Y. Altered functional connectivity of brainstem nuclei in new daily persistent headache: Evidence from resting-state functional magnetic resonance imaging. CNS Neurosci Ther 2024; 30:e14686. [PMID: 38516817 PMCID: PMC10958407 DOI: 10.1111/cns.14686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
OBJECTIVES The new daily persistent headache (NDPH) is a rare primary headache disorder. However, the underlying mechanisms of NDPH remain incompletely understood. This study aims to apply seed-based analysis to explore the functional connectivity (FC) of brainstem nuclei in patients with NDPH using resting-state functional magnetic resonance imaging (MRI). METHODS The FC analysis from the region of interest (ROI) to whole brain voxels was used to investigate 29 patients with NDPH and 37 well-matched healthy controls (HCs) with 3.0 Tesla MRI. The 76 nuclei in the brainstem atlas were defined as ROIs. Furthermore, we explored the correlations between FC and patients' clinical characteristics and neuropsychological evaluations. RESULTS Patients with NDPH exhibited reduced FC in multiple brainstem nuclei compared to HCs (including right inferior medullary reticular formation, right mesencephalic reticular formation, bilateral locus coeruleus, bilateral laterodorsal tegmental nucleus-central gray of the rhombencephalon, median raphe, left medial parabrachial nucleus, periaqueductal gray, and bilateral ventral tegmental area-parabrachial pigmented nucleus complex) and increased FC in periaqueductal gray. No significant correlations were found between the FC of these brain regions and clinical characteristics or neuropsychological evaluations after Bonferroni correction (p > 0.00016). CONCLUSIONS Our results demonstrated that patients with NDPH have abnormal FC of brainstem nuclei involved in the perception and regulation of pain and emotions.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Dong Qiu
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yanliang Mei
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xiaoyan Bai
- Tiantan Neuroimaging Center of ExcellenceChina National Clinical Research Center for Neurological DiseasesBeijingChina
- Department of Radiology, Beijing Neurosurgical Institute, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Ziyu Yuan
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xue Zhang
- Tiantan Neuroimaging Center of ExcellenceChina National Clinical Research Center for Neurological DiseasesBeijingChina
- Department of Radiology, Beijing Neurosurgical Institute, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zhonghua Xiong
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Hefei Tang
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Peng Zhang
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yaqing Zhang
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xueying Yu
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Zhe Wang
- Department of NeurologyThe First Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Zhaoli Ge
- Department of NeurologyShenzhen Second People's HospitalShenzhenGuangdongChina
| | - Binbin Sui
- Tiantan Neuroimaging Center of ExcellenceChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yonggang Wang
- Department of Neurology, Headache Center, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
4
|
Merzah M, Natae S, Sándor J, Fiatal S. Single Nucleotide Variants (SNVs) of the Mesocorticolimbic System Associated with Cardiovascular Diseases and Type 2 Diabetes: A Systematic Review. Genes (Basel) 2024; 15:109. [PMID: 38254998 PMCID: PMC10815084 DOI: 10.3390/genes15010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The mesocorticolimbic (MCL) system is crucial in developing risky health behaviors which lead to cardiovascular diseases (CVDs) and type 2 diabetes (T2D). Although there is some knowledge of the MCL system genes linked to CVDs and T2D, a comprehensive list is lacking, underscoring the significance of this review. This systematic review followed PRISMA guidelines and the Cochrane Handbook for Systematic Reviews of Interventions. The PubMed and Web of Science databases were searched intensively for articles related to the MCL system, single nucleotide variants (SNVs, formerly single nucleotide polymorphisms, SNPs), CVDs, T2D, and associated risk factors. Included studies had to involve a genotype with at least one MCL system gene (with an identified SNV) for all participants and the analysis of its link to CVDs, T2D, or associated risk factors. The quality assessment of the included studies was performed using the Q-Genie tool. The VEP and DAVID tools were used to annotate and interpret genetic variants and identify enriched pathways and gene ontology terms associated with the gene list. The review identified 77 articles that met the inclusion criteria. These articles provided information on 174 SNVs related to the MCL system that were linked to CVDs, T2D, or associated risk factors. The COMT gene was found to be significantly related to hypertension, dyslipidemia, insulin resistance, obesity, and drug abuse, with rs4680 being the most commonly reported variant. This systematic review found a strong association between the MCL system and the risk of developing CVDs and T2D, suggesting that identifying genetic variations related to this system could help with disease prevention and treatment strategies.
Collapse
Affiliation(s)
- Mohammed Merzah
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.M.)
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Shewaye Natae
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.M.)
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - János Sándor
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.M.)
- ELKH-DE Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Szilvia Fiatal
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (M.M.)
| |
Collapse
|
5
|
Senba E. Is exercise therapy the first-line treatment for chronic pain? NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100154. [PMID: 38881820 PMCID: PMC11180369 DOI: 10.1016/j.ynpai.2024.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Affiliation(s)
- Emiko Senba
- Osaka Yukioka College of Health Science, 1-1-41 Sojiji, Ibaraki City, Osaka 567-0801, Japan
| |
Collapse
|
6
|
Zi‐Han X, Nan A, Rui CJ, Yong‐Long Y. Modulation of pain perceptions following treadmill running with different intensities in females. Physiol Rep 2023; 11:e15831. [PMID: 37749050 PMCID: PMC10519819 DOI: 10.14814/phy2.15831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
We aimed to compare the effects of three intensities of treadmill running on exercise-induced hypoalgesia (EIH) in healthy individuals. We anticipated that the primary and secondary changes in pain perception and modulation may differ between running intensities. Sixty-six women were randomly assigned to one of three treadmill running intensities for 35 min: 40% reserved heart rate (HRR), 55% HRR, or 70% HRR. The effects of EIH were assessed using pressure pain thresholds (PPT) and tolerance thresholds (PPTol). We measured conditional pain modulation (CPM). Compared with baseline, PPT and PPTol significantly increased in all groups during running and at the 5-10-min follow-up. The PPT and PPTol changes in the moderate- and low-intensity groups were significantly higher than those in the high-intensity group during running and 24 h after running, while the CPM responses of the high-intensity group were significantly reduced at the 24-h follow-up. Moderate- and low-intensity running may elicit significant primary and secondary (persisting over 24 h) EIH effects and increase CPM responses in females. However, high-intensity running induced only limited analgesic effects and reduced CPM responses, which may be attributed to the activation of endogenous pain modulation.
Collapse
Affiliation(s)
- Xu Zi‐Han
- School of Sport Medicine and RehabilitationBeijing Sport UniversityBeijingChina
| | - An Nan
- School of Sport Medicine and RehabilitationBeijing Sport UniversityBeijingChina
| | - Chang Jeremy Rui
- Department of Rehabilitation SciencesThe Hong Kong Polytechnic UniversityHong KongChina
| | - Yang Yong‐Long
- School of Sport Medicine and RehabilitationBeijing Sport UniversityBeijingChina
| |
Collapse
|
7
|
Senba E, Kami K. Exercise therapy for chronic pain: How does exercise change the limbic brain function? NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100143. [PMID: 38099274 PMCID: PMC10719519 DOI: 10.1016/j.ynpai.2023.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 12/17/2023]
Abstract
We are exposed to various external and internal threats which might hurt us. The role of taking flexible and appropriate actions against threats is played by "the limbic system" and at the heart of it there is the ventral tegmental area and nucleus accumbens (brain reward system). Pain-related fear causes excessive excitation of amygdala, which in turn causes the suppression of medial prefrontal cortex, leading to chronification of pain. Since the limbic system of chronic pain patients is functionally impaired, they are maladaptive to their situations, unable to take goal-directed behavior and are easily caught by fear-avoidance thinking. We describe the neural mechanisms how exercise activates the brain reward system and enables chronic pain patients to take goal-directed behavior and overcome fear-avoidance thinking. A key to getting out from chronic pain state is to take advantage of the behavioral switching function of the basal nucleus of amygdala. We show that exercise activates positive neurons in this nucleus which project to the nucleus accumbens and promote reward behavior. We also describe fear conditioning and extinction are affected by exercise. In chronic pain patients, the fear response to pain is enhanced and the extinction of fear memories is impaired, so it is difficult to get out of "fear-avoidance thinking". Prolonged avoidance of movement and physical inactivity exacerbate pain and have detrimental effects on the musculoskeletal and cardiovascular systems. Based on the recent findings on multiple bran networks, we propose a well-balanced exercise prescription considering the adherence and pacing of exercise practice. We conclude that therapies targeting the mesocortico-limbic system, such as exercise therapy and cognitive behavioral therapy, may become promising tools in the fight against chronic pain.
Collapse
Affiliation(s)
- Emiko Senba
- Department of Physical Therapy, Osaka Yukioka College of Health Science, 1-1-41 Sojiji, Ibaraki-City, Osaka 567-0801, Japan
- Department of Rehabilitation Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama 641-8509, Japan
| | - Katsuya Kami
- Department of Rehabilitation, Wakayama Faculty of Health Care Sciences, Takarazuka University of Medical and Health Care, 2252 Nakanoshima, Wakayama City, Wakayama 640-8392, Japan
- Department of Rehabilitation Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama 641-8509, Japan
| |
Collapse
|
8
|
Kan S, Fujita N, Shibata M, Miki K, Yukioka M, Senba E. Three weeks of exercise therapy altered brain functional connectivity in fibromyalgia inpatients. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100132. [PMID: 38099286 PMCID: PMC10719530 DOI: 10.1016/j.ynpai.2023.100132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 12/17/2023]
Abstract
Background Fibromyalgia (FM) is a chronic pain syndrome characterized by widespread pain, tenderness, and fatigue. Patients with FM have no effective medication so far, and their activity of daily living and quality of life are remarkably impaired. Therefore, new therapeutic approaches are awaited. Recently, exercise therapy has been gathering much attention as a promising treatment for FM. However, the underlying mechanisms are not fully understood, particularly, in the central nervous system, including the brain. Therefore, we investigated functional connectivity changes and their relationship with clinical improvement in patients with FM after exercise therapy to investigate the underlying mechanisms in the brain using resting-state fMRI (rs-fMRI) and functional connectivity (FC) analysis. Methods Seventeen patients with FM participated in this study. They underwent a 3-week exercise therapy on in-patient basis and a 5-min rs-fMRI scan before and after the exercise therapy. We compared the FC strength of sensorimotor regions and the mesocortico-limbic system between two scans. We also performed a multiple regression analysis to examine the relationship between pre-post differences in FC strength and improvement of patients' clinical symptoms or motor abilities. Results Patients with FM showed significant improvement in clinical symptoms and motor abilities. They also showed a significant pre-post difference in FC of the anterior cingulate cortex and a significant correlation between pre-post FC changes and improvement of clinical symptoms and motor abilities. Although sensorimotor regions tended to be related to the improvement of general disease severity and depression, brain regions belonging to the mesocortico-limbic system tended to be related to the improvement of motor abilities. Conclusion Our 3-week exercise therapy could ameliorate clinical symptoms and motor abilities of patients with FM, and lead to FC changes in sensorimotor regions and brain regions belonging to the mesocortico-limbic system. Furthermore, these changes were related to improvement of clinical symptoms and motor abilities. Our findings suggest that, as predicted by previous animal studies, spontaneous brain activities modified by exercise therapy, including the mesocortico-limbic system, improve clinical symptoms in patients with FM.
Collapse
Affiliation(s)
- Shigeyuki Kan
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima Hiroshima 734-8551, Japan
- Department of Anesthesiology and Intensive Care Medicine, 2-2 Yamadaoka, Suita, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Nobuko Fujita
- Department of Rehabilitation, Faculty of Health Sciences, Naragakuen University, 3-15-1 Nakatomigaoka, Nara, Nara 631-8524, Japan
| | - Masahiko Shibata
- Department of Rehabilitation, Faculty of Health Sciences, Naragakuen University, 3-15-1 Nakatomigaoka, Nara, Nara 631-8524, Japan
| | - Kenji Miki
- Hayaishi Hospital, 2-75 Fudegasakicho, Tennoji-ku, Osaka, Osaka 543-0027, Japan
- Department of Physical Therapy, Osaka Yukioka College of Health Science, 1-1-41 Sojiji, Ibaraki, Osaka 567-0801, Japan
| | - Masao Yukioka
- Department of Rheumatology, Yukioka Hospital, 2-2-3 Ukita, Kita-ku, Osaka 530-0021, Japan
| | - Emiko Senba
- Department of Physical Therapy, Osaka Yukioka College of Health Science, 1-1-41 Sojiji, Ibaraki, Osaka 567-0801, Japan
| |
Collapse
|
9
|
Tanaka K, Kuzumaki N, Hamada Y, Suda Y, Mori T, Nagumo Y, Narita M. Elucidation of the mechanisms of exercise-induced hypoalgesia and pain prolongation due to physical stress and the restriction of movement. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100133. [PMID: 37274841 PMCID: PMC10239008 DOI: 10.1016/j.ynpai.2023.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/07/2023]
Abstract
Persistent pain signals cause brain dysfunction and can further prolong pain. In addition, the physical restriction of movement (e.g., by a cast) can cause stress and prolong pain. Recently, it has been recognized that exercise therapy including rehabilitation is effective for alleviating chronic pain. On the other hand, physical stress and the restriction of movement can prolong pain. In this review, we discuss the neural circuits involved in the control of pain prolongation and the mechanisms of exercise-induced hypoalgesia (EIH). We also discuss the importance of the mesolimbic dopaminergic network in these phenomena.
Collapse
Affiliation(s)
- Kenichi Tanaka
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Naoko Kuzumaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yusuke Hamada
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yukari Suda
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Tomohisa Mori
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yasuyuki Nagumo
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
10
|
Minami K, Kami K, Nishimura Y, Kawanishi M, Imashiro K, Kami T, Habata S, Senba E, Umemoto Y, Tajima F. Voluntary running-induced activation of ventral hippocampal GABAergic interneurons contributes to exercise-induced hypoalgesia in neuropathic pain model mice. Sci Rep 2023; 13:2645. [PMID: 36788313 PMCID: PMC9929335 DOI: 10.1038/s41598-023-29849-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
The exact mechanism of exercise-induced hypoalgesia (EIH) in exercise therapy to improve chronic pain has not been fully clarified. Recent studies have suggested the importance of the ventral hippocampus (vHPC) in inducing chronic pain. We investigated the effects of voluntary running (VR) on FosB+ cells and GABAergic interneurons (parvalbumin-positive [PV+] and somatostatin-positive [SOM+]) in the vHPC-CA1 in neuropathic pain (NPP) model mice. VR significantly improved thermal hyperalgesia in the NPP model. The number of the FosB+ cells was significantly higher in partial sciatic nerve ligation-sedentary mice than in Sham and Naive mice, whereas VR significantly suppressed the FosB+ cells in the vHPC-CA1. Furthermore, VR significantly increased the proportion of activated PV+ and SOM+ interneurons in the vHPC-CA1, and tracer experiments indicated that approximately 24% of neurons projecting from the vHPC-CA1 to the basolateral nucleus of amygdala were activated in NPP mice. These results indicate that feedforward suppression of the activated neurons via VR-induced activation of GABAergic interneurons in the vHPC-CA1 may be a mechanism to produce EIH effects, and suggested that disappearance of negative emotions such as fear and anxiety by VR may play a critical role in improving chronic pain.
Collapse
Affiliation(s)
- Kohei Minami
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Katsuya Kami
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan.
- Department of Rehabilitation, Faculty of Wakayama Health Care Sciences, Takarazuka University of Medical and Health Care, Wakayama, Japan.
| | - Yukihide Nishimura
- Department of Rehabilitation Medicine, Iwate Medical University, Morioka, Japan
| | - Makoto Kawanishi
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kyosuke Imashiro
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takuma Kami
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shogo Habata
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Emiko Senba
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
- Department of Physical Therapy, Osaka Yukioka College of Health Science, Ibaraki, Japan
| | - Yasunori Umemoto
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Fumihiro Tajima
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
11
|
Neural Subtype-dependent Cholinergic Modulation of Neural Activities by Activation of Muscarinic 2 Receptors and G Protein-activated Inwardly Rectifying Potassium Channel in Rat Periaqueductal Gray Neurons. Neuroscience 2022; 506:1-13. [PMID: 36270414 DOI: 10.1016/j.neuroscience.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Abstract
Acetylcholine plays a pivotal role in the regulation of functions such as pain and the sleep and wake cycle by modulating neural activities of the ventrolateral periaqueductal gray (vlPAG). Electrophysiological studies have shown that cholinergic effects are inconsistent among recorded neurons, particularly in the depolarization and hyperpolarization of the resting membrane potential (RMP). This discrepancy may be due to the neural subtype-dependent cholinergic modulation of the RMP. To examine this possibility, we performed whole-cell patch-clamp recordings from subtype-identified neurons using vesicular GABA transporter (VGAT)-Venus × ChAT-TdTomato rats and elucidated cellular mechanisms of cholinergic effects on the RMP. The application of carbachol hyperpolarized the RMP of cholinergic neurons in a dose-dependent manner but had much less of an effect on other neural subtypes, including GABAergic/glycinergic and glutamatergic neurons. Cholinergic hyperpolarization was accompanied by a decrease in input resistance. These cholinergic effects were blocked by AF-DX384 or gallamine and were mimicked by arecaidine but-2-ynyl ester tosylate, suggesting that the carbachol-induced hyperpolarization of the RMP in cholinergic neurons is mediated via M2 receptors. Tertiapin suppressed the carbachol-induced G protein-activated inwardly rectifying potassium channel (GIRK) currents and hyperpolarization of the RMP in cholinergic neurons. Intracellular application of GDP-β-S blocked the carbachol-induced hyperpolarization of the RMP. Neostigmine slowly hyperpolarized the RMP in cholinergic neurons. These results suggest that neural firing of vlPAG cholinergic neurons is suppressed by GIRK currents induced via M2 receptor activation, and this negative feedback regulation of cholinergic neuronal activities can be induced by acetylcholine, which is intrinsically released in the vlPAG.
Collapse
|
12
|
Wu CC, Xiong HY, Zheng JJ, Wang XQ. Dance movement therapy for neurodegenerative diseases: A systematic review. Front Aging Neurosci 2022; 14:975711. [PMID: 36004000 PMCID: PMC9394857 DOI: 10.3389/fnagi.2022.975711] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe proportion of the world's elderly population continues to rise, and the treatment and improvement of neurodegenerative diseases have become issue of public health importance as people live longer and many countries have aging populations. This systematic review aims to discuss the effects of dance movement therapy (DMT) on motor function, cognitive deficit, mood, and quality of life in people with neurodegenerative diseases, such as Parkinson's disease (PD), mild cognitive impairment (MCI), Alzheimer's disease (AD).MethodsTwo reviewers independently conducted systematic search on the Cochrane library, PubMed database, Web of Science Core Collection database, and Physiotherapy Evidence database until February 1, 2022. Only systematic analyses and randomized controlled trials were included and further analyzed.ResultsThirty-three studies on PD, 16 studies on MCI, 4 studies on AD were obtained. This systematic review found that DMT substantially improved the global cognitive function, memory, and executive function on the population with MCI. Compared with the non-dance group, DMT remarkably improved general disease condition, balance, and gait for individuals with PD. The evidence of the efficacy of DMT on AD is insufficient, and further research is needed.ConclusionDMT can effectively improve the motor function and cognitive deficits in neurodegenerative diseases. Positive effects of DMT on the mood and quality of life in ND patients are controversial and require further evidence. Future research on the effects of DMT on AD requires scientific design, large sample size, long-term comprehensive intervention, and clear reporting standards.Systematic review registrationwww.osf.io/wktez, identifier: 10.17605/OSF.IO/UYBKT.
Collapse
Affiliation(s)
- Cheng-Cheng Wu
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Huan-Yu Xiong
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Jie-Jiao Zheng
- Huadong Hospital, Shanghai, China
- *Correspondence: Jie-Jiao Zheng
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- Xue-Qiang Wang
| |
Collapse
|
13
|
Slater C, Liu Y, Weiss E, Yu K, Wang Q. The Neuromodulatory Role of the Noradrenergic and Cholinergic Systems and Their Interplay in Cognitive Functions: A Focused Review. Brain Sci 2022; 12:890. [PMID: 35884697 PMCID: PMC9320657 DOI: 10.3390/brainsci12070890] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
The noradrenergic and cholinergic modulation of functionally distinct regions of the brain has become one of the primary organizational principles behind understanding the contribution of each system to the diversity of neural computation in the central nervous system. Decades of work has shown that a diverse family of receptors, stratified across different brain regions, and circuit-specific afferent and efferent projections play a critical role in helping such widespread neuromodulatory systems obtain substantial heterogeneity in neural information processing. This review briefly discusses the anatomical layout of both the noradrenergic and cholinergic systems, as well as the types and distributions of relevant receptors for each system. Previous work characterizing the direct and indirect interaction between these two systems is discussed, especially in the context of higher order cognitive functions such as attention, learning, and the decision-making process. Though a substantial amount of work has been done to characterize the role of each neuromodulator, a cohesive understanding of the region-specific cooperation of these two systems is not yet fully realized. For the field to progress, new experiments will need to be conducted that capitalize on the modular subdivisions of the brain and systematically explore the role of norepinephrine and acetylcholine in each of these subunits and across the full range of receptors expressed in different cell types in these regions.
Collapse
Affiliation(s)
- Cody Slater
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
- Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Yuxiang Liu
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| | - Evan Weiss
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| | - Kunpeng Yu
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, ET 351, 500 W. 120th Street, New York, NY 10027, USA; (C.S.); (Y.L.); (E.W.); (K.Y.)
| |
Collapse
|
14
|
Zaiki R, Kamijo YI, Moriki T, Umemoto Y, Mukai Y, Mikami Y, Kouda K, Ogawa T, Nishimura Y, Tajima F. Dose-response Rehabilitation Organized By Pror In Out-patients With Chronic Cerebrovascular Disorder: A single-center retrospective cohort study. J Stroke Cerebrovasc Dis 2022; 31:106375. [PMID: 35190306 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We aimed to investigate whether out-patient rehabilitation with the same concept as physiatrist and registered therapist operating rehabilitation (PROr) would improve activities of daily living in out-patients with chronic cerebrovascular disorder and whether the improvements were related to the frequency and/or time of therapy. METHODS Out-patients with chronic cerebrovascular disorder, who visited a clinic affiliated with a university hospital for at least a month between April 2010-September 2020, were retrospectively selected. Changes in the functional independence measure (FIM) from the first visit to the 12th month were calculated. Patients were stratified into two subgroups: improved and non-improved groups. The frequency and time of physical and occupational therapies and total rehabilitation were compared between the groups. RESULTS Initially, 174 patients were selected and 125 were excluded based on the exclusion criteria. Three patients terminated rehabilitation because of improvements. In 18 of 49 patients, FIM improved at the 12th month by 4.9 [3.1-6.8] (mean [95% CI]). The frequency was ∼2 times/week with no differences between the groups. Physical therapy time/day was higher in the improved group (74.7 [66.7-82.7] min) than the non-improved group (50.7 [44.3-57.0] min; P<0. 001). The total rehabilitation time/day was 121.9 [107.8-136.0] min in the improved group, which was higher than the non-improved group: 97.9 [87.7-107.9] (P=0.001). CONCLUSIONS Approximately 40% of the patients displayed improved FIM even during the chronic phase, and the improved out-patients took PROr for at least 108 min/day and twice a week. A longer rehabilitation time would be reinforced by patients' motivation.
Collapse
Affiliation(s)
- Rikito Zaiki
- Medical Center for Health Promotion and Sports Science, Wakayama Medical University, 2-1 Honmachi, Wakayama, 640-8033 Japan; Depaertment of Rehabilitation Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 640-8509 Japan.
| | - Yoshi-Ichiro Kamijo
- Medical Center for Health Promotion and Sports Science, Wakayama Medical University, 2-1 Honmachi, Wakayama, 640-8033 Japan; Depaertment of Rehabilitation Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 640-8509 Japan; Department of Rehabilitation Medicine, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minami-Koshigaya, Koshigaya, Saitama, 343-8555 Japan.
| | - Takashi Moriki
- Medical Center for Health Promotion and Sports Science, Wakayama Medical University, 2-1 Honmachi, Wakayama, 640-8033 Japan.
| | - Yasunori Umemoto
- Medical Center for Health Promotion and Sports Science, Wakayama Medical University, 2-1 Honmachi, Wakayama, 640-8033 Japan; Depaertment of Rehabilitation Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 640-8509 Japan.
| | - Yuki Mukai
- Medical Center for Health Promotion and Sports Science, Wakayama Medical University, 2-1 Honmachi, Wakayama, 640-8033 Japan; Depaertment of Rehabilitation Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 640-8509 Japan.
| | - Yukio Mikami
- Depaertment of Rehabilitation Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 640-8509 Japan.
| | - Ken Kouda
- Depaertment of Rehabilitation Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 640-8509 Japan.
| | - Takahiro Ogawa
- Department of Rehabilitation Medicine, Chuzan Hospital, 6-2-1 Matsumoto, Okinawa, 904-2151, Japan.
| | - Yukihide Nishimura
- Department of Rehabilitation Medicine, Iwate Medical University, 2-1-1 Idaidouri, Yahaba-cho, Shiwa-gun, Iwate, 028-3695, Japan.
| | - Fumihiro Tajima
- Medical Center for Health Promotion and Sports Science, Wakayama Medical University, 2-1 Honmachi, Wakayama, 640-8033 Japan; Depaertment of Rehabilitation Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 640-8509 Japan.
| |
Collapse
|
15
|
Brain Mechanisms of Exercise-Induced Hypoalgesia: To Find a Way Out from "Fear-Avoidance Belief". Int J Mol Sci 2022; 23:ijms23052886. [PMID: 35270027 PMCID: PMC8911154 DOI: 10.3390/ijms23052886] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
It is well known that exercise produces analgesic effects (exercise-induced hypoalgesia (EIH)) in animal models and chronic pain patients, but the brain mechanisms underlying these EIH effects, especially concerning the emotional aspects of pain, are not yet fully understood. In this review, we describe drastic changes in the mesocorticolimbic system of the brain which permit the induction of EIH effects. The amygdala (Amyg) is a critical node for the regulation of emotions, such as fear and anxiety, which are closely associated with chronic pain. In our recent studies using neuropathic pain (NPP) model mice, we extensively examined the association between the Amyg and EIH effects. We found that voluntary exercise (VE) activated glutamate (Glu) neurons in the medial basal Amyg projecting to the nucleus accumbens (NAc) lateral shell, while it almost completely suppressed NPP-induced activation of GABA neurons in the central nucleus of the Amyg (CeA). Furthermore, VE significantly inhibited activation of pyramidal neurons in the ventral hippocampus-CA1 region, which play important roles in contextual fear conditioning and the retrieval of fear memory. This review describes novel information concerning the brain mechanisms underlying EIH effects as a result of overcoming the fear-avoidance belief of chronic pain.
Collapse
|
16
|
Sato D, Hamada Y, Narita M, Mori T, Tezuka H, Suda Y, Tanaka K, Yoshida S, Tamura H, Yamanaka A, Senba E, Kuzumaki N, Narita M. Tumor suppression and improvement in immune systems by specific activation of dopamine D1-receptor-expressing neurons in the nucleus accumbens. Mol Brain 2022; 15:17. [PMID: 35172858 PMCID: PMC8848802 DOI: 10.1186/s13041-022-00902-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/06/2022] [Indexed: 01/23/2023] Open
Abstract
Recent research has suggested that the mesolimbic dopamine network that mainly terminates in the nucleus accumbens may positively control the peripheral immune system. The activation of dopamine receptors in neurons in the nucleus accumbens by the release of endogenous dopamine is thus expected to contribute to efferent immune regulation. As in the stimulation of Gs-coupled dopamine D1-receptors or Gi-coupled D2-receptors by endogenous dopamine, we investigated whether specific stimulation of dopamine D1-receptor-expressing neurons or inhibition of dopamine D2-receptor-expressing neurons in the nucleus accumbens could produce anti-tumor effects and improve the immune system in transgenic mice using pharmacogenetic techniques. Repeated stimulation of D1-receptor-expressing neurons in either the medial shell, lateral shell or core regions of the nucleus accumbens significantly decreased tumor volume under a state of tumor transplantation, whereas repeated suppression of D2-receptor-expressing neurons in these areas had no effect on this event. The number of splenic CD8+ T cells was significantly increased following repeated stimulation of D1-receptor-expressing neurons in the nucleus accumbens of mice with tumor transplantation. Furthermore, this stimulation produced a significant reduction in the population of splenic CD8+ T cells that expressed immune checkpoint-related inhibitory receptors, PD-1, TIM-3 and LAG-3. These findings suggest that repeated stimulation of D1-receptor-expressing neurons (probably D1-receptor-expressing medium spiny neurons) in the nucleus accumbens suppressed tumor progression and improved the immune system by suppressing the exhaustion of splenic CD8+ T cells.
Collapse
Affiliation(s)
- Daisuke Sato
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawaku, Tokyo, 142-8501, Japan.,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yusuke Hamada
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawaku, Tokyo, 142-8501, Japan.,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Michiko Narita
- Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Tomohisa Mori
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawaku, Tokyo, 142-8501, Japan
| | - Hiroyuki Tezuka
- Department of Cellular Function Analysis, Research Promotion and Support Headquarters, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yukari Suda
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawaku, Tokyo, 142-8501, Japan.,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kenichi Tanaka
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawaku, Tokyo, 142-8501, Japan.,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Sara Yoshida
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawaku, Tokyo, 142-8501, Japan.,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hideki Tamura
- Institute for Advanced Life Sciences, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-0063, Japan.,Laboratory of Biofunctional Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-0063, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Emiko Senba
- Department of Physical Therapy, Osaka Yukioka College of Health Science, 1-1-41 Sojiji, Ibaraki, Osaka, 567-0801, Japan.,Department of Rehabilitation Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama, 641-8509, Japan
| | - Naoko Kuzumaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawaku, Tokyo, 142-8501, Japan. .,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawaku, Tokyo, 142-8501, Japan. .,Division of Cancer Pathophysiology, National Cancer Center Research Institute (NCCRI), 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
17
|
Zhang S, Jiao Z, Zhao X, Sun M, Feng X. Environmental exposure to 17β-trenbolone during adolescence inhibits social interaction in male mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117710. [PMID: 34243057 DOI: 10.1016/j.envpol.2021.117710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/10/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Puberty is a critical period for growth and development. This period is sensitive to external stimuli, which ultimately affects the development of nerves and the formation of social behaviour. 17β-Trenbolone (17β-TBOH) is an endocrine disrupting chemicals (EDCs), which had been widely reported in aquatic vertebrates. But there is little known about the effects of 17β-TBOH on mammals, especially on adolescent neurodevelopment. In this study, we found that 17β-TBOH acute 1 h exposure can cause the activation of the dopamine circuit in pubertal male balb/c mice. At present, there is little known about the effects of puberty exposure of endocrine disruptors on these neurons/nerve pathways. Through a series of behavioural tests, exposure to 80 μgkg-1 d-1 of 17β-TBOH during adolescence increased the anxiety-like behaviour of mice and reduced the control of wheel-running behaviour and the response of social interaction behaviour. The results of TH immunofluorescence staining showed that exposure to 17β-TBOH reduced dopamine axon growth in the medial prefrontal cortex (mPFC). In addition, the results of real-time PCR showed that exposure to 17β-TBOH not only down-regulated the expression of dopamine axon development genes, but also affected the balance of excitatory/inhibitory signals in mPFC. In this research, we reveal the effects of 17β-TBOH exposure during adolescence on mammalian behaviour and neurodevelopment, and provide a reference for studying the origin of adolescent diseases.
Collapse
Affiliation(s)
- Shaozhi Zhang
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Zihao Jiao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China
| | - Mingzhu Sun
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China
| | - Xizeng Feng
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
18
|
Dunford J, Lee AT, Morgan MM. Tetrahydrocannabinol (THC) Exacerbates Inflammatory Bowel Disease in Adolescent and Adult Female Rats. THE JOURNAL OF PAIN 2021; 22:1040-1047. [PMID: 33727159 DOI: 10.1016/j.jpain.2021.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/19/2020] [Accepted: 02/22/2021] [Indexed: 01/15/2023]
Abstract
Inflammatory Bowel Disease (IBD) is a life-long disorder that often begins between the ages of 15 and 30. Anecdotal reports suggest cannabinoids may be an effective treatment. This study sought to determine whether home cage wheel running is an effective method to assess IBD, and whether Tetrahydrocannabinol (THC), the primary psychoactive compound in cannabis, can restore wheel running depressed by IBD. Adolescent and adult female Sprague-Dawley rats were individually housed in a cage with a running wheel. Rats were injected with trinitrobenzene sulphonic acid (TNBS) into the rectum to induce IBD-like symptoms. One day later, both vehicle and TNBS treated rats were injected with a low dose of THC (0.32 mg/kg, s.c.) or vehicle. Administration of TNBS depressed wheel running in adolescent and adult rats. No antinociceptive effect of THC was evident when administered 1 day after TNBS. In fact, administration of THC prolonged TNBS-induced depression of wheel running for over 5 days in adolescent and adult rats. These results show that home cage wheel running is depressed by TNBS-induced IBD, making it a useful tool to evaluate the behavioral consequences of IBD, and that administration of THC, instead of producing antinociception, exacerbates TNBS-induced IBD. PERSPECTIVE: This article advances research on inflammatory bowel disease in two important ways: 1) Home cage wheel running is a new and sensitive tool to assess the behavioral consequences of IBD in adolescent and adult rats; and 2) Administration of the cannabinoid THC exacerbates the negative behavioral effects of IBD.
Collapse
Affiliation(s)
- Jeremy Dunford
- Department of Psychology, Washington State University Vancouver, Vancouver, WA
| | - Andrea T Lee
- Department of Psychology, Washington State University Vancouver, Vancouver, WA
| | - Michael M Morgan
- Department of Psychology, Washington State University Vancouver, Vancouver, WA.
| |
Collapse
|
19
|
Buckhalter S, Soubeyrand E, Ferrone SAE, Rasmussen DJ, Manduca JD, Al-Abdul-Wahid MS, Frie JA, Khokhar JY, Akhtar TA, Perreault ML. The Antidepressant-Like and Analgesic Effects of Kratom Alkaloids are accompanied by Changes in Low Frequency Oscillations but not ΔFosB Accumulation. Front Pharmacol 2021; 12:696461. [PMID: 34413776 PMCID: PMC8369573 DOI: 10.3389/fphar.2021.696461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022] Open
Abstract
Mitragyna speciosa (“kratom”), employed as a traditional medicine to improve mood and relieve pain, has shown increased use in Europe and North America. Here, the dose-dependent effects of a purified alkaloid kratom extract on neuronal oscillatory systems function, analgesia, and antidepressant-like behaviour were evaluated and kratom-induced changes in ΔFosB expression determined. Male rats were administered a low or high dose of kratom (containing 0.5 or 1 mg/kg of mitragynine, respectively) for seven days. Acute or repeated low dose kratom suppressed ventral tegmental area (VTA) theta oscillatory power whereas acute or repeated high dose kratom increased delta power, and reduced theta power, in the nucleus accumbens (NAc), prefrontal cortex (PFC), cingulate cortex (Cg) and VTA. The repeated administration of low dose kratom additionally elevated delta power in PFC, decreased theta power in NAc and PFC, and suppressed beta and low gamma power in Cg. Suppressed high gamma power in NAc and PFC was seen selectively following repeated high dose kratom. Both doses of kratom elevated NAc-PFC, VTA-NAc, and VTA-Cg coherence. Low dose kratom had antidepressant-like properties whereas both doses produced analgesia. No kratom-induced changes in ΔFosB expression were evident. These results support a role for kratom as having both antidepressant and analgesic properties that are accompanied by specific changes in neuronal circuit function. However, the absence of drug-induced changes in ΔFosB expression suggest that the drug may circumvent this cellular signaling pathway, a pathway known for its significant role in addiction.
Collapse
Affiliation(s)
- Shoshana Buckhalter
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Eric Soubeyrand
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Sarah A E Ferrone
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Duncan J Rasmussen
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Joshua D Manduca
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | - Jude A Frie
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.,Collaborative Program in Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Jibran Y Khokhar
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.,Collaborative Program in Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Tariq A Akhtar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Melissa L Perreault
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.,Collaborative Program in Neuroscience, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
20
|
Kami K, Tajima F, Senba E. Plastic changes in amygdala subregions by voluntary running contribute to exercise-induced hypoalgesia in neuropathic pain model mice. Mol Pain 2021; 16:1744806920971377. [PMID: 33297861 PMCID: PMC7734490 DOI: 10.1177/1744806920971377] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Physical exercise has been established as a low-cost, safe, and effective way to manage chronic pain, but exact mechanisms underlying such exercise-induced hypoalgesia (EIH) are not fully understood. Since a growing body of evidence implicated the amygdala (Amyg) as a critical node in emotional affective aspects of chronic pain, we hypothesized that the Amyg may play important roles to produce EIH effects. Here, using partial sciatic nerve ligation (PSL) model mice, we investigated the effects of voluntary running (VR) on the basal amygdala (BA) and the central nuclei of amygdala (CeA). The present study indicated that VR significantly improved heat hyperalgesia which was exacerbated in PSL-Sedentary mice, and that a significant positive correlation was detected between total running distances after PSL-surgery and thermal withdrawal latency. The number of activated glutamate (Glu) neurons in the medal BA (medBA) was significantly increased in PSL-Runner mice, while those were increased in the lateral BA in sedentary mice. Furthermore, in all subdivisions of the CeA, the number of activated gamma-aminobutyric acid (GABA) neurons was dramatically increased in PSL-Sedentary mice, but these numbers were significantly decreased in PSL-Runner mice. In addition, a tracer experiment demonstrated a marked increase in activated Glu neurons in the medBA projecting into the nucleus accumbens lateral shell in runner mice. Thus, our results suggest that VR may not only produce suppression of the negative emotion such as fear and anxiety closely related with pain chronification, but also promote pleasant emotion and hypoalgesia. Therefore, we conclude that EIH effects may be produced, at least in part, via such plastic changes in the Amyg.
Collapse
Affiliation(s)
- Katsuya Kami
- Department of Rehabilitation, Wakayama Faculty of Health Care Sciences, Takarazuka University of Medical and Health Care, Wakayama, Japan.,Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Fumihiro Tajima
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Emiko Senba
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan.,Department of Physical Therapy, Osaka Yukioka College of Health Science, Ibaraki, Japan
| |
Collapse
|
21
|
Abstract
Chronic pain affects approximately one-third of the population worldwide. The primary goal of animal research is to understand the neural mechanisms underlying pain so better treatments can be developed. Despite an enormous investment in time and money, almost no novel treatments for pain have been developed. There are many factors that contribute to this lack of translation in drug development. The mismatch between the goals of drug development in animals (inhibition of pain-evoked responses) and treatment in humans (restoration of function) is a major problem. To solve this problem, a number of pain-depressed behavioral tests have been developed to assess changes in normal behavior in laboratory animals. The use of home cage wheel running as a pain assessment tool is especially useful in that it is easy to use, provides an objective measurement of the magnitude and duration of pain, and is a clinically relevant method to screen novel drugs. Pain depresses activity in humans and animals, and effective analgesic treatments restore activity. Unlike traditional pain-evoked tests (e.g., hot plate, tail flick, von Frey test), restoration of home cage wheel running evaluates treatments for both antinociceptive efficacy and the absence of disruptive side effects (e.g., sedation, paralysis, nausea). This article reviews the literature using wheel running to assess pain and makes the case for home cage wheel running as an effective and clinically relevant method to screen novel analgesics for therapeutic potential.
Collapse
Affiliation(s)
- Ram Kandasamy
- Department of Psychology, California State University, East Bay, Hayward, CA, USA
| | - Michael M. Morgan
- Department of Psychology, Washington State University Vancouver, Vancouver, WA, USA
| |
Collapse
|
22
|
The Distinct Functions of Dopaminergic Receptors on Pain Modulation: A Narrative Review. Neural Plast 2021; 2021:6682275. [PMID: 33688340 PMCID: PMC7920737 DOI: 10.1155/2021/6682275] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic pain is considered an economic burden on society as it often results in disability, job loss, and early retirement. Opioids are the most common analgesics prescribed for the management of moderate to severe pain. However, chronic exposure to these drugs can result in opioid tolerance and opioid-induced hyperalgesia. On pain modulation strategies, exploiting the multitarget drugs with the ability of the superadditive or synergistic interactions attracts more attention. In the present report, we have reviewed the analgesic effects of different dopamine receptors, particularly D1 and D2 receptors, in different regions of the central nervous system, including the spinal cord, striatum, nucleus accumbens (NAc), and periaqueductal gray (PAG). According to the evidence, these regions are not only involved in pain modulation but also express a high density of DA receptors. The findings can be categorized as follows: (1) D2-like receptors may exert a higher analgesic potency, but D1-like receptors act in different manners across several mechanisms in the mentioned regions; (2) in the spinal cord and striatum, antinociception of DA is mainly mediated by D2-like receptors, while in the NAc and PAG, both D1- and D2-like receptors are involved as analgesic targets; and (3) D2-like receptor agonists can act as adjuvants of μ-opioid receptor agonists to potentiate analgesic effects and provide a better approach to pain relief.
Collapse
|
23
|
Chronic pain impact on rodents’ behavioral repertoire. Neurosci Biobehav Rev 2020; 119:101-127. [DOI: 10.1016/j.neubiorev.2020.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
|
24
|
Kuner R, Kuner T. Cellular Circuits in the Brain and Their Modulation in Acute and Chronic Pain. Physiol Rev 2020; 101:213-258. [PMID: 32525759 DOI: 10.1152/physrev.00040.2019] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic, pathological pain remains a global health problem and a challenge to basic and clinical sciences. A major obstacle to preventing, treating, or reverting chronic pain has been that the nature of neural circuits underlying the diverse components of the complex, multidimensional experience of pain is not well understood. Moreover, chronic pain involves diverse maladaptive plasticity processes, which have not been decoded mechanistically in terms of involvement of specific circuits and cause-effect relationships. This review aims to discuss recent advances in our understanding of circuit connectivity in the mammalian brain at the level of regional contributions and specific cell types in acute and chronic pain. A major focus is placed on functional dissection of sub-neocortical brain circuits using optogenetics, chemogenetics, and imaging technological tools in rodent models with a view towards decoding sensory, affective, and motivational-cognitive dimensions of pain. The review summarizes recent breakthroughs and insights on structure-function properties in nociceptive circuits and higher order sub-neocortical modulatory circuits involved in aversion, learning, reward, and mood and their modulation by endogenous GABAergic inhibition, noradrenergic, cholinergic, dopaminergic, serotonergic, and peptidergic pathways. The knowledge of neural circuits and their dynamic regulation via functional and structural plasticity will be beneficial towards designing and improving targeted therapies.
Collapse
Affiliation(s)
- Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; and Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Thomas Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; and Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
25
|
Oto Y, Takahashi Y, Kurosaka D, Kato F. Alterations of voluntary behavior in the course of disease progress and pharmacotherapy in mice with collagen-induced arthritis. Arthritis Res Ther 2019; 21:284. [PMID: 31831067 PMCID: PMC6909634 DOI: 10.1186/s13075-019-2071-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic synovitis and bone destruction at the joints, causing pain and motor disturbance. Despite the better control of inflammation and joint deformity afforded by modern disease-modifying anti-rheumatic drugs, many patients with RA remain dissatisfied with their treatment, primarily because of sensory-emotional distress. Pre-clinical tests that can evaluate not only the symptoms of arthritis but also the associated pain as sensory-emotional experience are urgently needed. Methods Here, we introduce two types of novel methods for evaluation of voluntary behavior in a commonly used model of RA (collagen-induced arthritis; CIA) in male mice. First, spontaneous motor activity was assessed with a running wheel placed in home cages and the number of rotations was continuously recorded in a 12:12-h light environment. Second, temperature preference was assessed by measuring the time spent in either of the floor plates with augmenting (25 to 49 °C) or fixed temperature (25 °C). We also evaluated the effects of tofacitinib on CIA-associated changes in voluntary wheel running and temperature preference. Results We detected a significant decrease in voluntary wheel running, a significant shift in the distribution of movement in the dark phase, and a significant increase in the time spent in warmer environments than the room temperature in the mice with CIA. These alterations in voluntary behavior have never been described with conventional methods. We also revealed tofacitinib-resistant significant changes in the voluntary behavior and choice of temperature despite significant mitigation of the symptoms of arthritis. Conclusions We described for the first time significant alterations of the voluntary behavior of the mice with CIA during the clinical periods, indicating that the overall physical/motivational states and its circadian variation, as well as the specific preference to a certain environmental temperature, are modified in the mice with CIA, as observed in human patients. Some of these did not parallel with the conventional arthritis scores, particularly during the pharmacotherapy suggesting that mice with CIA show not only the peripheral symptoms but also the central consequences. The use of these approaches would also help clarify the biological mechanisms underlying physician-patient discordance in the assessment of RA.
Collapse
Affiliation(s)
- Yohsuke Oto
- Division of Rheumatology, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, Japan. .,Department of Neuroscience, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, Japan. .,Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.
| | - Yukari Takahashi
- Department of Neuroscience, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Daitaro Kurosaka
- Division of Rheumatology, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, Japan
| | - Fusao Kato
- Department of Neuroscience, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| |
Collapse
|
26
|
Formalin-induced and neuropathic pain altered time estimation in a temporal bisection task in rats. Sci Rep 2019; 9:18683. [PMID: 31822729 PMCID: PMC6904569 DOI: 10.1038/s41598-019-55168-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/25/2019] [Indexed: 01/31/2023] Open
Abstract
Time perception is an important ability that is related closely to humans’ and animals’ daily activities. It can be distorted by various emotional states. In human studies, experimental pain has been shown to prolong the perception of time. However, related animal studies are lacking. In this study, we used a temporal bisection task to investigate how acute inflammatory pain (induced by hind-paw formalin injection) and chronic neuropathic pain [induced by spinal nerve ligation (SNL)] affected time perception in rats. Rats were trained to recognize “short” (1200-ms) and “long” (2400-ms) anchor-duration pure tones and were rewarded for corresponding lever presses. During testing, rats perceived a series of intermediate-duration and anchor-duration pure tones, and selected levers corresponding to the “short” and “long” tones. After formalin injection, rats gave more “long” lever-press responses than after saline injection. The point of subjective equality after formalin injection also increased, suggesting that formalin-induced acute pain extended time perception. In contrast, rats that had undergone SNL gave fewer “long” lever-press responses compared with the sham surgery group. This animal study suggests that formalin-induced pain and neuropathic pain may have different effects on time perception.
Collapse
|
27
|
Di Liegro CM, Schiera G, Proia P, Di Liegro I. Physical Activity and Brain Health. Genes (Basel) 2019; 10:genes10090720. [PMID: 31533339 PMCID: PMC6770965 DOI: 10.3390/genes10090720] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022] Open
Abstract
Physical activity (PA) has been central in the life of our species for most of its history, and thus shaped our physiology during evolution. However, only recently the health consequences of a sedentary lifestyle, and of highly energetic diets, are becoming clear. It has been also acknowledged that lifestyle and diet can induce epigenetic modifications which modify chromatin structure and gene expression, thus causing even heritable metabolic outcomes. Many studies have shown that PA can reverse at least some of the unwanted effects of sedentary lifestyle, and can also contribute in delaying brain aging and degenerative pathologies such as Alzheimer’s Disease, diabetes, and multiple sclerosis. Most importantly, PA improves cognitive processes and memory, has analgesic and antidepressant effects, and even induces a sense of wellbeing, giving strength to the ancient principle of “mens sana in corpore sano” (i.e., a sound mind in a sound body). In this review we will discuss the potential mechanisms underlying the effects of PA on brain health, focusing on hormones, neurotrophins, and neurotransmitters, the release of which is modulated by PA, as well as on the intra- and extra-cellular pathways that regulate the expression of some of the genes involved.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Patrizia Proia
- Department of Psychology, Educational Science and Human Movement (Dipartimento di Scienze Psicologiche, Pedagogiche, dell'Esercizio fisico e della Formazione), University of Palermo, 90128 Palermo, Italy.
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy.
| |
Collapse
|
28
|
Metcalf CS, Huntsman M, Garcia G, Kochanski AK, Chikinda M, Watanabe E, Underwood T, Vanegas F, Smith MD, White HS, Bulaj G. Music-Enhanced Analgesia and Antiseizure Activities in Animal Models of Pain and Epilepsy: Toward Preclinical Studies Supporting Development of Digital Therapeutics and Their Combinations With Pharmaceutical Drugs. Front Neurol 2019; 10:277. [PMID: 30972009 PMCID: PMC6446215 DOI: 10.3389/fneur.2019.00277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/04/2019] [Indexed: 12/29/2022] Open
Abstract
Digital therapeutics (software as a medical device) and mobile health (mHealth) technologies offer a means to deliver behavioral, psychosocial, disease self-management and music-based interventions to improve therapy outcomes for chronic diseases, including pain and epilepsy. To explore new translational opportunities in developing digital therapeutics for neurological disorders, and their integration with pharmacotherapies, we examined analgesic and antiseizure effects of specific musical compositions in mouse models of pain and epilepsy. The music playlist was created based on the modular progression of Mozart compositions for which reduction of seizures and epileptiform discharges were previously reported in people with epilepsy. Our results indicated that music-treated mice exhibited significant analgesia and reduction of paw edema in the carrageenan model of inflammatory pain. Among analgesic drugs tested (ibuprofen, cannabidiol (CBD), levetiracetam, and the galanin analog NAX 5055), music intervention significantly decreased paw withdrawal latency difference in ibuprofen-treated mice and reduced paw edema in combination with CBD or NAX 5055. To the best of our knowledge, this is the first animal study on music-enhanced antinociceptive activity of analgesic drugs. In the plantar incision model of surgical pain, music-pretreated mice had significant reduction of mechanical allodynia. In the corneal kindling model of epilepsy, the cumulative seizure burden following kindling acquisition was lower in animals exposed to music. The music-treated group also exhibited significantly improved survival, warranting further research on music interventions for preventing Sudden Unexpected Death in Epilepsy (SUDEP). We propose a working model of how musical elements such as rhythm, sequences, phrases and punctuation found in K.448 and K.545 may exert responses via parasympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis. Based on our findings, we discuss: (1) how enriched environment (EE) can serve as a preclinical surrogate for testing combinations of non-pharmacological modalities and drugs for the treatment of pain and other chronic diseases, and (2) a new paradigm for preclinical and clinical development of therapies leading to drug-device combination products for neurological disorders, depression and cancer. In summary, our present results encourage translational research on integrating non-pharmacological and pharmacological interventions for pain and epilepsy using digital therapeutics.
Collapse
Affiliation(s)
- Cameron S. Metcalf
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake, UT, United States
| | - Merodean Huntsman
- Department of Medicinal Chemistry, University of Utah, Salt Lake, UT, United States
| | - Gerry Garcia
- Greatful Living Productions, Salt Lake, UT, United States
| | - Adam K. Kochanski
- Department of Atmospheric Sciences, University of Utah, Salt Lake, UT, United States
| | - Michael Chikinda
- The Gifted Music School, Salt Lake, UT, United States
- The School of Music, University of Utah, Salt Lake, UT, United States
| | | | - Tristan Underwood
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake, UT, United States
| | - Fabiola Vanegas
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake, UT, United States
| | - Misty D. Smith
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake, UT, United States
- The School of Dentistry, University of Utah, Salt Lake, UT, United States
| | - H. Steve White
- School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Grzegorz Bulaj
- Department of Medicinal Chemistry, University of Utah, Salt Lake, UT, United States
| |
Collapse
|
29
|
Taylor NE, Pei J, Zhang J, Vlasov KY, Davis T, Taylor E, Weng FJ, Van Dort CJ, Solt K, Brown EN. The Role of Glutamatergic and Dopaminergic Neurons in the Periaqueductal Gray/Dorsal Raphe: Separating Analgesia and Anxiety. eNeuro 2019; 6:ENEURO.0018-18.2019. [PMID: 31058210 PMCID: PMC6498422 DOI: 10.1523/eneuro.0018-18.2019] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/08/2019] [Accepted: 01/29/2019] [Indexed: 12/23/2022] Open
Abstract
The periaqueductal gray (PAG) is a significant modulator of both analgesic and fear behaviors in both humans and rodents, but the underlying circuitry responsible for these two phenotypes is incompletely understood. Importantly, it is not known if there is a way to produce analgesia without anxiety by targeting the PAG, as modulation of glutamate or GABA neurons in this area initiates both antinociceptive and anxiogenic behavior. While dopamine (DA) neurons in the ventrolateral PAG (vlPAG)/dorsal raphe display a supraspinal antinociceptive effect, their influence on anxiety and fear are unknown. Using DAT-cre and Vglut2-cre male mice, we introduced designer receptors exclusively activated by designer drugs (DREADD) to DA and glutamate neurons within the vlPAG using viral-mediated delivery and found that levels of analgesia were significant and quantitatively similar when DA and glutamate neurons were selectively stimulated. Activation of glutamatergic neurons, however, reliably produced higher indices of anxiety, with increased freezing time and more time spent in the safety of a dark enclosure. In contrast, animals in which PAG/dorsal raphe DA neurons were stimulated failed to show fear behaviors. DA-mediated antinociception was inhibitable by haloperidol and was sufficient to prevent persistent inflammatory pain induced by carrageenan. In summary, only activation of DA neurons in the PAG/dorsal raphe produced profound analgesia without signs of anxiety, indicating that PAG/dorsal raphe DA neurons are an important target involved in analgesia that may lead to new treatments for pain.
Collapse
Affiliation(s)
| | - JunZhu Pei
- Massachusetts Institute of Technology, Cambridge 02139, MA
| | - Jie Zhang
- University of Utah, Salt Lake City 84112, UT
| | | | | | - Emma Taylor
- University of Massachusetts, Lowell 01854, MA
| | - Feng-Ju Weng
- Massachusetts Institute of Technology, Cambridge 02139, MA
| | | | - Ken Solt
- Massachusetts General Hospital, Boston 02114, MA
| | - Emery N Brown
- Massachusetts General Hospital, Boston 02114, MA
- Massachusetts General Hospital, Boston 02114, MA
| |
Collapse
|