1
|
Satta JP, Lindström R, Myllymäki SM, Lan Q, Trela E, Prunskaite-Hyyryläinen R, Kaczyńska B, Voutilainen M, Kuure S, Vainio SJ, Mikkola ML. Exploring the principles of embryonic mammary gland branching morphogenesis. Development 2024; 151:dev202179. [PMID: 39092607 DOI: 10.1242/dev.202179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 06/21/2024] [Indexed: 08/04/2024]
Abstract
Branching morphogenesis is a characteristic feature of many essential organs, such as the lung and kidney, and most glands, and is the net result of two tissue behaviors: branch point initiation and elongation. Each branched organ has a distinct architecture customized to its physiological function, but how patterning occurs in these ramified tubular structures is a fundamental problem of development. Here, we use quantitative 3D morphometrics, time-lapse imaging, manipulation of ex vivo cultured mouse embryonic organs and mice deficient in the planar cell polarity component Vangl2 to address this question in the developing mammary gland. Our results show that the embryonic epithelial trees are highly complex in topology owing to the flexible use of two distinct modes of branch point initiation: lateral branching and tip bifurcation. This non-stereotypy was contrasted by the remarkably constant average branch frequency, indicating a ductal growth invariant, yet stochastic, propensity to branch. The probability of branching was malleable and could be tuned by manipulating the Fgf10 and Tgfβ1 pathways. Finally, our in vivo data and ex vivo time-lapse imaging suggest the involvement of tissue rearrangements in mammary branch elongation.
Collapse
Affiliation(s)
- Jyoti P Satta
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Riitta Lindström
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Satu-Marja Myllymäki
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Qiang Lan
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Ewelina Trela
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | | | - Beata Kaczyńska
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Maria Voutilainen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Satu Kuure
- GM-unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Seppo J Vainio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu 90014, Finland
- Kvantum Institute, Infotech Oulu, University of Oulu, Oulu 90014, Finland
| | - Marja L Mikkola
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
2
|
Ashworth JC, Cox TR. The importance of 3D fibre architecture in cancer and implications for biomaterial model design. Nat Rev Cancer 2024; 24:461-479. [PMID: 38886573 DOI: 10.1038/s41568-024-00704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 06/20/2024]
Abstract
The need for improved prediction of clinical response is driving the development of cancer models with enhanced physiological relevance. A new concept of 'precision biomaterials' is emerging, encompassing patient-mimetic biomaterial models that seek to accurately detect, treat and model cancer by faithfully recapitulating key microenvironmental characteristics. Despite recent advances allowing tissue-mimetic stiffness and molecular composition to be replicated in vitro, approaches for reproducing the 3D fibre architectures found in tumour extracellular matrix (ECM) remain relatively unexplored. Although the precise influences of patient-specific fibre architecture are unclear, we summarize the known roles of tumour fibre architecture, underlining their implications in cell-matrix interactions and ultimately clinical outcome. We then explore the challenges in reproducing tissue-specific 3D fibre architecture(s) in vitro, highlighting relevant biomaterial fabrication techniques and their benefits and limitations. Finally, we discuss imaging and image analysis techniques (focussing on collagen I-optimized approaches) that could hold the key to mapping tumour-specific ECM into high-fidelity biomaterial models. We anticipate that an interdisciplinary approach, combining materials science, cancer research and image analysis, will elucidate the role of 3D fibre architecture in tumour development, leading to the next generation of patient-mimetic models for mechanistic studies and drug discovery.
Collapse
Affiliation(s)
- Jennifer C Ashworth
- School of Veterinary Medicine & Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK.
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK.
- Cancer Ecosystems Program, The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
| | - Thomas R Cox
- Cancer Ecosystems Program, The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
3
|
Horder H, Böhringer D, Endrizzi N, Hildebrand LS, Cianciosi A, Stecher S, Dusi F, Schweinitzer S, Watzling M, Groll J, Jüngst T, Teßmar J, Bauer-Kreisel P, Fabry B, Blunk T. Cancer cell migration depends on adjacent ASC and adipose spheroids in a 3D bioprinted breast cancer model. Biofabrication 2024; 16:035031. [PMID: 38934608 DOI: 10.1088/1758-5090/ad57f7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Breast cancer develops in close proximity to mammary adipose tissue and interactions with the local adipose environment have been shown to drive tumor progression. The specific role, however, of this complex tumor microenvironment in cancer cell migration still needs to be elucidated. Therefore, in this study, a 3D bioprinted breast cancer model was developed that allows for a comprehensive analysis of individual tumor cell migration parameters in dependence of adjacent adipose stroma. In this co-culture model, a breast cancer compartment with MDA-MB-231 breast cancer cells embedded in collagen is surrounded by an adipose tissue compartment consisting of adipose-derived stromal cell (ASC) or adipose spheroids in a printable bioink based on thiolated hyaluronic acid. Printing parameters were optimized for adipose spheroids to ensure viability and integrity of the fragile lipid-laden cells. Preservation of the adipogenic phenotype after printing was demonstrated by quantification of lipid content, expression of adipogenic marker genes, the presence of a coherent adipo-specific extracellular matrix, and cytokine secretion. The migration of tumor cells as a function of paracrine signaling of the surrounding adipose compartment was then analyzed using live-cell imaging. The presence of ASC or adipose spheroids substantially increased key migration parameters of MDA-MB-231 cells, namely motile fraction, persistence, invasion distance, and speed. These findings shed new light on the role of adipose tissue in cancer cell migration. They highlight the potential of our 3D printed breast cancer-stroma model to elucidate mechanisms of stroma-induced cancer cell migration and to serve as a screening platform for novel anti-cancer drugs targeting cancer cell dissemination.
Collapse
Affiliation(s)
- Hannes Horder
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital Würzburg, Würzburg, Germany
| | - David Böhringer
- Department of Physics, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Nadine Endrizzi
- Department of Physics, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Laura S Hildebrand
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Alessandro Cianciosi
- Chair for Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication, University of Würzburg and Bavarian Polymer Institute, Würzburg, Germany
| | - Sabrina Stecher
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Franziska Dusi
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Sophie Schweinitzer
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Martin Watzling
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Jürgen Groll
- Chair for Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication, University of Würzburg and Bavarian Polymer Institute, Würzburg, Germany
| | - Tomasz Jüngst
- Chair for Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication, University of Würzburg and Bavarian Polymer Institute, Würzburg, Germany
| | - Jörg Teßmar
- Chair for Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication, University of Würzburg and Bavarian Polymer Institute, Würzburg, Germany
| | - Petra Bauer-Kreisel
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Chakkera M, Foote JB, Farran B, Nagaraju GP. Breaking the stromal barrier in pancreatic cancer: Advances and challenges. Biochim Biophys Acta Rev Cancer 2024; 1879:189065. [PMID: 38160899 DOI: 10.1016/j.bbcan.2023.189065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Pancreatic cancer (PC) remains a leading cause of mortality worldwide due to the absence of early detection methods and the low success rates of traditional therapeutic strategies. Drug resistance in PC is driven by its desmoplastic stroma, which creates a barrier that shields cancer niches and prevents the penetration of drugs. The PC stroma comprises heterogeneous cellular populations and non-cellular components involved in aberrant ECM deposition, immunosuppression, and drug resistance. These components can influence PC development through intricate and complex crosstalk with the PC cells. Understanding how stromal components and cells interact with and influence the invasiveness and refractoriness of PC cells is thus a prerequisite for developing successful stroma-modulating strategies capable of remodeling the PC stroma to alleviate drug resistance and enhance therapeutic outcomes. In this review, we explore how non-cellular and cellular stromal components, including cancer-associated fibroblasts and tumor-associated macrophages, contribute to the immunosuppressive and tumor-promoting effects of the stroma. We also examine the signaling pathways underlying their activation, tumorigenic effects, and interactions with PC cells. Finally, we discuss recent pre-clinical and clinical work aimed at developing and testing novel stroma-modulating agents to alleviate drug resistance and improve therapeutic outcomes in PC.
Collapse
Affiliation(s)
- Mohana Chakkera
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| | - Jeremy B Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
5
|
Dellaquila A, Dujardin C, Le Bao C, Chaumeton C, Carré A, Le Guilcher C, Lam F, Simon-Yarza T. Fibroblasts mediate endothelium response to angiogenic cues in a newly developed 3D stroma engineered model. BIOMATERIALS ADVANCES 2023; 154:213636. [PMID: 37778292 DOI: 10.1016/j.bioadv.2023.213636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/30/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Three-dimensional stroma engineered models would enable fundamental and applicative studies of human tissues interaction and remodeling in both physiological and pathological conditions. In this work, we propose a 3D vascularized stroma model to be used as in vitro platform for drug testing. A pullulan/dextran-based porous scaffold containing pre-patterned microchannels of 100 μm diameter is used for co-culturing of fibroblasts within the matrix pores and endothelial cells to form the lumen. Optical clearing of the constructs by hyperhydration allows for in-depth imaging of the model up to 1 mm by lightsheet and confocal microscopy. Our 3D vascularized stroma model allows for higher viability, metabolism and cytokines expression compared to a monocultured vascular model. Stroma-endothelium cross-talk is then investigated by exposing the system to pro and anti-angiogenic molecules. The results highlight the protective role played by fibroblasts on the vasculature, as demonstrated by decreased cytotoxicity, restoration of nitric oxide levels upon challenge, and sustained expression of endothelial markers CD31, vWF and VEGF. Our tissue model provides a 3D engineered platform for in vitro studies of stroma remodeling in angiogenesis-driven events, known to be a leading mechanism in diseased conditions, such as metastatic cancers, retinopathies and ischemia, and to investigate related potential therapies.
Collapse
Affiliation(s)
- Alessandra Dellaquila
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France.
| | - Chloé Dujardin
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - Chau Le Bao
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - Chloé Chaumeton
- Sorbonne Université, Institute of Biology Paris-Seine, Paris 75005, France
| | - Albane Carré
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - Camille Le Guilcher
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - France Lam
- Sorbonne Université, Institute of Biology Paris-Seine, Paris 75005, France
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France.
| |
Collapse
|
6
|
Garcia AR, Mendes A, Custódia C, Faria CC, Barata JT, Malhó R, Figueira I, Brito MA. Abrogating Metastatic Properties of Triple-Negative Breast Cancer Cells by EGFR and PI3K Dual Inhibitors. Cancers (Basel) 2023; 15:3973. [PMID: 37568789 PMCID: PMC10416979 DOI: 10.3390/cancers15153973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a devastating BC subtype. Its aggressiveness, allied to the lack of well-defined molecular targets, usually culminates in the appearance of metastases that account for poor prognosis, particularly when they develop in the brain. Nevertheless, TNBC has been associated with epidermal growth factor receptor (EGFR) overexpression, leading to downstream phosphoinositide 3-kinase (PI3K) signaling activation. We aimed to unravel novel drug candidates for TNBC treatment based on EGFR and/or PI3K inhibition. Using a highly metastatic TNBC cell line with brain tropism (MDA-MB-231 Br4) and a library of 27 drug candidates in silico predicted to inhibit EGFR, PI3K, or EGFR plus PI3K, and to cross the blood-brain barrier, we evaluated the effects on cell viability. The half maximal inhibitory concentration (IC50) of the most cytotoxic ones was established, and cell cycle and death, as well as migration and EGFR pathway intervenient, were further evaluated. Two dual inhibitors emerged as the most promising drugs, with the ability to modulate cell cycle, death, migration and proliferation, morphology, and PI3K/AKT cascade players such as myocyte enhancer factor 2C (MEF2C) and forkhead box P1 (FOXP1). This work revealed EGFR/PI3K dual inhibitors as strong candidates to tackle brain metastatic TNBC cells.
Collapse
Affiliation(s)
- Ana Rita Garcia
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Avilson Mendes
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Carlos Custódia
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Cláudia C. Faria
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Av. Prof. Egas Moniz, 1649-035 Lisbon, Portugal
| | - João T. Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Rui Malhó
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1746-016 Lisbon, Portugal
| | - Inês Figueira
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Farm-ID—Faculty of Pharmacy Association for Research and Development, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Alexandra Brito
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
7
|
El Harane S, Zidi B, El Harane N, Krause KH, Matthes T, Preynat-Seauve O. Cancer Spheroids and Organoids as Novel Tools for Research and Therapy: State of the Art and Challenges to Guide Precision Medicine. Cells 2023; 12:cells12071001. [PMID: 37048073 PMCID: PMC10093533 DOI: 10.3390/cells12071001] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Spheroids and organoids are important novel players in medical and life science research. They are gradually replacing two-dimensional (2D) cell cultures. Indeed, three-dimensional (3D) cultures are closer to the in vivo reality and open promising perspectives for academic research, drug screening, and personalized medicine. A large variety of cells and tissues, including tumor cells, can be the starting material for the generation of 3D cultures, including primary tissues, stem cells, or cell lines. A panoply of methods has been developed to generate 3D structures, including spontaneous or forced cell aggregation, air-liquid interface conditions, low cell attachment supports, magnetic levitation, and scaffold-based technologies. The choice of the most appropriate method depends on (i) the origin of the tissue, (ii) the presence or absence of a disease, and (iii) the intended application. This review summarizes methods and approaches for the generation of cancer spheroids and organoids, including their advantages and limitations. We also highlight some of the challenges and unresolved issues in the field of cancer spheroids and organoids, and discuss possible therapeutic applications.
Collapse
Affiliation(s)
- Sanae El Harane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Bochra Zidi
- Department of Medicine, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Nadia El Harane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Thomas Matthes
- Department of Medicine, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Olivier Preynat-Seauve
- Department of Medicine, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Laboratory of Experimental Cell Therapy, Department of Diagnostics, Geneva University Hospitals, 1206 Geneva, Switzerland
| |
Collapse
|
8
|
Tiwari A, Trivedi R, Lin SY. Tumor microenvironment: barrier or opportunity towards effective cancer therapy. J Biomed Sci 2022; 29:83. [PMID: 36253762 PMCID: PMC9575280 DOI: 10.1186/s12929-022-00866-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/01/2022] [Indexed: 12/24/2022] Open
Abstract
Tumor microenvironment (TME) is a specialized ecosystem of host components, designed by tumor cells for successful development and metastasis of tumor. With the advent of 3D culture and advanced bioinformatic methodologies, it is now possible to study TME’s individual components and their interplay at higher resolution. Deeper understanding of the immune cell’s diversity, stromal constituents, repertoire profiling, neoantigen prediction of TMEs has provided the opportunity to explore the spatial and temporal regulation of immune therapeutic interventions. The variation of TME composition among patients plays an important role in determining responders and non-responders towards cancer immunotherapy. Therefore, there could be a possibility of reprogramming of TME components to overcome the widely prevailing issue of immunotherapeutic resistance. The focus of the present review is to understand the complexity of TME and comprehending future perspective of its components as potential therapeutic targets. The later part of the review describes the sophisticated 3D models emerging as valuable means to study TME components and an extensive account of advanced bioinformatic tools to profile TME components and predict neoantigens. Overall, this review provides a comprehensive account of the current knowledge available to target TME.
Collapse
Affiliation(s)
- Aadhya Tiwari
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Ingavle G, Das M. Bench to Bedside: New Therapeutic Approaches with Extracellular Vesicles and Engineered Biomaterials for Targeting Therapeutic Resistance of Cancer Stem Cells. ACS Biomater Sci Eng 2022; 8:4673-4696. [PMID: 36194142 DOI: 10.1021/acsbiomaterials.2c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cancer has recently been the second leading cause of death worldwide, trailing only cardiovascular disease. Cancer stem cells (CSCs), represented as tumor-initiating cells (TICs), are mainly liable for chemoresistance and disease relapse due to their self-renewal capability and differentiating capacity into different types of tumor cells. The intricate molecular mechanism is necessary to elucidate CSC's chemoresistance properties and cancer recurrence. Establishing efficient strategies for CSC maintenance and enrichment is essential to elucidate the mechanisms and properties of CSCs and CSC-related therapeutic measures. Current approaches are insufficient to mimic the in vivo chemical and physical conditions for the maintenance and growth of CSC and yield unreliable research results. Biomaterials are now widely used for simulating the bone marrow microenvironment. Biomaterial-based three-dimensional (3D) approaches for the enrichment of CSC provide an excellent promise for future drug discovery and elucidation of molecular mechanisms. In the future, the biomaterial-based model will contribute to a more operative and predictive CSC model for cancer therapy. Design strategies for materials, physicochemical cues, and morphology will offer a new direction for future modification and new methods for studying the CSC microenvironment and its chemoresistance property. This review highlights the critical roles of the microenvironmental cues that regulate CSC function and endow them with drug resistance properties. This review also explores the latest advancement and challenges in biomaterial-based scaffold structure for therapeutic approaches against CSC chemoresistance. Since the recent entry of extracellular vesicles (EVs), cell-derived nanostructures, have opened new avenues of investigation into this field, which, together with other more conventionally studied signaling pathways, play an important role in cell-to-cell communication. Thus, this review further explores the subject of EVs in-depth. This review also discusses possible future biomaterial and biomaterial-EV-based models that could be used to study the tumor microenvironment (TME) and will provide possible therapeutic approaches. Finally, this review concludes with potential perspectives and conclusions in this area.
Collapse
Affiliation(s)
- Ganesh Ingavle
- Symbiosis Centre for Stem Cell Research (SCSCR) and Symbiosis School of Biological Sciences (SSBS), SIU, Lavale, Pune 412115, India
| | - Madhurima Das
- Symbiosis Centre for Stem Cell Research (SCSCR) and Symbiosis School of Biological Sciences (SSBS), SIU, Lavale, Pune 412115, India
| |
Collapse
|
10
|
Liu W, Padhi A, Zhang X, Narendran J, Anastasio MA, Nain AS, Irudayaraj J. Dynamic Heterochromatin States in Anisotropic Nuclei of Cells on Aligned Nanofibers. ACS NANO 2022; 16:10754-10767. [PMID: 35803582 PMCID: PMC9332347 DOI: 10.1021/acsnano.2c02660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The cancer cell nucleus deforms as it invades the interstitial spaces in tissues and the tumor microenvironment. While alteration of the chromatin structure in a deformed nucleus is expected and documented, the chromatin structure in the nuclei of cells on aligned matrices has not been elucidated. In this work we elucidate the spatiotemporal organization of heterochromatin in the elongated nuclei of cells on aligned nanofibers with stimulated emission depletion nanoscopy and fluorescence correlation spectroscopy. We show that the anisotropy of nuclei is sufficient to drive H3K9me3-heterochromatin alterations, with enhanced H3K9me3 nanocluster compaction and aggregation states that otherwise are indistinguishable from diffraction-limited microscopy. We interrogated the higher-order heterochromatin structures within major chromatin compartments in anisotropic nuclei and discovered a wider spatial dispersion of nanodomain clusters in the nucleoplasm and condensed larger nanoclusters near the periphery and pericentromeric heterochromatin. Upon examining the spatiotemporal dynamics of heterochromatin in anisotropic nuclei, we observed reduced mobility of the constitutive heterochromatin mark H3K9me3 and the associated heterochromatin protein 1 (HP1α) at the nucleoplasm and periphery regions, correlating with increased viscosity and changes in gene expression. Since heterochromatin remodeling is crucial to genome integrity, our results reveal an unconventional H3K9me3 heterochromatin distribution, providing cues to an altered chromatin state due to perturbations of the nuclei in aligned fiber configurations.
Collapse
Affiliation(s)
- Wenjie Liu
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Cancer Center at Illinois,
Micro and Nanotechnology Laboratory, Beckman
Institute, Carl Woese Institute for Genomic Biology, Urbana, Illinois 61801, United States
| | - Abinash Padhi
- Department
of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xiaohui Zhang
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Jairaj Narendran
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Mark A. Anastasio
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Amrinder S. Nain
- Department
of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph Irudayaraj
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green Street, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Cancer Center at Illinois,
Micro and Nanotechnology Laboratory, Beckman
Institute, Carl Woese Institute for Genomic Biology, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Vallone SA, Solá MG, Schere-Levy C, Meiss RP, Hermida GN, Chodosh LA, Kordon EC, Hynes NE, Gattelli A. Aberrant RET expression impacts on normal mammary gland post-lactation transition enhancing cancer potential. Dis Model Mech 2022; 15:274874. [PMID: 35044452 PMCID: PMC8990024 DOI: 10.1242/dmm.049286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022] Open
Abstract
RET is a receptor tyrosine kinase with oncogenic potential in the mammary epithelium. Several receptors with oncogenic activity in the breast are known to participate in specific developmental stages. We found that RET is differentially expressed during mouse mammary gland development: RET is present in lactation and its expression dramatically decreases in involution, the period during which the lactating gland returns to a quiescent state after weaning. Based on epidemiological and pre-clinical findings, involution has been described as tumor promoting. Using the Ret/MTB doxycycline-inducible mouse transgenic system, we show that sustained expression of RET in the mammary epithelium during the post-lactation transition to involution is accompanied by alterations in tissue remodeling and an enhancement of cancer potential. Following constitutive Ret expression, we observed a significant increase in neoplastic lesions in the post-involuting versus the virgin mammary gland. Furthermore, we show that abnormal RET overexpression during lactation promotes factors that prime involution, including premature activation of Stat3 signaling and, using RNA sequencing, an acute-phase inflammatory signature. Our results demonstrate that RET overexpression negatively affects the normal post-lactation transition. Summary: We show that RET activation stimulates Stat3 signaling in mammary epithelial cell culture and in vivo during post-lactation transition, demonstrating that the RET receptor participates in the post-lactation transition priming tumorigenesis.
Collapse
Affiliation(s)
- Sabrina A. Vallone
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
- CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Intendente Güiraldes 2160, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
| | - Martín García Solá
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
- CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Intendente Güiraldes 2160, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
| | - Carolina Schere-Levy
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
- CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Intendente Güiraldes 2160, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
| | - Roberto P. Meiss
- Academia Nacional de Medicina de Buenos Aires, Av. Gral. Las Heras 3092, C1425ASU CABA, Buenos Aires, Argentina
| | - Gladys N. Hermida
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental (DBBE), Biología de Anfibios-Histología Animal, Facultad de Ciencias Exactas y Naturales (FCEN), Buenos Aires, Argentina
| | - Lewis A. Chodosh
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania (Upenn), 614 BRB II/III, 421 Curie Blvd, Philadelphia, USA
| | - Edith C. Kordon
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
- CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Intendente Güiraldes 2160, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
| | - Nancy E. Hynes
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, CH-4058 Basel, Switzerland
- University of Basel, CH-4002 Basel, Switzerland
| | - Albana Gattelli
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
- CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Intendente Güiraldes 2160, Ciudad Universitaria C1428EGA CABA, Buenos Aires, Argentina
| |
Collapse
|
12
|
Habanjar O, Diab-Assaf M, Caldefie-Chezet F, Delort L. 3D Cell Culture Systems: Tumor Application, Advantages, and Disadvantages. Int J Mol Sci 2021; 22:12200. [PMID: 34830082 PMCID: PMC8618305 DOI: 10.3390/ijms222212200] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 01/09/2023] Open
Abstract
The traditional two-dimensional (2D) in vitro cell culture system (on a flat support) has long been used in cancer research. However, this system cannot be fully translated into clinical trials to ideally represent physiological conditions. This culture cannot mimic the natural tumor microenvironment due to the lack of cellular communication (cell-cell) and interaction (cell-cell and cell-matrix). To overcome these limitations, three-dimensional (3D) culture systems are increasingly developed in research and have become essential for tumor research, tissue engineering, and basic biology research. 3D culture has received much attention in the field of biomedicine due to its ability to mimic tissue structure and function. The 3D matrix presents a highly dynamic framework where its components are deposited, degraded, or modified to delineate functions and provide a platform where cells attach to perform their specific functions, including adhesion, proliferation, communication, and apoptosis. So far, various types of models belong to this culture: either the culture based on natural or synthetic adherent matrices used to design 3D scaffolds as biomaterials to form a 3D matrix or based on non-adherent and/or matrix-free matrices to form the spheroids. In this review, we first summarize a comparison between 2D and 3D cultures. Then, we focus on the different components of the natural extracellular matrix that can be used as supports in 3D culture. Then we detail different types of natural supports such as matrigel, hydrogels, hard supports, and different synthetic strategies of 3D matrices such as lyophilization, electrospiding, stereolithography, microfluid by citing the advantages and disadvantages of each of them. Finally, we summarize the different methods of generating normal and tumor spheroids, citing their respective advantages and disadvantages in order to obtain an ideal 3D model (matrix) that retains the following characteristics: better biocompatibility, good mechanical properties corresponding to the tumor tissue, degradability, controllable microstructure and chemical components like the tumor tissue, favorable nutrient exchange and easy separation of the cells from the matrix.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Pharmacologie Moléculaire et Anticancéreuse, Faculté des Sciences II, Université Libanaise Fanar, Beyrouth 1500, Liban;
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH-Auvergne, 63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| |
Collapse
|
13
|
Unnikrishnan K, Thomas LV, Ram Kumar RM. Advancement of Scaffold-Based 3D Cellular Models in Cancer Tissue Engineering: An Update. Front Oncol 2021; 11:733652. [PMID: 34760696 PMCID: PMC8573168 DOI: 10.3389/fonc.2021.733652] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
The lack of traditional cancer treatments has resulted in an increased need for new clinical techniques. Standard two-dimensional (2D) models used to validate drug efficacy and screening have a low in vitro-in vivo translation potential. Recreating the in vivo tumor microenvironment at the three-dimensional (3D) level is essential to resolve these limitations in the 2D culture and improve therapy results. The physical and mechanical environments of 3D culture allow cancer cells to expand in a heterogeneous manner, adopt different phenotypes, gene and protein profiles, and develop metastatic potential and drug resistance similar to human tumors. The current application of 3D scaffold culture systems based on synthetic polymers or selected extracellular matrix components promotes signalling, survival, and cancer cell proliferation. This review will focus on the recent advancement of numerous 3D-based scaffold models for cancer tissue engineering, which will increase the predictive ability of preclinical studies and significantly improve clinical translation.
Collapse
Affiliation(s)
- Kavitha Unnikrishnan
- Department of Cancer Research, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India
| | - Lynda Velutheril Thomas
- Division of Tissue Engineering & Regenerative Technology, Sree Chitra Thirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, India
| | - Ram Mohan Ram Kumar
- Department of Cancer Research, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
14
|
Yadav P, Chatterjee K, Saini DK. Senescent cells in 3D culture show suppressed senescence signatures. Biomater Sci 2021; 9:6461-6473. [PMID: 34582533 DOI: 10.1039/d1bm00536g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellular senescence, an irreversible proliferation arrested but viable cellular state, has been implicated in the progression of several age-associated pathologies. A vast amount of information about senescence has been acquired in cultured cells; however, senescence in living organisms (in vivo) remains poorly understood, mainly because of technical limitations. Furthermore, it is now widely recognized that three-dimensional (3D) culture systems are a better mimic of the in vivo physiology. Herein, senescence was induced in HeLa cells by irradiation. Non-senescent or senescent cells were cultured in soft 3D polymer scaffolds and compared with cells in conventional two-dimensional (2D) culture. This work shows that the morphology of the senescent cells markedly varies between substrates/culture platforms, driving the differences in the cytoskeletal organization, cellular division, and nanomechanical properties. One characteristic feature of senescent cells on 2D culture systems is the enlarged and flattened morphology; however, such drastic changes are not seen in vivo. This is an artificial effect of the substrate, which renders such non-physiological morphology to senescent cells. In the 3D scaffolds, this artifact is reduced. Hence, it serves as a better mimic of tissues, leading to reduced expression of senescence-associated genes, implying that the 3D scaffolds suppress the senescence in cells.
Collapse
Affiliation(s)
- Parul Yadav
- Centre for BioSystems Science and Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India
| | - Kaushik Chatterjee
- Centre for BioSystems Science and Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.,Department of Materials Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.
| | - Deepak Kumar Saini
- Centre for BioSystems Science and Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.,Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.
| |
Collapse
|
15
|
Gustafsson A, Garre E, Leiva MC, Salerno S, Ståhlberg A, Landberg G. Patient-derived scaffolds as a drug-testing platform for endocrine therapies in breast cancer. Sci Rep 2021; 11:13334. [PMID: 34172801 PMCID: PMC8233392 DOI: 10.1038/s41598-021-92724-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/08/2021] [Indexed: 12/26/2022] Open
Abstract
Three-dimensional cell culture platforms based on decellularised patient-based microenvironments provide in vivo-like growth conditions allowing cancer cells to interact with intact structures and components of the surrounding tissue. A patient-derived scaffold (PDS) model was therefore evaluated as a testing platform for the endocrine therapies (Z)-4-Hydroxytamoxifen (4OHT) and fulvestrant as well as the CDK4/6-inhibitor palbociclib, monitoring the treatment responses in breast cancer cell lines MCF7 and T47D adapted to the patient-based microenvironments. MCF7 cells growing in PDSs showed increased resistance to 4OHT and fulvestrant treatment (100- and 20-fold) compared to 2D cultures. Quantitative PCR analyses of endocrine treated cancer cells in PDSs revealed upregulation of pluripotency markers further supported by increased self-renewal capacity in sphere formation assays. When comparing different 3D growth platforms including PDS, matrigel, gelatin sponges and 3D-printed hydrogels, 3D based cultures showed slightly varying responses to fulvestrant and palbociclib whereas PDS and matrigel cultures showed more similar gene expression profiles for 4OHT treatment compared to the other platforms. The results support that the PDS technique maximized to provide a multitude of smaller functional PDS replicates from each primary breast cancer, is an up-scalable patient-derived drug-testing platform available for gene expression profiling and downstream functional assays.
Collapse
Affiliation(s)
- Anna Gustafsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Elena Garre
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Maria Carmen Leiva
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Simona Salerno
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Anders Ståhlberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, 41390, Gothenburg, Sweden
- Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, 41390, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 41390, Gothenburg, Sweden
| | - Göran Landberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska Center for Cancer Research, University of Gothenburg, 41390, Gothenburg, Sweden.
| |
Collapse
|
16
|
Rodrigues J, Heinrich MA, Teixeira LM, Prakash J. 3D In Vitro Model (R)evolution: Unveiling Tumor–Stroma Interactions. Trends Cancer 2021; 7:249-264. [DOI: 10.1016/j.trecan.2020.10.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/22/2022]
|
17
|
Abbas Y, Brunel LG, Hollinshead MS, Fernando RC, Gardner L, Duncan I, Moffett A, Best S, Turco MY, Burton GJ, Cameron RE. Generation of a three-dimensional collagen scaffold-based model of the human endometrium. Interface Focus 2020; 10:20190079. [PMID: 32194932 PMCID: PMC7061944 DOI: 10.1098/rsfs.2019.0079] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
The endometrium is the secretory lining of the uterus that undergoes dynamic changes throughout the menstrual cycle in preparation for implantation and a pregnancy. Recently, endometrial organoids (EO) were established to study the glandular epithelium. We have built upon this advance and developed a multi-cellular model containing both endometrial stromal and epithelial cells. We use porous collagen scaffolds produced with controlled lyophilization to direct cellular organization, integrating organoids with primary isolates of stromal cells. The internal pore structure of the scaffold was optimized for stromal cell culture in a systematic study, finding an optimal average pore size of 101 µm. EO seeded organize to form a luminal-like epithelial layer, on the surface of the scaffold. The cells polarize with their apical surface carrying microvilli and cilia that face the pore cavities and their basal surface attaching to the scaffold with the formation of extracellular matrix proteins. Both cell types are hormone responsive on the scaffold, with hormone stimulation resulting in epithelial differentiation and stromal decidualization.
Collapse
Affiliation(s)
- Yassen Abbas
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
- Centre for Trophoblast Research (CTR), University of Cambridge, Cambridge CB2 3EG, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Lucia G. Brunel
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | | | - Ridma C. Fernando
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
- Centre for Trophoblast Research (CTR), University of Cambridge, Cambridge CB2 3EG, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Lucy Gardner
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
- Centre for Trophoblast Research (CTR), University of Cambridge, Cambridge CB2 3EG, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Imogen Duncan
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
- Centre for Trophoblast Research (CTR), University of Cambridge, Cambridge CB2 3EG, UK
| | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
- Centre for Trophoblast Research (CTR), University of Cambridge, Cambridge CB2 3EG, UK
| | - Serena Best
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Margherita Y. Turco
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
- Centre for Trophoblast Research (CTR), University of Cambridge, Cambridge CB2 3EG, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Graham J. Burton
- Centre for Trophoblast Research (CTR), University of Cambridge, Cambridge CB2 3EG, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Ruth E. Cameron
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| |
Collapse
|
18
|
Leal-Egaña A, Balland M, Boccaccini AR. Re-engineering Artificial Neoplastic Milieus: Taking Lessons from Mechano- and Topobiology. Trends Biotechnol 2020; 38:142-153. [DOI: 10.1016/j.tibtech.2019.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/30/2022]
|
19
|
Murphy CS, Liaw L, Reagan MR. In vitro tissue-engineered adipose constructs for modeling disease. BMC Biomed Eng 2019; 1:27. [PMID: 32133436 PMCID: PMC7055683 DOI: 10.1186/s42490-019-0027-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Adipose tissue is a vital tissue in mammals that functions to insulate our bodies, regulate our internal thermostat, protect our organs, store energy (and burn energy, in the case of beige and brown fat), and provide endocrine signals to other organs in the body. Tissue engineering of adipose and other soft tissues may prove essential for people who have lost this tissue from trauma or disease. MAIN TEXT In this review, we discuss the applications of tissue-engineered adipose tissue specifically for disease modeling applications. We provide a basic background to adipose depots and describe three-dimensional (3D) in vitro adipose models for obesity, diabetes, and cancer research applications. CONCLUSIONS The approaches to engineering 3D adipose models are diverse in terms of scaffold type (hydrogel-based, silk-based and scaffold-free), species of origin (H. sapiens and M. musculus) and cell types used, which allows researchers to choose a model that best fits their application, whether it is optimization of adipocyte differentiation or studying the interaction of adipocytes and other cell types like endothelial cells. In vitro 3D adipose tissue models support discoveries into the mechanisms of adipose-related diseases and thus support the development of novel anti-cancer or anti-obesity/diabetes therapies.
Collapse
Affiliation(s)
- Connor S. Murphy
- Maine Medical Center Research Institute, Scarborough, ME USA
- University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME USA
- Center for Molecular Medicine and Center for Translational Research, 81 Research Drive, Scarborough, ME 04074 USA
| | - Lucy Liaw
- Maine Medical Center Research Institute, Scarborough, ME USA
- University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME USA
- School of Medicine, Tufts University, Boston, MA USA
- Center for Molecular Medicine and Center for Translational Research, 81 Research Drive, Scarborough, ME 04074 USA
| | - Michaela R. Reagan
- Maine Medical Center Research Institute, Scarborough, ME USA
- University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME USA
- School of Medicine, Tufts University, Boston, MA USA
- Center for Molecular Medicine and Center for Translational Research, 81 Research Drive, Scarborough, ME 04074 USA
| |
Collapse
|