1
|
Khoshbakht S, Başkurt D, Vural A, Vural S. Behçet's Disease: A Comprehensive Review on the Role of HLA-B*51, Antigen Presentation, and Inflammatory Cascade. Int J Mol Sci 2023; 24:16382. [PMID: 38003572 PMCID: PMC10671634 DOI: 10.3390/ijms242216382] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Behçet's disease (BD) is a complex, recurring inflammatory disorder with autoinflammatory and autoimmune components. This comprehensive review aims to explore BD's pathogenesis, focusing on established genetic factors. Studies reveal that HLA-B*51 is the primary genetic risk factor, but non-HLA genes (ERAP1, IL-10, IL23R/IL-12RB2), as well as innate immunity genes (FUT2, MICA, TLRs), also contribute. Genome-wide studies emphasize the significance of ERAP1 and HLA-I epistasis. These variants influence antigen presentation, enzymatic activity, and HLA-I peptidomes, potentially leading to distinct autoimmune responses. We conducted a systematic review of the literature to identify studies exploring the association between HLA-B*51 and BD and further highlighted the roles of innate and adaptive immunity in BD. Dysregulations in Th1/Th2 and Th17/Th1 ratios, heightened clonal cytotoxic (CD8+) T cells, and reduced T regulatory cells characterize BD's complex immune responses. Various immune cell types (neutrophils, γδ T cells, natural killer cells) further contribute by releasing cytokines (IL-17, IL-8, GM-CSF) that enhance neutrophil activation and mediate interactions between innate and adaptive immunity. In summary, this review advances our understanding of BD pathogenesis while acknowledging the research limitations. Further exploration of genetic interactions, immune dysregulation, and immune cell roles is crucial. Future studies may unveil novel diagnostic and therapeutic strategies, offering improved management for this complex disease.
Collapse
Affiliation(s)
- Saba Khoshbakht
- Koç University Research Center for Translational Medicine, Istanbul 34010, Turkey; (S.K.); (A.V.)
| | - Defne Başkurt
- School of Medicine, Koç University, Istanbul 34010, Turkey;
| | - Atay Vural
- Koç University Research Center for Translational Medicine, Istanbul 34010, Turkey; (S.K.); (A.V.)
- Department of Neurology, Koç University School of Medicine, Istanbul 34010, Turkey
| | - Seçil Vural
- Koç University Research Center for Translational Medicine, Istanbul 34010, Turkey; (S.K.); (A.V.)
- Department of Dermatology and Venereology, Koç University School of Medicine, Istanbul 34010, Turkey
| |
Collapse
|
2
|
Limanaqi F, Vicentini C, Saulle I, Clerici M, Biasin M. The role of endoplasmic reticulum aminopeptidases in type 1 diabetes mellitus. Life Sci 2023; 323:121701. [PMID: 37059356 DOI: 10.1016/j.lfs.2023.121701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Type-I diabetes mellitus (T1DM) is generally considered as a chronic, T-cell mediated autoimmune disease. This notwithstanding, both the endogenous characteristics of β-cells, and their response to environmental factors and exogenous inflammatory stimuli are key events in disease progression and exacerbation. As such, T1DM is now recognized as a multifactorial condition, with its onset being influenced by both genetic predisposition and environmental factors, among which, viral infections represent major triggers. In this frame, endoplasmic reticulum aminopeptidase 1 (ERAP1) and 2 (ERAP2) hold center stage. ERAPs represent the main hydrolytic enzymes specialized in trimming of N-terminal antigen peptides to be bound by MHC class I molecules and presented to CD8+ T cells. Thus, abnormalities in ERAPs expression alter the peptide-MHC-I repertoire both quantitatively and qualitatively, fostering both autoimmune and infectious diseases. Although only a few studies succeeded in determining direct associations between ERAPs variants and T1DM susceptibility/outbreak, alterations of ERAPs do impinge on a plethora of biological events which might indeed contribute to the disease development/exacerbation. Beyond abnormal self-antigen peptide trimming, these include preproinsulin processing, nitric oxide (NO) production, ER stress, cytokine responsiveness, and immune cell recruitment/activity. The present review brings together direct and indirect evidence focused on the immunobiological role of ERAPs in T1DM onset and progression, covering both genetic and environmental aspects.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Chiara Vicentini
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza, 20122 Milan, Italy; Don C. Gnocchi Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation, Via A. Capecelatro 66, 20148 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi, 20122 Milan, Italy.
| |
Collapse
|
3
|
Ryu HM, Islam SMS, Sayeed HM, Babita R, Seong JK, Lee H, Sohn S. Characterization of immune responses associated with ERAP-1 expression in HSV-induced Behçet's disease mouse model. Clin Immunol 2023; 250:109305. [PMID: 37003592 DOI: 10.1016/j.clim.2023.109305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Behçet's disease (BD) is a chronic multisystem inflammatory disorder. Endoplasmic reticulum aminopeptidase 1 (ERAP1) polymorphism has been reported as a risk factor for BD. However, the immunological role of ERAP1 in BD remains unclear. Therefore, the purpose of this study was to investigate the immunological role of ERAP1 in BD using a mouse model. ERAP1 incomplete expressing mice (ERAP1 hetero, +/-) were generated and inoculated with herpes simplex virus 1 to produce a BD mouse model. In these mice, dendritic cell activation markers and other immune response-related markers were analyzed. Among them, the factor showing a significant difference between ERAP+/- BD mice and WT BD mice was IL-17. In ERAP+/-, BD had significantly different expression levels of CD80, CD11b, Ly6G, RORγt, IFNγ, and IL-17 compared to asymptomatic controls. This study demonstrates ERAP1 defective expressions play an important role in BD development through inappropriate regulation of Th17.
Collapse
Affiliation(s)
- Hye-Myung Ryu
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - S M Shamsul Islam
- Department of Biomedical Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Hasan M Sayeed
- Department of Biomedical Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Rahar Babita
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 Plus Program for Advanced Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea; Interdiscplinary Program for Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea; Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Lee
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea; Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi 10408, Republic of Korea
| | - Seonghyang Sohn
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; Department of Biomedical Sciences, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
4
|
Vallier M, Segurens B, Larsonneur E, Meyer V, Ferreira S, Caloustian C, Deleuze JF, Dougados M, Chamaillard M, Miceli-Richard C. Characterisation of gut microbiota composition in patients with axial spondyloarthritis and its modulation by TNF inhibitor treatment. RMD Open 2023; 9:rmdopen-2022-002794. [PMID: 36963782 PMCID: PMC10040062 DOI: 10.1136/rmdopen-2022-002794] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
OBJECTIVE To assess whether gut microbiota composition is associated with patient characteristics and may have predictive value on the response to TNF inhibitor (TNFi) treatment in axial spondyloarthritis (AxSpA). METHODS The study involved 61 patients fulfilling the Assessment of SpondyloArthritis International Society classification criteria for AxSpA. All patients had active disease despite non-steroidal anti-inflammatory drugs intake and were eligible for treatment with a TNFi. At baseline, the mean Ankylosing Spondylitis Disease Activity Score was 2.9±1 and mean C reactive protein (CRP) level 9.7±11.4 mg/L. Bacterial 16S ribosomal RNA gene sequencing was performed on stool samples collected at baseline (month 0 (M0)) and 3 months after TNFi initiation (month 3 (M3)). Alpha and beta diversity metrics were calculated on the relative abundance of core operational taxonomic units (OTUs). RESULTS The HLA-B27 status affected at least in part the global composition of faecal microbiota at M0 as well as the abundance/prevalence of several anaerobic bacteria in the families Oscillospiraceae, Lachnospiraceae and Bifidobacteriaceae. In contrast, smoking affected the global composition of faecal microbiota at both M0 and M3. The prevalence/abundance of seven bacterial OTUs at M0 was associated with response to TNFi treatment. One of the candidates, present only in non-responders, is the genus Sutterella, and the other six candidates are in the class Clostridia. CONCLUSIONS Several SpA patients' characteristics modulate the composition of gut microbiota as did TNFi treatment. Moreover, the abundance/prevalence of seven OTUs at baseline may be used as a novel non-invasive index that predicts the response to TNFi with greater accuracy than HLA-B27 status, CRP level and measures of disease activity.
Collapse
Affiliation(s)
- Marie Vallier
- Max Planck Institute for Evolutionary Biology, Plon, Germany
| | | | | | | | | | | | | | - Maxime Dougados
- Hopital Cochin, Rheumatology, Université Paris Descartes Faculté de Médecine, Paris, France
| | | | - Corinne Miceli-Richard
- Rheumatology, Universite Paris Descartes, Paris, France
- Immunoregulation Unit, Institut Pasteur, Paris, France
| |
Collapse
|
5
|
Tavasolian F, Pastrello C, Ahmed Z, Jurisica I, Inman RD. Vesicular traffic-mediated cell-to-cell signaling at the immune synapse in Ankylosing Spondylitis. Front Immunol 2023; 13:1102405. [PMID: 36741392 PMCID: PMC9889860 DOI: 10.3389/fimmu.2022.1102405] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
The chronic inflammatory disease ankylosing spondylitis (AS) is marked by back discomfort, spinal ankylosis, and extra-articular symptoms. In AS, inflammation is responsible for both pain and spinal ankylosis. However, the processes that sustain chronic inflammation remain unknown. Despite the years of research conducted to decipher the intricacy of AS, little progress has been made in identifying the signaling events that lead to the development of this disease. T cells, an immune cell type that initiates and regulates the body's response to infection, have been established to substantially impact the development of AS. T lymphocytes are regarded as a crucial part of adaptive immunity for the control of the immune system. A highly coordinated interaction involving antigen-presenting cells (APCs) and T cells that regulate T cell activation constitutes an immunological synapse (IS). This first phase leads to the controlled trafficking of receptors and signaling mediators involved in folding endosomes to the cellular interface, which allows the transfer of information from T cells to APCs through IS formation. Discrimination of self and nonself antigen is somatically learned in adaptive immunity. In an autoimmune condition such as AS, there is a disturbance of self/nonself antigen discrimination; available findings imply that the IS plays a preeminent role in the adaptive immune response. In this paper, we provide insights into the genesis of AS by evaluating recent developments in the function of vesicular trafficking in IS formation and the targeted release of exosomes enriched microRNAs (miRNA) at the synaptic region in T cells.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Spondylitis Program, Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Zuhaib Ahmed
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada,Departments of Medical Biophysics and Computer Science, and the Faculty of Dentistry, University of Toronto, Toronto, ON, Canada,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Robert D. Inman
- Spondylitis Program, Division of Rheumatology, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada,Krembil Research Institute, University Health Network, Toronto, ON, Canada,Departments of Medicine and Immunology, University of Toronto, Toronto, ON, Canada,*Correspondence: Robert D. Inman,
| |
Collapse
|
6
|
Giannos P, Prokopidis K, Isanejad M, Wright HL. Markers of immune dysregulation in response to the ageing gut: insights from aged murine gut microbiota transplants. BMC Gastroenterol 2022; 22:533. [PMID: 36544093 PMCID: PMC9773626 DOI: 10.1186/s12876-022-02613-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Perturbations in the composition and diversity of the gut microbiota are accompanied by a decline in immune homeostasis during ageing, characterized by chronic low-grade inflammation and enhanced innate immunity. Genetic insights into the interaction between age-related alterations in the gut microbiota and immune function remain largely unexplored. METHODS We investigated publicly available transcriptomic gut profiles of young germ-free mouse hosts transplanted with old donor gut microbiota to identify immune-associated differentially expressed genes (DEGs). Literature screening of the Gene Expression Omnibus and PubMed identified one murine (Mus musculus) gene expression dataset (GSE130026) that included small intestine tissues from young (5-6 weeks old) germ-free mice hosts that were compared following 8 weeks after transplantation with either old (~ 24-month old; n = 5) or young (5-6 weeks old; n = 4) mouse donor gut microbiota. RESULTS A total of 112 differentially expressed genes (DEGs) were identified and used to construct a gut network of encoded proteins, in which DEGs were functionally annotated as being involved in an immune process based on gene ontology. The association between the expression of immune-process DEGs and abundance of immune infiltrates from gene signatures in normal colorectal tissues was estimated from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) project. The analysis revealed a 25-gene signature of immune-associated DEGs and their expression profile was positively correlated with naïve T-cell, effector memory T-cell, central memory T-cell, resident memory T-cell, exhausted T-cell, resting Treg T-cell, effector Treg T-cell and Th1-like colorectal gene signatures. Conclusions These genes may have a potential role as candidate markers of immune dysregulation during gut microbiota ageing. Moreover, these DEGs may provide insights into the altered immune response to microbiota in the ageing gut, including reduced antigen presentation and alterations in cytokine and chemokine production.
Collapse
Affiliation(s)
- Panagiotis Giannos
- Society of Meta-Research and Biomedical Innovation, London, UK.,Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Konstantinos Prokopidis
- Society of Meta-Research and Biomedical Innovation, London, UK.,Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Masoud Isanejad
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Helen L Wright
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
7
|
Niu Y, Jiang H, Yin H, Wang F, Hu R, Hu X, Peng B, Shu Y, Li Z, Chen S, Guo F. Hepatokine ERAP1 Disturbs Skeletal Muscle Insulin Sensitivity Via Inhibiting USP33-Mediated ADRB2 Deubiquitination. Diabetes 2022; 71:921-933. [PMID: 35192681 DOI: 10.2337/db21-0857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022]
Abstract
Chronic inflammation in liver induces insulin resistance systemically and in other tissues, including the skeletal muscle (SM); however, the underlying mechanisms remain largely unknown. RNA sequencing of primary hepatocytes from wild-type mice fed long-term high-fat diet (HFD), which have severe chronic inflammation and insulin resistance revealed that the expression of hepatokine endoplasmic reticulum aminopeptidase 1 (ERAP1) was upregulated by a HFD. Increased ERAP1 levels were also observed in interferon-γ-treated primary hepatocytes. Furthermore, hepatic ERAP1 overexpression attenuated systemic and SM insulin sensitivity, whereas hepatic ERAP1 knockdown had the opposite effects, with corresponding changes in serum ERAP1 levels. Mechanistically, ERAP1 functions as an antagonist-like factor, which interacts with β2 adrenergic receptor (ADRB2) and reduces its expression by decreasing ubiquitin-specific peptidase 33-mediated deubiquitination and thereby interrupts ADRB2-stimulated insulin signaling in the SM. The findings of this study indicate ERAP1 is an inflammation-induced hepatokine that impairs SM insulin sensitivity. Its inhibition may provide a therapeutic strategy for insulin resistance-related diseases, such as type 2 diabetes.
Collapse
Affiliation(s)
- Yuguo Niu
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haizhou Jiang
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hanrui Yin
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fenfen Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ronggui Hu
- Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Hu
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Bo Peng
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yousheng Shu
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Zhigang Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shanghai Chen
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Feifan Guo
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
8
|
Blake MK, O'Connell P, Pepelyayeva Y, Godbehere S, Aldhamen YA, Amalfitano A. ERAP1 is a critical regulator of inflammasome-mediated proinflammatory and ER stress responses. BMC Immunol 2022; 23:9. [PMID: 35246034 PMCID: PMC8895631 DOI: 10.1186/s12865-022-00481-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
Background In addition to its role in antigen presentation, recent reports establish a new role for endoplasmic reticulum aminopeptidase 1 (ERAP1) in innate immunity; however, the mechanisms underlying these functions are not fully defined. We previously confirmed that loss of ERAP1 functions resulted in exaggerated innate immune responses in a murine in vivo model. Here, we investigated the role of ERAP1 in suppressing inflammasome pathways and their dependence on ER stress responses. Results Using bone marrow-derived macrophages (BMDMs), we found that loss of ERAP1 in macrophages resulted in exaggerated production of IL-1β and IL-18 and augmented caspase-1 activity, relative to wild type macrophages. Moreover, an in vivo colitis model utilizing dextran sodium sulfate (DSS) confirmed increased levels of proinflammatory cytokines and chemokines in the colon of DSS treated ERAP1−/− mice as compared to identically stimulated WT mice. Interestingly, stimulated ERAP1−/− BMDMs and CD4+ T cells simultaneously demonstrated exaggerated ER stress, assessed by increased expression of ER stress-associated genes, a state that could be reverted to WT levels with use of the ER stress inhibitor Tauroursodeoxycholic acid (TUDCA). Conclusions Together, these results not only suggest that ERAP1 is important for regulating inflammasome dependent innate immune response pathways in vivo, but also propose a mechanism that underlies these changes, that may be associated with increased ER stress due to lack of normal ERAP1 functions. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00481-9.
Collapse
Affiliation(s)
- Maja K Blake
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Patrick O'Connell
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Yuliya Pepelyayeva
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Sarah Godbehere
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Yasser A Aldhamen
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA. .,Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
9
|
Liao HT, Tsai CY, Lai CC, Hsieh SC, Sun YS, Li KJ, Shen CY, Wu CH, Lu CH, Kuo YM, Li TH, Chou CT, Yu CL. The Potential Role of Genetics, Environmental Factors, and Gut Dysbiosis in the Aberrant Non-Coding RNA Expression to Mediate Inflammation and Osteoclastogenic/Osteogenic Differentiation in Ankylosing Spondylitis. Front Cell Dev Biol 2022; 9:748063. [PMID: 35127698 PMCID: PMC8811359 DOI: 10.3389/fcell.2021.748063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
Ankylosing spondylitis (AS) or radiographic axial spondyloarthritis is a chronic immune-mediated rheumatic disorder characterized by the inflammation in the axial skeleton, peripheral joints, and soft tissues (enthesis, fascia, and ligament). In addition, the extra-skeletal complications including anterior uveitis, interstitial lung diseases and aortitis are found. The pathogenesis of AS implicates an intricate interaction among HLA (HLA-B27) and non-HLA loci [endoplasmic reticulum aminopeptidase 1 (ERAP1), and interleukin-23 receptor (IL23R), gut dysbiosis, immune plasticity, and numerous environmental factors (infections, heavy metals, stress, cigarette smoking, etc.) The latter multiple non-genetic factors may exert a powerful stress on epigenetic regulations. These epigenetic regulations of gene expression contain DNA methylation/demethylation, histone modifications and aberrant non-coding RNAs (ncRNAs) expression, leading to inflammation and immune dysfunctions. In the present review, we shall discuss these contributory factors that are involved in AS pathogenesis, especially the aberrant ncRNA expression and its effects on the proinflammatory cytokine productions (TNF-α, IL-17 and IL-23), T cell skewing to Th1/Th17, and osteoclastogenic/osteogenic differentiation. Finally, some potential investigatory approaches are raised for solving the puzzles in AS pathogenesis.
Collapse
Affiliation(s)
- Hsien-Tzung Liao
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chang-Youh Tsai
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- *Correspondence: Chang-Youh Tsai, ; Chia-Li Yu,
| | - Chien-Chih Lai
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Song-Chou Hsieh
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Syuan Sun
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Ko-Jen Li
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chieh-Yu Shen
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Han Wu
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Hsun Lu
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Min Kuo
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Hao Li
- Division of Allergy, Immunology and Rheumatology, Taipei, Taiwan
- Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chung-Tei Chou
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chia-Li Yu
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- *Correspondence: Chang-Youh Tsai, ; Chia-Li Yu,
| |
Collapse
|
10
|
Jia H, Chen M, Cai Y, Luo X, Hou G, Li Y, Cai C, Chen J, Li Q, Miu KK, Fung SH, Wang Z, Huang R, Shen H, Lu L. A new and spontaneous animal model for ankylosing spondylitis is found in cynomolgus monkeys. Arthritis Res Ther 2022; 24:1. [PMID: 34980262 PMCID: PMC8722021 DOI: 10.1186/s13075-021-02679-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Ankylosing spondylitis is a progressive, disabling joint disease that affects millions worldwide. Given its unclear etiology, studies of ankylosing spondylitis relied heavily on drug-induced or transgenic rodent models which retain only partial clinical features. There is obviously a lack of a useful disease model to conduct comprehensive mechanistic studies. METHODS We followed a group of cynomolgus monkeys having joint lesions reported of spinal stiffness for 2 years by conducting hematological testing, radiographic examination, family aggregation analysis, pathological analysis, and genetic testing. RESULTS The results confirmed that these diseased animals suffered from spontaneous ankylosing spondylitis with clinical features recapitulating human ankylosing spondylitis disease progression, manifested by pathological changes and biochemical indicators similar to that of ankylosing spondylitis patients. CONCLUSION The study offers a promising non-human primate model for spontaneous ankylosing spondylitis which may serve as an excellent substitute for its pre-clinical research.
Collapse
Affiliation(s)
- Huanhuan Jia
- School of Life Science and Biopharmacy, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Meili Chen
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yanzhen Cai
- School of Life Science and Biopharmacy, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoling Luo
- School of Life Science and Biopharmacy, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Gang Hou
- Department of Orthopedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yongfeng Li
- Guangzhou Blooming-Spring Biological Research Institute, Guangzhou, China
| | - Chunmei Cai
- School of Life Science and Biopharmacy, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jun Chen
- School of Life Science and Biopharmacy, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qingnan Li
- School of Life Science and Biopharmacy, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Kai-Kei Miu
- Developmental and Regenerative Biology Theme, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Sin-Hang Fung
- Developmental and Regenerative Biology Theme, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhangting Wang
- Developmental and Regenerative Biology Theme, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ren Huang
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Li Lu
- School of Life Science and Biopharmacy, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
11
|
O'Connell P, Blake MK, Godbehere S, Aldhamen YA, Amalfitano A. Absence of ERAP1 in B Cells Increases Susceptibility to Central Nervous System Autoimmunity, Alters B Cell Biology, and Mechanistically Explains Genetic Associations between ERAP1 and Multiple Sclerosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2952-2965. [PMID: 34810226 DOI: 10.4049/jimmunol.2100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022]
Abstract
Hundreds of genes have been linked to multiple sclerosis (MS); yet, the underlying mechanisms behind these associations have only been investigated in a fraction of cases. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is an endoplasmic reticulum-localized aminopeptidase with important roles in trimming peptides destined for MHC class I and regulation of innate immune responses. As such, genetic polymorphisms in ERAP1 have been linked to multiple autoimmune diseases. In this study, we present, to our knowledge, the first mechanistic studies performed to uncover why polymorphisms in ERAP1 are associated with increased susceptibility to MS. Combining multiple mouse models of CNS autoimmunity with high-dimensional single-cell spectral cytometry, adoptive transfer studies, and integrative analysis of human single-cell RNA-sequencing datasets, we identify an intrinsic defect in B cells as being primarily responsible. Not only are mice lacking ERAP1 more susceptible to CNS autoimmunity, but adoptive transfer of B cells lacking ERAP1 into B cell-deficient mice recapitulates this susceptibility. We found B cells lacking ERAP1 display decreased proliferation in vivo and express higher levels of activation/costimulatory markers. Integrative analysis of single-cell RNA sequencing of B cells from 36 individuals revealed subset-conserved differences in gene expression and pathway activation in individuals harboring the MS-linked K528R ERAP1 single-nucleotide polymorphism. Finally, our studies also led us to create, to our knowledge, the first murine protein-level map of the CNS IL-10+ immune compartment at steady state and during neuroinflammation. These studies identify a role for ERAP1 in the modulation of B cells and highlight this as one reason why polymorphisms in this gene are linked to MS.
Collapse
Affiliation(s)
- Patrick O'Connell
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI; and
| | - Maja K Blake
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI; and
| | - Sarah Godbehere
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI; and
| | - Yasser A Aldhamen
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI; and
| | - Andrea Amalfitano
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI; and .,Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| |
Collapse
|
12
|
Breban M, Glatigny S, Cherqaoui B, Beaufrère M, Lauraine M, Rincheval-Arnold A, Gaumer S, Guénal I, Araujo LM. Lessons on SpA pathogenesis from animal models. Semin Immunopathol 2021; 43:207-219. [PMID: 33449154 DOI: 10.1007/s00281-020-00832-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022]
Abstract
Understanding the complex mechanisms underlying a disorder such as spondyloarthritis (SpA) may benefit from studying animal models. Several suitable models have been developed, in particular to investigate the role of genetic factors predisposing to SpA, including HLA-B27, ERAP1, and genes related to the interleukin (IL)-23/IL-17 axis. One of the best examples of such research is the HLA-B27 transgenic rat model that fostered the emergence of original theories regarding HLA-B27 pathogenicity, including dysregulation of innate immunity, contribution of the adaptive immune system to chronic inflammation, and influence of the microbiota on disease development. Very recently, a new model of HLA-B27 transgenic Drosophila helped to expand further some of those theories in an unexpected direction involving the TGFβ/BMP family of mediators. On the other hand, several spontaneous, inducible, and/or genetically modified mouse models-including SKG mouse, TNFΔARE mouse and IL-23-inducible mouse model of SpA-have highlighted the importance of TNFα and IL-23/IL-17 axis in the development of SpA manifestations. Altogether, those animal models afford not only to study disease mechanism but also to investigate putative therapeutic targets.
Collapse
Affiliation(s)
- Maxime Breban
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, 2 ave de la Source de la Bièvre, 78180, Montigny-le-Bretonneux, France. .,Laboratoire d'Excellence Inflamex, Université Paris Descartes, Sorbonne-Paris-Cité, Paris, France. .,Service de Rhumatologie, Hôpital Ambroise Paré, AP-HP, 9 ave Charles de Gaulle, 92100, Boulogne, France.
| | - Simon Glatigny
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, 2 ave de la Source de la Bièvre, 78180, Montigny-le-Bretonneux, France.,Laboratoire d'Excellence Inflamex, Université Paris Descartes, Sorbonne-Paris-Cité, Paris, France
| | - Bilade Cherqaoui
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, 2 ave de la Source de la Bièvre, 78180, Montigny-le-Bretonneux, France.,Laboratoire d'Excellence Inflamex, Université Paris Descartes, Sorbonne-Paris-Cité, Paris, France
| | - Marie Beaufrère
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, 2 ave de la Source de la Bièvre, 78180, Montigny-le-Bretonneux, France.,Laboratoire d'Excellence Inflamex, Université Paris Descartes, Sorbonne-Paris-Cité, Paris, France
| | - Marc Lauraine
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, 2 ave de la Source de la Bièvre, 78180, Montigny-le-Bretonneux, France.,Laboratoire d'Excellence Inflamex, Université Paris Descartes, Sorbonne-Paris-Cité, Paris, France
| | - Aurore Rincheval-Arnold
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, 2 ave de la Source de la Bièvre, 78180, Montigny-le-Bretonneux, France
| | - Sébastien Gaumer
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, 2 ave de la Source de la Bièvre, 78180, Montigny-le-Bretonneux, France
| | - Isabelle Guénal
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, 2 ave de la Source de la Bièvre, 78180, Montigny-le-Bretonneux, France
| | - Luiza M Araujo
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, 2 ave de la Source de la Bièvre, 78180, Montigny-le-Bretonneux, France.,Laboratoire d'Excellence Inflamex, Université Paris Descartes, Sorbonne-Paris-Cité, Paris, France
| |
Collapse
|
13
|
McGinty J, Brittain N, Kenna TJ. Looking Beyond Th17 Cells: A Role for Tr1 Cells in Ankylosing Spondylitis? Front Immunol 2020; 11:608900. [PMID: 33343582 PMCID: PMC7738319 DOI: 10.3389/fimmu.2020.608900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Joanna McGinty
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nicola Brittain
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Tony J Kenna
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Clunie G, Horwood N. Loss and gain of bone in spondyloarthritis: what drives these opposing clinical features? Ther Adv Musculoskelet Dis 2020; 12:1759720X20969260. [PMID: 33240403 PMCID: PMC7675871 DOI: 10.1177/1759720x20969260] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
The breadth of bone lesion types seen in spondyloarthritis is unprecedented in
medicine and includes increased bone turnover, bone loss and fragility,
osteitis, osteolysis and erosion, osteosclerosis, osteoproliferation of soft
tissues adjacent to bone and spinal skeletal structure weakness. Remarkably,
these effects can be present simultaneously in the same patient. The search for
a potential unifying cause of effects on the skeleton necessarily focuses on
inflammation arising from the dysregulation of immune response to
microorganisms, particularly dysregulation of TH17 lymphocytes, and
the dysbiosis of established gut and other microbiota. The compelling notion
that a common antecedent pathological mechanism affects existing bone and
tissues with bone-forming potential (entheses), simultaneously with variable
effect in the former but bone-forming in the latter, drives basic research
forward and focuses our awareness on the effects on these bone mechanisms of the
increasing portfolio of targeted immunotherapies used in the clinic.
Collapse
Affiliation(s)
- Gavin Clunie
- Cambridge University Hospitals NHS Foundation Trust, Box, 204 Hills Rd, Cambridge CB2 0QQ, UK
| | - Nicole Horwood
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
15
|
Paladini F, Fiorillo MT, Tedeschi V, D'Otolo V, Piga M, Cauli A, Mathieu A, Sorrentino R. The rs75862629 minor allele in the endoplasmic reticulum aminopeptidases intergenic region affects human leucocyte antigen B27 expression and protects from ankylosing spondylitis in Sardinia. Rheumatology (Oxford) 2020; 58:2315-2324. [PMID: 31209470 DOI: 10.1093/rheumatology/kez212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/02/2019] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES HLA-B27 and the endoplasmic reticulum aminopeptidase 1 (ERAP1) and ERAP2 genes are predisposing factors for AS. A single nucleotide polymorphism (SNP) in the ERAP2 promoter (rs75862629) coordinates the transcription of both ERAP genes. We investigated whether this SNP associates with AS and whether it affects the expression of the two major HLA-B27 alleles present in Sardinia, the AS-associated B*2705 and the non-AS-associated B*2709. METHODS Four SNPs in the ERAP region were genotyped in HLA-B*2705-positive patients with AS (n = 145), B27-positive healthy subjects (n = 126) and B27-negative controls (n = 250) and the allele and haplotype frequencies were derived. The expression of ERAP1 and ERAP2 mRNAs in 36 HLA-B27-positive B lymphoblastoid cell lines was measured by quantitative PCR. An electrophoretic mobility shift assay was performed to search for a nuclear factor binding the DNA sequence encompassing rs75862629. The expression of HLA-B27 molecules related to the SNP at rs75862629 was determined by flow cytometry. RESULTS The minor allele G at rs75862629 was found significantly increased in B27 healthy individuals, both B*2705 and B*2709, compared with B*2705-positive patients with AS and B27-negative controls. The electrophoretic mobility shift assay indicated the lack of binding of a transcription factor as the cause of the observed reduction in the ERAP2 concomitant with a higher ERAP1 expression. Of note, this occurs with a different cell surface expression of the HLA-B*2705 and HLA-B*2709 molecules. CONCLUSION SNP rs75862629, by modulating simultaneously the expression of ERAP1 and ERAP2, provides protection from AS in HLA-B27-positive subjects in Sardinia. This has a functional impact on HLA-B27 expression and likely on disease onset.
Collapse
Affiliation(s)
- Fabiana Paladini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Viviana D'Otolo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Matteo Piga
- Rheumatology Unit, Department of Medical Sciences and Public Health, University and Azienda Ospedaliero-Universitaria di Cagliari, Cagliari, Italy
| | - Alberto Cauli
- Rheumatology Unit, Department of Medical Sciences and Public Health, University and Azienda Ospedaliero-Universitaria di Cagliari, Cagliari, Italy
| | - Alessandro Mathieu
- Rheumatology Unit, Department of Medical Sciences and Public Health, University and Azienda Ospedaliero-Universitaria di Cagliari, Cagliari, Italy
| | - Rosa Sorrentino
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Saulle I, Vicentini C, Clerici M, Biasin M. An Overview on ERAP Roles in Infectious Diseases. Cells 2020; 9:E720. [PMID: 32183384 PMCID: PMC7140696 DOI: 10.3390/cells9030720] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) aminopeptidases ERAP1 and ERAP2 (ERAPs) are crucial enzymes shaping the major histocompatibility complex I (MHC I) immunopeptidome. In the ER, these enzymes cooperate in trimming the N-terminal residues from precursors peptides, so as to generate optimal-length antigens to fit into the MHC class I groove. Alteration or loss of ERAPs function significantly modify the repertoire of antigens presented by MHC I molecules, severely affecting the activation of both NK and CD8+ T cells. It is, therefore, conceivable that variations affecting the presentation of pathogen-derived antigens might result in an inadequate immune response and onset of disease. After the first evidence showing that ERAP1-deficient mice are not able to control Toxoplasma gondii infection, a number of studies have demonstrated that ERAPs are control factors for several infectious organisms. In this review we describe how susceptibility, development, and progression of some infectious diseases may be affected by different ERAPs variants, whose mechanism of action could be exploited for the setting of specific therapeutic approaches.
Collapse
Affiliation(s)
- Irma Saulle
- Cattedra di Immunologia, Dipartimento di Scienze Biomediche e Cliniche L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy; (C.V.); (M.B.)
- Cattedra di Immunologia, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti Università degli Studi di Milano, 20122 Milan, Italy;
| | - Chiara Vicentini
- Cattedra di Immunologia, Dipartimento di Scienze Biomediche e Cliniche L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy; (C.V.); (M.B.)
| | - Mario Clerici
- Cattedra di Immunologia, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti Università degli Studi di Milano, 20122 Milan, Italy;
- IRCCS Fondazione Don Carlo Gnocchi, 20157 Milan, Italy
| | - Mara Biasin
- Cattedra di Immunologia, Dipartimento di Scienze Biomediche e Cliniche L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy; (C.V.); (M.B.)
| |
Collapse
|
17
|
Moffett JR, Arun P, Puthillathu N, Vengilote R, Ives JA, Badawy AAB, Namboodiri AM. Quinolinate as a Marker for Kynurenine Metabolite Formation and the Unresolved Question of NAD + Synthesis During Inflammation and Infection. Front Immunol 2020; 11:31. [PMID: 32153556 PMCID: PMC7047773 DOI: 10.3389/fimmu.2020.00031] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022] Open
Abstract
Quinolinate (Quin) is a classic example of a biochemical double-edged sword, acting as both essential metabolite and potent neurotoxin. Quin is an important metabolite in the kynurenine pathway of tryptophan catabolism leading to the de novo synthesis of nicotinamide adenine dinucleotide (NAD+). As a precursor for NAD+, Quin can direct a portion of tryptophan catabolism toward replenishing cellular NAD+ levels in response to inflammation and infection. Intracellular Quin levels increase dramatically in response to immune stimulation [e.g., lipopolysaccharide (LPS) or pokeweed mitogen (PWM)] in macrophages, microglia, dendritic cells, and other cells of the immune system. NAD+ serves numerous functions including energy production, the poly ADP ribose polymerization (PARP) reaction involved in DNA repair, and the activity of various enzymes such as the NAD+-dependent deacetylases known as sirtuins. We used highly specific antibodies to protein-coupled Quin to delineate cells that accumulate Quin as a key aspect of the response to immune stimulation and infection. Here, we describe Quin staining in the brain, spleen, and liver after LPS administration to the brain or systemic PWM administration. Quin expression was strong in immune cells in the periphery after both treatments, whereas very limited Quin expression was observed in the brain even after direct LPS injection. Immunoreactive cells exhibited diverse morphology ranging from foam cells to cells with membrane extensions related to cell motility. We also examined protein expression changes in the spleen after kynurenine administration. Acute (8 h) and prolonged (48 h) kynurenine administration led to significant changes in protein expression in the spleen, including multiple changes involved with cytoskeletal rearrangements associated with cell motility. Kynurenine administration resulted in several expression level changes in proteins associated with heat shock protein 90 (HSP90), a chaperone for the aryl-hydrocarbon receptor (AHR), which is the primary kynurenine metabolite receptor. We propose that cells with high levels of Quin are those that are currently releasing kynurenine pathway metabolites as well as accumulating Quin for sustained NAD+ synthesis from tryptophan. Further, we propose that the kynurenine pathway may be linked to the regulation of cell motility in immune and cancer cells.
Collapse
Affiliation(s)
- John R. Moffett
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| | - Peethambaran Arun
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| | - Narayanan Puthillathu
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| | - Ranjini Vengilote
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| | - John A. Ives
- The Center for Brain, Mind, and Healing, Samueli Institute, Alexandria, VA, United States
| | | | - Aryan M. Namboodiri
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| |
Collapse
|
18
|
Gao S, Xu T, Liang W, Xun C, Deng Q, Guo H, Sheng W. Association of
rs27044
and
rs30187
polymorphisms in
endoplasmic reticulum aminopeptidase 1
gene and ankylosing spondylitis susceptibility: A meta‐analysis. Int J Rheum Dis 2020; 23:499-510. [PMID: 31984677 DOI: 10.1111/1756-185x.13795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/11/2019] [Accepted: 12/29/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Shutao Gao
- Department of Spine Surgery Xinjiang Medical University First Affiliated Hospital Urumqi China
| | - Tao Xu
- Department of Spine Surgery Xinjiang Medical University First Affiliated Hospital Urumqi China
| | - Weidong Liang
- Department of Spine Surgery Xinjiang Medical University First Affiliated Hospital Urumqi China
| | - Chuanhui Xun
- Department of Spine Surgery Xinjiang Medical University First Affiliated Hospital Urumqi China
| | - Qiang Deng
- Department of Spine Surgery Xinjiang Medical University First Affiliated Hospital Urumqi China
| | - Hailong Guo
- Department of Spine Surgery Xinjiang Medical University First Affiliated Hospital Urumqi China
| | - Weibin Sheng
- Department of Spine Surgery Xinjiang Medical University First Affiliated Hospital Urumqi China
| |
Collapse
|
19
|
Compagnone M, Cifaldi L, Fruci D. Regulation of ERAP1 and ERAP2 genes and their disfunction in human cancer. Hum Immunol 2019; 80:318-324. [PMID: 30825518 DOI: 10.1016/j.humimm.2019.02.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/01/2019] [Accepted: 02/26/2019] [Indexed: 12/18/2022]
Abstract
The endoplasmic reticulum (ER) aminopeptidases ERAP1 and ERAP2 are two multifunctional enzymes playing an important role in the biological processes requiring trimming of substrates, including the generation of major histocompatibility complex (MHC) class I binding peptides. In the absence of ERAP enzymes, the cells exhibit a different pool of peptides on their surface which can promote both NK and CD8+ T cell-mediated immune responses. The expression of ERAP1 and ERAP2 is frequently altered in tumors, as compared to their normal counterparts, but how this affects tumor growth and anti-tumor immune responses has been little investigated. This review will provide an overview of current knowledge on transcriptional and post-transcriptional regulations of ERAP enzymes, and will discuss the contribution of recent studies to our understanding of ERAP1 and ERAP2 role in cancer immunity.
Collapse
Affiliation(s)
- Mirco Compagnone
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Loredana Cifaldi
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Doriana Fruci
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy.
| |
Collapse
|
20
|
The role of ERAP1 in autoinflammation and autoimmunity. Hum Immunol 2019; 80:302-309. [PMID: 30817945 DOI: 10.1016/j.humimm.2019.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/23/2019] [Accepted: 02/24/2019] [Indexed: 12/17/2022]
Abstract
Autoimmune and autoinflammatory diseases affect millions worldwide. These classes of disease involve abnormal immune activation of both the innate and adaptive immune systems. While both classes of disease represent a spectrum of aberrant immune activation, excessive activation of the innate immune system has been considered causal for the inflammation and tissue damage found in autoinflammatory diseases, while excessive activation of the adaptive immune system has been thought to primarily contribute to end-organ symptoms noted in autoimmune diseases. Interestingly, the endoplasmic reticulum aminopeptidase 1 (ERAP1) protein, well known for its aminopeptidase function as a "molecular ruler", trimming peptides prior to their loading onto MHC-I molecules for antigen presentation in the ER, has also been shown to be genetically associated with both autoinflammatory and autoimmune diseases. Indeed, this multifaceted protein has been found to have many functions that affect both the innate and adaptive immune responses. In this review, we summarize these findings, with an attempt to identify the possible ERAP1 dependent mechanisms responsible for the pathogenesis of multiple, ERAP1 associated diseases.
Collapse
|
21
|
Dendritic cells in the pathogenesis of ankylosing spondylitis and axial spondyloarthritis. Clin Rheumatol 2018; 38:1231-1235. [DOI: 10.1007/s10067-018-4388-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/28/2018] [Indexed: 01/01/2023]
|