1
|
Adamopoulos KI, Sanders LM, Costes SV. NASA GeneLab derived microarray studies of Mus musculus and Homo sapiens organisms in altered gravitational conditions. NPJ Microgravity 2024; 10:49. [PMID: 38671027 PMCID: PMC11053165 DOI: 10.1038/s41526-024-00392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
One of the greatest challenges of humanity for deep space exploration is to fully understand how altered gravitational conditions affect human physiology. It is evident that the spaceflight environment causes multiple alterations to musculoskeletal, cardiovascular, immune and central nervous systems, to name a few known effects. To better characterize these biological effects, we compare gene expression datasets from microarray studies found in NASA GeneLab, part of the NASA Open Science Data Repository. In this review, we summarize these archived results for various tissues, emphasizing key genes which are highly reproducible in different mice or human experiments. Such exhaustive mining shows the potential of NASA Open Science data to identify and validate mechanisms taking place when mammalian organisms are exposed to microgravity or other spaceflight conditions. Our comparative meta-analysis findings highlight certain degrees of overlap and reproducibility in genes identified as differentially expressed within musculoskeletal tissues in each species across a variety of altered gravity conditions. However, the level of overlap between species was found to be significantly limited, partly attributed to the limited availability of human samples.
Collapse
Affiliation(s)
- Konstantinos I Adamopoulos
- National Technical University of Athens, School of Electrical and Computer Engineering, Biomedical Engineering Laboratory, Zografou, Athens, Greece
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Lauren M Sanders
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- NASA Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Sylvain V Costes
- NASA Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
| |
Collapse
|
2
|
Tran MT, Ho CNQ, Hoang SN, Doan CC, Nguyen MT, Van HD, Ly CN, Le CPM, Hoang HNQ, Nguyen HTM, Truong HT, To QM, Nguyen TTT, Le LT. Morphological Changes of 3T3 Cells under Simulated Microgravity. Cells 2024; 13:344. [PMID: 38391957 PMCID: PMC10887114 DOI: 10.3390/cells13040344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Cells are sensitive to changes in gravity, especially the cytoskeletal structures that determine cell morphology. The aim of this study was to assess the effects of simulated microgravity (SMG) on 3T3 cell morphology, as demonstrated by a characterization of the morphology of cells and nuclei, alterations of microfilaments and microtubules, and changes in cycle progression. METHODS 3T3 cells underwent induced SMG for 72 h with Gravite®, while the control group was under 1G. Fluorescent staining was applied to estimate the morphology of cells and nuclei and the cytoskeleton distribution of 3T3 cells. Cell cycle progression was assessed by using the cell cycle app of the Cytell microscope, and Western blot was conducted to determine the expression of the major structural proteins and main cell cycle regulators. RESULTS The results show that SMG led to decreased nuclear intensity, nuclear area, and nuclear shape and increased cell diameter in 3T3 cells. The 3T3 cells in the SMG group appeared to have a flat form and diminished microvillus formation, while cells in the control group displayed an apical shape and abundant microvilli. The 3T3 cells under SMG exhibited microtubule distribution surrounding the nucleus, compared to the perinuclear accumulation in control cells. Irregular forms of the contractile ring and polar spindle were observed in 3T3 cells under SMG. The changes in cytoskeleton structure were caused by alterations in the expression of major cytoskeletal proteins, including β-actin and α-tubulin 3. Moreover, SMG induced 3T3 cells into the arrest phase by reducing main cell cycle related genes, which also affected the formation of cytoskeleton structures such as microfilaments and microtubules. CONCLUSIONS These results reveal that SMG generated morphological changes in 3T3 cells by remodeling the cytoskeleton structure and downregulating major structural proteins and cell cycle regulators.
Collapse
Affiliation(s)
- Minh Thi Tran
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 70000, Vietnam;
| | - Chi Nguyen Quynh Ho
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City 100000, Vietnam
| | - Son Nghia Hoang
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City 100000, Vietnam
| | - Chung Chinh Doan
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City 100000, Vietnam
| | - Minh Thai Nguyen
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
| | - Huy Duc Van
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
| | - Cang Ngoc Ly
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
| | - Cuong Phan Minh Le
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
| | - Huy Nghia Quang Hoang
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City 100000, Vietnam
| | - Han Thai Minh Nguyen
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
- Biotechnology Innovation Center, University of New Hampshire, Manchester, NH 03101, USA
| | - Han Thi Truong
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Quan Minh To
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City 70000, Vietnam;
| | - Tram Thi Thuy Nguyen
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
- Faculty of General Biomedical, University of Physical Education and Sport, Ho Chi Minh City 70000, Vietnam
| | - Long Thanh Le
- Animal Biotechnology Department, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam; (C.N.Q.H.); (S.N.H.); (C.C.D.); (M.T.N.); (H.D.V.); (C.N.L.); (C.P.M.L.); (H.N.Q.H.); (H.T.M.N.); (T.T.T.N.)
- Biotechnology Department, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City 100000, Vietnam
| |
Collapse
|
3
|
Graf J, Schulz H, Wehland M, Corydon TJ, Sahana J, Abdelfattah F, Wuest SL, Egli M, Krüger M, Kraus A, Wise PM, Infanger M, Grimm D. Omics Studies of Tumor Cells under Microgravity Conditions. Int J Mol Sci 2024; 25:926. [PMID: 38255998 PMCID: PMC10815863 DOI: 10.3390/ijms25020926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer is defined as a group of diseases characterized by abnormal cell growth, expansion, and progression with metastasis. Various signaling pathways are involved in its development. Malignant tumors exhibit a high morbidity and mortality. Cancer research increased our knowledge about some of the underlying mechanisms, but to this day, our understanding of this disease is unclear. High throughput omics technology and bioinformatics were successful in detecting some of the unknown cancer mechanisms. However, novel groundbreaking research and ideas are necessary. A stay in orbit causes biochemical and molecular biological changes in human cancer cells which are first, and above all, due to microgravity (µg). The µg-environment provides conditions that are not reachable on Earth, which allow researchers to focus on signaling pathways controlling cell growth and metastasis. Cancer research in space already demonstrated how cancer cell-exposure to µg influenced several biological processes being involved in cancer. This novel approach has the potential to fight cancer and to develop future cancer strategies. Space research has been shown to impact biological processes in cancer cells like proliferation, apoptosis, cell survival, adhesion, migration, the cytoskeleton, the extracellular matrix, focal adhesion, and growth factors, among others. This concise review focuses on publications related to genetic, transcriptional, epigenetic, proteomic, and metabolomic studies on tumor cells exposed to real space conditions or to simulated µg using simulation devices. We discuss all omics studies investigating different tumor cell types from the brain and hematological system, sarcomas, as well as thyroid, prostate, breast, gynecologic, gastrointestinal, and lung cancers, in order to gain new and innovative ideas for understanding the basic biology of cancer.
Collapse
Affiliation(s)
- Jenny Graf
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.); (J.S.)
- Department of Ophthalmology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.); (J.S.)
| | - Fatima Abdelfattah
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
| | - Simon L. Wuest
- Space Biology Group, Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland (M.E.)
| | - Marcel Egli
- Space Biology Group, Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland (M.E.)
- National Center for Biomedical Research in Space, Innovation Cluster Space and Aviation (UZH Space Hub), University Zurich, 8006 Zurich, Switzerland
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
| | - Armin Kraus
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Petra M. Wise
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
- The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Manfred Infanger
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
- Clinic for Plastic, Aesthetic and Hand Surgery, Medical Faculty, University Hospital Magdeburg, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany; (J.G.); (H.S.); (M.W.); (F.A.); (M.K.); (P.M.W.)
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen” (MARS), Otto von Guericke University, 39106 Magdeburg, Germany; (A.K.); (M.I.)
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; (T.J.C.); (J.S.)
| |
Collapse
|
4
|
Wernlé K, Thiel CS, Ullrich O. Increased H3K9me3 and F-Actin Reorganization in the Rapid Adaptive Response to Hypergravity in Human T Lymphocytes. Int J Mol Sci 2023; 24:17232. [PMID: 38139061 PMCID: PMC10743231 DOI: 10.3390/ijms242417232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Our study explored the impact of hypergravity on human T cells, which experience additional acceleration forces beyond Earth's gravity due to various factors, such as pulsatile blood flow, and technology, such as high-performance aircraft flights or spaceflights. We investigated the histone modifications Histone 3 lysine 4 and 9 trimethylation (H3K4me3 and H3K9me3, respectively), as well as the structural and cytoskeletal organization of Jurkat T cells in response to hypergravity. Histone modifications play a crucial role in gene regulation, chromatin organization and DNA repair. In response to hypergravity, we found only minimal changes of H3K4me3 and a rapid increase in H3K9me3, which was sustained for up to 15 min and then returned to control levels after 1 h. Furthermore, rapid changes in F-actin fluorescence were observed within seconds of hypergravity exposure, indicating filament depolymerization and cytoskeletal restructuring, which subsequently recovered after 1 h of hypergravity. Our study demonstrated the rapid, dynamic and adaptive cellular response to hypergravity, particularly in terms of histone modifications and cytoskeletal changes. These responses are likely necessary for maintaining genome stability and structural integrity under hypergravity conditions as they are constantly occurring in the human body during blood cell circulation.
Collapse
Affiliation(s)
- Kendra Wernlé
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
- Faculty of Medical Sciences, Private University of the Principality of Liechtenstein (UFL), Dorfstrasse 24, 9495 Triesen, Liechtenstein
| | - Cora S. Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
- Institute of Machine Design, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, Merritt Island, FL 32953, USA
- UZH Space Hub, Air Force Center, Air Base Dübendorf, Überlandstrasse 270, 8600 Dubendorf, Switzerland
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
- Institute of Machine Design, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, Merritt Island, FL 32953, USA
- UZH Space Hub, Air Force Center, Air Base Dübendorf, Überlandstrasse 270, 8600 Dubendorf, Switzerland
- Department of Industrial Engineering, Ernst-Abbe-Hochschule (EAH) Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
Hicks J, Olson M, Mitchell C, Juran CM, Paul AM. The Impact of Microgravity on Immunological States. Immunohorizons 2023; 7:670-682. [PMID: 37855736 PMCID: PMC10615652 DOI: 10.4049/immunohorizons.2200063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/13/2023] [Indexed: 10/20/2023] Open
Abstract
As we explore other planetary bodies, astronauts will face unique environmental and physiological challenges. The human immune system has evolved under Earth's gravitational force. Consequently, in the microgravity environment of space, immune function is altered. This can pose problematic consequences for astronauts on deep space missions where medical intervention will be limited. Studying the unique environment of microgravity has its challenges, yet current research has uncovered immunological states that are probable during exploration missions. As microgravity-induced immune states are uncovered, novel countermeasure developments and personalized mitigation programs can be designed to improve astronaut health. This can also benefit immune-related monitoring programs for disorders on Earth. This is a comprehensive review, including gaps in knowledge, of simulated and spaceflight microgravity studies in human and rodent models.
Collapse
Affiliation(s)
- Janelle Hicks
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL
| | - Makaila Olson
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL
| | - Carol Mitchell
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL
| | - Cassandra M. Juran
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA
- Blue Marble Space Institute of Science, Seattle, WA
| | - Amber M. Paul
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA
- Blue Marble Space Institute of Science, Seattle, WA
| |
Collapse
|
6
|
Murali A, Sarkar RR. Mechano-immunology in microgravity. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:50-64. [PMID: 37087179 DOI: 10.1016/j.lssr.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 05/03/2023]
Abstract
Life on Earth has evolved to thrive in the Earth's natural gravitational field; however, as space technology advances, we must revisit and investigate the effects of unnatural conditions on human health, such as gravitational change. Studies have shown that microgravity has a negative impact on various systemic parts of humans, with the effects being more severe in the human immune system. Increasing costs, limited experimental time, and sample handling issues hampered our understanding of this field. To address the existing knowledge gap and provide confidence in modelling the phenomena, in this review, we highlight experimental works in mechano-immunology under microgravity and different computational modelling approaches that can be used to address the existing problems.
Collapse
Affiliation(s)
- Anirudh Murali
- Chemical Engineering and Process Development, CSIR - National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development, CSIR - National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Vahlensieck C, Thiel CS, Mosimann M, Bradley T, Caldana F, Polzer J, Lauber BA, Ullrich O. Transcriptional Response in Human Jurkat T Lymphocytes to a near Physiological Hypergravity Environment and to One Common in Routine Cell Culture Protocols. Int J Mol Sci 2023; 24:ijms24021351. [PMID: 36674869 PMCID: PMC9863927 DOI: 10.3390/ijms24021351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Cellular effects of hypergravity have been described in many studies. We investigated the transcriptional dynamics in Jurkat T cells between 20 s and 60 min of 9 g hypergravity and characterized a highly dynamic biphasic time course of gene expression response with a transition point between rapid adaptation and long-term response at approximately 7 min. Upregulated genes were shifted towards the center of the nuclei, whereby downregulated genes were shifted towards the periphery. Upregulated gene expression was mostly located on chromosomes 16-22. Protein-coding transcripts formed the majority with more than 90% of all differentially expressed genes and followed a continuous trend of downregulation, whereas retained introns demonstrated a biphasic time-course. The gene expression pattern of hypergravity response was not comparable with other stress factors such as oxidative stress, heat shock or inflammation. Furthermore, we tested a routine centrifugation protocol that is widely used to harvest cells for subsequent RNA analysis and detected a huge impact on the transcriptome compared to non-centrifuged samples, which did not return to baseline within 15 min. Thus, we recommend carefully studying the response of any cell types used for any experiments regarding the hypergravity time and levels applied during cell culture procedures and analysis.
Collapse
Affiliation(s)
- Christian Vahlensieck
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Cora Sandra Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, FL 32953, USA
- UZH Space Hub, Air Force Center, Air Base Dübendorf, Überlandstrasse 270, 8600 Dübendorf, Switzerland
- Correspondence: (C.S.T.); (O.U.)
| | - Meret Mosimann
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Timothy Bradley
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Fabienne Caldana
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jennifer Polzer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Beatrice Astrid Lauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, FL 32953, USA
- UZH Space Hub, Air Force Center, Air Base Dübendorf, Überlandstrasse 270, 8600 Dübendorf, Switzerland
- Ernst-Abbe-Hochschule (EAH) Jena, Department of Industrial Engineering, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Correspondence: (C.S.T.); (O.U.)
| |
Collapse
|
8
|
Rapid Downregulation of H3K4me3 Binding to Immunoregulatory Genes in Altered Gravity in Primary Human M1 Macrophages. Int J Mol Sci 2022; 24:ijms24010603. [PMID: 36614046 PMCID: PMC9820304 DOI: 10.3390/ijms24010603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
The sensitivity of human immune system cells to gravity changes has been investigated in numerous studies. Human macrophages mediate innate and thus rapid immune defense on the one hand and activate T- and B-cell-based adaptive immune response on the other hand. In this process they finally act as immunoeffector cells, and are essential for tissue regeneration and remodeling. Recently, we demonstrated in the human Jurkat T cell line that genes are differentially regulated in cluster structures under altered gravity. In order to study an in vivo near system of immunologically relevant human cells under physically real microgravity, we performed parabolic flight experiments with primary human M1 macrophages under highly standardized conditions and performed chromatin immunoprecipitation DNA sequencing (ChIP-Seq) for whole-genome epigenetic detection of the DNA-binding loci of the main transcription complex RNA polymerase II and the transcription-associated epigenetic chromatin modification H3K4me3. We identified an overall downregulation of H3K4me3 binding loci in altered gravity, which were unequally distributed inter- and intrachromosomally throughout the genome. Three-quarters of all affected loci were located on the p arm of the chromosomes chr5, chr6, chr9, and chr19. The genomic distribution of the downregulated H3K4me3 loci corresponds to a substantial extent to immunoregulatory genes. In microgravity, analysis of RNA polymerase II binding showed increased binding to multiple loci at coding sequences but decreased binding to central noncoding regions. Detection of altered DNA binding of RNA polymerase II provided direct evidence that gravity changes can lead to altered transcription. Based on this study, we hypothesize that the rapid transcriptional response to changing gravitational forces is specifically encoded in the epigenetic organization of chromatin.
Collapse
|
9
|
Ogneva IV. Single Cell in a Gravity Field. Life (Basel) 2022; 12:1601. [PMID: 36295035 PMCID: PMC9604728 DOI: 10.3390/life12101601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023] Open
Abstract
The exploration of deep space or other bodies of the solar system, associated with a long stay in microgravity or altered gravity, requires the development of fundamentally new methods of protecting the human body. Most of the negative changes in micro- or hypergravity occur at the cellular level; however, the mechanism of reception of the altered gravity and transduction of this signal, leading to the formation of an adaptive pattern of the cell, is still poorly understood. At the same time, most of the negative changes that occur in early embryos when the force of gravity changes almost disappear by the time the new organism is born. This review is devoted to the responses of early embryos and stem cells, as well as terminally differentiated germ cells, to changes in gravity. An attempt was made to generalize the data presented in the literature and propose a possible unified mechanism for the reception by a single cell of an increase and decrease in gravity based on various deformations of the cortical cytoskeleton.
Collapse
Affiliation(s)
- Irina V Ogneva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia
| |
Collapse
|
10
|
Li H, Xue YW, Quan Y, Zhang HY. Reducing Virus Infection Risk in Space Environments through Nutrient Supplementation. Genes (Basel) 2022; 13:1536. [PMID: 36140704 PMCID: PMC9498414 DOI: 10.3390/genes13091536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Space exploration has brought many challenges to human physiology. In order to evaluate and reduce possible pathological reactions triggered by space environments, we conducted bioinformatics analyses on the methylation data of the Mars 520 mission and human transcriptome data in the experiment simulating gravity changes. The results suggest that gene expression levels and DNA methylation levels were changed under the conditions of isolation and gravity changes, and multiple viral infection-related pathways were found in the enrichment analysis results of changed genes including Epstein Barr virus (EBV) infection, Hepatitis B virus (HBV) infection, Herpes simplex virus (HSV) infection and Kaposi's sarcoma-associated herpesvirus (KHSV) infection. In this study, we found that Epigallocatechin-3-gallate (EGCG) and vitamin D are helpful in reducing viral infection risk. In addition, the causal associations between nutrients and viral infections were calculated using Two sample Mendelian Randomization (2SMR) method, the results indicated that vitamin D can reduce EBV infection and HBV infection risk. In summary, our study suggests that space environments increase the risk of human viral infection, which may be reduced by supplementing EGCG and vitamin D. These results can be used to formulate medical plans for astronauts, which have practical application value for future space exploration.
Collapse
Affiliation(s)
| | | | - Yuan Quan
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
11
|
Vahlensieck C, Thiel CS, Pöschl D, Bradley T, Krammer S, Lauber B, Polzer J, Ullrich O. Post-Transcriptional Dynamics is Involved in Rapid Adaptation to Hypergravity in Jurkat T Cells. Front Cell Dev Biol 2022; 10:933984. [PMID: 35859900 PMCID: PMC9289288 DOI: 10.3389/fcell.2022.933984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
The transcriptome of human immune cells rapidly reacts to altered gravity in a highly dynamic way. We could show in previous experiments that transcriptional patterns show profound adaption after seconds to minutes of altered gravity. To gain further insight into these transcriptional alteration and adaption dynamics, we conducted a highly standardized RNA-Seq experiment with human Jurkat T cells exposed to 9xg hypergravity for 3 and 15 min, respectively. We investigated the frequency with which individual exons were used during transcription and discovered that differential exon usage broadly appeared after 3 min and became less pronounced after 15 min. Additionally, we observed a shift in the transcript pool from coding towards non-coding transcripts. Thus, adaption of gravity-sensitive differentially expressed genes followed a dynamic transcriptional rebound effect. The general dynamics were compatible with previous studies on the transcriptional effects of short hypergravity on human immune cells and suggest that initial up-regulatory changes mostly result from increased elongation rates. The shift correlated with a general downregulation of the affected genes. All chromosome bands carried homogenous numbers of gravity-sensitive genes but showed a specific tendency towards up- or downregulation. Altered gravity affected transcriptional regulation throughout the entire genome, whereby the direction of differential expression was strongly dependent on the structural location in the genome. A correlation analysis with potential mediators of the early transcriptional response identified a link between initially upregulated genes with certain transcription factors. Based on these findings, we have been able to further develop our model of the transcriptional response to altered gravity.
Collapse
Affiliation(s)
- Christian Vahlensieck
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Dübendorf, Switzerland
| | - Cora S. Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Dübendorf, Switzerland
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center (KSC), Merritt Island, FL, United States
- Space Biotechnology, Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- *Correspondence: Cora S. Thiel, ; Oliver Ullrich,
| | - Daniel Pöschl
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Timothy Bradley
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Sonja Krammer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Dübendorf, Switzerland
| | - Beatrice Lauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Jennifer Polzer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Dübendorf, Switzerland
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center (KSC), Merritt Island, FL, United States
- Space Biotechnology, Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Space Medicine, Ernst-Abbe-Hochschule (EAH) Jena, Department of Industrial Engineering, Jena, Germany
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- *Correspondence: Cora S. Thiel, ; Oliver Ullrich,
| |
Collapse
|
12
|
Murgia M, Ciciliot S, Nagaraj N, Reggiani C, Schiaffino S, Franchi MV, Pišot R, Šimunič B, Toniolo L, Blaauw B, Sandri M, Biolo G, Flück M, Narici MV, Mann M. Signatures of muscle disuse in spaceflight and bed rest revealed by single muscle fiber proteomics. PNAS NEXUS 2022; 1:pgac086. [PMID: 36741463 PMCID: PMC9896895 DOI: 10.1093/pnasnexus/pgac086] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023]
Abstract
Astronauts experience dramatic loss of muscle mass, decreased strength, and insulin resistance, despite performing daily intense physical exercise that would lead to muscle growth on Earth. Partially mimicking spaceflight, prolonged bed rest causes muscle atrophy, loss of force, and glucose intolerance. To unravel the underlying mechanisms, we employed highly sensitive single fiber proteomics to detail the molecular remodeling caused by unloading and inactivity during bed rest and changes of the muscle proteome of astronauts before and after a mission on the International Space Station. Muscle focal adhesions, involved in fiber-matrix interaction and insulin receptor stabilization, are prominently downregulated in both bed rest and spaceflight and restored upon reloading. Pathways of antioxidant response increased strongly in slow but not in fast muscle fibers. Unloading alone upregulated markers of neuromuscular damage and the pathway controlling EIF5A hypusination. These proteomic signatures of mechanical unloading in muscle fiber subtypes contribute to disentangle the effect of microgravity from the pleiotropic challenges of spaceflight.
Collapse
Affiliation(s)
| | - Stefano Ciciliot
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padua, Italy,Department of Molecular Medicine, University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | | | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padua, Italy,Science and Research Center Koper, Institute for Kinesiology Research, Garibaldijeva Street 1, 6000 Koper, Slovenia
| | | | - Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padua, Italy
| | - Rado Pišot
- Science and Research Center Koper, Institute for Kinesiology Research, Garibaldijeva Street 1, 6000 Koper, Slovenia
| | - Boštjan Šimunič
- Science and Research Center Koper, Institute for Kinesiology Research, Garibaldijeva Street 1, 6000 Koper, Slovenia
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padua, Italy
| | - Bert Blaauw
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padua, Italy,Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padua, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padua, Italy,Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padua, Italy
| | - Gianni Biolo
- Clinical Department of Medical, Surgical and Health Sciences, Strada di Fiume 447, 34149 Trieste, Italy
| | - Martin Flück
- Department of Medicine, University of Fribourg, Chemin du Musee 5, 1700 Fribourg, Switzerland
| | - Marco V Narici
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padua, Italy,Science and Research Center Koper, Institute for Kinesiology Research, Garibaldijeva Street 1, 6000 Koper, Slovenia,CIR-MYO Myology Center, Viale G Colombo 3, 35121 Padua, Italy
| | - Matthias Mann
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany,NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, Building 6.1, 2200 Copenhagen, Denmark
| |
Collapse
|
13
|
Beheshti A, McDonald JT, Hada M, Takahashi A, Mason CE, Mognato M. Genomic Changes Driven by Radiation-Induced DNA Damage and Microgravity in Human Cells. Int J Mol Sci 2021; 22:ijms221910507. [PMID: 34638848 PMCID: PMC8508777 DOI: 10.3390/ijms221910507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022] Open
Abstract
The space environment consists of a complex mixture of different types of ionizing radiation and altered gravity that represents a threat to humans during space missions. In particular, individual radiation sensitivity is strictly related to the risk of space radiation carcinogenesis. Therefore, in view of future missions to the Moon and Mars, there is an urgent need to estimate as accurately as possible the individual risk from space exposure to improve the safety of space exploration. In this review, we survey the combined effects from the two main physical components of the space environment, ionizing radiation and microgravity, to alter the genetics and epigenetics of human cells, considering both real and simulated space conditions. Data collected from studies on human cells are discussed for their potential use to estimate individual radiation carcinogenesis risk from space exposure.
Collapse
Affiliation(s)
- Afshin Beheshti
- KBR, NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Correspondence: or (A.B.); (M.M.)
| | - J. Tyson McDonald
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington, DC 20007, USA;
| | - Megumi Hada
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA;
- The World Quant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10065, USA
| | - Maddalena Mognato
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
- Correspondence: or (A.B.); (M.M.)
| |
Collapse
|
14
|
Gravitational Force-Induced 3D Chromosomal Conformational Changes Are Associated with Rapid Transcriptional Response in Human T Cells. Int J Mol Sci 2021; 22:ijms22179426. [PMID: 34502336 PMCID: PMC8430767 DOI: 10.3390/ijms22179426] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
The mechanisms underlying gravity perception in mammalian cells are unknown. We have recently discovered that the transcriptome of cells in the immune system, which is the most affected system during a spaceflight, responds rapidly and broadly to altered gravity. To pinpoint potential underlying mechanisms, we compared gene expression and three-dimensional (3D) chromosomal conformational changes in human Jurkat T cells during the short-term gravitational changes in parabolic flight and suborbital ballistic rocket flight experiments. We found that differential gene expression in gravity-responsive chromosomal regions, but not differentially regulated single genes, are highly conserved between different real altered gravity comparisons. These coupled gene expression effects in chromosomal regions could be explained by underlying chromatin structures. Based on a high-throughput chromatin conformation capture (Hi-C) analysis in altered gravity, we found that small chromosomes (chr16–22, with the exception of chr18) showed increased intra- and interchromosomal interactions in altered gravity, whereby large chromosomes showed decreased interactions. Finally, we detected a nonrandom overlap between Hi-C-identified chromosomal interacting regions and gravity-responsive chromosomal regions (GRCRs). We therefore demonstrate the first evidence that gravitational force-induced 3D chromosomal conformational changes are associated with rapid transcriptional response in human T cells. We propose a general model of cellular sensitivity to gravitational forces, where gravitational forces acting on the cellular membrane are rapidly and mechanically transduced through the cytoskeleton into the nucleus, moving chromosome territories to new conformation states and their genes into more expressive or repressive environments, finally resulting in region-specific differential gene expression.
Collapse
|
15
|
Rapid Transient Transcriptional Adaptation to Hypergravity in Jurkat T Cells Revealed by Comparative Analysis of Microarray and RNA-Seq Data. Int J Mol Sci 2021; 22:ijms22168451. [PMID: 34445156 PMCID: PMC8395121 DOI: 10.3390/ijms22168451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cellular responses to micro- and hypergravity are rapid and complex and appear within the first few seconds of exposure. Transcriptomic analyses are a valuable tool to analyze these genome-wide cellular alterations. For a better understanding of the cellular dynamics upon altered gravity exposure, it is important to compare different time points. However, since most of the experiments are designed as endpoint measurements, the combination of cross-experiment meta-studies is inevitable. Microarray and RNA-Seq analyses are two of the main methods to study transcriptomics. In the field of altered gravity research, both methods are frequently used. However, the generation of these data sets is difficult and time-consuming and therefore the number of available data sets in this research field is limited. In this study, we investigated the comparability of microarray and RNA-Seq data and applied the results to a comparison of the transcriptomics dynamics between the hypergravity conditions during two real flight platforms and a centrifuge experiment to identify temporal adaptation processes. We performed a comparative study on an Affymetrix HTA2.0 microarray and a paired-end RNA-Seq data set originating from the same Jurkat T cell RNA samples from a short-term hypergravity experiment. The overall agreeability was high, with better sensitivity of the RNA-Seq analysis. The microarray data set showed weaknesses on the level of single upregulated genes, likely due to its normalization approach. On an aggregated level of biotypes, chromosomal distribution, and gene sets, both technologies performed equally well. The microarray showed better performance on the detection of altered gravity-related splicing events. We found that all initially altered transcripts fully adapted after 15 min to hypergravity and concluded that the altered gene expression response to hypergravity is transient and fully reversible. Based on the combined multiple-platform meta-analysis, we could demonstrate rapid transcriptional adaptation to hypergravity, the differential expression of the ATPase subunits ATP6V1A and ATP6V1D, and the cluster of differentiation (CD) molecules CD1E, CD2AP, CD46, CD47, CD53, CD69, CD96, CD164, and CD226 in hypergravity. We could experimentally demonstrate that it is possible to develop methodological evidence for the meta-analysis of individual data.
Collapse
|
16
|
Braddock M. From Target Identification to Drug Development in Space: Using the Microgravity Assist. Curr Drug Discov Technol 2021; 17:45-56. [PMID: 30648510 DOI: 10.2174/1570163816666190112150014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/19/2022]
Abstract
The unique nature of microgravity encountered in space provides an opportunity for drug discovery and development that cannot be replicated on Earth. From the production of superior protein crystals to the identification and validation of new drug targets to microarray analyses of transcripts attenuated by microgravity, there are numerous examples which demonstrate the benefit of exploiting the space environment. Moreover, studies conducted on Space Shuttle missions, the International Space Station and other craft have had a direct benefit for drug development programmes such as those directed against reducing bone and muscle loss or increasing bone formation. This review will highlight advances made in both drug discovery and development and offer some future insight into how drug discovery and associated technologies may be further advanced using the microgravity assist.
Collapse
Affiliation(s)
- Martin Braddock
- Sherwood Observatory, Mansfield and Sutton Astronomical Society, Coxmoor Road, Sutton-in-Ashfield, Nottinghamshire, NG17 5LF, United Kingdom
| |
Collapse
|
17
|
Thiel CS, Vahlensieck C, Bradley T, Tauber S, Lehmann M, Ullrich O. Metabolic Dynamics in Short- and Long-Term Microgravity in Human Primary Macrophages. Int J Mol Sci 2021; 22:ijms22136752. [PMID: 34201720 PMCID: PMC8269311 DOI: 10.3390/ijms22136752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/24/2022] Open
Abstract
Microgravity acts on cellular systems on several levels. Cells of the immune system especially react rapidly to changes in gravity. In this study, we performed a correlative metabolomics analysis on short-term and long-term microgravity effects on primary human macrophages. We could detect an increased amino acid concentration after five minutes of altered gravity, that was inverted after 11 days of microgravity. The amino acids that reacted the most to changes in gravity were tightly clustered. The observed effects indicated protein degradation processes in microgravity. Further, glucogenic and ketogenic amino acids were further degraded to Glucose and Ketoleucine. The latter is robustly accumulated in short-term and long-term microgravity but not in hypergravity. We detected highly dynamic and also robust adaptative metabolic changes in altered gravity. Metabolomic studies could contribute significantly to the understanding of gravity-induced integrative effects in human cells.
Collapse
Affiliation(s)
- Cora S. Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (C.V.); (T.B.); (S.T.)
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Überlandstrasse 271, 8600 Dübendorf, Switzerland
- Correspondence: (C.S.T.); (O.U.)
| | - Christian Vahlensieck
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (C.V.); (T.B.); (S.T.)
| | - Timothy Bradley
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (C.V.); (T.B.); (S.T.)
| | - Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (C.V.); (T.B.); (S.T.)
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Überlandstrasse 271, 8600 Dübendorf, Switzerland
| | - Martin Lehmann
- Biocenter LMU Muenchen, Department of Biology I–Botany, Großhaderner Strasse 2–4, 82152 Planegg-Martinsried, Germany;
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (C.V.); (T.B.); (S.T.)
- Innovation Cluster Space and Aviation (UZH Space Hub), Air Force Center, University of Zurich, Überlandstrasse 271, 8600 Dübendorf, Switzerland
- Space Biotechnology, Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Space Medicine, Ernst-Abbe-Hochschule (EAH) Jena, Department of Industrial Engineering, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center (KSC), 505 Odyssey Way, Exploration Park, FL 32953, USA
- Correspondence: (C.S.T.); (O.U.)
| |
Collapse
|
18
|
Ludtka C, Silberman J, Moore E, Allen JB. Macrophages in microgravity: the impact of space on immune cells. NPJ Microgravity 2021; 7:13. [PMID: 33790288 PMCID: PMC8012370 DOI: 10.1038/s41526-021-00141-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/26/2021] [Indexed: 12/18/2022] Open
Abstract
The effects of a microgravity environment on the myriad types of immune cells present within the human body have been assessed both by bench-scale simulation and suborbital methods, as well as in true spaceflight. Macrophages have garnered increased research interest in this context in recent years. Their functionality in both immune response and tissue remodeling makes them a unique cell to investigate in regards to gravisensitive effects as well as parameters of interest that could impact astronaut health. Here, we review and summarize the literature investigating the effects of microgravity on macrophages and monocytes regarding the microgravity environment simulation/generation methods, cell sources, experiment durations, and parameters of interest utilized within the field. We discuss reported findings on the impacts of microgravity on macrophage/monocyte structure, adhesion and migration, proliferation, genetic expression, cytokine secretion, and reactive oxygen species production, as well as polarization. Based on this body of data, we make recommendations to the field for careful consideration of experimental design to complement existing reports, as the multitude of disparate study methods previously published can make drawing direct comparisons difficult. However, the breadth of different testing methodologies can also lend itself to attempting to identify the most robust and consistent responses to microgravity across various testing conditions.
Collapse
Affiliation(s)
- Christopher Ludtka
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Justin Silberman
- Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Erika Moore
- Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Josephine B Allen
- Materials Science and Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
19
|
Choromańska A, Chwiłkowska A, Kulbacka J, Baczyńska D, Rembiałkowska N, Szewczyk A, Michel O, Gajewska-Naryniecka A, Przystupski D, Saczko J. Modifications of Plasma Membrane Organization in Cancer Cells for Targeted Therapy. Molecules 2021; 26:1850. [PMID: 33806009 PMCID: PMC8037978 DOI: 10.3390/molecules26071850] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Modifications of the composition or organization of the cancer cell membrane seem to be a promising targeted therapy. This approach can significantly enhance drug uptake or intensify the response of cancer cells to chemotherapeutics. There are several methods enabling lipid bilayer modifications, e.g., pharmacological, physical, and mechanical. It is crucial to keep in mind the significance of drug resistance phenomenon, ion channel and specific receptor impact, and lipid bilayer organization in planning the cell membrane-targeted treatment. In this review, strategies based on cell membrane modulation or reorganization are presented as an alternative tool for future therapeutic protocols.
Collapse
Affiliation(s)
- Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Agnieszka Chwiłkowska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Olga Michel
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Agnieszka Gajewska-Naryniecka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Dawid Przystupski
- Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| |
Collapse
|
20
|
Fajardo-Cavazos P, Nicholson WL. Mechanotransduction in Prokaryotes: A Possible Mechanism of Spaceflight Adaptation. Life (Basel) 2021; 11:33. [PMID: 33430182 PMCID: PMC7825584 DOI: 10.3390/life11010033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
Our understanding of the mechanisms of microgravity perception and response in prokaryotes (Bacteria and Archaea) lag behind those which have been elucidated in eukaryotic organisms. In this hypothesis paper, we: (i) review how eukaryotic cells sense and respond to microgravity using various pathways responsive to unloading of mechanical stress; (ii) we observe that prokaryotic cells possess many structures analogous to mechanosensitive structures in eukaryotes; (iii) we review current evidence indicating that prokaryotes also possess active mechanosensing and mechanotransduction mechanisms; and (iv) we propose a complete mechanotransduction model including mechanisms by which mechanical signals may be transduced to the gene expression apparatus through alterations in bacterial nucleoid architecture, DNA supercoiling, and epigenetic pathways.
Collapse
Affiliation(s)
| | - Wayne L. Nicholson
- Space Life Sciences Laboratory, Department of Microbiology and Cell Science, University of Florida, 505 Odyssey Way, Merritt Island, FL 32953, USA;
| |
Collapse
|
21
|
Morrison MD, Nicholson WL. Comparisons of Transcriptome Profiles from Bacillus subtilis Cells Grown in Space versus High Aspect Ratio Vessel (HARV) Clinostats Reveal a Low Degree of Concordance. ASTROBIOLOGY 2020; 20:1498-1509. [PMID: 33074712 DOI: 10.1089/ast.2020.2235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although clinostats have long been used in space microbiology studies as ground-based analogs of spaceflight, few studies to date have systematically compared -omics data from clinostats versus spaceflight. This study compared the transcriptomic response of the Gram-positive bacterium Bacillus subtilis flown in space with corresponding transcriptomes derived from 2-D clinostat (High Aspect Ratio Vessel: HARV) experiments performed under the same conditions of bacterial strain, growth medium, temperature, and incubation time. High-quality total RNA (RNA Integrity Number >9.6) was isolated from multiple biological replicates from each treatment, transcripts were quantified by RNA-seq, and raw data was processed through a previously described standardized bioinformatics pipeline. Transcriptome data sets from spaceflight-grown and corresponding clinostat-grown cells were compared by using three different methods: (i) principal component analysis, (ii) analysis of differentially expressed genes, and (iii) gene set enrichment analysis of KEGG pathways. All three analyses found a low degree of concordance between the spaceflight and corresponding clinostat transcriptome data sets, ranging from 0.9% to 5.3% concordance. These results are in agreement with prior studies that also revealed low concordances between spaceflight and clinostat transcriptomes of the Gram-negative bacteria Rhodospirillum rubrum and Pseudomonas aeruginosa. The results are discussed from the perspective of several potential confounding factors, and suggestions are offered with the aim of achieving increased concordance between clinostat and spaceflight data.
Collapse
Affiliation(s)
- Michael D Morrison
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, Florida, USA
| | - Wayne L Nicholson
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, Florida, USA
| |
Collapse
|
22
|
Thiel CS, Christoffel S, Tauber S, Vahlensieck C, de Zélicourt D, Layer LE, Lauber B, Polzer J, Ullrich O. Rapid Cellular Perception of Gravitational Forces in Human Jurkat T Cells and Transduction into Gene Expression Regulation. Int J Mol Sci 2020; 21:ijms21020514. [PMID: 31947583 PMCID: PMC7013750 DOI: 10.3390/ijms21020514] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/05/2020] [Accepted: 01/11/2020] [Indexed: 12/15/2022] Open
Abstract
Cellular processes are influenced in many ways by changes in gravitational force. In previous studies, we were able to demonstrate, in various cellular systems and research platforms that reactions and adaptation processes occur very rapidly after the onset of altered gravity. In this study we systematically compared differentially expressed gene transcript clusters (TCs) in human Jurkat T cells in microgravity provided by a suborbital ballistic rocket with vector-averaged gravity (vag) provided by a 2D clinostat. Additionally, we included 9× g centrifuge experiments and rigorous controls for excluding other factors of influence than gravity. We found that 11 TCs were significantly altered in 5 min of flight-induced and vector-averaged gravity. Among the annotated clusters were G3BP1, KPNB1, NUDT3, SFT2D2, and POMK. Our results revealed that less than 1% of all examined TCs show the same response in vag and flight-induced microgravity, while 38% of differentially regulated TCs identified during the hypergravity phase of the suborbital ballistic rocket flight could be verified with a 9× g ground centrifuge. In the 2D clinostat system, doing one full rotation per second, vector effects of the gravitational force are only nullified if the sensing mechanism requires 1 s or longer. Due to the fact that vag with an integration period of 1 s was not able to reproduce the results obtained in flight-induced microgravity, we conclude that the initial trigger of gene expression response to microgravity requires less than 1 s reaction time. Additionally, we discovered extensive gene expression differences caused by simple handling of the cell suspension in control experiments, which underlines the need for rigorous standardization regarding mechanical forces during cell culture experiments in general.
Collapse
Affiliation(s)
- Cora Sandra Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (S.C.); (S.T.); (C.V.); (L.E.L.); (B.L.); (J.P.)
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Innovation Cluster Space and Aviation (UZH Space Hub), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
- Correspondence: (C.S.T.); (O.U.)
| | - Swantje Christoffel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (S.C.); (S.T.); (C.V.); (L.E.L.); (B.L.); (J.P.)
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (S.C.); (S.T.); (C.V.); (L.E.L.); (B.L.); (J.P.)
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Innovation Cluster Space and Aviation (UZH Space Hub), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
| | - Christian Vahlensieck
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (S.C.); (S.T.); (C.V.); (L.E.L.); (B.L.); (J.P.)
- Innovation Cluster Space and Aviation (UZH Space Hub), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
| | - Diane de Zélicourt
- Innovation Cluster Space and Aviation (UZH Space Hub), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
- The Interface Group, Institute of Physiology, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Swiss National Center of Competence in Research (NCCR Kidney), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Liliana E. Layer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (S.C.); (S.T.); (C.V.); (L.E.L.); (B.L.); (J.P.)
- Innovation Cluster Space and Aviation (UZH Space Hub), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
| | - Beatrice Lauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (S.C.); (S.T.); (C.V.); (L.E.L.); (B.L.); (J.P.)
- Innovation Cluster Space and Aviation (UZH Space Hub), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
| | - Jennifer Polzer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (S.C.); (S.T.); (C.V.); (L.E.L.); (B.L.); (J.P.)
- Innovation Cluster Space and Aviation (UZH Space Hub), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (S.C.); (S.T.); (C.V.); (L.E.L.); (B.L.); (J.P.)
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
- Innovation Cluster Space and Aviation (UZH Space Hub), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
- Department of Industrial Engineering, Ernst-Abbe-Hochschule Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, FL 32953, USA
- Correspondence: (C.S.T.); (O.U.)
| |
Collapse
|
23
|
Krüger J, Richter P, Stoltze J, Strauch SM, Krüger M, Daiker V, Prasad B, Sonnewald S, Reid S, Lebert M. Changes of Gene Expression in Euglena gracilis Obtained During the 29 th DLR Parabolic Flight Campaign. Sci Rep 2019; 9:14260. [PMID: 31582787 PMCID: PMC6776534 DOI: 10.1038/s41598-019-50611-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/02/2019] [Indexed: 01/14/2023] Open
Abstract
Parabolic flight maneuvers of Novespace's Airbus A310 ZERO-G produce subsequent phases of hypergravity (about 20 s), microgravity (about 22 s) and another 20 s hypergravity on experiments located in the experiment area of the aircraft. The 29th DLR parabolic flight campaign consisted of four consecutive flight days with thirty-one parabolas each day. Euglena gracilis cells were fixed with TRIzol during different acceleration conditions at the first and the last parabola of each flight. Samples were collected and analyzed with microarrays for one-color gene expression analysis. The data indicate significant changes in gene expression in E. gracilis within short time. Hierarchical clustering shows that changes induced by the different accelerations yield reproducible effects at independent flight days. Transcription differed between the first and last parabolas indicating adaptation effects in the course of the flight. Different gene groups were found to be affected in different phases of the parabolic flight, among others, genes involved in signal transduction, calcium signaling, transport mechanisms, metabolic pathways, and stress-response as well as membrane and cytoskeletal proteins. In addition, transcripts of other areas, e.g., DNA and protein modification, were altered. The study contributes to the understanding of short-term effects of microgravity and different accelerations on cells at a molecular level.
Collapse
Affiliation(s)
- Julia Krüger
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Peter Richter
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Julia Stoltze
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Sebastian M Strauch
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
- Postgraduate Program in Health and Environment, University of Joinville Region, Rua Paulo Malschitzki, 10 - Zona Industrial Norte, Joinville, SC, CEP 89219-710, Brazil
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto von Guericke University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Viktor Daiker
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Binod Prasad
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Sophia Sonnewald
- Biochemistry Division, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Stephen Reid
- Biochemistry Division, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany
| | - Michael Lebert
- Cell Biology Division: Gravitational Biology Group, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstraße 5, 91058, Erlangen, Germany.
| |
Collapse
|
24
|
Rapid Morphological and Cytoskeletal Response to Microgravity in Human Primary Macrophages. Int J Mol Sci 2019; 20:ijms20102402. [PMID: 31096581 PMCID: PMC6567851 DOI: 10.3390/ijms20102402] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/30/2019] [Accepted: 05/14/2019] [Indexed: 01/14/2023] Open
Abstract
The FLUMIAS (Fluorescence-Microscopic Analyses System for Life-Cell-Imaging in Space) confocal laser spinning disk fluorescence microscope represents a new imaging capability for live cell imaging experiments on suborbital ballistic rocket missions. During the second pioneer mission of this microscope system on the TEXUS-54 suborbital rocket flight, we developed and performed a live imaging experiment with primary human macrophages. We simultaneously imaged four different cellular structures (nucleus, cytoplasm, lysosomes, actin cytoskeleton) by using four different live cell dyes (Nuclear Violet, Calcein, LysoBrite, SiR-actin) and laser wavelengths (405, 488, 561, and 642 nm), and investigated the cellular morphology in microgravity (10−4 to 10−5 g) over a period of about six minutes compared to 1 g controls. For live imaging of the cytoskeleton during spaceflight, we combined confocal laser microscopy with the SiR-actin probe, a fluorogenic silicon-rhodamine (SiR) conjugated jasplakinolide probe that binds to F-actin and displays minimal toxicity. We determined changes in 3D cell volume and surface, nuclear volume and in the actin cytoskeleton, which responded rapidly to the microgravity environment with a significant reduction of SiR-actin fluorescence after 4–19 s microgravity, and adapted subsequently until 126–151 s microgravity. We conclude that microgravity induces geometric cellular changes and rapid response and adaptation of the potential gravity-transducing cytoskeleton in primary human macrophages.
Collapse
|
25
|
Thiel CS, Tauber S, Seebacher C, Schropp M, Uhl R, Lauber B, Polzer J, Neelam S, Zhang Y, Ullrich O. Real-Time 3D High-Resolution Microscopy of Human Cells on the International Space Station. Int J Mol Sci 2019; 20:ijms20082033. [PMID: 31027161 PMCID: PMC6514950 DOI: 10.3390/ijms20082033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Here we report the successful first operation of FLUMIAS-DEA, a miniaturized high-resolution 3D fluorescence microscope on the International Space Station (ISS) by imaging two scientific samples in a temperature-constant system, one sample with fixed cells and one sample with living human cells. The FLUMIAS-DEA microscope combines features of a high-resolution 3D fluorescence microscope based on structured illumination microscope (SIM) technology with hardware designs to meet the requirements of a space instrument. We successfully demonstrated that the FLUMIAS technology was able to acquire, transmit, and store high-resolution 3D fluorescence images from fixed and living cells, allowing quantitative and dynamic analysis of subcellular structures, e.g., the cytoskeleton. The capability of real-time analysis methods on ISS will dramatically extend our knowledge about the dynamics of cellular reactions and adaptations to the space environment, which is not only an option, but a requirement of evidence-based medical risk assessment, monitoring and countermeasure development for exploration class missions.
Collapse
Affiliation(s)
- Cora Sandra Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | | | - Martin Schropp
- TILL I.D. GmbH, Am Klopferspitz 19a, 82152 Martinsried, Germany.
| | - Rainer Uhl
- TILL I.D. GmbH, Am Klopferspitz 19a, 82152 Martinsried, Germany.
| | - Beatrice Lauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Jennifer Polzer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Srujana Neelam
- National Aeronautics and Space Administration (NASA), ISS Utilization and Life Sciences Division, Kennedy Space Center, FL 32899, USA.
| | - Ye Zhang
- National Aeronautics and Space Administration (NASA), ISS Utilization and Life Sciences Division, Kennedy Space Center, FL 32899, USA.
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
- Ernst-Abbe-Hochschule (EAH) Jena, Department of Industrial Engineering, Carl-Zeiss-Promenade 2, 07745 Jena, Germany.
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, FL 32953, USA.
| |
Collapse
|
26
|
Expression of Hypoxia-Inducible Factor 1α (HIF-1α) and Genes of Related Pathways in Altered Gravity. Int J Mol Sci 2019; 20:ijms20020436. [PMID: 30669540 PMCID: PMC6358763 DOI: 10.3390/ijms20020436] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/28/2022] Open
Abstract
Immune system deterioration in space represents a major risk, which has to be mitigated for exploration-class missions into the solar system. Altered gravitational forces have been shown to regulate adaptation processes in cells of the immune system, which are important for appropriate risk management, monitoring and development of countermeasures. T lymphocytes and cells of the monocyte-macrophage system are highly migratory cell types that frequently encounter a wide range of oxygen tensions in human tissues and in hypoxic areas, even under homeostatic conditions. Hypoxia-inducible factor 1 and 2 (HIF's) might have an important role in activation of T cells and cells of the monocyte-macrophages system. Thus, we investigated the regulation of HIF-dependent and, therefore, hypoxia-signaling systems in both cell types in altered gravity and performed transcript and protein analysis from parabolic flight and suborbital ballistic rocket experiments. We found that HIF-1α and HIF-1-dependent transcripts were differently regulated in altered gravity, whereas HIF-1α-dependent gene expression adapted after 5 min microgravity. Inter-platform comparisons identified PDK1 as highly responsive to gravitational changes in human U937 myelomonocytic cells and in Jurkat T cells. We suggest HIF-1 as a potential pharmacological target for counteracting immune system deterioration during space flight.
Collapse
|
27
|
Tauber S, Christoffel S, Thiel CS, Ullrich O. Transcriptional Homeostasis of Oxidative Stress-Related Pathways in Altered Gravity. Int J Mol Sci 2018; 19:E2814. [PMID: 30231541 PMCID: PMC6164947 DOI: 10.3390/ijms19092814] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 02/07/2023] Open
Abstract
Whereby several types of cultured cells are sensitive to gravity, the immune system belongs to the most affected systems during spaceflight. Since reactive oxygen species/reactive nitrogen species (ROS/RNS) are serving as signals of cellular homeostasis, particularly in the cells of the immune system, we investigated the immediate effect of altered gravity on the transcription of 86 genes involved in reactive oxygen species metabolism, antioxidative systems, and cellular response to oxidative stress, using parabolic flight and suborbital ballistic rocket experiments and microarray analysis. In human myelomonocytic U937 cells, we detected a rapid response of 19.8% of all of the investigated oxidative stress-related transcripts to 1.8 g of hypergravity and 1.1% to microgravity as early as after 20 s. Nearly all (97.2%) of the initially altered transcripts adapted after 75 s of hypergravity (max. 13.5 g), and 100% adapted after 5 min of microgravity. After the almost complete adaptation of initially altered transcripts, a significant second pool of differentially expressed transcripts appeared. In contrast, we detected nearly no response of oxidative stress-related transcripts in human Jurkat T cells to altered gravity. In conclusion, we assume a very well-regulated homeostasis and transcriptional stability of oxidative stress-related pathways in altered gravity in cells of the human immune system.
Collapse
Affiliation(s)
- Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, FL 32953, USA.
| | - Swantje Christoffel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Cora Sandra Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, FL 32953, USA.
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
- Space Life Sciences Laboratory (SLSL), Kennedy Space Center, 505 Odyssey Way, Exploration Park, FL 32953, USA.
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|