1
|
Benoit SL, Maier RJ. d-aspartate, an amino-acid important for human health, supports anaerobic respiration in several Campylobacter species. Res Microbiol 2024; 175:104219. [PMID: 38945250 DOI: 10.1016/j.resmic.2024.104219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Despite being classified as microaerophilic microorganisms, most Campylobacter species can grow anaerobically, using formate or molecular hydrogen (H2) as electron donors, and various nitrogenous and sulfurous compounds as electron acceptors. Herein, we showed that both l-asparagine (l-Asn) and l-aspartic acid (l-Asp) bolster H2-driven anaerobic growth in several Campylobacter species, whereas the d-enantiomer form of both asparagine (d-Asn) and aspartic acid (d-Asp) only increased anaerobic growth in Campylobacter concisus strain 13826 and Campylobacter ureolyticus strain NCTC10941. A gene annotated as racD encoding for a putative d/l-Asp racemase was identified in the genome of both strains. Disruption of racD in Cc13826 resulted in the inability of the mutant strain to use either d-enantiomer during anaerobic growth. Hence, our results suggest that the racD gene is required for campylobacters to use either d-Asp or d-Asn. The use of d-Asp by various human opportunistic bacterial pathogens, including C. concisus, C. ureolyticus, and also possibly select strains of Campylobacter gracilis, Campylobacter rectus and Campylobacter showae, is significant, because d-Asp is an important signal molecule for both human nervous and neuroendocrine systems. To our knowledge, this is the first report of pathogens scavenging a d-amino acid essential for human health.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology, University of Georgia, Athens, GA, 30602, United States; Center for Metalloenzyme Studies, University of Georgia, Athens, GA, 30602, United States.
| | - Robert J Maier
- Department of Microbiology, University of Georgia, Athens, GA, 30602, United States; Center for Metalloenzyme Studies, University of Georgia, Athens, GA, 30602, United States
| |
Collapse
|
2
|
Benoit SL, Maier RJ. The Campylobacter concisus BisA protein plays a dual role: oxide-dependent anaerobic respiration and periplasmic methionine sulfoxide repair. mBio 2023; 14:e0147523. [PMID: 37607056 PMCID: PMC10653797 DOI: 10.1128/mbio.01475-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 08/24/2023] Open
Abstract
IMPORTANCE Campylobacter concisus is an excellent model organism to study respiration diversity, including anaerobic respiration of physiologically relevant N-/S-oxides compounds, such as biotin sulfoxide, dimethyl sulfoxide, methionine sulfoxide (MetO), nicotinamide N-oxide, and trimethylamine N-oxide. All C. concisus strains harbor at least two, often three, and up to five genes encoding for putative periplasmic Mo/W-bisPGD-containing N-/S-oxide reductases. The respective role (substrate specificity) of each enzyme was studied using a mutagenesis approach. One of the N/SOR enzymes, annotated as "BisA", was found to be essential for anaerobic respiration of both N- and S-oxides. Additional phenotypes associated with disruption of the bisA gene included increased sensitivity toward oxidative stress and elongated cell morphology. Furthermore, a biochemical approach confirmed that BisA can repair protein-bound MetO residues. Hence, we propose that BisA plays a role as a periplasmic methionine sulfoxide reductase. This is the first report of a Mo/W-bisPGD-enzyme supporting both N- or S-oxide respiration and protein-bound MetO repair in a pathogen.
Collapse
Affiliation(s)
- Stéphane L. Benoit
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia, USA
| | - Robert J. Maier
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Mourkas E, Yahara K, Bayliss SC, Calland JK, Johansson H, Mageiros L, Muñoz-Ramirez ZY, Futcher G, Méric G, Hitchings MD, Sandoval-Motta S, Torres J, Jolley KA, Maiden MCJ, Ellström P, Waldenström J, Pascoe B, Sheppard SK. Host ecology regulates interspecies recombination in bacteria of the genus Campylobacter. eLife 2022; 11:73552. [PMID: 35191377 PMCID: PMC8912921 DOI: 10.7554/elife.73552] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/20/2022] [Indexed: 01/16/2023] Open
Abstract
Horizontal gene transfer (HGT) can allow traits that have evolved in one bacterial species to transfer to another. This has potential to rapidly promote new adaptive trajectories such as zoonotic transfer or antimicrobial resistance. However, for this to occur requires gaps to align in barriers to recombination within a given time frame. Chief among these barriers is the physical separation of species with distinct ecologies in separate niches. Within the genus Campylobacter, there are species with divergent ecologies, from rarely isolated single-host specialists to multihost generalist species that are among the most common global causes of human bacterial gastroenteritis. Here, by characterizing these contrasting ecologies, we can quantify HGT among sympatric and allopatric species in natural populations. Analyzing recipient and donor population ancestry among genomes from 30 Campylobacter species, we show that cohabitation in the same host can lead to a six-fold increase in HGT between species. This accounts for up to 30% of all SNPs within a given species and identifies highly recombinogenic genes with functions including host adaptation and antimicrobial resistance. As described in some animal and plant species, ecological factors are a major evolutionary force for speciation in bacteria and changes to the host landscape can promote partial convergence of distinct species through HGT.
Collapse
Affiliation(s)
- Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious DiseasesTokyoJapan
| | - Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Jessica K Calland
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Håkan Johansson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus UniversityKalmarSweden
| | - Leonardos Mageiros
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Zilia Y Muñoz-Ramirez
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro SocialMexico CityMexico
| | - Grant Futcher
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | | | - Santiago Sandoval-Motta
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro SocialMexico CityMexico
| | - Javier Torres
- Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro SocialMexico CityMexico
| | - Keith A Jolley
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| | | | - Patrik Ellström
- Department of Medical Sciences, Zoonosis Science Centre, Uppsala UniversityUppsalaSweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus UniversityKalmarSweden
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom,Faculty of Veterinary Medicine, Chiang Mai UniversityChiang MaiThailand
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of BathBathUnited Kingdom,Department of Zoology, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
4
|
Benoit SL, Maier RJ. Copper toxicity towards Campylobacter jejuni is enhanced by the nickel chelator dimethylglyoxime. Metallomics 2021; 14:6486457. [PMID: 34963007 DOI: 10.1093/mtomcs/mfab076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022]
Abstract
The nickel (Ni)-chelator dimethylglyoxime (DMG) was found to be bacteriostatic towards Campylobacter jejuni. Supplementation of nickel to DMG-containing media restored bacterial growth, whereas supplementation of cobalt or zinc had no effect on the growth inhibition. Unexpectedly, the combination of millimolar levels of DMG with micromolar levels of copper (Cu) was bactericidal, an effect not seen in select Gram-negative pathogenic bacteria. Both the cytoplasmic Ni-binding chaperone SlyD and the twin arginine translocation (Tat)-dependent periplasmic copper oxidase CueO were found to play a central role in the Cu-DMG hypersensitivity phenotype. Ni-replete SlyD is needed for Tat-dependent CueO translocation to the periplasm, whereas Ni-depleted (DMG-treated) SlyD is unable to interact with the CueO Tat signal peptide, leading to mislocalization of CueO and increased copper sensitivity. In support of this model, C. jejuni ΔslyD and ΔcueO mutants were more sensitive to copper than the wild-type (WT); CueO was less abundant in the periplasmic fraction of ΔslyD or DMG-grown WT cells, compared to WT cells grown on plain medium; SlyD binds the CueO signal sequence peptide, with DMG inhibiting and nickel enhancing the binding, respectively. Injection of Cu-DMG into Galleria mellonella before C. jejuni inoculation significantly increased the insect survival rate compared to the control group. In chickens, oral administration of DMG or Cu-DMG decreased and even abolished C. jejuni colonization in some cases, compared to both water-only and Cu-only control groups. The latter finding is important, since campylobacteriosis is the leading bacterial foodborne infection, and chicken meat constitutes the major foodborne source.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology.,Center for Metalloenzyme Studies, The University of Georgia, Athens, Georgia, 30602
| | - Robert J Maier
- Department of Microbiology.,Center for Metalloenzyme Studies, The University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
5
|
Deshpande NP, Riordan SM, Gorman CJ, Nielsen S, Russell TL, Correa-Ospina C, Fernando BSM, Waters SA, Castaño-Rodríguez N, Man SM, Tedla N, Wilkins MR, Kaakoush NO. Multi-omics of the esophageal microenvironment identifies signatures associated with progression of Barrett's esophagus. Genome Med 2021; 13:133. [PMID: 34412659 PMCID: PMC8375061 DOI: 10.1186/s13073-021-00951-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The enrichment of Gram-negative bacteria of oral origin in the esophageal microbiome has been associated with the development of metaplasia. However, to date, no study has comprehensively assessed the relationships between the esophageal microbiome and the host. METHODS Here, we examine the esophageal microenvironment in gastro-esophageal reflux disease and metaplasia using multi-omics strategies targeting the microbiome and host transcriptome, followed by targeted culture, comparative genomics, and host-microbial interaction studies of bacterial signatures of interest. RESULTS Profiling of the host transcriptome from esophageal mucosal biopsies revealed profound changes during metaplasia. Importantly, five biomarkers showed consistent longitudinal changes with disease progression from reflux disease to metaplasia. We showed for the first time that the esophageal microbiome is distinct from the salivary microbiome and the enrichment of Campylobacter species as a consistent signature in disease across two independent cohorts. Shape fitting and matrix correlation identified associations between the microbiome and host transcriptome profiles, with a novel co-exclusion relationship found between Campylobacter and napsin B aspartic peptidase. Targeted culture of Campylobacter species from the same cohort revealed a subset of isolates to have a higher capacity to survive within primary human macrophages. Comparative genomic analyses showed these isolates could be differentiated by specific genomic features, one of which was validated to be associated with intracellular fitness. Screening for these Campylobacter strain-specific signatures in shotgun metagenomics data from another cohort showed an increase in prevalence with disease progression. Comparative transcriptomic analyses of primary esophageal epithelial cells exposed to the Campylobacter isolates revealed expression changes within those infected with strains with high intracellular fitness that could explain the increased likelihood of disease progression. CONCLUSIONS We provide a comprehensive assessment of the esophageal microenvironment, identifying bacterial strain-specific signatures with high relevance to progression of metaplasia.
Collapse
Affiliation(s)
- Nandan P Deshpande
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Stephen M Riordan
- Gastrointestinal and Liver Unit, The Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | - Claire J Gorman
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Shaun Nielsen
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Tonia L Russell
- Ramaciotti Centre for Genomics, UNSW Sydney, Sydney, NSW, 2052, Australia
| | | | - Bentotage S M Fernando
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Shafagh A Waters
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, 2052, Australia
| | | | - Si Ming Man
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Nicodemus Tedla
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
- Ramaciotti Centre for Genomics, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Nadeem O Kaakoush
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
6
|
Kelley BR, Lu J, Haley KP, Gaddy JA, Johnson JG. Metal homeostasis in pathogenic Epsilonproteobacteria: mechanisms of acquisition, efflux, and regulation. Metallomics 2021; 13:mfaa002. [PMID: 33570133 PMCID: PMC8043183 DOI: 10.1093/mtomcs/mfaa002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
Epsilonproteobacteria are a diverse class of eubacteria within the Proteobacteria phylum that includes environmental sulfur-reducing bacteria and the human pathogens, Campylobacter jejuni and Helicobacter pylori. These pathogens infect and proliferate within the gastrointestinal tracts of multiple animal hosts, including humans, and cause a variety of disease outcomes. While infection of these hosts provides nutrients for the pathogenic Epsilonproteobacteria, many hosts have evolved a variety of strategies to either sequester metals from the invading pathogen or exploit the toxicity of metals and drive their accumulation as an antimicrobial strategy. As a result, C. jejuni and H. pylori have developed mechanisms to sense changes in metal availability and regulate their physiology in order to respond to either metal limitation or accumulation. In this review, we will discuss the challenges of metal availability at the host-pathogen interface during infection with C. jejuni and H. pylori and describe what is currently known about how these organisms alter their gene expression and/or deploy bacterial virulence factors in response to these environments.
Collapse
Affiliation(s)
- Brittni R Kelley
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Jacky Lu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Kathryn P Haley
- Department of Biology, Grand Valley State University, Grand Rapids, MI, USA
| | - Jennifer A Gaddy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
- Tennessee Valley Healthcare Systems, Department of Veterans Affairs, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
7
|
Finney AJ, Buchanan G, Palmer T, Coulthurst SJ, Sargent F. Activation of a [NiFe]-hydrogenase-4 isoenzyme by maturation proteases. MICROBIOLOGY (READING, ENGLAND) 2020; 166:854-860. [PMID: 32731905 PMCID: PMC7654741 DOI: 10.1099/mic.0.000963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/22/2020] [Indexed: 12/23/2022]
Abstract
Maturation of [NiFe]-hydrogenases often involves specific proteases responsible for cleavage of the catalytic subunits. Escherichia coli HycI is the protease dedicated to maturation of the Hydrogenase-3 isoenzyme, a component of formate hydrogenlyase-1. In this work, it is demonstrated that a Pectobacterium atrosepticum HycI homologue, HyfK, is required for hydrogenase-4 activity, a component of formate hydrogenlyase-2, in that bacterium. The P. atrosepticum ΔhyfK mutant phenotype could be rescued by either P. atrosepticum hyfK or E. coli hycI on a plasmid. Conversely, an E. coli ΔhycI mutant was complemented by either E. coli hycI or P. atrosepticum hyfK in trans. E. coli is a rare example of a bacterium containing both hydrogenase-3 and hydrogenase-4, however the operon encoding hydrogenase-4 has no maturation protease gene. This work suggests HycI should be sufficient for maturation of both E. coli formate hydrogenlyases, however no formate hydrogenlyase-2 activity was detected in any E. coli strains tested here.
Collapse
Affiliation(s)
- Alexander J. Finney
- School of Natural & Environmental Sciences, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Grant Buchanan
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
- Institute of Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Tracy Palmer
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
- Institute of Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | | - Frank Sargent
- School of Natural & Environmental Sciences, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
8
|
Duma J, Nothaft H, Weaver D, Fodor C, Beadle B, Linton D, Benoit SL, Scott NE, Maier RJ, Szymanski CM. Influence of Protein Glycosylation on Campylobacter fetus Physiology. Front Microbiol 2020; 11:1191. [PMID: 32625174 PMCID: PMC7313396 DOI: 10.3389/fmicb.2020.01191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/11/2020] [Indexed: 01/01/2023] Open
Abstract
Campylobacter fetus is commonly associated with venereal disease and abortions in cattle and sheep, and can also cause intestinal or systemic infections in humans that are immunocompromised, elderly, or exposed to infected livestock. It is also believed that C. fetus infection can result from the consumption or handling of contaminated food products, but C. fetus is rarely detected in food since isolation methods are not suited for its detection and the physiology of the organism makes culturing difficult. In the related species, Campylobacter jejuni, the ability to colonize the host has been linked to N-linked protein glycosylation with quantitative proteomics demonstrating that glycosylation is interconnected with cell physiology. Using label-free quantitative (LFQ) proteomics, we found more than 100 proteins significantly altered in expression in two C. fetus subsp. fetus protein glycosylation (pgl) mutants (pglX and pglJ) compared to the wild-type. Significant increases in the expression of the (NiFe)-hydrogenase HynABC, catalyzing H2-oxidation for energy harvesting, correlated with significantly increased levels of cellular nickel, improved growth in H2 and increased hydrogenase activity, suggesting that N-glycosylation in C. fetus is involved in regulating the HynABC hydrogenase and nickel homeostasis. To further elucidate the function of the C. fetus pgl pathway and its enzymes, heterologous expression in Escherichia coli followed by mutational and functional analyses revealed that PglX and PglY are novel glycosyltransferases involved in extending the C. fetus hexasaccharide beyond the conserved core, while PglJ and PglA have similar activities to their homologs in C. jejuni. In addition, the pgl mutants displayed decreased motility and ethidium bromide efflux and showed an increased sensitivity to antibiotics. This work not only provides insight into the unique protein N-glycosylation pathway of C. fetus, but also expands our knowledge on the influence of protein N-glycosylation on Campylobacter cell physiology.
Collapse
Affiliation(s)
- Justin Duma
- Department of Microbiology, University of Georgia, Athens, GA, United States.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Harald Nothaft
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Danielle Weaver
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Christopher Fodor
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Bernadette Beadle
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Dennis Linton
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Stéphane L Benoit
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Nichollas E Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Robert J Maier
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Christine M Szymanski
- Department of Microbiology, University of Georgia, Athens, GA, United States.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
9
|
Yeow M, Liu F, Ma R, Williams TJ, Riordan SM, Zhang L. Analyses of energy metabolism and stress defence provide insights into Campylobacter concisus growth and pathogenicity. Gut Pathog 2020; 12:13. [PMID: 32165925 PMCID: PMC7059363 DOI: 10.1186/s13099-020-00349-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/15/2020] [Indexed: 02/08/2023] Open
Abstract
Campylobacter concisus is an emerging enteric pathogen that is associated with inflammatory bowel disease. Previous studies demonstrated that C. concisus is non-saccharolytic and hydrogen gas (H2) is a critical factor for C. concisus growth. In order to understand the molecular basis of the non-saccharolytic and H2-dependent nature of C. concisus growth, in this study we examined the pathways involving energy metabolism and oxidative stress defence in C. concisus. Bioinformatic analysis of C. concisus genomes in comparison with the well-studied enteric pathogen Campylobacter jejuni was performed. This study found that C. concisus lacks a number of key enzymes in glycolysis, including glucokinase and phosphofructokinase, and the oxidative pentose phosphate pathway. C. concisus has an incomplete tricarboxylic acid cycle, with no identifiable succinyl-CoA synthase or fumarate hydratase. C. concisus was inferred to use fewer amino acids and have fewer candidate substrates as electron donors and acceptors compared to C. jejuni. The addition of DMSO or fumarate to media resulted in significantly increased growth of C. concisus in the presence of H2 as an electron donor, demonstrating that both can be used as electron acceptors. Catalase, an essential enzyme for oxidative stress defence in C. jejuni, and various nitrosative stress enzymes, were not found in the C. concisus genome. Overall, C. concisus is inferred to have a non-saccharolytic metabolism in which H2 is central to energy conservation, and a narrow selection of carboxylic acids and amino acids can be utilised as organic substrates. In conclusion, this study provides a molecular basis for the non-saccharolytic and hydrogen-dependent nature of C. concisus energy metabolism pathways, which provides insights into the growth requirements and pathogenicity of this species.
Collapse
Affiliation(s)
- Melissa Yeow
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, 2052 Australia
| | - Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, 2052 Australia
| | - Rena Ma
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, 2052 Australia
| | - Timothy J. Williams
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, 2052 Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, 2052 Australia
| |
Collapse
|
10
|
Benoit SL, Maier RJ, Sawers RG, Greening C. Molecular Hydrogen Metabolism: a Widespread Trait of Pathogenic Bacteria and Protists. Microbiol Mol Biol Rev 2020; 84:e00092-19. [PMID: 31996394 PMCID: PMC7167206 DOI: 10.1128/mmbr.00092-19] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pathogenic microorganisms use various mechanisms to conserve energy in host tissues and environmental reservoirs. One widespread but often overlooked means of energy conservation is through the consumption or production of molecular hydrogen (H2). Here, we comprehensively review the distribution, biochemistry, and physiology of H2 metabolism in pathogens. Over 200 pathogens and pathobionts carry genes for hydrogenases, the enzymes responsible for H2 oxidation and/or production. Furthermore, at least 46 of these species have been experimentally shown to consume or produce H2 Several major human pathogens use the large amounts of H2 produced by colonic microbiota as an energy source for aerobic or anaerobic respiration. This process has been shown to be critical for growth and virulence of the gastrointestinal bacteria Salmonella enterica serovar Typhimurium, Campylobacter jejuni, Campylobacter concisus, and Helicobacter pylori (including carcinogenic strains). H2 oxidation is generally a facultative trait controlled by central regulators in response to energy and oxidant availability. Other bacterial and protist pathogens produce H2 as a diffusible end product of fermentation processes. These include facultative anaerobes such as Escherichia coli, S Typhimurium, and Giardia intestinalis, which persist by fermentation when limited for respiratory electron acceptors, as well as obligate anaerobes, such as Clostridium perfringens, Clostridioides difficile, and Trichomonas vaginalis, that produce large amounts of H2 during growth. Overall, there is a rich literature on hydrogenases in growth, survival, and virulence in some pathogens. However, we lack a detailed understanding of H2 metabolism in most pathogens, especially obligately anaerobic bacteria, as well as a holistic understanding of gastrointestinal H2 transactions overall. Based on these findings, we also evaluate H2 metabolism as a possible target for drug development or other therapies.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Robert J Maier
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - R Gary Sawers
- Institute of Microbiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| |
Collapse
|
11
|
Schiaffino F, Platts-Mills J, Kosek MN. A One Health approach to prevention, treatment, and control of campylobacteriosis. Curr Opin Infect Dis 2019; 32:453-460. [PMID: 31305492 DOI: 10.1097/qco.0000000000000570] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW To review recent findings regarding the control and treatment of campylobacteriosis. RECENT FINDINGS The application of improved diagnostics has led to an upward shift in the attributable burden of Campylobacter infections, in both the United States and Europe as well as in resource-poor settings. Increased focus has brought a fundamental feature of campylobacteriosis -- the ability to cause relapsing disease back into focus, and expanding data on antimicrobial resistance has lead from a switch in first-line therapy for severe diarrhea from quinolones to azithromycin in most contexts, even as evidence of expanding macrolide resistance emerges. SUMMARY Campylobacter spp. infection is a common infection worldwide. Antibiotic-resistant Campylobacter spp. has become an emerging threat with the increase in industrial poultry production, as well as the broad use of antibiotics in both animals and humans.
Collapse
Affiliation(s)
| | - James Platts-Mills
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Margaret N Kosek
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
12
|
Nambu T, Wang D, Mashimo C, Maruyama H, Kashiwagi K, Yoshikawa K, Yamamoto K, Okinaga T. Nitric Oxide Donor Modulates a Multispecies Oral Bacterial Community-An In Vitro Study. Microorganisms 2019; 7:microorganisms7090353. [PMID: 31540050 PMCID: PMC6780529 DOI: 10.3390/microorganisms7090353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 01/10/2023] Open
Abstract
The deterioration of human oral microbiota is known to not only cause oral diseases but also to affect systemic health. Various environmental factors are thought to influence the disruption and restoration of the oral ecosystem. In this study, we focused on the effect of nitric oxide (NO) produced by denitrification and NO synthase enzymes on dental plaque microbiota. Interdental plaques collected from 10 subjects were exposed to NO donor sodium nitroprusside (SNP) and then cultured in a specialized growth medium. Depending on the concentration of exposed SNP, a decrease in α-diversity and a continuous change in β-diversity in the dental plaque community were shown by sequencing bacterial 16S rRNA genes. We also identified eight operational taxonomic units that were significantly altered by NO exposure. Among them, the exposure of NO donors to Fusobacterium nucleatum cells showed a decrease in survival rate consistent with the results of microbiota analysis. Meanwhile, in addition to NO tolerance, an increase in the tetrazolium salt-reducing activity of Campylobacter concisus cells was confirmed by exposure to SNP. This study provides an overview of how oral plaque microbiota shifts with exposure to NO and may contribute to the development of a method for adjusting the balance of the oral microbiome.
Collapse
Affiliation(s)
- Takayuki Nambu
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| | - Dan Wang
- Department of Operative Dentistry, Graduate School of Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| | - Chiho Mashimo
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| | - Hugo Maruyama
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| | - Kosuke Kashiwagi
- Department of Fixed Prosthodontics, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| | - Kazushi Yoshikawa
- Department of Operative Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| | - Kazuyo Yamamoto
- Department of Operative Dentistry, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| | - Toshinori Okinaga
- Department of Bacteriology, Osaka Dental University, 8-1, Kuzuha-Hanazono, Hirakata, Osaka 573-1121, Japan.
| |
Collapse
|
13
|
Abstract
Nickel is an essential cofactor for some pathogen virulence factors. Due to its low availability in hosts, pathogens must efficiently transport the metal and then balance its ready intracellular availability for enzyme maturation with metal toxicity concerns. The most notable virulence-associated components are the Ni-enzymes hydrogenase and urease. Both enzymes, along with their associated nickel transporters, storage reservoirs, and maturation enzymes have been best-studied in the gastric pathogen Helicobacter pylori, a bacterium which depends heavily on nickel. Molecular hydrogen utilization is associated with efficient host colonization by the Helicobacters, which include both gastric and liver pathogens. Translocation of a H. pylori carcinogenic toxin into host epithelial cells is powered by H2 use. The multiple [NiFe] hydrogenases of Salmonella enterica Typhimurium are important in host colonization, while ureases play important roles in both prokaryotic (Proteus mirabilis and Staphylococcus spp.) and eukaryotic (Cryptoccoccus genus) pathogens associated with urinary tract infections. Other Ni-requiring enzymes, such as Ni-acireductone dioxygenase (ARD), Ni-superoxide dismutase (SOD), and Ni-glyoxalase I (GloI) play important metabolic or detoxifying roles in other pathogens. Nickel-requiring enzymes are likely important for virulence of at least 40 prokaryotic and nine eukaryotic pathogenic species, as described herein. The potential for pathogenic roles of many new Ni-binding components exists, based on recent experimental data and on the key roles that Ni enzymes play in a diverse array of pathogens.
Collapse
|
14
|
Abstract
Hydrogenases are metal-containing biocatalysts that reversibly convert protons and electrons to hydrogen gas. This reaction can contribute in different ways to the generation of the proton motive force (PMF) of a cell. One means of PMF generation involves reduction of protons on the inside of the cytoplasmic membrane, releasing H2 gas, which being without charge is freely diffusible across the cytoplasmic membrane, where it can be re-oxidized to release protons. A second route of PMF generation couples transfer of electrons derived from H2 oxidation to quinone reduction and concomitant proton uptake at the membrane-bound heme cofactor. This redox-loop mechanism, as originally formulated by Mitchell, requires a second, catalytically distinct, enzyme complex to re-oxidize quinol and release the protons outside the cell. A third way of generating PMF is also by electron transfer to quinones but on the outside of the membrane while directly drawing protons through the entire membrane. The cofactor-less membrane subunits involved are proposed to operate by a conformational mechanism (redox-linked proton pump). Finally, PMF can be generated through an electron bifurcation mechanism, whereby an exergonic reaction is tightly coupled with an endergonic reaction. In all cases the protons can be channelled back inside through a F1F0-ATPase to convert the 'energy' stored in the PMF into the universal cellular energy currency, ATP. New and exciting discoveries employing these mechanisms have recently been made on the bioenergetics of hydrogenases, which will be discussed here and placed in the context of their contribution to energy conservation.
Collapse
Affiliation(s)
- Constanze Pinske
- Institute of Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany
| |
Collapse
|