1
|
Valcárcel Á, Montero AB, Rodero M, González-Fernández J, Olmeda AS, Valcárcel F, Cuéllar C. Alpha-Gal, epitope responsible for allergy to red meat, in the Mediterranean tick Hyalomma lusitanicum. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:366-371. [PMID: 38741222 DOI: 10.1111/mve.12724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Alpha-Gal/α-Gal is an oligosaccharide produced by non-primate mammals. Humans have developed an immune response mediated by anti-α-Gal antibodies that can trigger an allergic reaction and cause anaphylaxis. In recent years, cases of patients with delayed allergic reaction to mammalian meat have been reported worldwide. In Spain, these cases have been related to the species Ixodes ricinus L. (Ixodida: Ixodidae), whose distribution is located in the north of the country. In this work, the presence of α-Gal in water-soluble extracts from samples of salivary glands and digestive tracts of Hyalomma lusitanicum Koch (Ixodida: Ixodidae) both engorged and collected from vegetation were studied. The presence of that epitope was confirmed by the presence of reactive proteins of >250 kDa in both samples. The highest concentrations of α-Gal were detected in salivary glands. Neither sex nor diet influenced the concentration of α-Gal, which seems to indicate its endogenous production and its possible inoculation to the host during tick feeding.
Collapse
Affiliation(s)
- Ángela Valcárcel
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, UCM, Madrid, Spain
- Veterinary Pathobiology Section, Veterinary Medicine School, UCD, Dublin, Ireland
| | - Andrea Briones Montero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, UCM, Madrid, Spain
- Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Lima, Peru
| | - Marta Rodero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, UCM, Madrid, Spain
- Grupo de Trabajo ESGARIBER, Sociedad Española de Parasitología, Madrid, Spain
| | | | - A Sonia Olmeda
- Grupo de Trabajo ESGARIBER, Sociedad Española de Parasitología, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, UCM, Madrid, Spain
| | - Félix Valcárcel
- Grupo de Trabajo ESGARIBER, Sociedad Española de Parasitología, Madrid, Spain
- Laboratorio de Parasitología, Reproducción Animal, INIA, Madrid, Spain
| | - Carmen Cuéllar
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, UCM, Madrid, Spain
| |
Collapse
|
2
|
Wilson JM, Erickson L, Levin M, Ailsworth SM, Commins SP, Platts-Mills TAE. Tick bites, IgE to galactose-alpha-1,3-galactose and urticarial or anaphylactic reactions to mammalian meat: The alpha-gal syndrome. Allergy 2024; 79:1440-1454. [PMID: 38193233 PMCID: PMC11142869 DOI: 10.1111/all.16003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
The recent recognition of a syndrome of tick-acquired mammalian meat allergy has transformed the previously held view that mammalian meat is an uncommon allergen. The syndrome, mediated by IgE antibodies against the oligosaccharide galactose-alpha-1,3-galactose (alpha-gal), can also involve reactions to visceral organs, dairy, gelatin and other products, including medications sourced from non-primate mammals. Thus, fittingly, this allergic disorder is now called the alpha-gal syndrome (AGS). The syndrome is strikingly regional, reflecting the important role of tick bites in sensitization, and is more common in demographic groups at risk of tick exposure. Reactions in AGS are delayed, often by 2-6 h after ingestion of mammalian meat. In addition to classic allergic symptomatology such as urticaria and anaphylaxis, AGS is increasingly recognized as a cause of isolated gastrointestinal morbidity and alpha-gal sensitization has also been linked with cardiovascular disease. The unusual link with tick bites may be explained by the fact that allergic cells and mediators are mobilized to the site of tick bites and play a role in resistance against ticks and tick-borne infections. IgE directed to alpha-gal is likely an incidental consequence of what is otherwise an adaptive immune strategy for host defense against endo- and ectoparasites, including ticks.
Collapse
Affiliation(s)
- Jeffrey M. Wilson
- Division of Allergy and Immunology, University of Virginia, Charlottesville, Virginia, USA
| | - Loren Erickson
- Department of Microbiology, Immunology, and Cancer Biology and Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
| | | | - Samuel M. Ailsworth
- Division of Allergy and Immunology, University of Virginia, Charlottesville, Virginia, USA
| | - Scott P. Commins
- Division of Rheumatology, Allergy and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
3
|
Wu-Chuang A, Rojas A, Bernal C, Cardozo F, Valenzuela A, Romero C, Mateos-Hernández L, Cabezas-Cruz A. Influence of microbiota-driven natural antibodies on dengue transmission. Front Immunol 2024; 15:1368599. [PMID: 38558802 PMCID: PMC10978734 DOI: 10.3389/fimmu.2024.1368599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Dengue has had a significant global health impact, with a dramatic increase in incidence over the past 50 years, affecting more than 100 countries. The absence of a specific treatment or widely applicable vaccine emphasizes the urgent need for innovative strategies. This perspective reevaluates current evidence supporting the concept of dual protection against the dengue virus (DENV) through natural antibodies (NAbs), particularly anti-α-Gal antibodies induced by the host's gut microbiome (GM). These anti-α-Gal antibodies serve a dual purpose. Firstly, they can directly identify DENV, as mosquito-derived viral particles have been observed to carry α-Gal, thereby providing a safeguard against human infections. Secondly, they possess the potential to impede virus development in the vector by interacting with the vector's microbiome and triggering infection-refractory states. The intricate interplay between human GM and NAbs on one side and DENV and vector microbiome on the other suggests a novel approach, using NAbs to directly target DENV and simultaneously disrupt vector microbiome to decrease pathogen transmission and vector competence, thereby blocking DENV transmission cycles.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandra Rojas
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Cynthia Bernal
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Fátima Cardozo
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Adriana Valenzuela
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Cristina Romero
- Universidad Nacional de Asunción, Facultad de Ciencias Químicas, San Lorenzo, Paraguay
| | - Lourdes Mateos-Hernández
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
4
|
Saadalla A, Jacela J, Poll R, Slev P. Immunoassay Testing of Alpha-Gal Specific Immunoglobulin-E: Data from a National Reference Laboratory. J Appl Lab Med 2024; 9:262-272. [PMID: 38424720 DOI: 10.1093/jalm/jfad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/24/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Immunoassay measurements of serum alpha-gal (AG) specific IgE (sIgE) enable antibody detection and quantification with high sensitivity and specificity and are essential for AG syndrome diagnosis and patient management. We here present and analyze results from over 15 000 patient serum samples tested using the ImmunoCAP (Thermo/Phadia) assay. METHODS AG-sIgE levels and positivity rates were correlated to patient age, gender, geographic location, repeat testing results, sIgE levels to co-tested red meat whole allergen extracts, and Rocky Mountain spotted fever (RMSF) serology performed on a subset of patient samples. RESULTS Of the tested samples, 36.7% contained detectable (>0.1 KUA/L) AG-sIgE. Antibody levels were higher in patients of older age, in samples submitted from lower midwestern and southern states, and during the June-December period of the year. Specific IgE to co-tested red meat whole allergens showed moderate to strong correlation to AG-sIgE and were of lower levels. Samples with positive RMSF IgG titers (≥1:64) were of overall higher AG-IgE levels. CONCLUSION Findings are consistent with the role of lone star ticks in AG syndrome pathogenesis. Levels of measured sIgE to AG are higher than co-tested sIgE to red meat whole allergen, consistent with the improved diagnostic performance of component-resolved testing.
Collapse
Affiliation(s)
- Abdulrahman Saadalla
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States
- Immunology section, ARUP Laboratories, Salt Lake City, UT, United States
| | - Jessica Jacela
- Immunology section, ARUP Laboratories, Salt Lake City, UT, United States
| | - Rick Poll
- Immunology section, ARUP Laboratories, Salt Lake City, UT, United States
| | - Patricia Slev
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States
- Immunology section, ARUP Laboratories, Salt Lake City, UT, United States
| |
Collapse
|
5
|
Perusko M, Grundström J, Eldh M, Hamsten C, Apostolovic D, van Hage M. The α-Gal epitope - the cause of a global allergic disease. Front Immunol 2024; 15:1335911. [PMID: 38318181 PMCID: PMC10838981 DOI: 10.3389/fimmu.2024.1335911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
The galactose-α-1,3-galactose (α-Gal) epitope is the cause of a global allergic disease, the α-Gal syndrome (AGS). It is a severe form of allergy to food and products of mammalian origin where IgE against the mammalian carbohydrate, α-Gal, is the cause of the allergic reactions. Allergic reactions triggered by parenterally administered α-Gal sources appear immediately, but those triggered via the oral route appear with a latency of several hours. The α-Gal epitope is highly immunogenic to humans, apes and old-world monkeys, all of which produce anti-α-Gal antibodies of the IgM, IgA and IgG subclasses. Strong evidence suggests that in susceptible individuals, class switch to IgE occurs after several tick bites. In this review, we discuss the strong immunogenic role of the α-Gal epitope and its structural resemblance to the blood type B antigen. We emphasize the broad abundance of α-Gal in different foods and pharmaceuticals and the allergenicity of various α-Gal containing molecules. We give an overview of the association of tick bites with the development of AGS and describe innate and adaptive immune response to tick saliva that possibly leads to sensitization to α-Gal. We further discuss a currently favored hypothesis explaining the mechanisms of the delayed effector phase of the allergic reaction to α-Gal. We highlight AGS from a clinical point of view. We review the different clinical manifestations of the disease and the prevalence of sensitization to α-Gal and AGS. The usefulness of various diagnostic tests is discussed. Finally, we provide different aspects of the management of AGS. With climate change and global warming, the tick density is increasing, and their geographic range is expanding. Thus, more people will be affected by AGS which requires more knowledge of the disease.
Collapse
Affiliation(s)
- Marija Perusko
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Innovative Centre of the Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Jeanette Grundström
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Eldh
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carl Hamsten
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Danijela Apostolovic
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Maldonado-Ruiz LP, Reif KE, Ghosh A, Foré S, Johnson RL, Park Y. High levels of alpha-gal with large variation in the salivary glands of lone star ticks fed on human blood. Sci Rep 2023; 13:21409. [PMID: 38049505 PMCID: PMC10695944 DOI: 10.1038/s41598-023-48437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
Tick bites, associated with the secretion of tick saliva containing the xenoglycan galactose-alpha-1, 3-galactose (alpha-gal or aGal), are recognized as the causal factors of alpha-Gal syndrome (AGS; or red meat allergy) in humans. AGS occurs after the increased production of IgE antibodies against aGal, which is found in most mammalian cells, except for the Old World monkey and humans. The aGal sensitization event has been linked to an initial tick bite, followed by consumption of red meat containing the aGal glycan, which triggers the onset of the allergic response resulting in urticaria, anaphylaxis, or even death. In North America, the lone star tick, Amblyomma americanum, has been identified as the main culprit for AGS. However, only a subset of the human population exposed to lone star tick bites develops AGS. This suggests the presence of unidentified variables associated with the sensitization event. To evaluate the quantitative variations of the aGal in ticks, we evaluated the differences in aGal levels in different strains of A. americanum ticks partially fed on different blood sources using an artificial feeding system and animal hosts. We found significantly higher aGal levels in the female ticks fed on human blood than those fed on the blood of other mammals with large variations among different tick populations and individuals. We propose that host-specific genetic components in the A. americanum ticks are involved in the production of high aGal epitope in the tick saliva, which provides a part of the explanation for the variables associated with the AGS sensitization event of the tick bite.
Collapse
Affiliation(s)
| | - Kathryn E Reif
- Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, 66506, USA
| | - Anuradha Ghosh
- Department of Biology, Pittsburg State University, Pittsburg, KS, 66762, USA
| | - Stephanie Foré
- Department of Biology, Truman State University, Kirksville, MO, 63501, USA
| | - Rachel L Johnson
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
7
|
Karim S, Leyva-Castillo JM, Narasimhan S. Tick salivary glycans - a sugar-coated tick bite. Trends Parasitol 2023; 39:1100-1113. [PMID: 37838514 DOI: 10.1016/j.pt.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/16/2023]
Abstract
Ticks are hematophagous arthropods that transmit disease-causing pathogens worldwide. Tick saliva deposited into the tick-bite site is composed of an array of immunomodulatory proteins that ensure successful feeding and pathogen transmission. These salivary proteins are often glycosylated, and glycosylation is potentially critical for the function of these proteins. Some salivary glycans are linked to the phenomenon of red meat allergy - an allergic response to red meat consumption in humans exposed to certain tick species. Tick salivary glycans are also invoked in the phenomenon of acquired tick resistance wherein non-natural host species exposed to tick bites develop an immune response that thwarts subsequent tick feeding. This review dwells on our current knowledge of these two phenomena, thematically linked by salivary glycans.
Collapse
Affiliation(s)
- Shahid Karim
- University of Southern Mississippi, Hattiesburg, MS, USA
| | - Juan Manuel Leyva-Castillo
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sukanya Narasimhan
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven-06520, CT, USA.
| |
Collapse
|
8
|
Contreras M, Vaz-Rodrigues R, Mazuecos L, Villar M, Artigas-Jerónimo S, González-García A, Shilova NV, Bovin NV, Díaz-Sánchez S, Ferreras-Colino E, Pacheco I, Chmelař J, Kopáček P, Cabezas-Cruz A, Gortázar C, de la Fuente J. Allergic reactions to tick saliva components in zebrafish model. Parasit Vectors 2023; 16:242. [PMID: 37468955 PMCID: PMC10357745 DOI: 10.1186/s13071-023-05874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Alpha-Gal syndrome (AGS) is a tick-borne food allergy caused by IgE antibodies against the glycan galactose-alpha-1,3-galactose (α-Gal) present in glycoproteins and glycolipids from mammalian meat. To advance in the diagnosis and treatment of AGS, further research is needed to unravel the molecular and immune mechanisms underlying this syndrome. The objective of this study is the characterization of tick salivary components and proteins with and without α-Gal modifications involved in modulating human immune response against this carbohydrate. METHODS Protein and α-Gal content were determined in tick saliva components, and proteins were identified by proteomics analysis of tick saliva fractions. Pathophysiological changes were recorded in the zebrafish (Danio rerio) model after exposure to distinct Ixodes ricinus tick salivary components. Serum samples were collected from zebrafish at day 8 of exposure to determine anti-α-Gal, anti-glycan, and anti-tick saliva protein IgM antibody titers by enzyme-linked immunosorbent assay (ELISA). RESULTS Zebrafish treated with tick saliva and saliva protein fractions combined with non-protein fractions demonstrated significantly higher incidence of hemorrhagic type allergic reactions, abnormal behavioral patterns, or mortality when compared to the phosphate-buffered saline (PBS)-treated control group. The main tick salivary proteins identified in these fractions with possible functional implication in AGS were the secreted protein B7P208-salivary antigen p23 and metalloproteases. Anti-α-Gal and anti-tick salivary gland IgM antibody titers were significantly higher in distinct saliva protein fractions and deglycosylated saliva group when compared with PBS-treated controls. Anti-glycan antibodies showed group-related profiles. CONCLUSIONS Results support the hypothesis that tick salivary biomolecules with and without α-Gal modifications are involved in modulating immune response against this carbohydrate.
Collapse
Affiliation(s)
- Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Rita Vaz-Rodrigues
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Lorena Mazuecos
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, Universidad de Castilla-La Mancha, Ave. Camilo José Cela 10, 13071, Ciudad Real, Spain
| | - Sara Artigas-Jerónimo
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Almudena González-García
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Nadezhda V Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997, Moscow, Russian Federation
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V. I. Kulakov, Oparina str. 4, 117198, Moscow, Russian Federation
| | - Nicolai V Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str. 16/10, 117997, Moscow, Russian Federation
- Centre for Kode Technology Innovation, School of Engineering, Computer and Mathematical Sciences, Faculty of Design and Creative Technologies, Auckland University of Technology, Auckland, New Zealand
| | - Sandra Díaz-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Área de Microbiología, Universidad de La Laguna, Entrada Campus Anchieta, 4, 38200, La Laguna, Tenerife, Canary Islands, Spain
| | - Elisa Ferreras-Colino
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Iván Pacheco
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31, 37005, České Budějovice, Czechia
| | - Petr Kopáček
- Institute of ParasitologyBiology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czechia
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 94700, Maisons-Alfort, France
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain.
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
9
|
Mazuecos L, Alberdi P, Hernández-Jarguín A, Contreras M, Villar M, Cabezas-Cruz A, Simo L, González-García A, Díaz-Sánchez S, Neelakanta G, Bonnet SI, Fikrig E, de la Fuente J. Frankenbacteriosis targeting interactions between pathogen and symbiont to control infection in the tick vector. iScience 2023; 26:106697. [PMID: 37168564 PMCID: PMC10165458 DOI: 10.1016/j.isci.2023.106697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
Tick microbiota can be targeted for the control of tick-borne diseases such as human granulocytic anaplasmosis (HGA) caused by model pathogen, Anaplasma phagocytophilum. Frankenbacteriosis is inspired by Frankenstein and defined here as paratransgenesis of tick symbiotic/commensal bacteria to mimic and compete with tick-borne pathogens. Interactions between A. phagocytophilum and symbiotic Sphingomonas identified by metaproteomics analysis in Ixodes scapularis midgut showed competition between both bacteria. Consequently, Sphingomonas was selected for frankenbacteriosis for the control of A. phagocytophilum infection and transmission. The results showed that Franken Sphingomonas producing A. phagocytophilum major surface protein 4 (MSP4) mimic pathogen and reduce infection in ticks by competition and interaction with cell receptor components of infection. Franken Sphingomonas-MSP4 transovarial and trans-stadial transmission suggests that tick larvae with genetically modified Franken Sphingomonas-MSP4 could be produced in the laboratory and released in the field to compete and replace the wildtype populations with associated reduction in pathogen infection/transmission and HGA disease risks.
Collapse
Affiliation(s)
- Lorena Mazuecos
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Pilar Alberdi
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Angélica Hernández-Jarguín
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Marinela Contreras
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Ladislav Simo
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Almudena González-García
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Sandra Díaz-Sánchez
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Girish Neelakanta
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Sarah I. Bonnet
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, CNRS UMR 2000, Université de Paris, 75015 Paris, France
- Animal Health Department, INRAE, 37380 Nouzilly, France
| | - Erol Fikrig
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 208022, USA
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Corresponding author
| |
Collapse
|
10
|
Ribeiro JMC, Bayona-Vásquez NJ, Budachetri K, Kumar D, Frederick JC, Tahir F, Faircloth BC, Glenn TC, Karim S. A draft of the genome of the Gulf Coast tick, Amblyomma maculatum. Ticks Tick Borne Dis 2023; 14:102090. [PMID: 36446165 PMCID: PMC9898150 DOI: 10.1016/j.ttbdis.2022.102090] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 10/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
The Gulf Coast tick, Amblyomma maculatum, inhabits the Southeastern states of the USA bordering the Gulf of Mexico, Mexico, and other Central and South American countries. More recently, its U.S. range has extended West to Arizona and Northeast to New York state and Connecticut. It is a vector of Rickettsia parkeri and Hepatozoon americanum. This tick species has become a model to study tick/Rickettsia interactions. To increase our knowledge of the basic biology of A. maculatum we report here a draft genome of this tick and an extensive functional classification of its proteome. The DNA from a single male tick was used as a genomic source, and a 10X genomics protocol determined 28,460 scaffolds having equal or more than 10 Kb, totaling 1.98 Gb. The N50 scaffold size was 19,849 Kb. The BRAKER pipeline was used to find the protein-coding gene boundaries on the assembled A. maculatum genome, discovering 237,921 CDS. After trimming and classifying the transposable elements, bacterial contaminants, and truncated genes, a set of 25,702 were annotated and classified as the core gene products. A BUSCO analysis revealed 83.4% complete BUSCOs. A hyperlinked spreadsheet is provided, allowing browsing of the individual gene products and their matches to several databases.
Collapse
Affiliation(s)
- Jose M C Ribeiro
- NIAID NIH Laboratory of Malaria and Vector Research, Bethesda, MD 20892-8132, USA.
| | - Natalia J Bayona-Vásquez
- Department of Environmental Health Science and Georgia Genomics Facility, Environmental Health Science Building, University of Georgia, Athens, GA 30602, USA
| | - Khemraj Budachetri
- Center for Molecular and Cellular Biology, School of Biological, Environmental, and Earth Sciences, 118 College Drive, 5018, University of Southern Mississippi, Hattiesburg, MS 39406, USA; The Ohio State University, Columbus, OH 43210, USA
| | - Deepak Kumar
- Department of Environmental Health Science and Georgia Genomics Facility, Environmental Health Science Building, University of Georgia, Athens, GA 30602, USA
| | - Julia Catherine Frederick
- Department of Environmental Health Science and Georgia Genomics Facility, Environmental Health Science Building, University of Georgia, Athens, GA 30602, USA
| | - Faizan Tahir
- Center for Molecular and Cellular Biology, School of Biological, Environmental, and Earth Sciences, 118 College Drive, 5018, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Brant C Faircloth
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Travis C Glenn
- Department of Environmental Health Science and Georgia Genomics Facility, Environmental Health Science Building, University of Georgia, Athens, GA 30602, USA
| | - Shahid Karim
- Center for Molecular and Cellular Biology, School of Biological, Environmental, and Earth Sciences, 118 College Drive, 5018, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
11
|
Weiler CR, Schrijvers R, Golden DBK. Anaphylaxis: Advances in the Past 10 Years. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:51-62. [PMID: 36162799 DOI: 10.1016/j.jaip.2022.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 01/11/2023]
Abstract
In the past 10 years, anaphylaxis has grown into its own special area of study within Allergy-Immunology, both at the bench and at the bedside. This review focuses on some of the most clinically relevant advances over the past decade. These include simplified and more inclusive diagnostic criteria for adults and children, uniform definition of biphasic anaphylaxis, and improved systems for objective severity grading. Studies reported in the past decade have led to improved understanding of normal and abnormal regulation of mast cell function, translating into better diagnostic and therapeutic approaches to patients with anaphylaxis. Research has provided improved recognition and treatment of mast cell disorders and has identified a new condition, hereditary α-tryptasemia, that may impact anaphylactic syndromes. We have learned to recognize new causes (α-gal), new pathways (Mas-related G protein-coupled receptor-X2), and many risk factors for severe anaphylaxis. The stability of epinephrine in autoinjectors was reported to be very good for several years after the labeled expiry date, and it can tolerate freezing and thawing. Repeated and prolonged exposure to excessive heat leads to degradation of epinephrine activity. New treatments to prevent severe anaphylaxis have been described, using new ways to block the IgE receptor or modulate intracellular signaling pathways.
Collapse
Affiliation(s)
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - David B K Golden
- Division of Allergy/Clinical Immunology, Johns Hopkins School of Medicine, Baltimore, Md.
| |
Collapse
|
12
|
Vimonish R, Capelli-Peixoto J, Johnson WC, Hussein HE, Taus NS, Brayton KA, Munderloh UG, Noh SM, Ueti MW. Anaplasma marginale Infection of Dermacentor andersoni Primary Midgut Cell Culture Is Dependent on Fucosylated Glycans. Front Cell Infect Microbiol 2022; 12:877525. [PMID: 35711652 PMCID: PMC9197492 DOI: 10.3389/fcimb.2022.877525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/06/2022] [Indexed: 12/05/2022] Open
Abstract
Tick midgut is the primary infection site required by tick-borne pathogens to initiate their development for transmission. Despite the biological significance of this organ, cell cultures derived exclusively from tick midgut tissues are unavailable and protocols for generating primary midgut cell cultures have not been described. To study the mechanism of Anaplasma marginale-tick cell interactions, we successfully developed an in vitro Dermacentor andersoni primary midgut cell culture system. Midgut cells were maintained for up to 120 days. We demonstrated the infection of in vitro midgut cells by using an A. marginale omp10::himar1 mutant with continued replication for up to 10 days post-infection. Anaplasma marginale infection of midgut cells regulated the differential expression of tick α-(1,3)-fucosyltransferases A1 and A2. Silencing of α-(1,3)-fucosyltransferase A2 in uninfected midgut cells reduced the display of fucosylated glycans and significantly lowered the susceptibility of midgut cells to A. marginale infection, suggesting that the pathogen utilized core α-(1,3)-fucose of N-glycans to infect tick midgut cells. This is the first report using in vitro primary D. andersoni midgut cells to study A. marginale-tick cell interactions at the molecular level. The primary midgut cell culture system will further facilitate the investigation of tick-pathogen interactions, leading to the development of novel intervention strategies for tick-borne diseases.
Collapse
Affiliation(s)
- Rubikah Vimonish
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Janaina Capelli-Peixoto
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Wendell C. Johnson
- Animal Diseases Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Pullman, WA, United States
| | - Hala E. Hussein
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Naomi S. Taus
- Animal Diseases Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Pullman, WA, United States
| | - Kelly A. Brayton
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Ulrike G. Munderloh
- School of Public Health, Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Susan M. Noh
- Animal Diseases Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Pullman, WA, United States
- The Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States
| | - Massaro W. Ueti
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
- Animal Diseases Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Pullman, WA, United States
- The Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States
- *Correspondence: Massaro W. Ueti,
| |
Collapse
|
13
|
Rutkowski K, Sowa P, Mroczko B, Pancewicz S, Rutkowski R, Czupryna P, Groblewska M, Łukaszewicz-Zając M, Moniuszko-Malinowska A. Sensitisation and allergic reactions to alpha-1,3-galactose in Podlasie, Poland, an area endemic for tick-borne infections. Infect Dis (Lond) 2022; 54:572-579. [PMID: 35382677 DOI: 10.1080/23744235.2022.2057583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Ticks transmit several pathogens and seem implicated in the production of specific IgE antibodies to alpha-1,3-galactose (α-gal sIgE). They cause delayed and immediate allergy to mammalian meat and medication including antivenoms, vaccines and monoclonal antibodies. METHODS We assessed the prevalence of α-gal sIgE in forest workers and healthy controls in the Podlasie voivodeship, north-eastern Poland; the relationship between α-gal sIgE and allergy to α-gal-containing products; the correlation between α-gal sIgE and anti-Borrelia burgdorferi and anti-tick-borne encephalitis virus (TBEV) antibodies; the relationship between α-gal sIgE and markers of infection with lesser-known pathogens transmitted by ticks such as Anaplasma phagocytophilum. RESULTS Production of α-gal sIgE was closely related to tick bites. The odds ratio for detectable α-gal sIgE was 9.31 times higher among people with a history of tick bites (OR 9.3; p < .05). There was no correlation with the history of TBE, Lyme disease or human granulocytic anaplasmosis. However, serum α-gal sIgE correlated with anti-TBEV IgM antibodies in CSF. There was a strong correlation between α-gal sIgE and total IgE and sIgE to pork and beef. CONCLUSIONS Our data support the link between I.ricinus ticks and the production of α-gal sIgE and confirm that the pathogens carried by ticks we examined for do not seem implicated in this immune response.
Collapse
Affiliation(s)
- Krzysztof Rutkowski
- Department of Adult Allergy, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Paweł Sowa
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Białystok, Poland
| | - Ryszard Rutkowski
- Department of Respiratory Diagnostics and Bronchoscopy, Medical University of Białystok, Białystok, Poland
| | - Piotr Czupryna
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Białystok, Poland
| | | | | | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
14
|
Maldonado-Ruiz LP, Boorgula GD, Kim D, Fleming SD, Park Y. Tick Intrastadial Feeding and Its Role on IgE Production in the Murine Model of Alpha-gal Syndrome: The Tick "Transmission" Hypothesis. Front Immunol 2022; 13:844262. [PMID: 35309294 PMCID: PMC8930817 DOI: 10.3389/fimmu.2022.844262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have provided strong evidence indicating that lone star tick bites are a cause of AGS (alpha-gal syndrome, also known as red meat allergy RMA) in humans. AGS is characterized by an increase in IgE antibody production against galactose-alpha-1,3-galactose (aGal), which is a common glycan found in mammalian tissue, except in Old World monkeys and humans. The main causative factor of AGS, the lone star tick (Amblyomma americanum), is broadly distributed throughout the east and midwest of the United States and is a vector of a wide range of human and animal pathogens. Our earlier glycomics study of the salivary glands of partially fed male and female ticks revealed relatively high levels of aGal epitopes. In this study, we found that partially fed males of A. americanum on bovine blood, which engage in multiple intrastadial feedings, carry a large amount of aGal in the salivary glands. In our current work, we aimed to test whether ticks mediate the transmission of the aGal sensitizer acquired from nonhuman blood to humans in the intrastadial host switch (referred to as the "transmission" hypothesis). To test this hypothesis, we used an alpha-galactosyltransferase knockout mutant mouse (aGT-KO) model system infested with ticks that were unfed or partially fed on bovine blood. Based on the levels of total IgE and specific IgG and IgE antibodies against aGal after tick feedings, aGT-KO mice significantly responded to tick feeding and injection of aGal (Galα1-3Galβ1-4GlcNAc) conjugated to human serum albumin or mouse serum albumin (aGal-HSA or aGal-MSA) by increasing total IgE and aGal-specific IgE levels compared to those in C57BL/6 control mice. All of the treatments of aGT-KO mice involving the feeding of partially fed and unfed ticks functioned as sensitizers that increased the levels of specific IgE against aGal, with large individual variations. The data in this study do not support the "transmission" component of AGS, although they confirmed that aGT-KO mice can be used as a model for RMA studies.
Collapse
Affiliation(s)
| | | | - Donghun Kim
- Department of Entomology, Kyungpook National University, Daegu, South Korea
| | - Sherry D. Fleming
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
15
|
Palinauskas V, Mateos-Hernandez L, Wu-Chuang A, de la Fuente J, Aželytė J, Obregon D, Cabezas-Cruz A. Exploring the Ecological Implications of Microbiota Diversity in Birds: Natural Barriers Against Avian Malaria. Front Immunol 2022; 13:807682. [PMID: 35250978 PMCID: PMC8891477 DOI: 10.3389/fimmu.2022.807682] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Natural antibodies (Abs), produced in response to bacterial gut microbiota, drive resistance to infection in vertebrates. In natural systems, gut microbiota diversity is expected to shape the spectrum of natural Abs and resistance to parasites. This hypothesis has not been empirically tested. In this 'Hypothesis and Theory' paper, we propose that enteric microbiota diversity shapes the immune response to the carbohydrate α-Gal and resistance to avian malaria. We further propose that anti-α-Gal Abs are transmitted from mother to eggs for early malaria protection in chicks. Microbiota modulation by anti-α-Gal Abs is also proposed as a mechanism favoring the early colonization of bacterial taxa with α1,3-galactosyltransferase (α1,3GT) activity in the bird gut. Our preliminary data shows that bacterial α1,3GT genes are widely distributed in the gut microbiome of wild and domestic birds. We also showed that experimental infection with the avian malaria parasite P. relictum induces anti-α-Gal Abs in bird sera. The bird-malaria-microbiota system allows combining field studies with infection and transmission experiments in laboratory animals to test the association between microbiota composition, anti-α-Gal Abs, and malaria infection in natural populations of wild birds. Understanding how the gut microbiome influences resistance to malaria can bring insights on how these mechanisms influence the prevalence of malaria parasites in juvenile birds and shape the host population dynamics.
Collapse
Affiliation(s)
| | - Lourdes Mateos-Hernandez
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Justė Aželytė
- Nature Research Centre, Akademijos 2, Vilnius, Lithuania
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
16
|
Olajiga OM, Maldonado-Ruiz LP, Fatehi S, Cardenas JC, Gonzalez MU, Gutierrez-Silva LY, Londono-Renteria B, Park Y. Association of dengue infection with anti-alpha-gal antibodies, IgM, IgG, IgG1, and IgG2. Front Immunol 2022; 13:1021016. [PMID: 36311743 PMCID: PMC9614307 DOI: 10.3389/fimmu.2022.1021016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Dengue virus (DENV) transmitted by the Aedes mosquitoes is the etiological agent of dengue fever, one of the fastest-growing reemerging mosquito-borne diseases on the planet with a 30-fold surge in the last five decades. Interestingly, many arthropod-borne pathogens, including DENV type 2, have been reported to contain an immunogenic glycan galactose-alpha1,3-galactose (alpha-Gal or aGal). The aGal molecule is a common oligosaccharide found in many microorganisms and in most mammals, except for humans and the Old-World primates. The loss of aGal in humans is considered to be an evolutionary innovation for enabling the production of specific antibodies against aGal that could be presented on the glycan of pathogens. The objective of this study was to evaluate different anti-aGal antibodies (IgM, IgG, IgG1, and IgG2) in people exposed to DENV. We observed a significant difference in anti-aGal IgG and IgG1 levels among dengue severity classifications. Furthermore, a significant positive correlation was observed between the anti-aGal IgG and the number of days with dengue symptoms in patients. Additionally, both anti-aGal IgM and IgG levels differ between the two geographical locations of patients. While the anti-aGal IgM and IgG2 levels were not significantly different according to the dengue severity levels, age was negatively correlated with anti-aGal IgM and positively correlated with anti-aGal IgG2. Significant involvement of aGal antibodies in Dengue infection processes is suggested based on the results. Our results open the need for further studies on the exact roles and the mechanisms of the aGal antibodies in Dengue infection.
Collapse
Affiliation(s)
- Olayinka M. Olajiga
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | | | - Soheila Fatehi
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Jenny C. Cardenas
- Laboratorio Clínico, Hospital Local Los Patios, Los Patios, Norte de Santander, Colombia
| | - Maria U. Gonzalez
- Laboratorio Clinico, Empresa Social Del Estado Hospital Emiro Quintero Cañizares, Ocaña, Norte de Santander, Colombia
| | | | - Berlin Londono-Renteria
- Department of Entomology, Kansas State University, Manhattan, KS, United States
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
- *Correspondence: Yoonseong Park, ; Berlin Londono-Renteria,
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, United States
- *Correspondence: Yoonseong Park, ; Berlin Londono-Renteria,
| |
Collapse
|
17
|
Román-Carrasco P, Hemmer W, Cabezas-Cruz A, Hodžić A, de la Fuente J, Swoboda I. The α-Gal Syndrome and Potential Mechanisms. FRONTIERS IN ALLERGY 2021; 2:783279. [PMID: 35386980 PMCID: PMC8974695 DOI: 10.3389/falgy.2021.783279] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
The α-Gal syndrome is a complex allergic disease characterized by the development of specific IgE antibodies against the carbohydrate galactose-α-1,3-galactose (α-Gal), an oligosaccharide present in cells and tissues of non-primate mammals. Individuals with IgE antibodies to α-Gal suffer from a delayed form of anaphylaxis following red meat consumption. There are several features that make the α-Gal syndrome such a unique allergic disease and distinguish it from other food allergies: (1) symptoms causing IgE antibodies are directed against a carbohydrate moiety, (2) the unusual delay between the consumption of the food and the onset of the symptoms, and (3) the fact that primary sensitization to α-Gal occurs via tick bites. This review takes a closer look at the immune response against α-Gal, in healthy and in α-Gal allergic individuals. Furthermore, the similarities and differences between immune response against α-Gal and against the other important glycan moieties associated with allergies, namely cross-reactive carbohydrate determinants (CCDs), are discussed. Then different mechanisms are discussed that could contribute to the delayed onset of symptoms after consumption of mammalian meat. Moreover, our current knowledge on the role of tick bites in the sensitization process is summarized. The tick saliva has been shown to contain proteins carrying α-Gal, but also bioactive molecules, such as prostaglandin E2, which is capable of stimulating an increased expression of anti-inflammatory cytokines while promoting a decrease in the production of proinflammatory mediators. Together these components might promote Th2-related immunity and trigger a class switch to IgE antibodies directed against the oligosaccharide α-Gal. The review also points to open research questions that remain to be answered and proposes future research directions, which will help to get a better understanding and lead to a better management of the disease.
Collapse
Affiliation(s)
- Patricia Román-Carrasco
- Molecular Biotechnology Section, FH Campus Wien, University of Applied Sciences, Vienna, Austria
| | | | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Adnan Hodžić
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - José de la Fuente
- SaBio, Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Ines Swoboda
- Molecular Biotechnology Section, FH Campus Wien, University of Applied Sciences, Vienna, Austria
| |
Collapse
|
18
|
Villar M, Pacheco I, Mateos-Hernández L, Cabezas-Cruz A, Tabor AE, Rodríguez-Valle M, Mulenga A, Kocan KM, Blouin EF, de la Fuente J. Characterization of tick salivary gland and saliva alphagalactome reveals candidate alpha-gal syndrome disease biomarkers. Expert Rev Proteomics 2021; 18:1099-1116. [PMID: 34904495 DOI: 10.1080/14789450.2021.2018305] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Ticks are obligate hematophagous arthropods that synthesize the glycan Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal) associated with the alpha-gal syndrome (AGS) or allergy to mammalian meat consumption. RESEARCH DESIGN AND METHODS In this study, we used a proteomics approach to characterize tick proteins in salivary glands (sialome SG), secreted saliva (sialome SA) and with α-Gal modification (alphagalactome SG and SA) in model tick species associated with the AGS in the United States (Amblyomma americanum) and Australia (Ixodes holocyclus). Selected proteins reactive to sera (IgE) from patients with AGS were identified to advance in the identification of possible proteins associated with the AGS. For comparative analysis, the α-Gal content was measured in various tick species. RESULTS The results confirmed that ticks produce proteins with α-Gal modifications and secreted into saliva during feeding. Proteins identified in tick alphagalactome SA by sera from patients with severe AGS symptomatology may constitute candidate disease biomarkers. CONCLUSIONS The results support the presence tick-derived proteins with α-Gal modifications in the saliva with potential implications in AGS and other disorders and protective capacity against tick infestations and pathogen infection. Future research should focus on the characterization of the function of tick glycoproteins with α-Gal in tick biology and AGS.
Collapse
Affiliation(s)
- Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain.,Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Iván Pacheco
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - Lourdes Mateos-Hernández
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - Ala E Tabor
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, 306 Carmody Road, St. Lucia, QLD 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Cooper Road, St. Lucia, QLD 4072, Australia
| | - Manuel Rodríguez-Valle
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, 306 Carmody Road, St. Lucia, QLD 4072, Australia
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX77843, United States
| | - Katherine M Kocan
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Edmour F Blouin
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
19
|
Sharma SR, Crispell G, Mohamed A, Cox C, Lange J, Choudhary S, Commins SP, Karim S. Alpha-Gal Syndrome: Involvement of Amblyomma americanum α-D-Galactosidase and β-1,4 Galactosyltransferase Enzymes in α-Gal Metabolism. Front Cell Infect Microbiol 2021; 11:775371. [PMID: 34926322 PMCID: PMC8671611 DOI: 10.3389/fcimb.2021.775371] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Alpha-Gal Syndrome (AGS) is an IgE-mediated delayed-type hypersensitivity reaction to the oligosaccharide galactose-α-1, 3-galactose (α-gal) injected into humans from the lone-star tick (Amblyomma americanum) bite. Indeed, α-gal is discovered in salivary glands of lone-star tick; however, the tick's specific intrinsic factors involved in endogenous α-gal production and presentation to host during hematophagy are poorly understood. This study aimed to investigate the functional role of two tick enzymes, α-D-galactosidase (ADGal) and β-1,4 galactosyltransferases (β-1,4GalT), in endogenous α-gal production, carbohydrate metabolism, and N-glycan profile in lone-star tick. The ADGal enzyme cleaves terminal α-galactose moieties from glycoproteins and glycolipids, whereas β-1,4GalT transfers α-galactose to a β1,4 terminal linkage acceptor sugars-GlcNAc, Glc, and Xyl-in various processes of glycoconjugate synthesis. An RNA interference approach was utilized to silence ADGal and β-1,4GalT in Am. americanum to examine their function in α-gal metabolism in tick and AGS onset. Silencing of ADGal led to the significant downregulation of genes involved in galactose metabolism and transport in Am. americanum. Immunoblot and N-glycan analysis of the Am. americanum salivary glands showed a significant reduction in α-gal levels in silenced tissues. However, there was no significant difference in the level of α-gal in β-1,4GalT-silenced tick salivary glands. A basophil-activation test showed a decrease in the frequency of activated basophil by ADGal-silenced salivary glands. These results provide an insight into the roles of ADGal and β-1,4GalT in α-gal production and presentation in ticks and the probable involvement in the onset of AGS.
Collapse
Affiliation(s)
- Surendra Raj Sharma
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Gary Crispell
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Ahmed Mohamed
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Cameron Cox
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Joshua Lange
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Shailesh Choudhary
- Department of Medicine and Pediatrics, University of North Carolina, Chapel Hill, NC, United States
| | - Scott P. Commins
- Department of Medicine and Pediatrics, University of North Carolina, Chapel Hill, NC, United States
| | - Shahid Karim
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
- Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
20
|
Alpha-gal syndrome: the first report in Poland. Cent Eur J Immunol 2021; 46:398-400. [PMID: 34764814 PMCID: PMC8574113 DOI: 10.5114/ceji.2021.108766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/16/2021] [Indexed: 11/24/2022] Open
Abstract
Alpha-gal syndrome is an immunoglobulin E (IgE)-dependent allergy to galactose-α-1,3-galactose, resulting in a delayed anaphylactic reaction to red meat. The syndrome is causally linked to bites from ticks and associated with cross-reactivity to some drugs, e.g. cetuximab. Although cases of alpha-gal allergy have already been reported in a few European countries, to our best knowledge, no cases have been reported so far in Central-Eastern Europe. In the current report, we describe a case of alpha-gal syndrome diagnosed in Poland, to highlight the fact that it may occur in new geographic areas. Within three months, the described patient underwent five anaphylactic reactions with typical clinical manifestations. They developed a few hours after ingestion of red meat (pork, beef or mutton) and were preceded by tick bites. The level of specific IgE antibodies to alpha-gal reached 72.6 kAU/l, whereas the levels of specific IgE antibodies to other food allergens were within the reference range. As the onset of symptoms in this syndrome is usually delayed, numerous cases may be identified as idiopathic anaphylaxis, while early diagnosis is indispensable to avoid potentially life-threatening complications.
Collapse
|
21
|
Salata C, Moutailler S, Attoui H, Zweygarth E, Decker L, Bell-Sakyi L. How relevant are in vitro culture models for study of tick-pathogen interactions? Pathog Glob Health 2021; 115:437-455. [PMID: 34190676 PMCID: PMC8635668 DOI: 10.1080/20477724.2021.1944539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Although tick-borne infectious diseases threaten human and animal health worldwide, with constantly increasing incidence, little knowledge is available regarding vector-pathogen interactions and pathogen transmission. In vivo laboratory study of these subjects using live, intact ticks is expensive, labor-intensive, and challenging from the points of view of biosafety and ethics. Several in vitro models have been developed, including over 70 continuous cell lines derived from multiple tick species and a variety of tick organ culture systems, facilitating many research activities. However, some limitations have to be considered in the translation of the results from the in vitro environment to the in vivo situation of live, intact ticks, and vertebrate hosts. In this review, we describe the available in vitro models and selected results from their application to the study of tick-borne viruses, bacteria, and protozoa, where possible comparing these results to studies in live, intact ticks. Finally, we highlight the strengths and weaknesses of in vitro tick culture models and their essential role in tick-borne pathogen research.
Collapse
Affiliation(s)
- Cristiano Salata
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Sara Moutailler
- Laboratoire De Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Maisons-Alfort, France
| | - Houssam Attoui
- Department of Animal Health, UMR1161 Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Erich Zweygarth
- The Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Lygia Decker
- Department of Preventive Veterinary Medicine, School of Veterinary Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
22
|
Epelboin L, Roche F, Dueymes M, Guillot G, Duron O, Nacher M, Djossou F, Soria A. Allergy to Mammalian Meat Linked to Alpha-Gal Syndrome Potentially After Tick Bite in the Amazon: A Case Series. Am J Trop Med Hyg 2021; 105:1396-1403. [PMID: 34544046 PMCID: PMC8592224 DOI: 10.4269/ajtmh.20-1630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
The past decade has seen the emergence of a new type of food allergy occurring after ingestion of mammalian meat. This allergy is related to immunoglobulin (Ig)E specific for galactose-alpha-1,3 galactose (α-Gal). Originally described in the United States in 2009, other cases have subsequently been described in Australia and in Europe, but still very few in Latin America. The purpose of this study was to show the existence of this pathology in French Guiana and to describe the historical, clinical, and biological characteristics of these patients. Patients reporting an allergy to mammalian meat were included between September 2017 and August 2019. Eleven patients were included, nine of whom exhibited digestive symptoms; four, urticaria reactions; three, respiratory reactions; and five angioedema. The time between ingestion of red meat and reaction varied between 1.5 and 6 hours. The implicated meats were most often beef and pork. All patients had been regularly exposed to tick bites before the appearance of symptoms. All the samples (n = 7) were positive for anti-α-Gal anti-mammalian meats IgE. All the patients were Caucasian French expatriates. This study confirms the presence of this new entity in French Guiana and is the largest reported in Latin America. Our results do not clearly allow us to state that tick bites are the cause of this allergy, but all patients reported being exposed regularly to these arthropods.
Collapse
Affiliation(s)
- Loïc Epelboin
- Infectious and Tropical Diseases Department, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana.,Equipe EA 3593, Ecosystèmes Amazoniens et Pathologie Tropicale, Université de la Guyane, Cayenne, French Guiana.,Centre d'Investigation Clinique, INSERM 1424, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Florent Roche
- Université des Antilles et de la Guyane, Faculté de Médecine Hyacinthe Basturaud, Pointe-à-Pitre, France
| | - Maryvonne Dueymes
- Equipe EA 3593, Ecosystèmes Amazoniens et Pathologie Tropicale, Université de la Guyane, Cayenne, French Guiana.,Laboratory of Medical Biology, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Geneviève Guillot
- Department of Pneumology and Gastroenterology, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Olivier Duron
- Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle, Centre National de la Recherche Scientifique, Institut pour la Recherche et le Développement, Université de Montpellier, Montpellier, France
| | - Mathieu Nacher
- Centre d'Investigation Clinique, INSERM 1424, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Félix Djossou
- Infectious and Tropical Diseases Department, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana.,Equipe EA 3593, Ecosystèmes Amazoniens et Pathologie Tropicale, Université de la Guyane, Cayenne, French Guiana
| | - Angèle Soria
- Tenon Hospital, Dermatology-Allergology Department, Sorbonne University, Paris, France
| |
Collapse
|
23
|
Murangi T, Prakash P, Moreira BP, Basera W, Botha M, Cunningham S, Facey-Thomas H, Halajian A, Joshi L, Ramjith J, Falcone FH, Horsnell W, Levin ME. Ascaris lumbricoides and ticks associated with sensitization to galactose α1,3-galactose and elicitation of the alpha-gal syndrome. J Allergy Clin Immunol 2021; 149:698-707.e3. [PMID: 34333031 DOI: 10.1016/j.jaci.2021.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/23/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND IgE to galactose alpha-1,3 galactose (alpha-gal) causes alpha-gal syndrome (delayed anaphylaxis after ingestion of mammalian meat). Development of sensitization has been attributed to tick bites; however, the possible role of other parasites has not been well studied. OBJECTIVE Our aims were to assess the presence, relative abundances, and site of localization of alpha-gal-containing proteins in common ectoparasites and endoparasites endemic in an area of high prevalence of alpha-gal syndrome, as well as to investigate the ability of ascaris antigens to elicit a reaction in a humanized rat basophil in vitro sensitization model. METHODS Levels of total IgE, Ascaris-specific IgE, and alpha-gal IgE were measured in sera from patients with challenge-proven alpha-gal syndrome and from controls without allergy. The presence, concentration, and localization of alpha-gal in parasites were assessed by ELISA, Western blotting, and immunohistochemistry. The ability of Ascaris lumbricoides antigen to elicit IgE-dependent reactivity was demonstrated by using the RS-ATL8 basophil reporter system. RESULTS Alpha-gal IgE level correlated with A lumbricoides-specific IgE level. Alpha-gal protein at 70 to 130 kDa was detected in A lumbricoides at concentrations higher than those found in Rhipicephalus evertsi and Amblyomma hebraeum ticks. Immunohistochemistry was used to localize alpha-gal in tick salivary acini and the helminth gut. Non-alpha-gal-containing A lumbricoides antigens activated RS-ATL8 basophils primed with serum from subjects with alpha-gal syndrome. CONCLUSION We demonstrated the presence, relative abundances, and site of localization of alpha-gal-containing proteins in parasites. The activation of RS-ATL8 IgE reporter cells primed with serum from subjects with alpha-gal syndrome on exposure to non-alpha-gal-containing A lumbricoides proteins indicates a possible role of exposure to A lumbricoides in alpha-gal sensitization and clinical reactivity.
Collapse
Affiliation(s)
- Tatenda Murangi
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Division of immunology, University of Cape Town, Cape Town, South Africa
| | - Prema Prakash
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Bernardo Pereira Moreira
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Wisdom Basera
- School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa; Burden of Disease Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Maresa Botha
- Division of Paediatric Allergy, Department of Paediatrics, University of Cape Town, Cape Town, South Africa
| | - Stephen Cunningham
- Glycoscience Group, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Heidi Facey-Thomas
- Division of Paediatric Allergy, Department of Paediatrics, University of Cape Town, Cape Town, South Africa
| | - Ali Halajian
- Research Administration and Development, University of Limpopo, Sovenga, South Africa
| | - Lokesh Joshi
- Glycoscience Group, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Jordache Ramjith
- Department for Health Evidence, Biostatistics Research Group, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Franco H Falcone
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - William Horsnell
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Division of immunology, University of Cape Town, Cape Town, South Africa; Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Michael E Levin
- Division of Paediatric Allergy, Department of Paediatrics, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
24
|
Sharma SR, Karim S. Tick Saliva and the Alpha-Gal Syndrome: Finding a Needle in a Haystack. Front Cell Infect Microbiol 2021; 11:680264. [PMID: 34354960 PMCID: PMC8331069 DOI: 10.3389/fcimb.2021.680264] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/29/2021] [Indexed: 01/01/2023] Open
Abstract
Ticks and tick-borne diseases are significant public health concerns. Bioactive molecules in tick saliva facilitate prolonged blood-feeding and transmission of tick-borne pathogens to the vertebrate host. Alpha-gal syndrome (AGS), a newly reported food allergy, is believed to be induced by saliva proteins decorated with a sugar molecule, the oligosaccharide galactose-⍺-1,3-galactose (α-gal). This syndrome is characterized by an IgE antibody-directed hypersensitivity against α-gal. The α-gal antigen was discovered in the salivary glands and saliva of various tick species including, the Lone Star tick (Amblyomma americanum). The underlying immune mechanisms linking tick bites with α-gal-specific IgE production are poorly understood and are crucial to identify and establish novel treatments for this disease. This article reviews the current understanding of AGS and its involvement with tick species.
Collapse
Affiliation(s)
- Surendra Raj Sharma
- Center for Molecular and Cellular Biology, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Shahid Karim
- Center for Molecular and Cellular Biology, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
25
|
Keshavarz B, Erickson LD, Platts-Mills TAE, Wilson JM. Lessons in Innate and Allergic Immunity From Dust Mite Feces and Tick Bites. FRONTIERS IN ALLERGY 2021; 2:692643. [PMID: 35387017 PMCID: PMC8974698 DOI: 10.3389/falgy.2021.692643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Allergic diseases represent a major cause of morbidity in modern industrialized and developing countries. The origins and development of allergic immune responses have proven difficult to unravel and remain an important scientific objective. House dust mites (HDM) and ticks represent two important causes of allergic disease. Investigations into HDM fecal particles and tick bites have revealed insights which have and will continue to shape our understanding of allergic immunity. In the present review, focus is given to the role of innate immunity in shaping the respective responses to HDM and ticks. The HDM fecal particle represents a rich milieu of molecules that can be recognized by pathogen-recognition receptors of the innate immune system. Factors in tick saliva and/or tissue damage resultant from tick feeding are thought to activate innate immune signaling that promotes allergic pathways. Recent evidence indicates that innate sensing involves not only the direct recognition of allergenic agents/organisms, but also indirect sensing of epithelial barrier disruption. Although fecal particles from HDM and bites from ticks represent two distinct causes of sensitization, both involve a complex array of molecules that contribute to an innate response. Identification of specific molecules will inform our understanding of the mechanisms that contribute to allergic immunity, however the key may lie in the combination of molecules delivered to specific sites in the body.
Collapse
Affiliation(s)
- Behnam Keshavarz
- Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Loren D. Erickson
- Beirne B. Carter Center for Immunology Research and the Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Thomas A. E. Platts-Mills
- Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Jeffrey M. Wilson
- Division of Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
26
|
Ramasamy R. Mosquito vector proteins homologous to α1-3 galactosyl transferases of tick vectors in the context of protective immunity against malaria and hypersensitivity to vector bites. Parasit Vectors 2021; 14:303. [PMID: 34090497 PMCID: PMC8179703 DOI: 10.1186/s13071-021-04801-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Background An epitope, Galα1-3Galβ1-4GlcNAc-R, termed α-gal, is present in glycoconjugates of New World monkeys (platyrrhines) and other mammals but not in hominoids and Old World monkeys (catarrhines). The difference is due to the inactivation of α1-3 galactosyl transferase (α1-3 GT) genes in catarrhines. Natural antibodies to α-gal are therefore developed in catarrhines but not platyrrhines and other mammals. Hypersensitivity reactions are commonly elicited by mosquito and tick vector bites. IgE antibodies against α-gal cause food allergy to red meat in persons who have been exposed to tick bites. Three enzymes synthesising the terminal α1-3-linked galactose in α-gal, that are homologous to mammalian α and β1-4 GTs but not mammalian α1-3 GTs, were recently identified in the tick vector Ixodes scapularis. IgG and IgM antibodies to α-gal are reported to protect against malaria because mosquito-derived sporozoites of malaria parasites express α-gal on their surface. This article explores the possibility that the α-gal in sporozoites are acquired from glycoconjugates synthesised by mosquitoes rather than through de novo synthesis by sporozoites. Methods The presence of proteins homologous to the three identified tick α1-3 GTs and mammalian α1-3 GTs in two important mosquito vectors, Aedes aegypti and Anopheles gambiae, as well as Plasmodium malaria parasites, was investigated by BLASTp analysis to help clarify the source of the α-gal on sporozoite surfaces. Results Anopheles gambiae and Ae. aegypti possessed several different proteins homologous to the three I. scapularis proteins with α1-3 GT activity, but not mammalian α1-3 GTs. The putative mosquito α1-3 GTs possessed conserved protein domains characteristic of glycosyl transferases. However, the genus Plasmodium lacked proteins homologous to the three I. scapularis proteins with α1-3 GT activity and mammalian α1-3 GTs. Conclusions The putative α1-3 GTs identified in the two mosquito vectors may synthesise glycoconjugates containing α-gal that can be transferred to sporozoite surfaces before they are inoculated into skin during blood feeding. The findings merit further investigation because of their implications for immunity against malaria, hypersensitivity to mosquito bites, primate evolution, and proposals for immunisation against α-gal. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04801-7.
Collapse
Affiliation(s)
- Ranjan Ramasamy
- ID-FISH Technology, 556 Gibraltar Drive, Milpitas, CA95035, USA.
| |
Collapse
|
27
|
Tick-human interactions: from allergic klendusity to the α-Gal syndrome. Biochem J 2021; 478:1783-1794. [PMID: 33988703 DOI: 10.1042/bcj20200915] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/06/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022]
Abstract
Ticks and the pathogens they transmit, including bacteria, viruses, protozoa, and helminths, constitute a growing burden for human and animal health worldwide. The ability of some animal species to acquire resistance to blood-feeding by ticks after a single or repeated infestation is known as acquired tick resistance (ATR). This resistance has been associated to tick-specific IgE response, the generation of skin-resident memory CD4+ T cells, basophil recruitment, histamine release, and epidermal hyperplasia. ATR has also been associated with protection to tick-borne tularemia through allergic klendusity, a disease-escaping ability produced by the development of hypersensitivity to an allergen. In addition to pathogen transmission, tick infestation in humans is associated with the α-Gal syndrome (AGS), a type of allergy characterized by an IgE response against the carbohydrate Galα1-3Gal (α-Gal). This glycan is present in tick salivary proteins and on the surface of tick-borne pathogens such as Borrelia burgdorferi and Anaplasma phagocytophilum, the causative agents of Lyme disease and granulocytic anaplasmosis. Most α-Gal-sensitized individuals develop IgE specific against this glycan, but only a small fraction develop the AGS. This review summarizes our current understanding of ATR and its impact on the continuum α-Gal sensitization, allergy, and the AGS. We propose that the α-Gal-specific IgE response in humans is an evolutionary adaptation associated with ATR and allergic klendusity with the trade-off of developing AGS.
Collapse
|
28
|
Pacheco I, Fernández de Mera IG, Feo Brito F, Gómez Torrijos E, Villar M, Contreras M, Lima-Barbero JF, Doncel-Pérez E, Cabezas-Cruz A, Gortázar C, de la Fuente J. Characterization of the anti-α-Gal antibody profile in association with Guillain-Barré syndrome, implications for tick-related allergic reactions. Ticks Tick Borne Dis 2021; 12:101651. [PMID: 33465663 DOI: 10.1016/j.ttbdis.2021.101651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/01/2020] [Accepted: 01/05/2021] [Indexed: 01/13/2023]
Abstract
Humans evolved by losing the capacity to synthesize the glycan Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal), which resulted in the capacity to develop a protective response mediated by anti-α-Gal IgM/IgG antibodies against pathogens containing this modification on membrane proteins. As an evolutionary trade-off, humans can develop the alpha-Gal syndrome (AGS), a recently diagnosed disease mainly associated with allergic reactions to mammalian meat consumption. The etiology of the AGS is the exposure to tick bites and the IgE antibody response against α-Gal-containing glycoproteins and glycolipids. The objective of this study was to characterize the anti-α-Gal antibody response in association with the immune-mediated peripheral neuropathy, Guillain-Barré syndrome (GBS), and compare it with different factors known to modulate the antibody response to α-Gal such as exposure to tick bites and development of allergic reactions in response to tick bites. The results showed a significant decrease in the IgM/IgG response to α-Gal in GBS patients when compared to healthy individuals. In contrast, the IgM/IgG levels to α-Gal did not change in patients with allergic reactions to tick bites. The IgE response was not affected in GBS patients, but as expected, the IgE levels significantly increased in individuals exposed to tick bites and patients with tick-associated allergies. These results suggest that the immune pathways of anti-α-Gal IgM/IgG and IgE production are independent. Further studies should consider the susceptibility to allergic reactions to tick bites in GBS patients.
Collapse
Affiliation(s)
- Iván Pacheco
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Isabel G Fernández de Mera
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Francisco Feo Brito
- Allergy Section, General University Hospital of Ciudad Real, Calle Obispo Rafael Torija s/n, 13005, Ciudad Real, Spain
| | - Elisa Gómez Torrijos
- Allergy Section, General University Hospital of Ciudad Real, Calle Obispo Rafael Torija s/n, 13005, Ciudad Real, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain; Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Marinela Contreras
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Espinardo, 30100, Murcia, Spain
| | - José Francisco Lima-Barbero
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Ernesto Doncel-Pérez
- Laboratorio de Química Neuro-Regenerativa, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
29
|
de la Fuente J, Urra JM, Contreras M, Pacheco I, Ferreras-Colino E, Doncel-Pérez E, Fernández de Mera IG, Villar M, Cabrera CM, Gómez Hernando C, Vargas Baquero E, Blanco García J, Rodríguez Gómez J, Velayos Galán A, Feo Brito F, Gómez Torrijos E, Cabezas-Cruz A, Gortázar C. A dataset for the analysis of antibody response to glycan alpha-Gal in individuals with immune-mediated disorders. F1000Res 2020; 9:1366. [PMID: 34408852 PMCID: PMC8361808 DOI: 10.12688/f1000research.27495.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 04/04/2024] Open
Abstract
Humans evolved by losing the capacity to synthesize the glycan Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal), which resulted in the development of a protective response mediated by anti-α-Gal IgM/IgG/IgA antibodies against pathogens containing this modification on membrane proteins. As an evolutionary trade-off, humans can develop the alpha-Gal syndrome (AGS), a recently diagnosed disease mediated by anti-α-Gal IgE antibodies and associated with allergic reactions to mammalian meat consumption and tick bites. However, the anti-α-Gal antibody response may be associated with other immune-mediated disorders such as those occurring in patients with COVID-19 and Guillain-Barré syndrome (GBS). Here, we provide a dataset (209 entries) on the IgE/IgM/IgG/IgA anti-α-Gal antibody response in healthy individuals and patients diagnosed with AGS, tick-borne allergies, GBS and COVID-19. The data allows correlative analyses of the anti-α-Gal antibody response with factors such as patient and clinical characteristics, record of tick bites, blood group, age and sex. These analyses could provide insights into the role of anti-α-Gal antibody response in disease symptomatology and possible protective mechanisms.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - José Miguel Urra
- Immunology Department, Hospital General Universitario de Ciudad Real, Ciudad Real, 13005, Spain
- School of Medicine, Universidad de Castilla la Mancha (UCLM), Ciudad Real, 13005, Spain
| | - Marinela Contreras
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, 30100, Spain
| | - Iván Pacheco
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
| | - Elisa Ferreras-Colino
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
| | - Ernesto Doncel-Pérez
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, 45071, Spain
| | | | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
- Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Carmen M. Cabrera
- Immunology Department, Hospital General Universitario de Ciudad Real, Ciudad Real, 13005, Spain
- School of Medicine, Universidad de Castilla la Mancha (UCLM), Ciudad Real, 13005, Spain
| | | | - Eduardo Vargas Baquero
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, 45071, Spain
| | - Javier Blanco García
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, 45071, Spain
| | - Javier Rodríguez Gómez
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, 45071, Spain
| | - Alberto Velayos Galán
- Servicio de Neurología, Hospital General La Mancha Centro, Alcázar de San Juan, 13600, Spain
| | - Francisco Feo Brito
- Allergy Section, General University Hospital of Ciudad Real, Ciudad Real, 13005, Spain
| | - Elisa Gómez Torrijos
- Allergy Section, General University Hospital of Ciudad Real, Ciudad Real, 13005, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
| |
Collapse
|
30
|
de la Fuente J, Urra JM, Contreras M, Pacheco I, Ferreras-Colino E, Doncel-Pérez E, Fernández de Mera IG, Villar M, Cabrera CM, Gómez Hernando C, Vargas Baquero E, Blanco García J, Rodríguez Gómez J, Velayos Galán A, Feo Brito F, Gómez Torrijos E, Cabezas-Cruz A, Gortázar C. A dataset for the analysis of antibody response to glycan alpha-Gal in individuals with immune-mediated disorders. F1000Res 2020; 9:1366. [PMID: 34408852 PMCID: PMC8361808 DOI: 10.12688/f1000research.27495.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 01/01/2023] Open
Abstract
Humans evolved by losing the capacity to synthesize the glycan Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal), which resulted in the development of a protective response mediated by anti-α-Gal IgM/IgG/IgA antibodies against pathogens containing this modification on membrane proteins. As an evolutionary trade-off, humans can develop the alpha-Gal syndrome (AGS), a recently diagnosed disease mediated by anti-α-Gal IgE antibodies and associated with allergic reactions to mammalian meat consumption and tick bites. However, the anti-α-Gal antibody response may be associated with other immune-mediated disorders such as those occurring in patients with COVID-19 and Guillain-Barré syndrome (GBS). Here, we provide a dataset (209 entries) on the IgE/IgM/IgG/IgA anti-α-Gal antibody response in healthy individuals and patients diagnosed with AGS, tick-borne allergies, GBS and COVID-19. The data allows correlative analyses of the anti-α-Gal antibody response with factors such as patient and clinical characteristics, record of tick bites, blood group, age and sex. These analyses could provide insights into the role of anti-α-Gal antibody response in disease symptomatology and possible protective mechanisms.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - José Miguel Urra
- Immunology Department, Hospital General Universitario de Ciudad Real, Ciudad Real, 13005, Spain
- School of Medicine, Universidad de Castilla la Mancha (UCLM), Ciudad Real, 13005, Spain
| | - Marinela Contreras
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Murcia, 30100, Spain
| | - Iván Pacheco
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
| | - Elisa Ferreras-Colino
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
| | - Ernesto Doncel-Pérez
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, 45071, Spain
| | | | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
- Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Carmen M. Cabrera
- Immunology Department, Hospital General Universitario de Ciudad Real, Ciudad Real, 13005, Spain
- School of Medicine, Universidad de Castilla la Mancha (UCLM), Ciudad Real, 13005, Spain
| | | | - Eduardo Vargas Baquero
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, 45071, Spain
| | - Javier Blanco García
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, 45071, Spain
| | - Javier Rodríguez Gómez
- Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha, Toledo, 45071, Spain
| | - Alberto Velayos Galán
- Servicio de Neurología, Hospital General La Mancha Centro, Alcázar de San Juan, 13600, Spain
| | - Francisco Feo Brito
- Allergy Section, General University Hospital of Ciudad Real, Ciudad Real, 13005, Spain
| | - Elisa Gómez Torrijos
- Allergy Section, General University Hospital of Ciudad Real, Ciudad Real, 13005, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, Ciudad Real, 13005, Spain
| |
Collapse
|
31
|
Mateos-Hernández L, Obregón D, Maye J, Borneres J, Versille N, de la Fuente J, Estrada-Peña A, Hodžić A, Šimo L, Cabezas-Cruz A. Anti-Tick Microbiota Vaccine Impacts Ixodes ricinus Performance during Feeding. Vaccines (Basel) 2020; 8:E702. [PMID: 33233316 PMCID: PMC7711837 DOI: 10.3390/vaccines8040702] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/04/2023] Open
Abstract
The tick microbiota is a highly complex ensemble of interacting microorganisms. Keystone taxa, with a central role in the microbial networks, support the stability and fitness of the microbial communities. The keystoneness of taxa in the tick microbiota can be inferred from microbial co-occurrence networks. Microbes with high centrality indexes are highly connected with other taxa of the microbiota and are expected to provide important resources to the microbial community and/or the tick. We reasoned that disturbance of vector microbiota by removal of ubiquitous and abundant keystone bacteria may disrupt the tick-microbiota homeostasis causing harm to the tick host. These observations and reasoning prompted us to test the hypothesis that antibodies targeting keystone bacteria may harm the ticks during feeding on immunized hosts. To this aim, in silico analyses were conducted to identify keystone bacteria in the microbiota of Ixodes nymphs. The family Enterobacteriaceae was among the top keystone taxa identified in Ixodes microbiota. Immunization of α-1,3-galactosyltransferase-deficient-C57BL/6 (α1,3GT KO) mice with a live vaccine containing the Enterobacteriaceae bacterium Escherichia coli strain BL21 revealed that the production of anti-E. coli and anti-α-Gal IgM and IgG was associated with high mortality of I. ricinus nymphs during feeding. However, this effect was absent in two different strains of wild type mice, BALB/c and C57BL/6. This result concurred with a wide distribution of α-1,3-galactosyltransferase genes, and possibly α-Gal, in Enterobacteriaceae and other bacteria of tick microbiota. Interestingly, the weight of I. ricinus nymphs that fed on E. coli-immunized C57BL/6 was significantly higher than the weight of ticks that fed on C57BL/6 immunized with a mock vaccine. Our results suggest that anti-tick microbiota vaccines are a promising tool for the experimental manipulation of vector microbiota, and potentially the control of ticks and tick-borne pathogens.
Collapse
Affiliation(s)
- Lourdes Mateos-Hernández
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Marie Curie, 94706 Maisons-Alfort, France;
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba 13400-970, Brazil
| | - Jennifer Maye
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (J.M.); (J.B.); (N.V.)
| | - Jeremie Borneres
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (J.M.); (J.B.); (N.V.)
| | - Nicolas Versille
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France; (J.M.); (J.B.); (N.V.)
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), 13005 Ciudad Real, Spain;
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | | | - Adnan Hodžić
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna 1210, Austria;
| | - Ladislav Šimo
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Marie Curie, 94706 Maisons-Alfort, France;
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Marie Curie, 94706 Maisons-Alfort, France;
| |
Collapse
|
32
|
Hodžić A, Mateos-Hernández L, de la Fuente J, Cabezas-Cruz A. α-Gal-Based Vaccines: Advances, Opportunities, and Perspectives. Trends Parasitol 2020; 36:992-1001. [PMID: 32948455 DOI: 10.1016/j.pt.2020.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
Humans and crown catarrhines evolved with the inability to synthesize the oligosaccharide galactose-α-1,3-galactose (α-Gal). In turn, they naturally produce high quantities of the glycan-specific antibodies that can be protective against infectious agents exhibiting the same carbohydrate modification on their surface coat. The protective immunity induced by α-Gal is ensured through an antibody-mediated adaptive and cell-mediated innate immune response. Therefore, the α-Gal antigen represents an attractive and feasible target for developing glycan-based vaccines against multiple diseases. In this review article we provide an insight into our current understanding of the mechanisms involved in the protective immunity to α-Gal and discuss the possibilities and challenges in developing a single-antigen pan-vaccine for prevention and control of parasitic diseases of medical and veterinary concern.
Collapse
Affiliation(s)
- Adnan Hodžić
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Lourdes Mateos-Hernández
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France
| | - José de la Fuente
- SaBio, Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France.
| |
Collapse
|
33
|
Ribeiro JMC, Mans BJ. TickSialoFam (TSFam): A Database That Helps to Classify Tick Salivary Proteins, a Review on Tick Salivary Protein Function and Evolution, With Considerations on the Tick Sialome Switching Phenomenon. Front Cell Infect Microbiol 2020; 10:374. [PMID: 32850476 PMCID: PMC7396615 DOI: 10.3389/fcimb.2020.00374] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/17/2020] [Indexed: 01/09/2023] Open
Abstract
Tick saliva contains a complex mixture of peptides and non-peptides that counteract their hosts' hemostasis, immunity, and tissue-repair reactions. Recent transcriptomic studies have revealed over one thousand different transcripts coding for secreted polypeptides in a single tick species. Not only do these gene products belong to many expanded families, such as the lipocalins, metalloproteases, Antigen-5, cystatins, and apyrases, but also families that are found exclusively in ticks, such as the evasins, Isac, DAP36, and many others. Phylogenetic analysis of the deduced protein sequences indicate that the salivary genes exhibit an increased rate of evolution due to a lower evolutionary constraint and/or positive selection, allowing for a large diversity of tick salivary proteins. Thus, for each new tick species that has its salivary transcriptome sequenced and assembled, a formidable task of annotation of these transcripts awaits. Currently, as of November 2019, there are over 287 thousand coding sequences deposited at the National Center for Biotechnology Information (NCBI) that are derived from tick salivary gland mRNA. Here, from these 287 thousand sequences we identified 45,264 potential secretory proteins which possess a signal peptide and no transmembrane domains on the mature peptide. By using the psiblast tools, position-specific matrices were constructed and assembled into the TickSialoFam (TSF) database. The TSF is a rpsblastable database that can help with the annotation of tick sialotranscriptomes. The TSA database identified 136 tick salivary secreted protein families, as well as 80 families of endosomal-related products, mostly having a protein modification function. As the number of sequences increases, and new annotation details become available, new releases of the TSF database may become available.
Collapse
Affiliation(s)
- José M. C. Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
| | - Ben J. Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Pretoria, South Africa
- The Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| |
Collapse
|
34
|
Chandrasekhar JL, Cox KM, Erickson LD. B Cell Responses in the Development of Mammalian Meat Allergy. Front Immunol 2020; 11:1532. [PMID: 32765532 PMCID: PMC7379154 DOI: 10.3389/fimmu.2020.01532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Studies of meat allergic patients have shown that eating meat poses a serious acute health risk that can induce severe cutaneous, gastrointestinal, and respiratory reactions. Allergic reactions in affected individuals following meat consumption are mediated predominantly by IgE antibodies specific for galactose-α-1,3-galactose (α-gal), a blood group antigen of non-primate mammals and therefore present in dietary meat. α-gal is also found within certain tick species and tick bites are strongly linked to meat allergy. Thus, it is thought that exposure to tick bites promotes cutaneous sensitization to tick antigens such as α-gal, leading to the development of IgE-mediated meat allergy. The underlying immune mechanisms by which skin exposure to ticks leads to the production of α-gal-specific IgE are poorly understood and are key to identifying novel treatments for this disease. In this review, we summarize the evidence of cutaneous exposure to tick bites and the development of mammalian meat allergy. We then provide recent insights into the role of B cells in IgE production in human patients with mammalian meat allergy and in a novel mouse model of meat allergy. Finally, we discuss existing data more generally focused on tick-mediated immunomodulation, and highlight possible mechanisms for how cutaneous exposure to tick bites might affect B cell responses in the skin and gut that contribute to loss of oral tolerance.
Collapse
Affiliation(s)
- Jessica L Chandrasekhar
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Kelly M Cox
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Loren D Erickson
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, VA, United States.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
35
|
de la Fuente J, Cabezas-Cruz A, Pacheco I. Alpha-gal syndrome: challenges to understanding sensitization and clinical reactions to alpha-gal. Expert Rev Mol Diagn 2020; 20:905-911. [PMID: 32628573 DOI: 10.1080/14737159.2020.1792781] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The α-Gal syndrome (AGS) is a type of allergy characterized by an IgE antibody response against the carbohydrate Galα1-3Galβ1-4GlcNAc-R (α-Gal). Tick bites are recognized as the most important cause of anti-α-Gal IgE antibody increase in humans. Several risk factors have been associated with the development of AGS, but their integration into a standardized disease diagnosis has proven challenging. AREAS COVERED Herein we discuss the current AGS diagnosis based on anti-α-Gal IgE titers and propose an algorithm that considers all co-factors in the clinical history of α-Gal-sensitized patients to be incorporated into the AGS diagnosis. The need for identification of host-derived gene markers and tick-derived proteins for the diagnosis of the AGS is also discussed. EXPERT OPINION The current AGS diagnosis based on anti-α-Gal IgE titers has limitations because not all patients sensitized to α-Gal and with anti-α-Gal IgE antibodies higher than the cutoff (0.35 IU/ml) develop anaphylaxis to mammalian meat and AGS. The basophil activation test proposed to differentiate between patients with AGS and asymptomatic α-Gal sensitization cannot be easily implemented as a generalized clinical test. In coming years, the algorithm proposed here could be used in a mobile application for easier AGS diagnosis in the clinical practice.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio. Instituto De Investigación En Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater OK, USA
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est , Maisons-Alfort, France
| | - Iván Pacheco
- SaBio. Instituto De Investigación En Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ciudad Real, Spain
| |
Collapse
|
36
|
Rutkowski K, Wagner A, Rutkowski R, Sowa P, Pancewicz S, Moniuszko-Malinowska A. Alpha-gal syndrome: An emerging cause of food and drug allergy. Clin Exp Allergy 2020; 50:894-903. [PMID: 32542789 DOI: 10.1111/cea.13683] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022]
Abstract
Alpha-gal syndrome (AGS) describes a wide spectrum of hypersensitivity reactions mediated by specific IgE to the α-gal epitope (galactose-α-1,3-galactose) ubiquitously expressed on glycolipids/glycoproteins of most mammals. This fascinating new entity has completely changed the paradigms of allergy as allergic response is directed against an oligosaccharide and the reactions can be both immediate and delayed. They appear to be stimulated only by tick bites which induce production of α-gal specific IgE antibodies that lead to (at times fatal) hypersensitivity response. AGS is completely different to previously described anaphylaxis to tick saliva. It provides unique insight into the interplay between different arms of the immune system and the role of ectoparasites in the development of anaphylaxis to food and medication in patients at risk of tick bites including travellers. This review summarises recent advances in our understanding of its clinical presentation, pathomechanism and role of various tick species in the development of AGS.
Collapse
Affiliation(s)
| | - Annette Wagner
- Department of Adult Allergy, Guy's and St Thomas' Hospital, London, UK
| | - Ryszard Rutkowski
- Department of Respiratory Diagnostics and Bronchoscopy, Medical University of Bialystok, Bialystok, Poland
| | - Paweł Sowa
- Department of Population Medicine and Civilization Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
37
|
Fischer J, Riel S, Fehrenbacher B, Frank A, Schaller M, Biedermann T, Hilger C, Mackenstedt U. Spatial distribution of alpha-gal in Ixodes ricinus - A histological study. Ticks Tick Borne Dis 2020; 11:101506. [PMID: 32723636 DOI: 10.1016/j.ttbdis.2020.101506] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
Alpha-gal syndrome is a complex allergic disease in humans that is caused by specific IgE (sIgE) against the carbohydrate galactose-α-1,3-galactose (alpha-gal). Tick saliva contains alpha-gal, and tick bites are considered a major cause of the induction of alpha-gal-sIgE. The origin of alpha-gal in tick saliva remains unclarified. The presence of alpha-gal in tick tissue was visualized in this study to provide an overview of the spatial distribution of alpha-gal and to further elucidate the origin of alpha-gal in tick saliva. Fed and unfed Ixodes ricinus females were examined by histology, immunohistochemistry, immunofluorescence, transmission electron microscopy and immunoelectron microscopy using the alpha-gal-specific monoclonal antibody M86 and Marasmius oreades agglutinin (MOA) lectin. Alpha-gal epitopes were detected in the midgut, hemolymph and salivary glands, and the immunofluorescence analysis revealed signs of the endocytosis of alpha-gal-containing constituents during the process of hematophagy. Alpha-gal epitopes in endosomes of the digestive gut cells of the ticks were observed via immunoelectron microscopy. Alpha-gal epitopes were detected in dried droplets of hemolymph from unfed ticks. Intense staining of alpha-gal epitopes was found in type II granular acini of the salivary glands of fed and unfed ticks. Our data suggest that alpha-gal is not ubiquitously expressed in tick tissue but is present in both fed and unfed ticks. The findings also indicate that both the metabolic incorporation of constituents from a mammalian blood meal and endogenous production contribute to the presence of alpha-gal epitopes in ticks.
Collapse
Affiliation(s)
- Jörg Fischer
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tuebingen, Tuebingen, Germany.
| | - Simon Riel
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Birgit Fehrenbacher
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Alisa Frank
- Department of Parasitology, Institute of Zoology, University Hohenheim, Stuttgart, Germany
| | - Martin Schaller
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, Technische Universität, Munich, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Ute Mackenstedt
- Department of Parasitology, Institute of Zoology, University Hohenheim, Stuttgart, Germany
| |
Collapse
|
38
|
Mateos-Hernández L, Risco-Castillo V, Torres-Maravilla E, Bermúdez-Humarán LG, Alberdi P, Hodžić A, Hernández-Jarguin A, Rakotobe S, Galon C, Devillers E, de la Fuente J, Guillot J, Cabezas-Cruz A. Gut Microbiota Abrogates Anti-α-Gal IgA Response in Lungs and Protects against Experimental Aspergillus Infection in Poultry. Vaccines (Basel) 2020; 8:vaccines8020285. [PMID: 32517302 PMCID: PMC7350254 DOI: 10.3390/vaccines8020285] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022] Open
Abstract
Naturally occurring human antibodies (Abs) of the isotypes IgM and IgG and reactive to the galactose-α-1,3-galactose (α-Gal) epitope are associated with protection against infectious diseases, caused by pathogens expressing the glycan. Gut microbiota bacteria expressing α-Gal regulate the immune response to this glycan in animals lacking endogenous α-Gal. Here, we asked whether the production of anti-α-Gal Abs in response to microbiota stimulation in birds, confers protection against infection by Aspergillus fumigatus, a major fungal pathogen that expresses α-Gal in its surface. We demonstrated that the oral administration of Escherichia coli O86:B7 strain, a bacterium with high α-Gal content, reduces the occurrence of granulomas in lungs and protects turkeys from developing acute aspergillosis. Surprisingly, the protective effect of E. coli O86:B7 was not associated with an increase in circulating anti-α-Gal IgY levels, but with a striking reduction of anti-α-Gal IgA in the lungs of infected turkeys. Subcutaneous immunization against α-Gal did not induce a significant reduction of lung anti-α-Gal IgA and failed to protect against an infectious challenge with A. fumigatus. Oral administration of E. coli O86:B7 was not associated with the upregulation of lung cytokines upon A. fumigatus infection. We concluded that the oral administration of bacteria expressing high levels of α-Gal decreases the levels of lung anti-α-Gal IgA, which are mediators of inflammation and lung damage during acute aspergillosis.
Collapse
Affiliation(s)
- Lourdes Mateos-Hernández
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France; (L.M.-H.); (S.R.); (C.G.); (E.D.)
| | - Veronica Risco-Castillo
- EA 7380 Dynamyc, UPEC, USC, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (V.R.-C.); (J.G.)
| | - Edgar Torres-Maravilla
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.T.-M.); (L.G.B.-H.)
| | - Luis G. Bermúdez-Humarán
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.T.-M.); (L.G.B.-H.)
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.A.); (A.H.-J.); (J.d.l.F.)
| | - Adnan Hodžić
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Angelica Hernández-Jarguin
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.A.); (A.H.-J.); (J.d.l.F.)
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Tamaulipas 87000, Mexico
| | - Sabine Rakotobe
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France; (L.M.-H.); (S.R.); (C.G.); (E.D.)
| | - Clemence Galon
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France; (L.M.-H.); (S.R.); (C.G.); (E.D.)
| | - Elodie Devillers
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France; (L.M.-H.); (S.R.); (C.G.); (E.D.)
| | - Jose de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.A.); (A.H.-J.); (J.d.l.F.)
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jacques Guillot
- EA 7380 Dynamyc, UPEC, USC, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (V.R.-C.); (J.G.)
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France; (L.M.-H.); (S.R.); (C.G.); (E.D.)
- Correspondence: ; Tel.: +33-1-49-774-677
| |
Collapse
|
39
|
Martín-Lázaro J, Núñez-Orjales R, González-Guzmán LA, González MT, Boquete M, Carballada F. Galactose-α-1,3-galactose (alpha-gal) allergy: first pediatric case in a series of patients in Spain. Allergol Immunopathol (Madr) 2020; 48:251-258. [PMID: 31718865 DOI: 10.1016/j.aller.2019.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/26/2019] [Indexed: 11/20/2022]
Abstract
INTRODUCTION AND OBJECTIVES Allergy to galactose-α-1,3-galactose (alpha-gal) is a peculiar form of food allergy generally manifesting as an anaphylactic reaction hours after mammalian meat consumption, due to the presence of specific IgE against this oligosaccharide. In addition, immediate anaphylaxis may develop after exposure to other sources of alpha-gal, such as monoclonal antibody cetuximab, vaccines, plasma expanders or anti-snake venoms. Sensitization to alpha-gal has also been implicated in the rapid degeneration of biological valve implants, and recognized as a cause of occupational disease in cattle raisers. The implication of tick bites in this type of sensitization has been accepted by all the research groups dedicated to this disease. PATIENTS AND METHOD The present study describes the clinical and sensitization characteristics of 39 patients diagnosed with alpha-gal allergy in the hospitals of our province (Lugo, Monforte de Lemos and Burela, Spain). RESULTS Most patients were middle-age males. Of note, is the fact that the series includes the first pediatric patient reported in Spain to date. The predominant clinical manifestations were urticaria or delayed anaphylaxis after consumption of mammalian meat. Seventy-four percent of the patients reported having suffered a previous tick bite, and the clinical presentation of anaphylaxis was significantly more prevalent in those with a persistent local reaction following the bite than in those with no such reaction (p = 0.032). CONCLUSIONS A review is also made of the disorder which, due to its variable clinical expression, is referred to as alpha-gal syndrome. The study concludes that a diagnosis of alpha-gal allergy should be considered in patients with urticaria-anaphylaxis of uncertain origin or manifesting after the administration of vaccines or products of bovine/porcine origin.
Collapse
Affiliation(s)
- J Martín-Lázaro
- Allergy Section, Estructura Organizativa Integrada de Lugo, Cervo y Monforte. Lugo, Spain.
| | - R Núñez-Orjales
- Allergy Section, Estructura Organizativa Integrada de Lugo, Cervo y Monforte. Lugo, Spain
| | - L A González-Guzmán
- Allergy Section, Estructura Organizativa Integrada de Lugo, Cervo y Monforte. Lugo, Spain
| | - M T González
- Allergy Section, Estructura Organizativa Integrada de Lugo, Cervo y Monforte. Lugo, Spain
| | - M Boquete
- Allergy Section, Estructura Organizativa Integrada de Lugo, Cervo y Monforte. Lugo, Spain
| | - F Carballada
- Allergy Section, Estructura Organizativa Integrada de Lugo, Cervo y Monforte. Lugo, Spain
| |
Collapse
|
40
|
Hodžić A, Mateos-Hernández L, Fréalle E, Román-Carrasco P, Alberdi P, Pichavant M, Risco-Castillo V, Le Roux D, Vicogne J, Hemmer W, Auer H, Swoboda I, Duscher GG, de la Fuente J, Cabezas-Cruz A. Infection with Toxocara canis Inhibits the Production of IgE Antibodies to α-Gal in Humans: Towards a Conceptual Framework of the Hygiene Hypothesis? Vaccines (Basel) 2020; 8:E167. [PMID: 32268573 PMCID: PMC7349341 DOI: 10.3390/vaccines8020167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/16/2020] [Accepted: 03/29/2020] [Indexed: 02/07/2023] Open
Abstract
α-Gal syndrome (AGS) is a type of anaphylactic reaction to mammalian meat characterized by an immunoglobulin (Ig)E immune response to the oligosaccharide α-Gal (Galα1-3Galβ1-4GlcNAc-R). Tick bites seems to be a prerequisite for the onset of the allergic disease in humans, but the implication of non-tick parasites in α-Gal sensitization has also been deliberated. In the present study, we therefore evaluated the capacity of helminths (Toxocara canis, Ascaris suum, Schistosoma mansoni), protozoa (Toxoplasma gondii), and parasitic fungi (Aspergillus fumigatus) to induce an immune response to α-Gal. For this, different developmental stages of the infectious agents were tested for the presence of α-Gal. Next, the potential correlation between immune responses to α-Gal and the parasite infections was investigated by testing sera collected from patients with AGS and those infected with the parasites. Our results showed that S. mansoni and A. fumigatus produce the terminal α-Gal moieties, but they were not able to induce the production of specific antibodies. By contrast, T. canis, A. suum and T. gondii lack the α-Gal epitope. Furthermore, the patients with T. canis infection had significantly decreased anti-α-Gal IgE levels when compared to the healthy controls, suggesting the potential role of this nematode parasite in suppressing the allergic response to the glycan molecule. This rather intriguing observation is discussed in the context of the 'hygiene hypothesis'. Taken together, our study provides new insights into the relationships between immune responses to α-Gal and parasitic infections. However, further investigations should be undertaken to identify T. canis components with potent immunomodulatory properties and to assess their potential to be used in immunotherapy and control of AGS.
Collapse
Affiliation(s)
- Adnan Hodžić
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Lourdes Mateos-Hernández
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94706 Maisons-Alfort, France; (L.M.-H.); (D.L.R.)
| | - Emilie Fréalle
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 8204–CIIL–Center for Infection and Immunity of Lille, University of Lille, F-59000 Lille, France;
- CHU Lille, Laboratory of Parasitology and Mycology, F-59000 Lille, France;
| | - Patricia Román-Carrasco
- Molecular Biotechnology Section, FH Campus Wien, University of Applied Sciences, 1030 Vienna, Austria; (P.R.-C.); (I.S.)
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.A.); (J.d.l.F.)
| | - Muriel Pichavant
- CHU Lille, Laboratory of Parasitology and Mycology, F-59000 Lille, France;
| | - Veronica Risco-Castillo
- EA 7380 Dynamyc, UPEC, USC, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94706 Maisons-Alfort, France;
| | - Delphine Le Roux
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94706 Maisons-Alfort, France; (L.M.-H.); (D.L.R.)
| | - Jérôme Vicogne
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR9017–CIIL–Center for Infection and Immunity of Lille, University of Lille, F-59000 Lille, France;
| | | | - Herbert Auer
- Department of Medical Parasitology, Institute of Specific Prophylaxis and Tropical Medicine, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Ines Swoboda
- Molecular Biotechnology Section, FH Campus Wien, University of Applied Sciences, 1030 Vienna, Austria; (P.R.-C.); (I.S.)
| | | | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (P.A.); (J.d.l.F.)
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94706 Maisons-Alfort, France; (L.M.-H.); (D.L.R.)
| |
Collapse
|
41
|
A WAO - ARIA - GA 2LEN consensus document on molecular-based allergy diagnosis (PAMD@): Update 2020. World Allergy Organ J 2020; 13:100091. [PMID: 32180890 PMCID: PMC7062937 DOI: 10.1016/j.waojou.2019.100091] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Precision allergy molecular diagnostic applications (PAMD@) is increasingly entering routine care. Currently, more than 130 allergenic molecules from more than 50 allergy sources are commercially available for in vitro specific immunoglobulin E (sIgE) testing. Since the last publication of this consensus document, a great deal of new information has become available regarding this topic, with over 100 publications in the last year alone. It thus seems quite reasonable to publish an update. It is imperative that clinicians and immunologists specifically trained in allergology keep abreast of the new and rapidly evolving evidence available for PAMD@. PAMD@ may initially appear complex to interpret; however, with increasing experience, the information gained provides relevant information for the allergist. This is especially true for food allergy, Hymenoptera allergy, and for the selection of allergen immunotherapy. Nevertheless, all sIgE tests, including PAMD@, should be evaluated within the framework of a patient's clinical history, because allergen sensitization does not necessarily imply clinical relevant allergies.
Collapse
|
42
|
Platts-Mills TAE, Commins SP, Biedermann T, van Hage M, Levin M, Beck LA, Diuk-Wasser M, Jappe U, Apostolovic D, Minnicozzi M, Plaut M, Wilson JM. On the cause and consequences of IgE to galactose-α-1,3-galactose: A report from the National Institute of Allergy and Infectious Diseases Workshop on Understanding IgE-Mediated Mammalian Meat Allergy. J Allergy Clin Immunol 2020; 145:1061-1071. [PMID: 32057766 DOI: 10.1016/j.jaci.2020.01.047] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/16/2022]
Abstract
The mammalian meat allergy known as the "α-Gal syndrome" relates to IgE specific for galactose-α-1,3-galactose (α-Gal), an oligosaccharide that is present in cells and tissues of nonprimate mammals. The recognition of delayed reactions to food derived from mammals in patients with IgE to α-Gal and also the association with tick bites have been increasing worldwide. In 2018, the National Institute of Allergy and Infectious Diseases, Division of Allergy, Immunology and Transplantation, sponsored a workshop on this emerging tick-related disease. International experts from the fields of tick biology, allergy, immunology, infectious disease, and dermatology discussed the current state of our understanding of this emerging medical condition. The participants provided suggestions for specific research priorities and for the development of resources to advance our knowledge of the mechanisms, diagnosis, management, and prevention of this allergic disease. This publication is a summary of the workshop and the panel's recommendations are presented herein.
Collapse
Affiliation(s)
| | - Scott P Commins
- Departments of Medicine & Pediatrics, University of North Carolina, Chapel Hill, NC
| | - Tilo Biedermann
- Department of Dermatology and Allergy, Technical University of Munich and Unit Clinical Allergology (EKA), Helmholtz Zentrum München, Munich, Germany
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Michael Levin
- Division of Paediatric Allergy, University of Cape Town, Cape Town, South Africa
| | - Lisa A Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY
| | - Maria Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Research Center Borstel, Airway Research, Center North (ARCN), Member of the German Center for Lung Research, Borstel, Germany; Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Lübeck, Lübeck, Germany
| | - Danijela Apostolovic
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Michael Minnicozzi
- Division of Allergy, Immunology and Transplantation, Allergy, Asthma and Airway Biology Branch, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Md
| | - Marshall Plaut
- Division of Allergy, Immunology and Transplantation, Allergy, Asthma and Airway Biology Branch, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Md
| | - Jeffrey M Wilson
- Division of Allergy & Clinical Immunology, University of Virginia, Charlottesville, Va
| |
Collapse
|
43
|
Park Y, Kim D, Boorgula GD, De Schutter K, Smagghe G, Šimo L, Archer-Hartmann SA, Azadi P. Alpha-Gal and Cross-Reactive Carbohydrate Determinants in the N-Glycans of Salivary Glands in the Lone Star Tick, Amblyomma americanum. Vaccines (Basel) 2020; 8:E18. [PMID: 31936588 PMCID: PMC7157712 DOI: 10.3390/vaccines8010018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
Ticks are important ectoparasites and vectors of numerous human and animal pathogens. Ticks secrete saliva that contains various bioactive materials to evade the host defense system, and often facilitates the pathogen transmission. In addition, the Lone star tick saliva is thought to be the sensitizer in red meat allergy that is characterized by an allergic reaction to glycan moieties carrying terminal galactose-alpha-1,3-galactose (aGal). To assess N-glycome of Amblyomma americanum, we examined the N-glycan structures in male and female salivary glands at three different feeding stages and in carcasses of partially fed lone star ticks. We also surveyed the genes involved in the N-glycosylation in the tick species. The aGal epitopes and cross-reactive carbohydrate determinants (CCD) increases over time after the onset of blood feeding in both male and female A. americanum. These CCDs include xylosylation of the core mannose, 1,3-mono and 1,3- and 1,6-difucosylations of the basal GlcNac and mono- or diantennary aGal. Combinations of both xylosylation and aGal and fucosylation and aGal were also found on the N-glycan structures. While the enzymes required for the early steps of the N-glycosylation pathway are quite conserved, the enzymes involved in the later stages of N-glycan maturation in the Golgi apparatus are highly diverged from those of insects. Most of all, we propose that the aGal serves as a molecular mimicry of bioactive proteins during tick feedings on mammalian hosts, while it contributes as a sensitizer of allergy in atypical host human.
Collapse
Affiliation(s)
- Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (D.K.); (G.D.B.)
| | - Donghun Kim
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (D.K.); (G.D.B.)
- Department of Applied Biology, Kyungpook National University, Sangju 37224, Gyeongbuk, Korea
| | - Gunavanthi D. Boorgula
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (D.K.); (G.D.B.)
| | - Kristof De Schutter
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (K.D.S.); (G.S.)
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (K.D.S.); (G.S.)
| | - Ladislav Šimo
- UMR BIPAR, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France;
| | | | - Parastoo Azadi
- Complex Carbohydrate Center, University of Georgia, Athens, GA 30602, USA; (S.A.A.-H.); (P.A.)
| |
Collapse
|
44
|
Apostolovic D, Mihailovic J, Commins SP, Wijnveld M, Kazimirova M, Starkhammar M, Stockinger H, Platts-Mills TAE, Cirkovic Velickovic T, Hamsten C, van Hage M. Allergenomics of the tick Ixodes ricinus reveals important α-Gal-carrying IgE-binding proteins in red meat allergy. Allergy 2020; 75:217-220. [PMID: 31301243 PMCID: PMC8304496 DOI: 10.1111/all.13978] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Danijela Apostolovic
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Jelena Mihailovic
- University of Belgrade - Faculty of Chemistry, Department of Biochemistry, Center of Excellence for Molecular Food Sciences, Belgrade, Serbia
| | - Scott P. Commins
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Michiel Wijnveld
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Tanja Cirkovic Velickovic
- University of Belgrade - Faculty of Chemistry, Department of Biochemistry, Center of Excellence for Molecular Food Sciences, Belgrade, Serbia
- Ghent University Global Campus, Yeonsugu, Incheon, South Korea
- Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium
| | - Carl Hamsten
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
| |
Collapse
|
45
|
Fischer J, Huynh HN, Hebsaker J, Forchhammer S, Yazdi AS. Prevalence and Impact of Type I Sensitization to Alpha-Gal in Patients Consulting an Allergy Unit. Int Arch Allergy Immunol 2019; 181:119-127. [PMID: 31805569 DOI: 10.1159/000503966] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/07/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Alpha-gal syndrome is a complex allergy with high clinical relevance regarding mammalian-derived food and drugs and is characterized by the presence of IgE antibodies directed at the carbohydrate galactose-α-1,3-galactose. As not all alpha-gal sIgE-positive individuals pre-sent clinical symptoms upon consumption of mammalian meat, the diagnostic value of alpha-gal sIgE has yet to be clarified. OBJECTIVE To investigate the prevalence of alpha-gal-sIgE positivity among allergy patients, examine the impact of tick bites as associated risk factors and determine the diagnostic value of alpha-gal-sIgE positivity. METHODS A retrospective cross-sectional study evaluating patients in the Allergy Unit was performed. Alpha-gal-sIgE levels were assessed by ImmunoCAP assay. Exposure to tick bites was assessed by a questionnaire. A receiver operating characteristics (ROC) curve analysis was performed to determine the diagnostic value of alpha-gal sIgE for the diagnosis of alpha-gal syndrome. RESULTS In the study population (n = 1369), the overall prevalence of alpha-gal-sIgE-positive (≥0.10 kUA/L) individuals was 19.9%, and the highest prevalence (30.2%) was found in patients with insect venom allergies. A reported tick bite within the 12 months prior to blood sampling significantly increased the risk of alpha-gal-sIgE positivity (OR 2.084). The ROC curve analysis indicated alpha-gal sIgE ≥0.54 kUA/L as the optimal cutoff point for assessing the diagnostic value of alpha-gal syndrome in allergy patients. CONCLUSIONS In allergy care settings, alpha-gal-sIgE positivity is a common finding. Alpha-gal sIgE is a sensitive marker in the diagnosis of alpha-gal syndrome but has limited predictive value for the characteristics or severity of this allergy.
Collapse
Affiliation(s)
- Jörg Fischer
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany,
| | - Hoai-Nam Huynh
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Johanna Hebsaker
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stephan Forchhammer
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Amir Sadegh Yazdi
- Department of Dermatology, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Dermatology, RWTH Aachen, Aachen, Germany
| |
Collapse
|
46
|
Diagnosis and Management of Patients with the α-Gal Syndrome. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 8:15-23.e1. [PMID: 31568928 DOI: 10.1016/j.jaip.2019.09.017] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 01/30/2023]
Abstract
The galactose-α-1,3-galactose (α-Gal) syndrome has many novel features that are relevant to diagnosis and management. In most cases, the diagnosis can be made on a history of delayed allergic reactions to mammalian meat and the blood test for IgE to the oligosaccharide α-Gal. In general, the diagnosis also dictates the primary treatment, that is, avoiding mammalian meat and also dairy in some cases. In the United States, the lone star tick is the primary cause of this disease, but different ticks are responsible in other countries. Blood levels of IgE to α-Gal often drop in patients who avoid recurrent tick bites, but the rate of decline is variable. Similarly, the delay before reactions is variable and the severity of the allergic reactions is not predicted by the delay or the titer of specific IgE. Some mammalian-derived products such as heart valves, gelatin-based plasma expanders, and pancreatic enzymes are relevant to only select patient groups. A minority of cases may benefit from avoiding a wide range of products that are prepared with mammalian-derived constituents, such as gelatin. This review focuses on the nature of the syndrome, common challenges in diagnosis and management, and also gaps in our current knowledge that would benefit from additional investigation.
Collapse
|
47
|
Hodžić A, Mateos-Hernández L, Leschnik M, Alberdi P, Rego ROM, Contreras M, Villar M, de la Fuente J, Cabezas-Cruz A, Duscher GG. Tick Bites Induce Anti-α-Gal Antibodies in Dogs. Vaccines (Basel) 2019; 7:vaccines7030114. [PMID: 31540167 PMCID: PMC6789585 DOI: 10.3390/vaccines7030114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022] Open
Abstract
Due to the functional inactivation of the gene encoding for the enzyme that is involved in the oligosaccharide galactose-α-1,3-galactose (α-Gal) synthesis, humans and Old-World primates are able to produce a large amount of antibodies against the glycan epitope. Apart from being involved in the hyperacute organ rejection in humans, anti-α-Gal antibodies have shown a protective effect against some pathogenic agents and an implication in the recently recognized tick-induced mammalian meat allergy. Conversely, non-primate mammals, including dogs, have the ability to synthetize α-Gal and, thus, their immune system is not expected to naturally generate the antibodies toward this self-antigen molecule. However, in the current study, we detected specific IgG, IgM, and IgE antibodies to α-Gal in sera of clinically healthy dogs by an indirect enzyme-linked immunosorbent assay (ELISA) for the first time. Furthermore, in a tick infestation experiment, we showed that bites of Ixodes ricinus induce the immune response to α-Gal in dogs and that the resulting antibodies (IgM) might be protective against Anaplasma phagocytophilum. These findings may help lead to a better understanding of the underlying mechanisms involved in mammalian meat allergy and tick-host-pathogen interactions, but they also open up the question about the possibility that dogs could develop an allergy to mammalian meat after tick bites, similar to that in humans.
Collapse
Affiliation(s)
- Adnan Hodžić
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Lourdes Mateos-Hernández
- SaBio, Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, 13005 Ciudad Real, Spain; (L.M.H.); (P.A.); (M.C.); (M.V.); (J.d.l.F.)
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France
| | - Michael Leschnik
- Department for Companion Animals, Small Animal Clinic, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Pilar Alberdi
- SaBio, Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, 13005 Ciudad Real, Spain; (L.M.H.); (P.A.); (M.C.); (M.V.); (J.d.l.F.)
| | - Ryan O. M. Rego
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic;
| | - Marinela Contreras
- SaBio, Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, 13005 Ciudad Real, Spain; (L.M.H.); (P.A.); (M.C.); (M.V.); (J.d.l.F.)
| | - Margarita Villar
- SaBio, Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, 13005 Ciudad Real, Spain; (L.M.H.); (P.A.); (M.C.); (M.V.); (J.d.l.F.)
| | - José de la Fuente
- SaBio, Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, 13005 Ciudad Real, Spain; (L.M.H.); (P.A.); (M.C.); (M.V.); (J.d.l.F.)
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France
- Correspondence: or (A.C.-C.); (G.G.D.); Tel.: +33-1-49-774-677 (A.C.-C.); +43-1-250-77-2211 (G.G.D.)
| | - Georg Gerhard Duscher
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Correspondence: or (A.C.-C.); (G.G.D.); Tel.: +33-1-49-774-677 (A.C.-C.); +43-1-250-77-2211 (G.G.D.)
| |
Collapse
|
48
|
Lima-Barbero JF, Sánchez MS, Cabezas-Cruz A, Mateos-Hernández L, Contreras M, de Mera IGF, Villar M, de la Fuente J. Clinical gamasoidosis and antibody response in two patients infested with Ornithonyssus bursa (Acari: Gamasida: Macronyssidae). EXPERIMENTAL & APPLIED ACAROLOGY 2019; 78:555-564. [PMID: 31367978 DOI: 10.1007/s10493-019-00408-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Blood-feeding ectoparasites constitute a growing burden for human and animal health, and animal production worldwide. In particular, mites (Acari: Gamasida) of the genera Dermanyssus (Dermanyssidae) and Ornithonyssus (Macronyssidae) infest birds and cause gamasoidosis in humans. The tropical fowl mite, Ornithonyssus bursa, is commonly found in tropical and subtropical countries but rarely reported in Europe. In this research we characterized the first two cases in Spain of clinical gamasoidosis diagnosed in patients infested with O. bursa, and investigated the IgE, IgM and IgG antibody response to mite proteins and the carbohydrate Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal) involved in the tick-bite associated alpha-Gal syndrome (AGS). The results suggested that O. bursa is establishing across Mediterranean countries, and may increase the risk for gamasoidosis. The immune antibody response to mite proteins was higher for IgM and similar for IgE and IgG antibodies between patients and non-allergic control individuals exposed to mite or tick bites. The anti-α-Gal antibody levels were similar between patients and controls, a result supported by the absence of this carbohydrate in mites. These results suggested that mite bites do not correlate with antibody response to acarine proteins or α-Gal, and are not associated with the AGS.
Collapse
Affiliation(s)
- José Francisco Lima-Barbero
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
- Sabiotec, S.A. Ed. Polivalente UCLM, Camino de Moledores, 13005, Ciudad Real, Spain
| | - Marta Sánchez Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 94700, Maisons-Alfort, France
| | - Lourdes Mateos-Hernández
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 94700, Maisons-Alfort, France
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
| | - Isabel G Fernández de Mera
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13071, Ciudad Real, Spain.
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
49
|
de la Fuente J, Estrada-Peña A. Why New Vaccines for the Control of Ectoparasite Vectors Have Not Been Registered and Commercialized? Vaccines (Basel) 2019; 7:vaccines7030075. [PMID: 31357707 PMCID: PMC6789832 DOI: 10.3390/vaccines7030075] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022] Open
Abstract
The prevention and control of vector-borne diseases is a priority for improving global health. Despite recent advances in the characterization of ectoparasite-host-pathogen molecular interactions, vaccines are not available for most ectoparasites and vector-borne diseases that cause millions of deaths yearly. In this paper, in response to the question of why new vaccines for the control of ectoparasite vectors have not been registered and commercialized, and to contribute developing new effective vaccines against ectoparasite vectors, we propose challenges and approaches to be addressed.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | | |
Collapse
|
50
|
Hodžić A, Mateos-Hernández L, de la Fuente J, Cabezas-Cruz A. Delayed hypersensitivity reaction to mammalian galactose-α-1,3-galactose (α-Gal) after repeated tick bites in a patient from France. Ticks Tick Borne Dis 2019; 10:1057-1059. [PMID: 31176665 DOI: 10.1016/j.ttbdis.2019.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Abstract
The α-Gal syndrome is a tick-associated and emerging IgE-mediated hypersensitivity reaction directed against the carbohydrate Galα1-3Galβ1-(3)4GlcNAc-R (α-Gal) epitope after red meat intake. Herein, we describe a clinical case of a 44-year-old French patient who suffered from recurrent anaphylactic reactions after mammalian meat consumption for five years before the final diagnosis of the α-Gal syndrome was established in 2018. The patient also reported multiple tick bites prior to symptom onset. This unique type of allergy has increasingly been reported across the world, but it is still unknown in many European countries. Therefore, the present clinical case should increase awareness among primary care practitioners and further improve the early diagnosis of the α-Gal syndrome in affected individuals.
Collapse
Affiliation(s)
- Adnan Hodžić
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Lourdes Mateos-Hernández
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France
| | - Jose de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, 74078 Stillwater, OK, USA
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France.
| |
Collapse
|