1
|
Ning P, Lin S, Shi Y, Liu T. Potential role of gut-related factors in the pathology of cartilage in osteoarthritis. Front Nutr 2025; 11:1515806. [PMID: 39845920 PMCID: PMC11753001 DOI: 10.3389/fnut.2024.1515806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Osteoarthritis (OA) is a common progressive degenerative disease. Gut microbiota (GM) and their metabolites have been closely associated with the onset, progression, and pathology of OA. GM and their metabolites may influence the cartilage directly, or indirectly by affecting the gut, the immune system, and the endocrine system. They function through classical pathways in cartilage metabolism and novel pathways that have recently been discovered. Some of them have been used as targets for the prevention and treatment of OA. The current study sought to describe the major pathological signaling pathways in OA chondrocytes and the potential role of gut-related factors in these pathways.
Collapse
Affiliation(s)
- Peng Ning
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuting Lin
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianjing Liu
- Department of Pediatric Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Chow L, Kawahisa-Piquini G, Bass L, Hendrickson D, Patel A, Rockow M, Dow S, Pezzanite LM. Correlation of fecal microbiome dysregulation to synovial transcriptome in an equine model of obesity associated osteoarthritis. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:112. [PMID: 39817240 PMCID: PMC11729816 DOI: 10.21037/atm-24-109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/26/2024] [Indexed: 01/18/2025]
Abstract
Background Osteoarthritis (OA) is increasingly thought to be a multifactorial disease in which sustained gut inflammation serves as a continued source of inflammatory mediators driving degenerative processes at distant sites such as joints. The objective of this study was to use the equine model of naturally occurring obesity associated OA to compare the fecal microbiome in OA and health and correlate those findings to differential gene expression synovial fluid (SF) cells, circulating leukocytes and cytokine levels (plasma, SF) towards improved understanding of the interplay between microbiome and immune transcriptome in OA pathophysiology. Methods Feces, peripheral blood mononuclear cells (PBMCs), and SF cells were isolated from healthy skeletally mature horses (n=12; 6 males, 6 females) and those with OA (n=6, 2 females, 4 males). Horses were determined to have OA via lameness evaluation, response to intra-articular (IA) diagnostic analgesia, and radiographic and arthroscopic evidence. Horses were excluded who had received medications or joint injections within 2 months. Cytokine analyses of plasma and SF were performed via multiplex immunoassay. Fecal bacterial microbial 16s DNA sequencing was performed and correlated to bulk RNA sequencing of SF cells and PBMC performed using an Illumina based platform. Results Horses with OA had higher body condition scores (P=0.009). Cytokines were elevated in plasma [interleukin (IL)-2, IL-6, IL-18, interferon gamma (IFN-γ), interferon gamma inducible protein 10 (CXCL10 or IP-10), granulocyte colony-stimulating factor (G-CSF)] and SF (IL-1β, IL-6, IL-17A, IL-18, IP-10, G-CSF) in OA. Microbial principal coordinate analysis (PCoA) using Bray-Curtis dissimilarity for β-diversity demonstrated distinct grouping of samples from OA versus healthy horses (P=0.003). Faith alpha diversity was reduced in OA (P=0.02). Analysis of microbiome composition showed differential relative abundance of taxa on multiple levels in OA. Specific phyla (Firmicutes, Verrucomicrobia, Tenericutes, Fibrobacteres), correlated to transcriptomic differences related to cell structure, extracellular matrix, collagen, laminin, migration, and motility, or immune response to inflammation in OA. Conclusions These findings provide compelling evidence for a link between obesity, gut microbiome dysbiosis and differential gene expression in distant joint sites associated with development of OA in a relevant large animal model, establishing a connection here that provides a platform from which development of therapeutic interventions targeting the gut microbiome can build.
Collapse
Affiliation(s)
- Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gabriella Kawahisa-Piquini
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Luke Bass
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Dean Hendrickson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ashana Patel
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Meagan Rockow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Steven Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Lynn M Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
3
|
Chasov V, Gilyazova E, Ganeeva I, Zmievskaya E, Davletshin D, Valiullina A, Bulatov E. Gut Microbiota Modulation: A Novel Strategy for Rheumatoid Arthritis Therapy. Biomolecules 2024; 14:1653. [PMID: 39766360 PMCID: PMC11674688 DOI: 10.3390/biom14121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that leads to joint inflammation, progressive tissue damage and significant disability, severely impacting patients' quality of life. While the exact mechanisms underlying RA remain elusive, growing evidence suggests a strong link between intestinal microbiota dysbiosis and the disease's development and progression. Differences in microbial composition between healthy individuals and RA patients point to the role of gut microbiota in modulating immune responses and promoting inflammation. Therapies targeting microbiota restoration have demonstrated promise in improving treatment efficacy, enhancing patient outcomes and slowing disease progression. However, the complex interplay between gut microbiota and autoimmune pathways in RA requires further investigation to establish causative relationships and mechanisms. Here, we review the current understanding of the gut microbiota's role in RA pathogenesis and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Vitaly Chasov
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
| | - Elvina Gilyazova
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
| | - Irina Ganeeva
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
| | - Ekaterina Zmievskaya
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
| | - Damir Davletshin
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
| | - Aygul Valiullina
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
| | - Emil Bulatov
- Laboratory of Biomedical Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan 420008, Russia (I.G.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
4
|
Maimaiti Z, Liu L. Exploring the Microbial Landscape of Bone and Joint Infections: An Analysis Using 16S rRNA Metagenome Sequencing. Infect Drug Resist 2024; 17:5557-5566. [PMID: 39691489 PMCID: PMC11651062 DOI: 10.2147/idr.s482931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
Background Bone and joint infections (BJIs) are challenging to diagnose. This study evaluated the utility of 16S rRNA gene sequencing in diagnosing BJIs, comparing it with conventional bacterial culture to explore microbial diversity in orthopedic infections. Methods Thirty patients with BJIs were enrolled from January 2019 to September 2020 at a single orthopedic center. Diagnoses were based on the Musculoskeletal Infection Society standards. DNA extraction, 16S rRNA sequencing, and microbial composition analysis were performed. Conventional bacterial culture results were compared with metagenomics detection, and associations with blood routine and biochemical test factors were analyzed. Results The study enrolled 30 patients with BJIs. Traditional bacterial culture successfully identified pathogens in 60% (18/30) of cases, predominantly Staphylococcus aureus. In contrast, 16S rRNA metagenomics sequencing revealed distinct microorganisms in all cases, it unveiled a diverse microbial landscape. The correlation between bacterial culture and metagenomics detection showcased both concordance and discrepancies. Consistency of detection between the two methods showed that metagenomics detection detected the same genus or species in 14 (87.5%) of the 16 samples identified as species by bacterial culture. In nearly half of the patients with negative cultures, pathogenic microorganisms were detected, highlighting the capability of 16S rRNA sequencing to identify microorganisms, even in samples with negative or unidentified culture results. Moreover, no significant correlation was observed between bacterial culture, metagenomics detection and the factors of blood routine and biochemical test. Conclusion This study deepens our understanding of the microbial complexity in BJIs. While traditional culture methods are cost-effective and practical, 16S rRNA gene sequencing proves valuable for complementary microbial analysis, particularly when traditional methods fail or rapid identification is critical. This emerging diagnostic approach can enhance the accuracy and speed of pathogen identification, enabling more effective interventions in the management of BJIs.
Collapse
Affiliation(s)
- Zulipikaer Maimaiti
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, People’s Republic of China
| | - Liang Liu
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, People’s Republic of China
| |
Collapse
|
5
|
Schoell K, Crabb R, Simpson E, Deshpande V, Gardner V, Quilligan E, Parvaresh K, Kassam H. Preoperative corticosteroid injections are associated with a higher periprosthetic infection rate following primary total shoulder arthroplasty: a systematic review and meta-analysis. J Shoulder Elbow Surg 2024; 33:2734-2742. [PMID: 39002882 DOI: 10.1016/j.jse.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Corticosteroid injections (CSIs) are commonly used for the treatment of shoulder pain in patients with osteoarthritis and rotator cuff arthropathy. These injections may increase the risk of infection following eventual shoulder arthroplasty. The purpose of this study was to perform a systematic review and meta-analysis of existing data to explore the relationship between preoperative CSI's and postoperative periprosthetic joint infection (PJI) following shoulder arthroplasty. METHODS A literature search was performed on PubMed, Embase, and Web of Science databases through September 29, 2023. Of the 4221 retrieved, 7 studies including 136,233 patients were included for qualitative analysis. Studies describing patients receiving CSI prior to shoulder arthroplasty and the effect on postoperative infection risk were included in the systematic review and subsequent meta-analysis. Assessment of risk of bias was performed using the Methodological Index for Non-Randomized Studies (MINORS) criteria. RESULTS Receiving a CSI prior to shoulder arthroplasty was found to have a statistically significant association with increased risk for PJI (odds ratio [OR]: 1.13; 95% confidence interval [CI]: 1.06-1.19; P < .0001). The rate of PJI increased when injections were given closer to the time of surgery. Patients who received an injection at any time point before surgery had a 5.4% risk of PJI compared to 7.9% and 9.0% in patients receiving an injection within 3 months and 1 month of surgery, respectively. This time dependent association however did not reach statistical significance: 1 month OR 1.48; 95% Cl: 0.86-2.53; P = .16, 3 months OR 1.95; 95% Cl: 0.95-4.00; P = .07. CONCLUSION The results of this systematic review and meta-analysis demonstrate that patients receiving corticosteroid shoulder injections prior to shoulder arthroplasty may be at an increased risk for PJI postoperatively. While time dependent stratification did not reach statistical significance, our findings indicate a clear trend of increased risk for patients receiving injections closer to surgery.
Collapse
|
6
|
Karim A. Unveiling the Potential of Probiotics in Osteoarthritis Management. Curr Rheumatol Rep 2024; 27:2. [PMID: 39579259 DOI: 10.1007/s11926-024-01166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
PURPOSE OF REVIEW Osteoarthritis (OA), a highly prevalent degenerative joint disease, is of increasing concern due to its debilitating nature and negative impact on quality of life. Recent investigations have explored the therapeutic potential of probiotics to alleviate OA. This review summarizes the emerging evidence for the potential role of probiotics in managing OA symptoms and disease progression. The link between gut dysbiosis and chronic inflammation, a key player in OA progression is discussed in this review. RECENT FINDINGS Probiotics may modulate gut microbiota composition, potentially reducing systemic inflammation and alleviating OA symptoms, including joint pain and function. Possible mechanisms through which probiotics may exert these effects, including dampening inflammatory pathways and enhancing intestinal barrier integrity have been highlighted. Promising results from preclinical and clinical studies investigating the specific beneficial effects of specific probiotic strain(s) for OA management have been highlighted. Finally, limitations in current research and future directions, emphasizing the need for well-designed, large-scale clinical trials to definitively establish the therapeutic potential of probiotics in OA treatment have been discussed.
Collapse
Affiliation(s)
- Asima Karim
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates.
- Iron Biology Research Group, Sharjah Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
7
|
Bellando-Randone S, Russo E, Di Gloria L, Lepri G, Baldi S, Fioretto BS, Romano E, Ghezzi G, Bertorello S, El Aoufy K, Rosa I, Pallecchi M, Bruni C, Cei F, Nannini G, Niccolai E, Orlandi M, Bandini G, Guiducci S, Bartolucci GL, Ramazzotti M, Manetti M, Matucci-Cerinic M, Amedei A. Gut microbiota in very early systemic sclerosis: the first case-control taxonomic and functional characterisation highlighting an altered butyric acid profile. RMD Open 2024; 10:e004647. [PMID: 39557490 PMCID: PMC11574430 DOI: 10.1136/rmdopen-2024-004647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
OBJECTIVES In systemic sclerosis (SSc), gastrointestinal involvement is one of the earliest events. We compared the gut microbiota (GM), its short-chain fatty acids (SCFAs) and host-derived free fatty acids (FFAs) in patients with very early diagnosis of SSc (VEDOSS) and definite SSc. METHODS Stool samples of 26 patients with SSc, 18 patients with VEDOSS and 20 healthy controls (HC) were collected. The GM was assessed through 16S rRNA sequencing, while SCFAs and FFAs were assessed by gas chromatography-mass spectrometry. RESULTS In patients with VEDOSS, an increase in Bacteroidales and Oscillospirales orders and a decrease in Bacilli class, Blautia, Romboutsia, Streptococcus and Turicibacter genera was detected in comparison with HC. In patients with SSc, an elevated number of Acidaminococcaceae and Sutterellaceae families, along with a decrease of the Peptostreptococcaceae family and Anaerostipes, Blautia, Romboutsia and Turicibacter genera was found in comparison with HC. Patients with SSc and VEDOSS had a significantly lower butyrate and higher acetate with respect to HC. In VEDOSS, an increase in Oscillospiraceae family and Anaerostipes genus, and a decrease in Alphaproteobacteria class, and Lactobacillales order was identified with respect to SSc. Moreover, patients with VEDOSS exhibited higher acetate and lower valerate compared with definite SSc. CONCLUSION A GM dysbiosis with depletion of beneficial anti-inflammatory bacteria (especially butyrate-producing) and a significant decrease in faecal butyrate was identified in patients with VEDOSS. This early GM imbalance may foster the growth of inflammatory microbes, worsening intestinal dysbiosis and inflammation in early SSc stages. The potential butyrate administration in early disease phases might be considered as a novel therapeutic approach to mitigate gastrointestinal discomfort and progression preserving patient's quality of life.
Collapse
Affiliation(s)
- Silvia Bellando-Randone
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
- Scleroderma Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Leandro Di Gloria
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Gemma Lepri
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
- Scleroderma Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Eloisa Romano
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Giulio Ghezzi
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
| | - Sara Bertorello
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Khadija El Aoufy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
- Department of Experimental and Clinical Medicine, Imaging Platform, University of Florence, Florence, Italy
| | - Marco Pallecchi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Cosimo Bruni
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Francesco Cei
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Martina Orlandi
- Department of Medical and Surgical Sciences for Children, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Bandini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Serena Guiducci
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
- Scleroderma Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence, Italy
| | - Gian Luca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
- Department of Experimental and Clinical Medicine, Imaging Platform, University of Florence, Florence, Italy
| | - Marco Matucci-Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| |
Collapse
|
8
|
Elsawy NA, Ibrahiem AH, Younis GA, Meheissen MA, Abdel-Fattah YH. Microbiome and Femoral Cartilage Thickness in Knee Osteoarthritis: Is There a Link? Cartilage 2024:19476035241276852. [PMID: 39235213 PMCID: PMC11569570 DOI: 10.1177/19476035241276852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024] Open
Abstract
OBJECTIVE To assess the relation between microbiome and lipopolysaccharide (LPS), in the blood and synovial fluid (SF) with femoral cartilage thickness (FCT) measured by ultrasound (US) in knee osteoarthritis (KOA) patients. METHODS This cross-sectional study included 40 primary KOA patients recruited between September 2022 and June 2023. Age, gender, and body mass index (BMI) were recorded. Patients underwent full clinical examination, standing plain x-ray of the knee joint and knee US examination to measure medial, intercondylar, and lateral FCT. Microbiomes (specific bacterial phyla) were detected by real-time polymerase chain reaction and LPS levels were measured by enzyme-linked immunosorbent assay kit in the patients' serum and SF. RESULTS The patient's age ranged from 43 to 72 years. Most patients were females (72.5%), with a mean BMI of 35.8 ± 6.21 kg/m2. The mean medial, intercondylar, and lateral FCT were less than cut-off values. All 40 (100%) patients showed positive bacterial deoxyribonucleic acid (16S ribosomal RNA) in both blood and SF samples. Firmicutes was the most abundant in patients' blood (48.49%) and SF (63.59%). The mean serum LPS level was significantly higher compared to mean SF LPS (t =4.702, P < 0.001). There was a statistically significant negative correlation between lateral FCT and Firmicutes relative abundance in both patients' blood and SF. CONCLUSION Microbiome and LPS are present in the blood and SF of primary KOA patients. Microbiome (Firmicutes) was associated with decreased lateral FCT. This might provide a potential link between both systemic and local microbiomes and cartilage affection in KOA patients.
Collapse
Affiliation(s)
- Noha Abdelhalim Elsawy
- Department of Rheumatology, Rehabilitation and Physical Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Aya Hanafy Ibrahiem
- Department of Rheumatology, Rehabilitation and Physical Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Gihan Abdellatif Younis
- Department of Rheumatology, Rehabilitation and Physical Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Marwa Ahmed Meheissen
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Yousra Hisham Abdel-Fattah
- Department of Rheumatology, Rehabilitation and Physical Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Hu W, Chen S, Zou X, Chen Y, Luo J, Zhong P, Ma D. Oral microbiome, periodontal disease and systemic bone-related diseases in the era of homeostatic medicine. J Adv Res 2024:S2090-1232(24)00362-X. [PMID: 39159722 DOI: 10.1016/j.jare.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Homeostasis is a state of self-regulation and dynamic equilibrium, maintaining the good physiological functions of each system in living organisms. In the oral cavity, the interaction between the host and the oral microbiome forms oral microbial homeostasis. Physiological bone remodeling and renewal can occur under the maintenance of oral microbial homeostasis. The imbalance of bone homeostasis is a key mechanism leading to the occurrence of systemic bone-related diseases. Considering the importance of oral microbial homeostasis in the maintenance of bone homeostasis, it still lacks a complete understanding of the relationship between oral microbiome, periodontal disease and systemic bone-related diseases. AIM OF REVIEW This review focuses on the homeostatic changes, pathogenic routes and potential mechanisms in the oral microbiome in periodontal disease and systemic bone-related diseases such as rheumatoid arthritis, osteoarthritis, osteoporosis and osteomyelitis. Additionally, this review discusses oral microbiome-based diagnostic approaches and explores probiotics, mesenchymal stem cells, and oral microbiome transplantation as promising treatment strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the association between oral microbial homeostasis imbalance and systemic bone-related diseases, and highlights the possibility of remodeling oral microbial homeostasis for the prevention and treatment of systemic bone-related diseases.
Collapse
Affiliation(s)
- Weiqi Hu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Shuoling Chen
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Xianghui Zou
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Yan Chen
- Department of Pediatric Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Jiayu Luo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Peiliang Zhong
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China.
| |
Collapse
|
10
|
Mucientes A, Lisbona-Montañez JM, Mena-Vázquez N, Ruiz-Limón P, Manrique-Arija S, García-Studer A, Ortiz-Márquez F, Fernández-Nebro A. Intestinal Dysbiosis, Tight Junction Proteins, and Inflammation in Rheumatoid Arthritis Patients: A Cross-Sectional Study. Int J Mol Sci 2024; 25:8649. [PMID: 39201334 PMCID: PMC11354395 DOI: 10.3390/ijms25168649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Recent studies point to intestinal permeability as an important factor in the establishment and development of rheumatoid arthritis (RA). Tight junctions (TJs) play a major role in intestinal homeostasis. The alteration of this homeostasis is related to RA. Furthermore, RA patients present dysbiosis and a lower microbiota diversity compared to healthy individuals. A cross-sectional study including RA patients and sex- and age-matched healthy controls was performed. The quantification of TJ proteins was carried out by ELISA. Gut microbiota was evaluated by NGS platform Ion Torrent S. The inflammatory variables included were DAS28, CRP, inflammatory cytokines (IL-6, IL-1, TNF-α) and oxidised LDL. Claudin-1 levels showed significant differences between groups. Results evidenced a correlation between claudin-1 values and age (r: -0.293; p < 0.05), IL6 (r: -0.290; p < 0.05) and CRP (r: -0.327; p < 0.05), and between zonulin values and both age (r: 0.267; p < 0.05) and TNFα (r: 0.266; p < 0.05). Moreover, claudin-1 and CRP levels are related in RA patients (β: -0.619; p: 0.045), and in patients with high inflammatory activity, the abundance of the genus Veillonella is positively associated with claudin-1 levels (β: 39.000; p: 0.004).
Collapse
Affiliation(s)
- Arkaitz Mucientes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
| | - José Manuel Lisbona-Montañez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| | - Natalia Mena-Vázquez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
| | - Patricia Ruiz-Limón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
- CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| | - Sara Manrique-Arija
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| | - Aimara García-Studer
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| | - Fernando Ortiz-Márquez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| | - Antonio Fernández-Nebro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29010 Málaga, Spain; (A.M.); (J.M.L.-M.); (P.R.-L.); (S.M.-A.); (A.G.-S.); (F.O.-M.); (A.F.-N.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, 29010 Málaga, Spain
| |
Collapse
|
11
|
Abbasifard M, Khorramdelazad H. Harmonizing hope: navigating the osteoarthritis melody through the CCL2/CCR2 axis for innovative therapeutic avenues. Front Immunol 2024; 15:1387651. [PMID: 39076996 PMCID: PMC11284107 DOI: 10.3389/fimmu.2024.1387651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Osteoarthritis (OA) is characterized by a complex interplay of molecular signals orchestrated by the CCL2/CCR2 axis. The pathogenesis of OA has been revealed to be influenced by a multifaceted effect of CCL2/CCR2 signaling on inflammation, cartilage degradation, and joint homeostasis. The CCL2/CCR2 axis promotes immune cell recruitment and tips the balance toward degeneration by influencing chondrocyte behavior. Insights into these intricate pathways will offer novel therapeutic approaches, paving the way for targeted interventions that may redefine OA management in the future. This review article explores the molecular symphony through the lens of the CCL2/CCR2 axis, providing a harmonious blend of current knowledge and future directions on OA treatment. Furthermore, in this study, through a meticulous review of recent research, the key players and molecular mechanisms that amplify the catabolic cascade within the joint microenvironment are identified, and therapeutic approaches to targeting the CCL2/CCR axis are discussed.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
12
|
Corriero A, Giglio M, Soloperto R, Inchingolo F, Varrassi G, Puntillo F. Microbial Symphony: Exploring the Role of the Gut in Osteoarthritis-Related Pain. A Narrative Review. Pain Ther 2024; 13:409-433. [PMID: 38678155 PMCID: PMC11111653 DOI: 10.1007/s40122-024-00602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
One of the most common musculoskeletal disorders, osteoarthritis (OA), causes worldwide disability, morbidity, and poor quality of life by degenerating articular cartilage, modifying subchondral bone, and inflaming synovial membranes. OA pathogenesis pathways must be understood to generate new preventative and disease-modifying therapies. In recent years, it has been acknowledged that gut microbiota (GM) can significantly contribute to the development of OA. Dysbiosis of GM can disrupt the "symphony" between the host and the GM, leading to a host immunological response that activates the "gut-joint" axis, ultimately worsening OA. This narrative review summarizes research supporting the "gut-joint axis" hypothesis, focusing on the interactions between GM and the immune system in its two main components, innate and adaptive immunity. Furthermore, the pathophysiological sequence of events that link GM imbalance to OA and OA-related pain is broken down and further investigated. We also suggest that diet and prebiotics, probiotics, nutraceuticals, exercise, and fecal microbiota transplantation could improve OA management and represent a new potential therapeutic tool in the light of the scarce panorama of disease-modifying osteoarthritis drugs (DMOADs). Future research is needed to elucidate these complex interactions, prioritizing how a particular change in GM, i.e., a rise or a drop of a specific bacterial strain, correlates with a certain OA subset to pinpoint the associated signaling pathway that leads to OA.
Collapse
Affiliation(s)
- Alberto Corriero
- Department of Interdisciplinary Medicine - ICU Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Mariateresa Giglio
- Department of Interdisciplinary Medicine - ICU Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Rossana Soloperto
- Department of Intensive Care, Brussels' University Hospital (HUB), Rue de Lennik 808, 1070, Brussels, Belgium
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124, Bari, Italy
| | | | - Filomena Puntillo
- Department of Interdisciplinary Medicine - ICU Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
13
|
Wen X, Ogunrinde E, Wan Z, Cunningham M, Gilkeson G, Jiang W. Racial Differences in Plasma Microbial Translocation and Plasma Microbiome, Implications in Systemic Lupus Erythematosus Disease Pathogenesis. ACR Open Rheumatol 2024; 6:365-374. [PMID: 38563441 PMCID: PMC11168915 DOI: 10.1002/acr2.11664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVE Black groups have increased prevalence and accelerated pathogenicity of systemic lupus erythematosus (SLE) compared to other ethnic/racial groups. The microbiome and systemic microbial translocation are considered contributing factors to SLE disease pathogenesis. However, racial differences in the plasma microbiome and microbial translocation in lupus remain unknown. METHODS In the current study, we investigated plasma levels of microbial translocation (lipopolysaccharide [LPS] and zonulin) and the plasma microbiome using microbial 16S RNA sequencing of Black and White patients with SLE and Black and White healthy controls. RESULTS Plasma microbial translocation was increased in Black patients versus in White patients and in patients with SLE versus healthy controls regardless of race. Compared to sex, age, and disease status, race had the strongest association with plasma microbiome differences. Black groups (Black controls and Black patients) had lower α-diversity than White groups (White controls and White patients) and more distinct β-diversity. Black and White patients demonstrated differences in plasma bacterial presence, including Staphylococcus and Burkholderia. Compared to White patients, Black patients had higher SLE Disease Activity Index (SLEDAI) scores and urinary protein levels as well as a trend for increased anti-double-stranded DNA (dsDNA) antibody levels consistent with the known increased severity of lupus in Black patients overall. Certain plasma bacteria at the genus level were identified that were associated with the SLEDAI score, urinary protein, and anti-dsDNA antibody levels. CONCLUSION This study reveals racial differences in both quality and quantity of plasma microbial translocation and identified specific plasma microbiome differences associated with SLE disease pathogenesis. Thus, this study may provide new insights into future potential microbiome therapies on SLE pathogenesis.
Collapse
Affiliation(s)
| | | | - Zhuang Wan
- Medical University of South CarolinaCharleston
| | | | - Gary Gilkeson
- Ralph H. Johnson Veterans Affairs Medical CenterCharlestonSouth Carolina
| | - Wei Jiang
- Ralph H. Johnson Veterans Affairs Medical CenterCharlestonSouth Carolina
| |
Collapse
|
14
|
Korneva YS, Borisenko MV, Deev RV. Gut microbiota – a new link in the pathogenesis of osteoarthritis (literature review). THE SIBERIAN JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE 2024; 39:38-43. [DOI: 10.29001/2073-8552-2024-39-1-38-43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The intestinal microbiota (IMB) can indirectly affect the course of ostearthritis (OA) at the systemic level by stimulating a chronic nonspecific inflammatory reaction in the synovial membrane and subchondral bone, the cause of which is an increase in the amount of circulating lipopolysaccharides (LPS) of the bacterial wall, as well as provoke the development of metabolic syndrome, which links the two necessary components of the pathogenesis of OA. The result of direct exposure is the formation of leaky gut syndrome with the activation of LPS of the bacterial wall of mild inflammation, provoking the production of proinflammatory cytokines, the effect of which on synoviocytes and chondrocytes leads to their activation with subsequent production of IL-6 and IL-8, which contributes to the persistence of inflammation. By correlation analysis, the relationship of three taxa with OA joint damage was proved, namely, the order Desulfovibrionales and the genus Ruminiclostridium 5 – with knee joint OA, Methanobacteriaceae – with knee joint OA, and OA of any localization, and the appearance and degree of contamination with the genus Streptococcus correlated with the severity of pain syndrome. The metabolic syndrome itself can provoke the development of dysbiosis, so it can also be its consequence. A change in the composition of the microbiota in the form of the predominance of the genus Clostridium and the species Staphylococcus aureus with a decrease in the diversity of microorganisms is associated with an increase in the amount of adipose tissue in the body, dyslipidemia, insulin resistance with impaired carbohydrate metabolism. Low levels of LPS in the blood are found in obese patients even in the absence of an obvious focus of infection due to violations in the CMB, they signal TLR-4, triggering systemic inflammation. Studies have shown a positive effect of prescribing proand prebiotics on the course of OA, which makes IMB a promising target for the treatment and prevention of OA.
Collapse
Affiliation(s)
- Yu. S. Korneva
- Russian Scientific Research Institute of Traumatology and Orthopedics named after R.R. Vreden; North-Western State Medical University named after I.I. Mechnikov; Smolensk State Medical University of the Ministry of Health of the Russian Federation
| | - M. V. Borisenko
- North-Western State Medical University named after I.I. Mechnikov
| | - R. V. Deev
- Avtsyn Research Institute of Human Morphology of Federal state budgetary scientific institution “Petrovsky National Research Centre of Surgery”
| |
Collapse
|
15
|
Seymour BJ, Allen BE, Kuhn KA. Microbial Mechanisms of Rheumatoid Arthritis Pathogenesis. Curr Rheumatol Rep 2024; 26:124-132. [PMID: 38300467 PMCID: PMC11141067 DOI: 10.1007/s11926-024-01135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
PURPOSE OF REVIEW Host-microbiome interactions have been implicated in the pathophysiology of rheumatoid arthritis (RA), but the data linking specific microbes to RA is largely associative. Here, we review recent studies that have interrogated specific mechanistic links between microbes and host in the setting of RA. RECENT FINDINGS Several candidate bacterial species and antigens that may trigger the conversion of an anti-bacterial to an autoimmune response have been recently identified. Additional studies have identified microbial metabolic pathways that are altered in RA. Some of these microbial species and metabolic pathways have been validated in mouse models to induce RA-like immune responses, providing initial evidence of specific mechanisms by which the microbiota contributes to the development of RA. Several microbial species, antigens, and metabolites have been identified as potential contributors to RA pathophysiology. Further interrogation and validation of these pathways may identify novel biomarkers of or therapeutic avenues for RA.
Collapse
Affiliation(s)
- Brenda J Seymour
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brendan E Allen
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristine A Kuhn
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
16
|
Izda V, Schlupp L, Prinz E, Dyson G, Barrett M, Dunn CM, Nguyen E, Sturdy C, Jeffries MA. Murine cartilage microbial DNA deposition occurs rapidly following the introduction of a gut microbiome and changes with obesity, aging, and knee osteoarthritis. GeroScience 2024; 46:2317-2341. [PMID: 37946009 PMCID: PMC10828335 DOI: 10.1007/s11357-023-01004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Cartilage microbial DNA patterns have been recently characterized in osteoarthritis (OA). The objectives of this study were to evaluate the gut origins of cartilage microbial DNA, to characterize cartilage microbial changes with age, obesity, and OA in mice, and correlate these to gut microbiome changes. We used 16S rRNA sequencing performed longitudinally on articular knee cartilage from germ-free (GF) mice following oral microbiome inoculation and cartilage and cecal samples from young and old wild-type mice with/without high-fat diet-induced obesity (HFD) and with/without OA induced by destabilization of the medial meniscus (DMM) to evaluate gut and cartilage microbiota. Microbial diversity was assessed, groups compared, and functional metagenomic profiles reconstructed. Findings were confirmed in an independent cohort by clade-specific qPCR. We found that cartilage microbial patterns developed at 48 h and later timepoints following oral microbiome inoculation of GF mice. Alpha diversity was increased in SPF mouse cartilage samples with age (P = 0.013), HFD (P = 5.6E-4), and OA (P = 0.029) but decreased in cecal samples with age (P = 0.014) and HFD (P = 1.5E-9). Numerous clades were altered with aging, HFD, and OA, including increases in Verrucomicrobia in both cartilage and cecal samples. Functional analysis suggested changes in dihydroorotase, glutamate-5-semialdehyde dehydrogenase, glutamate-5-kinase, and phosphoribosylamine-glycine ligase, in both cecum and cartilage, with aging, HFD, and OA. In conclusion, cartilage microbial DNA patterns develop rapidly after the introduction of a gut microbiome and change in concert with the gut microbiome during aging, HFD, and OA in mice. DMM-induced OA causes shifts in both cartilage and cecal microbiome patterns independent of other factors.
Collapse
Affiliation(s)
- Vladislav Izda
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Laboratory MC400, Oklahoma City, OK, 73104, USA
- Icahn School of Medicine, Mt. Sinai, New York, NY, USA
| | - Leoni Schlupp
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Laboratory MC400, Oklahoma City, OK, 73104, USA
| | - Emmaline Prinz
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Laboratory MC400, Oklahoma City, OK, 73104, USA
| | - Gabby Dyson
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Laboratory MC400, Oklahoma City, OK, 73104, USA
| | - Montana Barrett
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Laboratory MC400, Oklahoma City, OK, 73104, USA
| | - Christopher M Dunn
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Laboratory MC400, Oklahoma City, OK, 73104, USA
- Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Emily Nguyen
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Laboratory MC400, Oklahoma City, OK, 73104, USA
| | - Cassandra Sturdy
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Laboratory MC400, Oklahoma City, OK, 73104, USA
| | - Matlock A Jeffries
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Laboratory MC400, Oklahoma City, OK, 73104, USA.
- Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- VA Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
17
|
Holub MN, Wahhab A, Rouse JR, Danner R, Hackner LG, Duris CB, McClune ME, Dressler JM, Strle K, Jutras BL, Edelstein AI, Lochhead RB. Peptidoglycan in osteoarthritis synovial tissue is associated with joint inflammation. Arthritis Res Ther 2024; 26:77. [PMID: 38532447 PMCID: PMC10967045 DOI: 10.1186/s13075-024-03293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
OBJECTIVES Peptidoglycan (PG) is an arthritogenic bacterial cell wall component whose role in human osteoarthritis is poorly understood. The purpose of this study was to determine if PG is present in synovial tissue of osteoarthritis patients at the time of primary total knee arthroplasty (TKA), and if its presence is associated with inflammation and patient reported outcomes. METHODS Intraoperative synovial tissue and synovial fluid samples were obtained from 56 patients undergoing primary TKA, none of whom had history of infection. PG in synovial tissue was detected by immunohistochemistry (IHC) and immunofluorescence microscopy (IFM). Synovial tissue inflammation and fibrosis were assessed by histopathology and synovial fluid cytokine quantification. Primary human fibroblasts isolated from arthritis synovial tissue were stimulated with PG to determine inflammatory cytokine response. RESULTS A total of 33/56 (59%) of primary TKA synovial tissue samples were positive for PG by IHC, and PG staining colocalized with markers of synovial macrophages and fibroblasts by IFM. Synovial tissue inflammation and elevated IL-6 in synovial fluid positively correlated with PG positivity. Primary human fibroblasts stimulated with PG secreted high levels of IL-6, consistent with ex vivo findings. Interestingly, we observed a significant inverse correlation between PG and age at time of TKA, indicating younger age at time of TKA was associated with higher PG levels. CONCLUSION Peptidoglycan is commonly found in synovial tissue from patients undergoing TKA. Our data indicate that PG may play an important role in inflammatory synovitis, particularly in patients who undergo TKA at a relatively younger age.
Collapse
Affiliation(s)
- Meaghan N Holub
- Department of Orthopaedic Surgery, Medical College of Wisconsin, BSB room 2850, Milwaukee, WI, 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amanda Wahhab
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph R Rouse
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rebecca Danner
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lauren G Hackner
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christine B Duris
- Department of Pathology, Children's Hospital of Wisconsin and the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mecaila E McClune
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Jules M Dressler
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Klemen Strle
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Brandon L Jutras
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Adam I Edelstein
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Robert B Lochhead
- Department of Orthopaedic Surgery, Medical College of Wisconsin, BSB room 2850, Milwaukee, WI, 53226, USA.
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Division of Rheumatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
18
|
Schreiber F, Balas I, Robinson MJ, Bakdash G. Border Control: The Role of the Microbiome in Regulating Epithelial Barrier Function. Cells 2024; 13:477. [PMID: 38534321 PMCID: PMC10969408 DOI: 10.3390/cells13060477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024] Open
Abstract
The gut mucosal epithelium is one of the largest organs in the body and plays a critical role in regulating the crosstalk between the resident microbiome and the host. To this effect, the tight control of what is permitted through this barrier is of high importance. There should be restricted passage of harmful microorganisms and antigens while at the same time allowing the absorption of nutrients and water. An increased gut permeability, or "leaky gut", has been associated with a variety of diseases ranging from infections, metabolic diseases, and inflammatory and autoimmune diseases to neurological conditions. Several factors can affect gut permeability, including cytokines, dietary components, and the gut microbiome. Here, we discuss how the gut microbiome impacts the permeability of the gut epithelial barrier and how this can be harnessed for therapeutic purposes.
Collapse
Affiliation(s)
| | | | | | - Ghaith Bakdash
- Microbiotica Ltd., Cambridge CB10 1XL, UK; (F.S.); (I.B.); (M.J.R.)
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Type 1 interferons (IFN-I) are of increasing interest across a wide range of autoimmune rheumatic diseases. Historically, research into their role in rheumatoid arthritis (RA) has been relatively neglected, but recent work continues to highlight a potential contribution to RA pathophysiology. RECENT FINDINGS We emphasise the importance of disease stage when examining IFN-I in RA and provide an overview on how IFN-I may have a direct role on a variety of relevant cellular functions. We explore how clinical trajectory may be influenced by increased IFN-I signalling, and also, the limitations of scores composed of interferon response genes. Relevant environmental triggers and inheritable RA genetic risk relating to IFN-I signalling are explored with emphasis on intriguing data potentially linking IFN-I exposure, epigenetic changes, and disease relevant processes. Whilst these data cumulatively illustrate a likely role for IFN-I in RA, they also highlight the knowledge gaps, particularly in populations at risk for RA, and suggest directions for future research to both better understand IFN-I biology and inform targeted therapeutic strategies.
Collapse
Affiliation(s)
- Chung M A Lin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Faye A H Cooles
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
20
|
Abdelsalam NA, Hegazy SM, Aziz RK. The curious case of Prevotella copri. Gut Microbes 2023; 15:2249152. [PMID: 37655441 PMCID: PMC10478744 DOI: 10.1080/19490976.2023.2249152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
Prevotella copri is an abundant member of the human gastrointestinal microbiome, whose relative abundance has curiously been associated with positive and negative impacts on diseases, such as Parkinson's disease and rheumatoid arthritis. Yet, the verdict is still out on the definitive role of P. copri in human health, and on the effect of different diets on its relative abundance in the gut microbiome. The puzzling discrepancies among P. copri studies have only recently been attributed to the diversity of its strains, which substantially differ in their encoded metabolic patterns from the commonly used reference strain. However, such strain differences cannot be resolved by common 16S rRNA amplicon profiling methods. Here, we scrutinize P. copri, its versatile metabolic potential, and the hypotheses behind the conflicting observations on its association with diet and human health. We also provide suggestions for designing studies and bioinformatics pipelines to better research P. copri.
Collapse
Affiliation(s)
| | - Shaimaa M. Hegazy
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Ramy K. Aziz
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt 57357, Cairo, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Center for Genome and Microbiome Research, Cairo University, Cairo, Egypt
| |
Collapse
|
21
|
Zhang Y, Hu Q, Li Z, Kang Z, Zhang L. Kocuria species: an underappreciated pathogen in pediatric patients-a single-center retrospective analysis of 10 years' experience in China. Diagn Microbiol Infect Dis 2023; 107:116078. [PMID: 37757608 DOI: 10.1016/j.diagmicrobio.2023.116078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Kocuria species are known to be opportunistic pathogens that cause infections in humans, especially immunocompromised hosts. However, reports of pediatric patients are limited. This retrospective study was designed to investigate the spectrum of infections in pediatric patients caused by Kocuria species. Thirty-six patients were enrolled; of these, 29 were infected by Kocuria kristinae, 4 by Kocuria roseus, 2 by Kocuria varians, and 1 by Kocruria rhizophila. Twenty-six patients were diagnosed with bloodstream infection; 6 had ventilator-associated pneumonia; and one each had a catheter-associated urinary tract infection, purulent meningitis, cholangitis, and empyema. Twenty-seven patients were immunocompromised or debilitating, had congenital abnormalities or fitted with indwelling devices. Nine patients were immunocompetent, 4 with early onset before 1 year of age. All Kocuria species were susceptible to lenezolid, vancomycin, and tigecycline; while showing frequent resistance to penicillin and oxacillin. Most cases were cured by administering appropriate antimicrobial agents. To our knowledge, this is the largest case series of pediatric patients with Kocuria species infection. We highlight Kocuria species should be considered as an underappreciated pathogen in pediatric patients.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Nephrology, Rheumatology and Immunology, Hunan Children's Hospital, Changsha, Hunan, China; The School of Pediatrics, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qiong Hu
- The School of Pediatrics, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Clinical Laboratory, Hunan Children's Hospital, Changsha, Hunan, China
| | - Zhihui Li
- Department of Nephrology, Rheumatology and Immunology, Hunan Children's Hospital, Changsha, Hunan, China; The School of Pediatrics, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhijuan Kang
- Department of Nephrology, Rheumatology and Immunology, Hunan Children's Hospital, Changsha, Hunan, China; The School of Pediatrics, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liang Zhang
- Department of Nephrology, Rheumatology and Immunology, Hunan Children's Hospital, Changsha, Hunan, China; The School of Pediatrics, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
22
|
Baek YJ, Lee YJ, Lee JA, Kim JH, Kwon HM, Yeom JS, Park KK, Jeong SJ. Role of α-Defensin and the Microbiome in Prosthetic Joint Infection: A Prospective Cohort Study in Korea. J Clin Med 2023; 12:5964. [PMID: 37762905 PMCID: PMC10532201 DOI: 10.3390/jcm12185964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The utility of α-defensin (AD), leukocyte esterase (LE) levels, and metagenomics sequencing as diagnostic tools for prosthetic joint infection (PJI) has been suggested, but there are few studies among the Asian population. This study aimed to evaluate the diagnostic performance of various biomarkers for PJI and the role of the microbiome in the synovial fluid of patients with prostheses. Patients with suspected knee PJI were enrolled, and their blood and synovial fluid were collected. The cases were classified into the PJI and non-PJI groups. Significant differences between the two groups were observed in the levels of AD (4698 µg/L vs. 296 µg/L, p < 0.001) and positivity for LE (62.5% vs. 21.1%, p = 0.01). AD had 94.4% sensitivity and 89.5% specificity for diagnosing PJI, whereas LE had 37.5% sensitivity and 100% specificity. Microbiome taxonomic profiling showed high sensitivity. The number of operational taxonomic units and the richness of the microbiome in the synovial fluid were higher in the non-PJI than in the PJI group. AD has shown encouraging results in the Asian population as a diagnostic biomarker for PJI, and LE can be used as a diagnostic adjunct. The bacterial richness of the synovial fluid is likely associated with infections.
Collapse
Affiliation(s)
- Yae Jee Baek
- Division of Infectious Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul 04401, Republic of Korea;
| | - Youn-Jung Lee
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jung Ah Lee
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jung Ho Kim
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyuck Min Kwon
- Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Joon-Sup Yeom
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kwan Kyu Park
- Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Su Jin Jeong
- Department of Orthopedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
23
|
Madrid-García A, Merino-Barbancho B, Rodríguez-González A, Fernández-Gutiérrez B, Rodríguez-Rodríguez L, Menasalvas-Ruiz E. Understanding the role and adoption of artificial intelligence techniques in rheumatology research: An in-depth review of the literature. Semin Arthritis Rheum 2023; 61:152213. [PMID: 37315379 DOI: 10.1016/j.semarthrit.2023.152213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023]
Abstract
The major and upward trend in the number of published research related to rheumatic and musculoskeletal diseases, in which artificial intelligence plays a key role, has exhibited the interest of rheumatology researchers in using these techniques to answer their research questions. In this review, we analyse the original research articles that combine both worlds in a five- year period (2017-2021). In contrast to other published papers on the same topic, we first studied the review and recommendation articles that were published during that period, including up to October 2022, as well as the publication trends. Secondly, we review the published research articles and classify them into one of the following categories: disease identification and prediction, disease classification, patient stratification and disease subtype identification, disease progression and activity, treatment response, and predictors of outcomes. Thirdly, we provide a table with illustrative studies in which artificial intelligence techniques have played a central role in more than twenty rheumatic and musculoskeletal diseases. Finally, the findings of the research articles, in terms of disease and/or data science techniques employed, are highlighted in a discussion. Therefore, the present review aims to characterise how researchers are applying data science techniques in the rheumatology medical field. The most immediate conclusions that can be drawn from this work are: multiple and novel data science techniques have been used in a wide range of rheumatic and musculoskeletal diseases including rare diseases; the sample size and the data type used are heterogeneous, and new technical approaches are expected to arrive in the short-middle term.
Collapse
Affiliation(s)
- Alfredo Madrid-García
- Grupo de Patología Musculoesquelética. Hospital Clínico San Carlos, Prof. Martin Lagos s/n, Madrid, 28040, Spain; Escuela Técnica Superior de Ingenieros de Telecomunicación. Universidad Politécnica de Madrid, Avenida Complutense, 30, Madrid, 28040, Spain.
| | - Beatriz Merino-Barbancho
- Escuela Técnica Superior de Ingenieros de Telecomunicación. Universidad Politécnica de Madrid, Avenida Complutense, 30, Madrid, 28040, Spain
| | | | - Benjamín Fernández-Gutiérrez
- Grupo de Patología Musculoesquelética. Hospital Clínico San Carlos, Prof. Martin Lagos s/n, Madrid, 28040, Spain
| | - Luis Rodríguez-Rodríguez
- Grupo de Patología Musculoesquelética. Hospital Clínico San Carlos, Prof. Martin Lagos s/n, Madrid, 28040, Spain
| | - Ernestina Menasalvas-Ruiz
- Centro de Tecnología Biomédica. Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, 28223, Spain
| |
Collapse
|
24
|
Sun C, Zhou X, Guo T, Meng J. The immune role of the intestinal microbiome in knee osteoarthritis: a review of the possible mechanisms and therapies. Front Immunol 2023; 14:1168818. [PMID: 37388748 PMCID: PMC10306395 DOI: 10.3389/fimmu.2023.1168818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by cartilage damage and synovial inflammation and carries an enormous public health and economic burden. It is crucial to uncover the potential mechanisms of OA pathogenesis to develop new targets for OA treatment. In recent years, the pathogenic role of the gut microbiota in OA has been well recognized. Gut microbiota dysbiosis can break host-gut microbe equilibrium, trigger host immune responses and activate the "gut-joint axis", which aggravates OA. However, although the role of the gut microbiota in OA is well known, the mechanisms modulating the interactions between the gut microbiota and host immunity remain unclear. This review summarizes research on the gut microbiota and the involved immune cells in OA and interprets the potential mechanisms for the interactions between the gut microbiota and host immune responses from four aspects: gut barrier, innate immunity, adaptive immunity and gut microbiota modulation. Future research should focus on the specific pathogen or the specific changes in the gut microbiota composition to identify the related signaling pathways involved in the pathogenesis of OA. In addition, future studies should include more novel interventions on immune cell modifications and gene regulation of specific gut microbiota related to OA to validate the application of gut microbiota modulation in the onset of OA.
Collapse
Affiliation(s)
- Chang Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xing Zhou
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ting Guo
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jia Meng
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
25
|
Goswami K, Clarkson S, Tipton C, Phillips CD, Dennis DA, Klatt BA, O'Malley M, Smith EL, Gililland J, Pelt CE, Peters CL, Malkani AL, Palumbo BT, Lyons ST, Bernasek TL, Minter J, Goyal N, Purtill W, McDonald JF, Cross MB, Prieto HA, Lee GC, Hansen EN, Bini SA, Ward DT, Zhao N, Shohat N, Higuera CA, Nam D, Della Valle CJ, Parvizi J. The Microbiome of Osteoarthritic Hip and Knee Joints: A Prospective Multicenter Investigation. J Bone Joint Surg Am 2023; Publish Ahead of Print:00004623-990000000-00799. [PMID: 37192280 DOI: 10.2106/jbjs.22.00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
BACKGROUND Recent advances in high-throughput DNA sequencing technologies have made it possible to characterize the microbial profile in anatomical sites previously assumed to be sterile. We used this approach to explore the microbial composition within joints of osteoarthritic patients. METHODS This prospective multicenter study recruited 113 patients undergoing hip or knee arthroplasty between 2017 and 2019. Demographics and prior intra-articular injections were noted. Matched synovial fluid, tissue, and swab specimens were obtained and shipped to a centralized laboratory for testing. Following DNA extraction, microbial 16S-rRNA sequencing was performed. RESULTS Comparisons of paired specimens indicated that each was a comparable measure for microbiological sampling of the joint. Swab specimens were modestly different in bacterial composition from synovial fluid and tissue. The 5 most abundant genera were Escherichia, Cutibacterium, Staphylococcus, Acinetobacter, and Pseudomonas. Although sample size varied, the hospital of origin explained a significant portion (18.5%) of the variance in the microbial composition of the joint, and corticosteroid injection within 6 months before arthroplasty was associated with elevated abundance of several lineages. CONCLUSIONS The findings revealed that prior intra-articular injection and the operative hospital environment may influence the microbial composition of the joint. Furthermore, the most common species observed in this study were not among the most common in previous skin microbiome studies, suggesting that the microbial profiles detected are not likely explained solely by skin contamination. Further research is needed to determine the relationship between the hospital and a "closed" microbiome environment. These findings contribute to establishing the baseline microbial signal and identifying contributing variables in the osteoarthritic joint, which will be valuable as a comparator in the contexts of infection and long-term arthroplasty success. LEVEL OF EVIDENCE Diagnostic Level II. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Karan Goswami
- Rothman Orthopaedic Institute, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Samuel Clarkson
- Rothman Orthopaedic Institute, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Craig Tipton
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas
| | - Caleb D Phillips
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas
| | | | - Brian A Klatt
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Michael O'Malley
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Eric L Smith
- New England Baptist Hospital, Chestnut Hill, Massachusetts
| | - Jeremy Gililland
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah
| | | | | | - Arthur L Malkani
- University of Louisville Adult Reconstruction Program, Louisville, Kentucky
| | - Brian T Palumbo
- University of South Florida Department of Orthopaedic Surgery, Clearwater, Florida
| | - Steven T Lyons
- University of South Florida Department of Orthopaedic Surgery, Clearwater, Florida
| | - Thomas L Bernasek
- University of South Florida Department of Orthopaedic Surgery, Clearwater, Florida
| | | | - Nitin Goyal
- Anderson Orthopaedic Research Institute, Alexandria, Virginia
| | - William Purtill
- Rothman Orthopaedic Institute, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | | | | | - Hernan A Prieto
- Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, Florida
| | - Gwo-Chin Lee
- Penn Presbyterian Medical Center, Philadelphia, Pennsylvania
| | - Erik N Hansen
- University of California San Francisco, San Francisco, California
| | - Stefano A Bini
- University of California San Francisco, San Francisco, California
| | - Derek T Ward
- University of California San Francisco, San Francisco, California
| | - Neil Zhao
- Rothman Orthopaedic Institute, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Noam Shohat
- Rothman Orthopaedic Institute, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Carlos A Higuera
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Dennis Nam
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Craig J Della Valle
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Javad Parvizi
- Rothman Orthopaedic Institute, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| |
Collapse
|
26
|
Wang X, Wu Y, Liu Y, Chen F, Chen S, Zhang F, Li S, Wang C, Gong Y, Huang R, Hu M, Ning Y, Zhao H, Guo X. Altered gut microbiome profile in patients with knee osteoarthritis. Front Microbiol 2023; 14:1153424. [PMID: 37250055 PMCID: PMC10213253 DOI: 10.3389/fmicb.2023.1153424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Osteoarthritis (OA) is a kind of chronic, degenerative disorder with unknown causes. In this study, we aimed to improve our understanding of the gut microbiota profile in patients with knee OA. Methods 16S rDNA gene sequencing was performed to detect the gut microbiota in fecal samples collected from the patients with OA (n = 32) and normal control (NC, n = 57). Then the metagenomic sequencing was used to identify the genes or functions linked with gut microbial changes at the species level in the fecal samples from patients with OA and NC groups. Results The Proteobacteria was identified as dominant bacteria in OA group. We identified 81 genera resulted significantly different in abundance between OA and NC. The abundance of Agathobacter, Ruminococcus, Roseburia, Subdoligranulum, and Lactobacillus showed significant decrease in the OA compared to the NC. The abundance of genera Prevotella_7, Clostridium, Flavonifractor and Klebsiella were increasing in the OA group, and the families Lactobacillaceae, Christensenellaceae, Clostridiaceae_1 and Acidaminococcaceae were increasing in the NC. The metagenomic sequencing showed that the abundance of Bacteroides stercoris, Bacteroides vulgatus and Bacteroides uniformis at the species level were significantly decreasing in the OA, and the abundance of Escherichia coli, Klebsiella pneumoniae, Shigella flexneri and Streptococcus salivarius were significantly increased in OA. Discussion The results of our study interpret a comprehensive profile of the gut microbiota in patients with knee OA and offer the evidence that the cartilage-gut-microbiome axis could play a crucial role in underlying the mechanisms and pathogenesis of OA.
Collapse
Affiliation(s)
- Xi Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Yifan Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Sijie Chen
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Feiyu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Shujin Li
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Chaowei Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yi Gong
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Ruitian Huang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Minhan Hu
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
| | - Hongmou Zhao
- Foot and Ankle Surgery Department, Honghui Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi’an Jiaotong University Health Science Center, National Health and Family Planning Commission, Xi’an, Shaanxi, China
- Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
27
|
Holub MN, Wahhab A, Rouse JR, Danner R, McClune MM, Dressler JM, Strle K, Jutras BL, Edelstein AI, Lochhead RB. Peptidoglycan in osteoarthritis synovial tissue is associated with joint inflammation. RESEARCH SQUARE 2023:rs.3.rs-2842385. [PMID: 37162851 PMCID: PMC10168439 DOI: 10.21203/rs.3.rs-2842385/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Objectives Peptidoglycan (PG) is an arthritogenic bacterial cell wall component whose role in human osteoarthritis is poorly understood. The purpose of this study was to determine if PG is present in synovial tissue of osteoarthritis patients at the time of primary total knee arthroplasty (TKA), and if its presence is associated with inflammation and patient reported outcomes. Methods Intraoperative synovial tissue and synovial fluid samples were obtained from 56 patients undergoing primary TKA, none of whom had history of infection. PG in synovial tissue was detected by immunohistochemistry (IHC). Synovial tissue inflammation and fibrosis were assessed by histopathology and synovial fluid cytokine quantification. Primary human fibroblasts isolated from arthritis synovial tissue were stimulated with PG to determine inflammatory cytokine response. Results A total of 33/56 (59%) of primary TKA synovial tissue samples were positive for PG by IHC, with mean 8 PG occurrences per 10 mm2 of tissue in PG-positive samples. Synovial tissue inflammation and elevated IL-6 in synovial fluid positively correlated with PG positivity. Primary human fibroblasts stimulated with PG secreted high levels of IL-6, consistent with ex vivo findings. Interestingly, we observed a significant inverse correlation between PG and age at time of TKA, indicating younger age at time of TKA was associated with higher PG levels. Conclusion Peptidoglycan is commonly found in synovial tissue from patients undergoing TKA. Our data indicate that PG may play an important role in inflammatory synovitis, particularly in patients who undergo TKA at a relatively younger age.
Collapse
|
28
|
Liu S, Li G, Xu H, Wang Q, Wei Y, Yang Q, Xiong A, Yu F, Weng J, Zeng H. "Cross-talk" between gut microbiome dysbiosis and osteoarthritis progression: a systematic review. Front Immunol 2023; 14:1150572. [PMID: 37180142 PMCID: PMC10167637 DOI: 10.3389/fimmu.2023.1150572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/27/2023] [Indexed: 05/15/2023] Open
Abstract
Objectives The aim of this systematic review was to summarize the available literature on gut microbiome (GMB) and osteoarthritis (OA), analyze the correlation between GMB and OA, and explore potential underlying mechanisms. Methods A systematic search of the PubMed, Embase, Cochrane, and Web of Science with the keywords "Gut Microbiome" and "Osteoarthritis" was conducted to identify the human and animal studies exploring the association between GMB and OA. The retrieval time range was from the database inception to July 31, 2022. Studies reported the other arthritic diseases without OA, reviews, and studies focused on the microbiome in other parts of the body with OA, such as oral or skin, were excluded. The included studies were mainly reviewed for GMB composition, OA severity, inflammatory factors, and intestinal permeability. Results There were 31 studies published met the inclusion criteria and were analyzed, including 10 human studies and 21 animal studies. Human and animal studies have reached a consistent conclusion that GMB dysbiosis could aggravate OA. In addition, several studies have found that alterations of GMB composition can increase intestinal permeability and serum levels of inflammatory factors, while regulating GMB can alleviate the changes. Owing to the susceptibility of GMB to internal and external environments, genetics, and geography, the included studies were not consistent in GMB composition analysis. Conclusion There is a lack of high-quality studies evaluating the effects of GMB on OA. Available evidence indicated that GMB dysbiosis aggravated OA through activating the immune response and subsequent induction of inflammation. Future studies should focus on more prospective, cohort studies combined with multi-omics to further clarify the correlation.
Collapse
Affiliation(s)
- Su Liu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guoqing Li
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Huihui Xu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qichang Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yihao Wei
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qi Yang
- Department of Ultrasonography, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ao Xiong
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fei Yu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Weng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hui Zeng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
29
|
Seifert JA, Bemis EA, Ramsden K, Lowell C, Polinski K, Feser M, Fleischer C, Demoruelle MK, Buckner J, Gregersen PK, Keating RM, Mikuls TR, O’Dell JR, Weisman MH, Deane KD, Norris JM, Steere AC, Holers VM. Association of Antibodies to Prevotella copri in Anti-Cyclic Citrullinated Peptide-Positive Individuals At Risk of Developing Rheumatoid Arthritis and in Patients With Early or Established Rheumatoid Arthritis. Arthritis Rheumatol 2023; 75:507-516. [PMID: 36259174 PMCID: PMC10065886 DOI: 10.1002/art.42370] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/20/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Prevotella copri (P copri), a gut commensal, has been reported to be an immune-relevant organism in individuals with rheumatoid arthritis (RA). This study sought to evaluate anti-P copri (anti-Pc) antibody responses in our participant cohorts and to determine when in the natural history of RA such responses develop. METHODS We analyzed serum levels of immunoglobulin A (IgA) and IgG antibodies from a 27-kd protein of P copri (anti-Pc-p27), an immunogenic P copri protein, in study participants at risk of developing RA, participants who transitioned to RA, participants with early RA (<1 year of disease), and participants with established RA, with comparisons made to their matched controls. We also evaluated anti-Pc-p27 antibody levels in individuals stratified by RA-related autoantibody status. RESULTS Overall, participants with RA had significantly higher IgA anti-Pc-p27 antibody levels and trended toward higher IgG anti-Pc-p27 antibody levels compared with matched controls. When stratified by early versus established RA, participants with early RA had median IgG anti-Pc-p27 antibody levels that were overall higher, whereas median IgA anti-Pc-p27 antibody levels were statistically significantly higher in participants with established RA compared with their matched controls. In the autoantibody-specific analyses, the at-risk population with anti-cyclic citrullinated peptide (anti-CCP) antibodies, but not rheumatoid factor (RF), trended toward increased levels of IgG anti-Pc-p27. Additionally, RA participants who were seropositive for both CCP and RF had significantly increased levels of IgA anti-Pc-p27 antibodies and trended toward higher levels of IgG anti-Pc-p27 antibodies compared with matched controls. CONCLUSION Our findings support a potential etiologic role for P copri in both RA preclinical evolution and the subsequent pathogenesis of synovitis.
Collapse
Affiliation(s)
| | | | - Kristina Ramsden
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Cassidy Lowell
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Marie Feser
- University of Colorado Denver, Aurora, Colorado
| | | | | | - Jane Buckner
- Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Peter K. Gregersen
- Feinstein Institutes for Medical Research and North Shore-Long Island Jewish Health System, Manhasset, New York
| | | | - Ted R. Mikuls
- University of Nebraska Medical Center and VA Nebraska-Western Iowa Healthcare System, Omaha, Nebraska
| | - James R. O’Dell
- University of Nebraska Medical Center and VA Nebraska-Western Iowa Healthcare System, Omaha, Nebraska
| | | | | | | | - Allen C. Steere
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
30
|
Carlé C, Degboe Y, Ruyssen-Witrand A, Arleevskaya MI, Clavel C, Renaudineau Y. Characteristics of the (Auto)Reactive T Cells in Rheumatoid Arthritis According to the Immune Epitope Database. Int J Mol Sci 2023; 24:ijms24054296. [PMID: 36901730 PMCID: PMC10001542 DOI: 10.3390/ijms24054296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
T cells are known to be involved in the pathogenesis of rheumatoid arthritis (RA). Accordingly, and to better understand T cells' contribution to RA, a comprehensive review based on an analysis of the Immune Epitope Database (IEDB) was conducted. An immune CD8+ T cell senescence response is reported in RA and inflammatory diseases, which is driven by active viral antigens from latent viruses and cryptic self-apoptotic peptides. RA-associated pro-inflammatory CD4+ T cells are selected by MHC class II and immunodominant peptides, which are derived from molecular chaperones, host extra-cellular and cellular peptides that could be post-translationally modified (PTM), and bacterial cross-reactive peptides. A large panel of techniques have been used to characterize (auto)reactive T cells and RA-associated peptides with regards to their interaction with the MHC and TCR, capacity to enter the docking site of the shared epitope (DRB1-SE), capacity to induce T cell proliferation, capacity to select T cell subsets (Th1/Th17, Treg), and clinical contribution. Among docking DRB1-SE peptides, those with PTM expand autoreactive and high-affinity CD4+ memory T cells in RA patients with an active disease. Considering original therapeutic options in RA, mutated, or altered peptide ligands (APL) have been developed and are tested in clinical trials.
Collapse
Affiliation(s)
- Caroline Carlé
- Referral Medical Biology Laboratory, Immunology Department, Institut Fédératif de Biologie, Toulouse University Hospital Center, 31300 Toulouse, France
- Laboratory of Cell Biology and Cytology, Institut Fédératif de Biologie, Toulouse University Hospital Center, 31300 Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM U1291, CNRS U5051, University Toulouse III, 31062 Toulouse, France
| | - Yannick Degboe
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM U1291, CNRS U5051, University Toulouse III, 31062 Toulouse, France
- Rheumatology Department, Toulouse University Hospital Center, 31300 Toulouse, France
| | | | - Marina I. Arleevskaya
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Cyril Clavel
- Laboratory of Cell Biology and Cytology, Institut Fédératif de Biologie, Toulouse University Hospital Center, 31300 Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM U1291, CNRS U5051, University Toulouse III, 31062 Toulouse, France
| | - Yves Renaudineau
- Referral Medical Biology Laboratory, Immunology Department, Institut Fédératif de Biologie, Toulouse University Hospital Center, 31300 Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM U1291, CNRS U5051, University Toulouse III, 31062 Toulouse, France
- Correspondence: ; Tel.: +33-561-776-245
| |
Collapse
|
31
|
Liu Q, Hao H, Li J, Zheng T, Yao Y, Tian X, Zhang Z, Yi H. Oral Administration of Bovine Milk-Derived Extracellular Vesicles Attenuates Cartilage Degeneration via Modulating Gut Microbiota in DMM-Induced Mice. Nutrients 2023; 15:nu15030747. [PMID: 36771453 PMCID: PMC9920331 DOI: 10.3390/nu15030747] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease primarily characterized by cartilage degeneration. Milk-derived extracellular vesicles (mEVs) were reported to inhibit catabolic and inflammatory processes in the cartilage of OA patients. However, the current therapies target the advanced symptoms of OA, and it is significant to develop a novel strategy to inhibit the processes driving OA pathology. In this study, we investigated the therapeutic potential of mEVs in alleviating OA in vivo. The results revealed that mEVs ameliorated cartilage degeneration by increasing hyaline cartilage thickness, decreasing histological Osteoarthritis Research Society International (OARSI) scores, enhancing matrix synthesis, and reducing the expression of cartilage destructive enzymes in the destabilization of medial meniscus (DMM) mice. In addition, the disturbed gut microbiota in DMM mice was partially improved upon treatment with mEVs. It was observed that the pro-inflammatory bacteria (Proteobacteria) were reduced and the potential beneficial bacteria (Firmicutes, Ruminococcaceae, Akkermansiaceae) were increased. mEVs could alleviate the progression of OA by restoring matrix homeostasis and reshaping the gut microbiota. These findings suggested that mEVs might be a potential therapeutic dietary supplement for the treatment of OA.
Collapse
Affiliation(s)
- Qiqi Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Haining Hao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Jiankun Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Ting Zheng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Yukun Yao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Xiaoying Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
- Correspondence: (Z.Z.); (H.Y.)
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
- Correspondence: (Z.Z.); (H.Y.)
| |
Collapse
|
32
|
Romero-Figueroa MDS, Ramírez-Durán N, Montiel-Jarquín AJ, Horta-Baas G. Gut-joint axis: Gut dysbiosis can contribute to the onset of rheumatoid arthritis via multiple pathways. Front Cell Infect Microbiol 2023; 13:1092118. [PMID: 36779190 PMCID: PMC9911673 DOI: 10.3389/fcimb.2023.1092118] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 02/14/2023] Open
Abstract
Rheumatoid Arthritis (RA) is an autoimmune disease characterized by loss of immune tolerance and chronic inflammation. It is pathogenesis complex and includes interaction between genetic and environmental factors. Current evidence supports the hypothesis that gut dysbiosis may play the role of environmental triggers of arthritis in animals and humans. Progress in the understanding of the gut microbiome and RA. has been remarkable in the last decade. In vitro and in vivo experiments revealed that gut dysbiosis could shape the immune system and cause persistent immune inflammatory responses. Furthermore, gut dysbiosis could induce alterations in intestinal permeability, which have been found to predate arthritis onset. In contrast, metabolites derived from the intestinal microbiota have an immunomodulatory and anti-inflammatory effect. However, the precise underlying mechanisms by which gut dysbiosis induces the development of arthritis remain elusive. This review aimed to highlight the mechanisms by which gut dysbiosis could contribute to the pathogenesis of RA. The overall data showed that gut dysbiosis could contribute to RA pathogenesis by multiple pathways, including alterations in gut barrier function, molecular mimicry, gut dysbiosis influences the activation and the differentiation of innate and acquired immune cells, cross-talk between gut microbiota-derived metabolites and immune cells, and alterations in the microenvironment. The relative weight of each of these mechanisms in RA pathogenesis remains uncertain. Recent studies showed a substantial role for gut microbiota-derived metabolites pathway, especially butyrate, in the RA pathogenesis.
Collapse
Affiliation(s)
| | - Ninfa Ramírez-Durán
- Laboratory of Medical and Environmental Microbiology, Department of Medicine, Autonomous University of the State of Mexico, Toluca, Mexico
| | - Alvaro José Montiel-Jarquín
- Dirección de Educación e Investigación en Salud, Hospital de Especialidades de Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Gabriel Horta-Baas
- Rheumatology Service, Internal Medicine Department, Instituto Mexicano del Seguro Social, Merida, Mexico
| |
Collapse
|
33
|
王 欣, 杜 信, 周 学. [New Developments in Research on the Relationship Between Osteoarthritis and Oral-Gut Microbes]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:49-53. [PMID: 36647642 PMCID: PMC10409032 DOI: 10.12182/20230160508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Osteoarthritis (OA) is the most common type of arthritis. The prevalence and the incidence of OA have been continuously growing along with increased life expectancy and the emerging problem of an aging population around the global. Reported findings have confirmed that osteoarthritis is a chronic inflammatory disease and its major risk factors included genetic susceptibility, aging, and environmental factors. However, the pathogenic mechanisms of osteoarthritis remain unclear. Recent studies have shown that oral-gut microbes are associated with the onset and development of osteoarthritis and may provide new targets for osteoarthritis treatment. Herein, we reviewed the latest developments in research on the relationship between oral-gut microbes and the onset and development of osteoarthritis, with a view to creating new perspectives for further elucidation of the pathogenesis of osteoarthritis and exploration of effective treatments in the future.
Collapse
Affiliation(s)
- 欣妍 王
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 信眉 杜
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 学东 周
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
34
|
Berthelot JM, Darrieutort-Laffite C, Le Goff B. Contribution of HLA DRB1, PTPN22, and CTLA4, to RA dysbiosis. Joint Bone Spine 2022; 89:105446. [PMID: 35940545 DOI: 10.1016/j.jbspin.2022.105446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/27/2022]
Abstract
This narrative review gathers current evidence for a contribution of rheumatoid arthritis (RA) HLA-DRB1, PTPN22 and CTLA4 polymorphisms to the gut dysbiosis observed in RA, especially at its onset (transient excess of Prevotella). The gut microbiome contains elements which are 30% heritable, including genera like Bacteroides and Veillonella, and to a lesser extent Prevotella. The first months/year seems a critical period for the selection of a core of microbiota, that should be considered as a second self by the immune system, and tolerized by regulatory T and B cells. Imperfect tolerization may increase the risk of RA following further repeated silent translocations of various gut microorganisms, including Prevotella copri, from gut to joints (fostered by a concurrent loss in gut mucosa of protective bacteria like Faecalibacterium prausnitzii). Genetics studies confirmed that Prevotella copri was partly heritable, and strong associations were observed between the overall microbial composition of stools and the HLA-DRB1 RA risk allele, either in a US cohort (P=0.00001), or the Twins UK cohort (P=0.033). This finding also stands for persons still free from RA, and was replicated in the Swiss SCREEN-RA cohort. Gene variants of PTPN22 also modify intestinal microbiota composition, compromise granulocyte-mediated antibacterial defence in gut, and reduce the suppressive effect of gut regulatory B cells. CTLA4 variants may similarly contribute to RA dysbiosis, since immunotherapy by CTLA-4 blockade depends on microbiota, and CTLA4 activates T follicular regulatory cells to reduce immune responses to segmented filamentous bacteria. Suggestions for future works are made.
Collapse
Affiliation(s)
- Jean-Marie Berthelot
- Rheumatology Unit, Nantes University Hospital, Hôtel-Dieu, CHU Nantes, Place Alexis Ricordeau, 44093 Nantes Cedex 01, France.
| | - Christelle Darrieutort-Laffite
- Rheumatology Unit, Nantes University Hospital, Hôtel-Dieu, CHU Nantes, Place Alexis Ricordeau, 44093 Nantes Cedex 01, France
| | - Benoît Le Goff
- Rheumatology Unit, Nantes University Hospital, Hôtel-Dieu, CHU Nantes, Place Alexis Ricordeau, 44093 Nantes Cedex 01, France
| |
Collapse
|
35
|
Bacterial Compositional Shifts of Gut Microbiomes in Patients with Rheumatoid Arthritis in Association with Disease Activity. Microorganisms 2022; 10:microorganisms10091820. [PMID: 36144422 PMCID: PMC9505928 DOI: 10.3390/microorganisms10091820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory disabling autoimmune disorder. Little is known regarding the association between the gut microbiome and etiopathogenesis of RA. We aimed to dissect the differences in gut microbiomes associated with RA in comparison to healthy individuals and, in addition, to identify the shifts in the bacterial community in association with disease activity; Methods: In order to identify compositional shifts in gut microbiomes of RA patients, V3-V4 hypervariable regions of 16S rRNA were sequenced using Illumina MiSeq. In total, sixty stool samples were collected from 45 patients with RA besides 15 matched healthy subjects; Results: Notably, RA microbiomes were significantly associated with diverse bacterial communities compared with healthy individuals. Likewise, a direct association between bacterial diversity and disease activity was detected in RA patients (Kruskal Wallis; p = 0.00047). In general, genus-level analysis revealed a positive coexistence between RA and Megasphaera, Adlercreutzia, Ruminococcus, Bacteroides, Collinsella, and Acidaminococcus. Furthermore, Spearman correlation analysis significantly stratified the most dominant genera into distinct clusters that were mainly based on disease activity (r ≥ 0.6; p ≤ 0.05). The predictive metabolic profile of bacterial communities associated with RA could support the potential impact of gut microbiomes in either the development or recovery of RA; Conclusions: The overall shifts in bacterial composition at different disease statuses could confirm the cross-linking of certain genera either to causation or progression of RA.
Collapse
|
36
|
Sao P, Chand Y, Al-Keridis LA, Saeed M, Alshammari N, Singh S. Classifying Integrated Signature Molecules in Macrophages of Rheumatoid Arthritis, Osteoarthritis, and Periodontal Disease: An Omics-Based Study. Curr Issues Mol Biol 2022; 44:3496-3517. [PMID: 36005137 PMCID: PMC9406916 DOI: 10.3390/cimb44080241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022] Open
Abstract
Rheumatoid arthritis (RA), osteoarthritis (OA), and periodontal disease (PD) are chronic inflammatory diseases that are globally prevalent, and pose a public health concern. The search for a potential mechanism linking PD to RA and OA continues, as it could play a significant role in disease prevention and treatment. Recent studies have linked RA, OA, and PD to Porphyromonas gingivalis (PG), a periodontal bacterium, through a similar dysregulation in an inflammatory mechanism. This study aimed to identify potential gene signatures that could assist in early diagnosis as well as gain insight into the molecular mechanisms of these diseases. The expression data sets with the series IDs GSE97779, GSE123492, and GSE24897 for macrophages of RA, OA synovium, and PG stimulated macrophages (PG-SM), respectively, were retrieved and screened for differentially expressed genes (DEGs). The 72 common DEGs among RA, OA, and PG-SM were further subjected to gene–gene correlation analysis. A GeneMANIA interaction network of the 47 highly correlated DEGs comprises 53 nodes and 271 edges. Network centrality analysis identified 15 hub genes, 6 of which are DEGs (API5, ATE1, CCNG1, EHD1, RIN2, and STK39). Additionally, two significantly up-regulated non-hub genes (IER3 and RGS16) showed interactions with hub genes. Functional enrichment analysis of the genes showed that “apoptotic regulation” and “inflammasomes” were among the major pathways. These eight genes can serve as important signatures/targets, and provide new insights into the molecular mechanism of PG-induced RA, OA, and PD.
Collapse
Affiliation(s)
- Prachi Sao
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India
| | - Yamini Chand
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Correspondence: (L.A.A.-K.); (S.S.)
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail 55476, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail 55476, Saudi Arabia
| | - Sachidanand Singh
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India
- Department of Biotechnology, Vignan’s Foundation for Science, Technology, and Research (Deemed to be University), Vadlamudi, Guntur 522213, Andhra Pradesh, India
- Department of Biotechnology, Smt. S. S. Patel Nootan Science & Commerce College, Sankalchand Patel University, Visnagar 384315, Gujarat, India
- Correspondence: (L.A.A.-K.); (S.S.)
| |
Collapse
|
37
|
A systematic review of microbiome composition in osteoarthritis subjects. Osteoarthritis Cartilage 2022; 30:786-801. [PMID: 34958936 DOI: 10.1016/j.joca.2021.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) started to be associated to shifted microbiota composition recently. This systematic review aims to elucidate if there is a common microbiota composition linked with OA between different studies. METHODS We screened PubMed, Scopus, Web of Science and Cochrane databases up to July 26th 2021 to identify original studies in which microbiome was assessed from OA individuals, both in human and laboratory animals' studies. Bacteria associated with OA were summarized to find common patterns between the studies. RESULTS We identified 37 original studies where the microbiota composition was assessed in OA subjects. We identified some bacteria (Clostridium, Streptococcus, Bacteroides and Firmicutes) that were reported to be upregulated in OA subjects, whereas Lactobacillus and Bifidobacterium longum were associated with improved OA outcomes. The heterogeneity of sampling and analysis methods, different taxonomical levels reported and the lack of healthy controls in several studies made it difficult to compare the studies and reach conclusions about a potential causal link. CONCLUSIONS The current study demonstrated that some bacteria were identified as regulators of OA. Future works following standardized methodologies with more proper controls are needed to elucidate our understanding of the role of the microbiota in OA pathogenesis and progress towards new treatments.
Collapse
|
38
|
Ning Y, Hu M, Gong Y, Huang R, Xu K, Chen S, Zhang F, Liu Y, Chen F, Chang Y, Zhao G, Li C, Zhou R, Lammi MJ, Guo X, Wang X. Comparative analysis of the gut microbiota composition between knee osteoarthritis and Kashin-Beck disease in Northwest China. Arthritis Res Ther 2022; 24:129. [PMID: 35637503 PMCID: PMC9150333 DOI: 10.1186/s13075-022-02819-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/21/2022] [Indexed: 12/15/2022] Open
Abstract
Background Osteoarthritis (OA) and Kashin-Beck disease (KBD) both are two severe osteochondral disorders. In this study, we aimed to compare the gut microbiota structure between OA and KBD patients. Methods Fecal samples collected from OA and KBD patients were used to characterize the gut microbiota using 16S rDNA gene sequencing. To identify whether gut microbial changes at the species level are associated with the genes or functions of the gut bacteria between OA and KBD groups, metagenomic sequencing of fecal samples from OA and KBD subjects was performed. Results The OA group was characterized by elevated Epsilonbacteraeota and Firmicutes levels. A total of 52 genera were identified to be significantly differentially abundant between the two groups. The genera Raoultella, Citrobacter, Flavonifractor, g__Lachnospiraceae_UCG-004, and Burkholderia-Caballeronia-Paraburkholderia were more abundant in the OA group. The KBD group was characterized by higher Prevotella_9, Lactobacillus, Coprococcus_2, Senegalimassilia, and Holdemanella. The metagenomic sequencing showed that the Subdoligranulum_sp._APC924/74, Streptococcus_parasanguinis, and Streptococcus_salivarius were significantly increased in abundance in the OA group compared to those in the KBD group, and the species Prevotella_copri, Prevotella_sp._CAG:386, and Prevotella_stercorea were significantly decreased in abundance in the OA group compared to those in the KBD group by using metagenomic sequencing. Conclusion Our study provides a comprehensive landscape of the gut microbiota between OA and KBD patients and provides clues for better understanding the mechanisms underlying the pathogenesis of OA and KBD. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02819-5.
Collapse
Affiliation(s)
- Yujie Ning
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Minhan Hu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yi Gong
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Ruitian Huang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Ke Xu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road, Xi'an, People's Republic of China
| | - Sijie Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feiyu Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yanli Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feihong Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yanhai Chang
- Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Guanghui Zhao
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, No.555, Youyi East Road, Xi'an, People's Republic of China
| | - Cheng Li
- Shaanxi Institute of Endemic Disease Prevention and Control, Xi'an, Shaanxi, 710003, People's Republic of China
| | - Rong Zhou
- Shaanxi Institute of Endemic Disease Prevention and Control, Xi'an, Shaanxi, 710003, People's Republic of China
| | - Mikko J Lammi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China.,Department of Integrative Medical Biology, University of Umeå, Umeå, Sweden
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xi Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi, 710061, People's Republic of China. .,Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China. .,Global Health Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
39
|
Dai Z. A literature review on plant-based foods and dietary quality in knee osteoarthritis. Eur J Rheumatol 2022; 11. [PMID: 35535585 PMCID: PMC11184961 DOI: 10.5152/eurjrheum.2022.21134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/25/2022] [Indexed: 02/18/2024] Open
Abstract
This literature review summarizes the role of plant-based foods and diet quality in osteoarthritis, particularly knee osteoarthritis, in observational studies and clinical trials published during 2015- 2020. The included studies have suggested favorable results on reducing the prevalence, pain, and cartilage changes related to osteoarthritis and inflammatory and oxidation markers such as inter- leukin-1, interleukin-6, tumor necrosis factor, and lipid peroxidation. Due to the lack of large lon- gitudinal cohorts to study whole foods or diets concerning knee osteoarthritis, findings from the cross-sectional studies or clinical trials require further validation, particularly in well-designed clinical trials and a more extended follow-up period. Potential mechanisms on the role of plant-based foods in body weight, inflammation, and microbiome were explored to explain their protective associations with osteoarthritis. However, most evidence examining the relationship between the microbiome and osteoarthritis joint pain is conducted in preclinical animal studies, and few observational studies show a positive association between Streptococcus species and local joint inflammation in the knee. Given the close links of plant-based foods on obesity, inflammation, and microbiome, data on the role of whole foods or diets in the change in knee osteoarthritis pain through the lens of microbial composition can provide more certainty regarding the utilization of microbiome as a potential thera- peutic target.
Collapse
Affiliation(s)
- Zhaoli Dai
- Charles Perkins Centre, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Australia
- College of Medicine & Public Health Flinders University, Australia
| |
Collapse
|
40
|
Stadecker M, Gu A, Ramamurti P, Fassihi SC, Wei C, Agarwal AR, Bovonratwet P, Srikumaran U. Risk of revision based on timing of corticosteroid injection prior to shoulder arthroplasty. Bone Joint J 2022; 104-B:620-626. [PMID: 35491573 DOI: 10.1302/0301-620x.104b5.bjj-2021-0024.r3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIMS Corticosteroid injections are often used to manage glenohumeral arthritis in patients who may be candidates for future total shoulder arthroplasty (TSA) or reverse shoulder arthroplasty (rTSA). In the conservative management of these patients, corticosteroid injections are often provided for symptomatic relief. The purpose of this study was to determine if the timing of corticosteroid injections prior to TSA or rTSA is associated with changes in rates of revision and periprosthetic joint infection (PJI) following these procedures. METHODS Data were collected from a national insurance database from January 2006 to December 2017. Patients who underwent shoulder corticosteroid injection within one year prior to ipsilateral TSA or rTSA were identified and stratified into the following cohorts: < three months, three to six months, six to nine months, and nine to 12 months from time of corticosteroid injection to TSA or rTSA. A control cohort with no corticosteroid injection within one year prior to TSA or rTSA was used for comparison. Univariate and multivariate analyses were conducted to determine the association between specific time intervals and outcomes. RESULTS In total, 4,252 patients were included in this study. Among those, 1,632 patients (38.4%) received corticosteroid injection(s) within one year prior to TSA or rTSA and 2,620 patients (61.6%) did not. On multivariate analysis, patients who received corticosteroid injection < three months prior to TSA or rTSA were at significantly increased risk for revision (odds ratio (OR) 2.61 (95% confidence interval (CI) 1.77 to 3.28); p < 0.001) when compared with the control cohort. However, there was no significant increase in revision risk for all other timing interval cohorts. Notably, Charlson Comorbidity Index ≥ 3 was a significant independent risk factor for all-cause revision (OR 4.00 (95% CI 1.40 to 8.92); p = 0.036). CONCLUSION There is a time-dependent relationship between the preoperative timing of corticosteroid injection and the incidence of all-cause revision surgery following TSA or rTSA. This analysis suggests that an interval of at least three months should be maintained between corticosteroid injection and TSA or rTSA to minimize risks of subsequent revision surgery. Cite this article: Bone Joint J 2022;104-B(5):620-626.
Collapse
Affiliation(s)
- Monica Stadecker
- Department of Orthopaedic Surgery, George Washington School of Medicine and Health Sciences, Washington D.C., USA
| | - Alex Gu
- Department of Orthopaedic Surgery, George Washington School of Medicine and Health Sciences, Washington D.C., USA
| | - Pradip Ramamurti
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Safa C Fassihi
- Department of Orthopaedic Surgery, George Washington School of Medicine and Health Sciences, Washington D.C., USA
| | - Chapman Wei
- Department of Orthopaedic Surgery, George Washington School of Medicine and Health Sciences, Washington D.C., USA
| | - Amil Raj Agarwal
- Department of Orthopaedic Surgery, George Washington School of Medicine and Health Sciences, Washington D.C., USA
| | - Patawut Bovonratwet
- Department of Orthopedics, Hospital for Special Surgery, New York, New York, USA
| | - Uma Srikumaran
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Dunn CM, Jeffries MA. The Microbiome in Osteoarthritis: a Narrative Review of Recent Human and Animal Model Literature. Curr Rheumatol Rep 2022; 24:139-148. [PMID: 35389162 PMCID: PMC11627155 DOI: 10.1007/s11926-022-01066-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE OF THE REVIEW The microbiome has recently emerged as a powerful contributor to health and illness in chronic, systemic disorders. Furthermore, new microbiome niches beyond traditional gut locations are frequently being described. Over the past 5 years, numerous pivotal studies have demonstrated associations between changes in various microbiome niches and the development of osteoarthritis (OA). Herein, we review the most impactful recent literature, including microbiome associations with disease and the potential therapeutic value of microbiome manipulation. RECENT FINDINGS The gut microbiome of human OA patients is enriched in specific bacterial clades, most notably Streptococcus, which correlates with OA pain, Firmicutes, and others. Most studies have focused on knee OA, although one publication demonstrated positive associations with 3 gut microbiome clades in hand OA. OA can be easily distinguished from RA by evaluating differences in oral microbiome composition. Most studies have also demonstrated a reduction in richness of the gut microbiome (alpha diversity) associated with OA. Several studies have identified bacterial signatures within human knee and hip cartilage, synovial fluid, and synovial tissue and have described changes in these patterns occurring with the development of OA. In animal models of OA, high-fat diet-induced obesity has been the most well-studied OA risk factor associated with changes in the microbiome, with numerous bacterial clades changed within the gut microbiome and associated with OA. Also in animal models, various oral supplementations, including dietary fiber, probiotics including Lactobacillus species, and cecal microbiome transplantation have all shown improvements in OA histopathology or cartilage healing. Microbiome changes are strongly associated with the OA disease process and with individual OA risk factors related to both the gut microbiome and the microbial DNA patterns in the joint. Microbiome-directed interventions have the potential to prevent or reduce the progression of OA. Future studies should investigate the mechanistic underpinnings of these microbiome associations and further define the therapeutic potential of microbiome augmentation.
Collapse
Affiliation(s)
- Christopher M Dunn
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Laboratory MC400, Oklahoma City, OK, 73104, USA
- Department of Internal Medicine, Division of Rheumatology, Immunology and Allergy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Matlock A Jeffries
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Laboratory MC400, Oklahoma City, OK, 73104, USA.
- Department of Internal Medicine, Division of Rheumatology, Immunology and Allergy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
42
|
Sanchez-Lopez E, Coras R, Torres A, Lane NE, Guma M. Synovial inflammation in osteoarthritis progression. Nat Rev Rheumatol 2022; 18:258-275. [PMID: 35165404 PMCID: PMC9050956 DOI: 10.1038/s41584-022-00749-9] [Citation(s) in RCA: 371] [Impact Index Per Article: 123.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2022] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a progressive degenerative disease resulting in joint deterioration. Synovial inflammation is present in the OA joint and has been associated with radiographic and pain progression. Several OA risk factors, including ageing, obesity, trauma and mechanical loading, play a role in OA pathogenesis, likely by modifying synovial biology. In addition, other factors, such as mitochondrial dysfunction, damage-associated molecular patterns, cytokines, metabolites and crystals in the synovium, activate synovial cells and mediate synovial inflammation. An understanding of the activated pathways that are involved in OA-related synovial inflammation could form the basis for the stratification of patients and the development of novel therapeutics. This Review focuses on the biology of the OA synovium, how the cells residing in or recruited to the synovium interact with each other, how they become activated, how they contribute to OA progression and their interplay with other joint structures.
Collapse
Affiliation(s)
- Elsa Sanchez-Lopez
- Department of Orthopaedic Surgery, University of California San Diego, San Diego, CA, USA
| | - Roxana Coras
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, San Diego, CA, USA
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Alyssa Torres
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Nancy E Lane
- Division of Rheumatology, Department of Medicine, University of California Davis, Davis, CA, USA
| | - Monica Guma
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, San Diego, CA, USA.
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain.
- San Diego VA Healthcare Service, San Diego, CA, USA.
| |
Collapse
|
43
|
Identification of Diagnostic Biomarkers, Immune Infiltration Characteristics, and Potential Compounds in Rheumatoid Arthritis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1926661. [PMID: 35434133 PMCID: PMC9007666 DOI: 10.1155/2022/1926661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/17/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022]
Abstract
Aims This study is aimed at investigating the pathogenesis of rheumatoid arthritis (RA) by identifying key biomarkers, associated immune infiltration, and small-molecule compounds using bioinformatic analysis. Methods Six datasets were obtained from the Gene Expression Omnibus database, and the batch effect was adjusted. Functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyse differentially expressed genes (DEGs). Furthermore, candidate small-molecule drugs associated with RA were selected from the Connectivity Map (CMap) database. The least absolute shrinkage and selection operator regression, support vector machine recursive feature elimination, and multivariate logistic regression analyses were performed on DEGs to screen for RA diagnostic markers. The receiver operating characteristic curve, concordance index, and GiViTi calibration band were the metrics used to assess the diagnostic markers of RA identified in this analysis. The single-sample gene set enrichment analysis was performed to calculate the scores of infiltrating immune cells and evaluate the activities of immune-related pathways. Finally, the correlation between screening markers and RA diagnosis was determined. Results A total of 227 DEGs were identified. Functional enrichment analysis and KEGG revealed that DEGs were enriched by the immune response. CMap analysis identified 11 small-molecule compounds with therapeutic potential for RA. In gene expression, the activities of 13 immune cells and 12 immune-related pathways significantly differed between patients with RA and healthy controls. DPYSL3 and SPP1 had the potential to diagnose RA. SPP1 expression was positively correlated with DPYSL3 in 11 immune cells and 10 immune-related pathways. Conclusion This study comprehensively analysed DEGs and immune infiltration and screened for potential diagnostic markers and small-molecule compounds of RA.
Collapse
|
44
|
Wei Z, Li F, Pi G. Association Between Gut Microbiota and Osteoarthritis: A Review of Evidence for Potential Mechanisms and Therapeutics. Front Cell Infect Microbiol 2022; 12:812596. [PMID: 35372125 PMCID: PMC8966131 DOI: 10.3389/fcimb.2022.812596] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a multifactorial joint disease characterized by degeneration of articular cartilage, which leads to joints pain, disability and reduced quality of life in patients with OA. Interpreting the potential mechanisms underlying OA pathogenesis is crucial to the development of new disease modifying treatments. Although multiple factors contribute to the initiation and progression of OA, gut microbiota has gradually been regarded as an important pathogenic factor in the development of OA. Gut microbiota can be regarded as a multifunctional “organ”, closely related to a series of immune, metabolic and neurological functions. This review summarized research evidences supporting the correlation between gut microbiota and OA, and interpreted the potential mechanisms underlying the correlation from four aspects: immune system, metabolism, gut-brain axis and gut microbiota modulation. Future research should focus on whether there are specific gut microbiota composition or even specific pathogens and the corresponding signaling pathways that contribute to the initiation and progression of OA, and validate the potential of targeting gut microbiota for the treatment of patients with OA.
Collapse
Affiliation(s)
| | - Feng Li
- *Correspondence: Feng Li, ; Guofu Pi,
| | - Guofu Pi
- *Correspondence: Feng Li, ; Guofu Pi,
| |
Collapse
|
45
|
Loeser RF, Arbeeva L, Kelley K, Fodor AA, Sun S, Ulici V, Longobardi L, Cui Y, Stewart DA, Sumner SJ, Azcarate-Peril MA, Sartor RB, Carroll IM, Renner JB, Jordan JM, Nelson AE. Association of Increased Serum Lipopolysaccharide, But Not Microbial Dysbiosis, With Obesity-Related Osteoarthritis. Arthritis Rheumatol 2022; 74:227-236. [PMID: 34423918 PMCID: PMC8795472 DOI: 10.1002/art.41955] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/19/2021] [Accepted: 08/19/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To test the hypothesis that an altered gut microbiota (dysbiosis) plays a role in obesity-associated osteoarthritis (OA). METHODS Stool and blood samples were collected from 92 participants with a body mass index (BMI) ≥30 kg/m2 , recruited from the Johnston County Osteoarthritis Project. OA patients (n = 50) had hand and knee OA (Kellgren/Lawrence [K/L] grade ≥2 or arthroplasty). Controls (n = 42) had no hand OA and a K/L grade of 0-1 for the knees. Compositional analysis of stool samples was carried out by 16S ribosomal RNA amplicon sequencing. Alpha- and beta-diversity and differences in taxa relative abundances were determined. Blood samples were used for multiplex cytokine analysis and measures of lipopolysaccharide (LPS) and LPS binding protein. Germ-free mice were gavaged with patient- or control-pooled fecal samples and fed a 40% fat, high-sucrose diet for 40 weeks. Knee OA was evaluated histologically. RESULTS On average, OA patients were slightly older than the controls, consisted of more women, and had a higher mean BMI, higher mean Western Ontario and McMaster Universities Osteoarthritis Index pain score, and higher mean K/L grade. There were no significant differences in α- or β-diversity or genus level composition between patients and controls. Patients had higher plasma levels of osteopontin (P = 0.01) and serum LPS (P < 0.0001) compared to controls. Mice transplanted with patient or control microbiota exhibited a significant difference in α-diversity (P = 0.02) and β-diversity, but no differences in OA severity were observed. CONCLUSION The lack of differences in the gut microbiota, but increased serum LPS levels, suggest the possibility that increased intestinal permeability allowing for greater absorption of LPS, rather than a dysbiotic microbiota, may contribute to the development of OA associated with obesity.
Collapse
Affiliation(s)
- Richard F. Loeser
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Liubov Arbeeva
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Kathryn Kelley
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Anthony A. Fodor
- Dept. of Bioinformatics and Genomics, University of North Carolina-Charlotte, North Carolina
| | - Shan Sun
- Dept. of Bioinformatics and Genomics, University of North Carolina-Charlotte, North Carolina
| | - Veronica Ulici
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Lara Longobardi
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Yang Cui
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | | | - Susan J. Sumner
- Department of Nutrition, University of North Carolina, Chapel Hill, NC
| | - M. Andrea Azcarate-Peril
- Division of Gastroenterology and Hepatology and UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - R. Balfour Sartor
- Division of Gastroenterology and Hepatology and Center for Gastrointestinal Biology and Disease, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Ian M. Carroll
- Department of Nutrition, University of North Carolina, Chapel Hill, NC
| | - Jordan B. Renner
- Department of Radiology and the Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Joanne M. Jordan
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Amanda E. Nelson
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
46
|
Looh SC, Soo ZMP, Wong JJ, Yam HC, Chow SK, Hwang JS. Aggregatibacter actinomycetemcomitans as the Aetiological Cause of Rheumatoid Arthritis: What Are the Unsolved Puzzles? Toxins (Basel) 2022; 14:toxins14010050. [PMID: 35051027 PMCID: PMC8777676 DOI: 10.3390/toxins14010050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 01/23/2023] Open
Abstract
Leukotoxin A (LtxA) is the major virulence factor of an oral bacterium known as Aggregatibacter actinomycetemcomitans (Aa). LtxA is associated with elevated levels of anti-citrullinated protein antibodies (ACPA) in rheumatoid arthritis (RA) patients. LtxA targets leukocytes and triggers an influx of extracellular calcium into cytosol. The current proposed model of LtxA-mediated hypercitrullination involves the dysregulated activation of peptidylarginine deiminase (PAD) enzymes to citrullinate proteins, the release of hypercitrullinated proteins through cell death, and the production of autoantigens recognized by ACPA. Although model-based evidence is yet to be established, its interaction with the host’s immune system sparked interest in the role of LtxA in RA. The first part of this review summarizes the current knowledge of Aa and LtxA. The next part highlights the findings of previous studies on the association of Aa or LtxA with RA aetiology. Finally, we discuss the unresolved aspects of the proposed link between LtxA of Aa and RA.
Collapse
Affiliation(s)
- Sung Cheng Looh
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (S.C.L.); (H.C.Y.)
| | - Zoey May Pheng Soo
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia; (Z.M.P.S.); (J.J.W.)
| | - Jia Jia Wong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia; (Z.M.P.S.); (J.J.W.)
| | - Hok Chai Yam
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (S.C.L.); (H.C.Y.)
| | | | - Jung Shan Hwang
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
- Correspondence:
| |
Collapse
|
47
|
Berthelot JM, Bandiaky ON, Le Goff B, Amador G, Chaux AG, Soueidan A, Denis F. Another Look at the Contribution of Oral Microbiota to the Pathogenesis of Rheumatoid Arthritis: A Narrative Review. Microorganisms 2021; 10:59. [PMID: 35056507 PMCID: PMC8778040 DOI: 10.3390/microorganisms10010059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022] Open
Abstract
Although autoimmunity contributes to rheumatoid arthritis (RA), several lines of evidence challenge the dogma that it is mainly an autoimmune disorder. As RA-associated human leukocyte antigens shape microbiomes and increase the risk of dysbiosis in mucosae, RA might rather be induced by epigenetic changes in long-lived synovial presenting cells, stressed by excessive translocations into joints of bacteria from the poorly cultivable gut, lung, or oral microbiota (in the same way as more pathogenic bacteria can lead to "reactive arthritis"). This narrative review (i) lists evidence supporting this scenario, including the identification of DNA from oral and gut microbiota in the RA synovium (but in also healthy synovia), and the possibility of translocation through blood, from mucosae to joints, of microbiota, either directly from the oral cavity or from the gut, following an increase of gut permeability worsened by migration within the gut of oral bacteria such as Porphyromonas gingivalis; (ii) suggests other methodologies for future works other than cross-sectional studies of periodontal microbiota in cohorts of patients with RA versus controls, namely, longitudinal studies of oral, gut, blood, and synovial microbiota combined with transcriptomic analyses of immune cells in individual patients at risk of RA, and in overt RA, before, during, and following flares of RA.
Collapse
Affiliation(s)
- Jean-Marie Berthelot
- Rheumatology Unit, Nantes University Hospital, Place Alexis Ricordeau, CEDEX 01, 44093 Nantes, France; (J.-M.B.); (B.L.G.)
| | - Octave Nadile Bandiaky
- Division of Fixed Prosthodontics, University of Nantes, 1 Place Alexis Ricordeau, 44042 Nantes, France;
| | - Benoit Le Goff
- Rheumatology Unit, Nantes University Hospital, Place Alexis Ricordeau, CEDEX 01, 44093 Nantes, France; (J.-M.B.); (B.L.G.)
| | - Gilles Amador
- Department of Dental Public Health, Faculty of Dental Surgery, University of Nantes, 44093 Nantes, France;
- Nantes Teaching Hospital, 44000 Nantes, France;
| | - Anne-Gaelle Chaux
- Nantes Teaching Hospital, 44000 Nantes, France;
- Department of Oral Surgery, Faculty of Dental Surgery, University of Nantes, 44000 Nantes, France
| | - Assem Soueidan
- Department of Periodontology, Faculty of Dental Surgery, UIC 11, Rmes U1229, CHU de Nantes, 44000 Nantes, France;
| | - Frederic Denis
- Department of Dental Public Health, Faculty of Dental Surgery, University of Nantes, 44093 Nantes, France;
- Tours Teaching Hospital, 37000 Tours, France
| |
Collapse
|
48
|
Verdecia J, Ramsubeik KP, Ravi M. Pseudoseptic Arthritis in a Patient With Psoriasis. Cureus 2021; 13:e19185. [PMID: 34873525 PMCID: PMC8635465 DOI: 10.7759/cureus.19185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 11/23/2022] Open
Abstract
A 42-year-old male with a history of untreated psoriasis and a previous episode of presumed left knee septic arthritis developed sudden onset of left knee pain, swelling, and a moderate effusion. The pathogen could not be isolated despite extensive inflammation seen in synovial fluid (SF) and synovial tissue biopsy. Whether this is culture-negative septic arthritis or pseudo-septic arthritis is the enigma, given the limited sensitivity of current available SF microbiologic testing. We present a challenging and stimulating case with no current guidelines for an optimal empiric antibiotic regimen or anti-inflammatory therapy.
Collapse
Affiliation(s)
- Jorge Verdecia
- Internal Medicine, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| | - Karishma P Ramsubeik
- Rheumatology, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| | - Malleswari Ravi
- Infectious Disease, University of Florida College of Medicine - Jacksonville, Jacksonville, USA.,Infectious Disease, University of Florida, Jacksonville, Jacksonville, USA
| |
Collapse
|
49
|
Alterations in the gut microbiota and metabolite profiles of patients with Kashin-Beck disease, an endemic osteoarthritis in China. Cell Death Dis 2021; 12:1015. [PMID: 34711812 PMCID: PMC8553765 DOI: 10.1038/s41419-021-04322-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022]
Abstract
Kashin-Beck disease (KBD) is a severe osteochondral disorder that may be driven by the interaction between genetic and environmental factors. We aimed to improve our understanding of the gut microbiota structure in KBD patients of different grades and the relationship between the gut microbiota and serum metabolites. Fecal and serum samples collected from KBD patients and normal controls (NCs) were used to characterize the gut microbiota using 16S rDNA gene and metabolomic sequencing via liquid chromatography-mass spectrometry (LC/MS). To identify whether gut microbial changes at the species level are associated with the genes or functions of the gut bacteria in the KBD patients, metagenomic sequencing of fecal samples from grade I KBD, grade II KBD and NC subjects was performed. The KBD group was characterized by elevated levels of Fusobacteria and Bacteroidetes. A total of 56 genera were identified to be significantly differentially abundant between the two groups. The genera Alloprevotella, Robinsoniella, Megamonas, and Escherichia_Shigella were more abundant in the KBD group. Consistent with the 16S rDNA analysis at the genus level, most of the differentially abundant species in KBD subjects belonged to the genus Prevotella according to metagenomic sequencing. Serum metabolomic analysis identified some differentially abundant metabolites among the grade I and II KBD and NC groups that were involved in lipid metabolism metabolic networks, such as that for unsaturated fatty acids and glycerophospholipids. Furthermore, we found that these differences in metabolite levels were associated with altered abundances of specific species. Our study provides a comprehensive landscape of the gut microbiota and metabolites in KBD patients and provides substantial evidence of a novel interplay between the gut microbiome and metabolome in KBD pathogenesis.
Collapse
|
50
|
Tett A, Pasolli E, Masetti G, Ercolini D, Segata N. Prevotella diversity, niches and interactions with the human host. Nat Rev Microbiol 2021; 19:585-599. [PMID: 34050328 PMCID: PMC11290707 DOI: 10.1038/s41579-021-00559-y] [Citation(s) in RCA: 319] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
The genus Prevotella includes more than 50 characterized species that occur in varied natural habitats, although most Prevotella spp. are associated with humans. In the human microbiome, Prevotella spp. are highly abundant in various body sites, where they are key players in the balance between health and disease. Host factors related to diet, lifestyle and geography are fundamental in affecting the diversity and prevalence of Prevotella species and strains in the human microbiome. These factors, along with the ecological relationship of Prevotella with other members of the microbiome, likely determine the extent of the contribution of Prevotella to human metabolism and health. Here we review the diversity, prevalence and potential connection of Prevotella spp. in the human host, highlighting how genomic methods and analysis have improved and should further help in framing their ecological role. We also provide suggestions for future research to improve understanding of the possible functions of Prevotella spp. and the effects of the Western lifestyle and diet on the host-Prevotella symbiotic relationship in the context of maintaining human health.
Collapse
Affiliation(s)
- Adrian Tett
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | | | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
- European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|