1
|
Safiri S, Ghaffari Jolfayi A, Fazlollahi A, Morsali S, Sarkesh A, Daei Sorkhabi A, Golabi B, Aletaha R, Motlagh Asghari K, Hamidi S, Mousavi SE, Jamalkhani S, Karamzad N, Shamekh A, Mohammadinasab R, Sullman MJM, Şahin F, Kolahi AA. Alzheimer's disease: a comprehensive review of epidemiology, risk factors, symptoms diagnosis, management, caregiving, advanced treatments and associated challenges. Front Med (Lausanne) 2024; 11:1474043. [PMID: 39736972 PMCID: PMC11682909 DOI: 10.3389/fmed.2024.1474043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025] Open
Abstract
Background Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired reasoning. It is the leading cause of dementia in older adults, marked by the pathological accumulation of amyloid-beta plaques and neurofibrillary tangles. These pathological changes lead to widespread neuronal damage, significantly impacting daily functioning and quality of life. Objective This comprehensive review aims to explore various aspects of Alzheimer's disease, including its epidemiology, risk factors, clinical presentation, diagnostic advancements, management strategies, caregiving challenges, and emerging therapeutic interventions. Methods A systematic literature review was conducted across multiple electronic databases, including PubMed, MEDLINE, Cochrane Library, and Scopus, from their inception to May 2024. The search strategy incorporated a combination of keywords and Medical Subject Headings (MeSH) terms such as "Alzheimer's disease," "epidemiology," "risk factors," "symptoms," "diagnosis," "management," "caregiving," "treatment," and "novel therapies." Boolean operators (AND, OR) were used to refine the search, ensuring a comprehensive analysis of the existing literature on Alzheimer's disease. Results AD is significantly influenced by genetic predispositions, such as the apolipoprotein E (APOE) ε4 allele, along with modifiable environmental factors like diet, physical activity, and cognitive engagement. Diagnostic approaches have evolved with advances in neuroimaging techniques (MRI, PET), and biomarker analysis, allowing for earlier detection and intervention. The National Institute on Aging and the Alzheimer's Association have updated diagnostic criteria to include biomarker data, enhancing early diagnosis. Conclusion The management of AD includes pharmacological treatments, such as cholinesterase inhibitors and NMDA receptor antagonists, which provide symptomatic relief but do not slow disease progression. Emerging therapies, including amyloid-beta and tau-targeting treatments, gene therapy, and immunotherapy, offer potential for disease modification. The critical role of caregivers is underscored, as they face considerable emotional, physical, and financial burdens. Support programs, communication strategies, and educational interventions are essential for improving caregiving outcomes. While significant advancements have been made in understanding and managing AD, ongoing research is necessary to identify new therapeutic targets and enhance diagnostic and treatment strategies. A holistic approach, integrating clinical, genetic, and environmental factors, is essential for addressing the multifaceted challenges of Alzheimer's disease and improving outcomes for both patients and caregivers.
Collapse
Affiliation(s)
- Saeid Safiri
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghaffari Jolfayi
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asra Fazlollahi
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soroush Morsali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Tabriz USERN Office, Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnam Golabi
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Aletaha
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kimia Motlagh Asghari
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sana Hamidi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Tabriz USERN Office, Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Seyed Ehsan Mousavi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Jamalkhani
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Karamzad
- Department of Persian Medicine, School of Traditional, Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mark J. M. Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Ji Q, Lv Y, Hu B, Su Y, Shaikh II, Zhu X. Study on the therapeutic potential of induced neural stem cells for Alzheimer's disease in mice. Biol Res 2024; 57:89. [PMID: 39582031 PMCID: PMC11587668 DOI: 10.1186/s40659-024-00568-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Induced neural stem cells (iNSCs), which have similar properties to neural stem cells and are able to self-proliferate and differentiate into neural cell lineages, are expected to be potential cells for the treatment of neurodegeneration disease. However, cell therapy based on iNSCs transplantation is limited by the inability to acquire sufficient quantities of iNSCs. Previous studies have found that mouse and human fibroblasts can be directly reprogrammed into iNSCs with a single factor, Sox2. Here, we induced mouse embryonic fibroblasts (MEFs) into iNSCs by combining valproic acid (VPA) with the induction factor Sox2, and the results showed that VPA significantly improved the conversion efficiency of fibroblasts to iNSCs. The iNSCs exhibited typical neurosphere-like structures that can express NSCs markers, such as Sox2, Nestin, Sox1, and Zbtb16, and could differentiate into neurons, astrocytes, and oligodendrocytes in vitro. Subsequently, the iNSCs were stereotactically transplanted into the hippocampus of APP/PS1 double transgenic mice (AD mice). Post-transplantation, the iNSCs showed long-term survival, migrated over long distances, and differentiated into multiple types of functional neurons and glial cells in vivo. Importantly, the cognitive abilities of APP/PS1 mice transplanted with iNSCs exhibited significant functional recovery. These findings suggest that VPA enhances the conversion efficiency of fibroblasts into iNSCs when used in combination with Sox2, and iNSCs hold promise as a potential donor material for transplantation therapy in Alzheimer's disease.
Collapse
Affiliation(s)
- Qiongqiong Ji
- Department of Medical Imaging, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Yuanhao Lv
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Bei Hu
- Fuzhou Medical College of Nanchang University, Fuzhou, 344099, Jiangxi, China
| | - Yue Su
- Department of Respiratory and Critical Care Medicine, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, China.
| | - Imran Ibrahim Shaikh
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People's Hospital, The First Affiliated Hospital of Lishui University, Lishui, 323000, Zhejiang, China.
| | - Xu Zhu
- Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
3
|
Karsuntseva EK, Voronova AD, Andretsova SS, Shishkina VS, Chadin AV, Fursa GA, Fedorov AV, Reshetov IV, Stepanova OV, Chekhonin VP. The Effect of Transplantation of Ensheathing Cells of the Olfactory Mucosa into the Hippocampal Area on the Restoration of Cognitive Abilities in Rats with Experimental Alzheimer's Disease. Bull Exp Biol Med 2024:10.1007/s10517-024-06293-8. [PMID: 39578278 DOI: 10.1007/s10517-024-06293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Indexed: 11/24/2024]
Abstract
Alzheimer's disease was induced in female Wistar rats by bilateral injection of β-amyloid fragment 1-42 into the hippocampal region. After 8 weeks, ensheathing cells of the olfactory mucosa were transplanted into the hippocampus at the same stereotactic coordinates. These cells survived for 8 weeks; large clusters of cells were observed on week 4. On weeks 3-5 after transplantation of ensheathing cells, experimental animals demonstrated a significant cognitive improvement (memory and spatial orientation). The obtained results create prerequisites for further studies of ensheathing cells as a potential cell product for personalized therapy of Alzheimer's disease.
Collapse
Affiliation(s)
- E K Karsuntseva
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - A D Voronova
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - S S Andretsova
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - V S Shishkina
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Chadin
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - G A Fursa
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Fedorov
- Lomonosov Moscow State University, Moscow, Russia
| | - I V Reshetov
- Academy of Postgraduate Education, Federal Research and Clinical Center of Specialized Types of Health Care and Medical Technology, Federal Medical-Biological Agency of Russia, Moscow, Russia
- I. M. Sechenov First Moscow State Medical University (Sechenov University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - O V Stepanova
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V P Chekhonin
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
4
|
Belousova E, Salikhova D, Maksimov Y, Nebogatikov V, Sudina A, Goldshtein D, Ustyugov A. Proposed Mechanisms of Cell Therapy for Alzheimer's Disease. Int J Mol Sci 2024; 25:12378. [PMID: 39596443 PMCID: PMC11595163 DOI: 10.3390/ijms252212378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterized by mitochondria dysfunction, accumulation of beta-amyloid plaques, and hyperphosphorylated tau tangles in the brain leading to memory loss and cognitive deficits. There is currently no cure for this condition, but the potential of stem cells for the therapy of neurodegenerative pathologies is actively being researched. This review discusses preclinical and clinical studies that have used mouse models and human patients to investigate the use of novel types of stem cell treatment approaches. The findings provide valuable insights into the applications of stem cell-based therapies and include the use of neural, glial, mesenchymal, embryonic, and induced pluripotent stem cells. We cover current studies on stem cell replacement therapy where cells can functionally integrate into neural networks, replace damaged neurons, and strengthen impaired synaptic circuits in the brain. We address the paracrine action of stem cells acting via secreted factors to induce neuroregeneration and modify inflammatory responses. We focus on the neuroprotective functions of exosomes as well as their neurogenic and synaptogenic effects. We look into the shuttling of mitochondria through tunneling nanotubes that enables the transfer of healthy mitochondria by restoring the normal functioning of damaged cells, improving their metabolism, and reducing the level of apoptosis.
Collapse
Affiliation(s)
- Ekaterina Belousova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
| | - Diana Salikhova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Yaroslav Maksimov
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Vladimir Nebogatikov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia;
| | - Anastasiya Sudina
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
| | - Aleksey Ustyugov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia;
| |
Collapse
|
5
|
Kamatham PT, Shukla R, Khatri DK, Vora LK. Pathogenesis, diagnostics, and therapeutics for Alzheimer's disease: Breaking the memory barrier. Ageing Res Rev 2024; 101:102481. [PMID: 39236855 DOI: 10.1016/j.arr.2024.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and accounts for 60-70 % of all cases. It affects millions of people worldwide. AD poses a substantial economic burden on societies and healthcare systems. AD is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. As the prevalence of AD continues to increase, understanding its pathogenesis, improving diagnostic methods, and developing effective therapeutics have become paramount. This comprehensive review delves into the intricate mechanisms underlying AD, explores the current state of diagnostic techniques, and examines emerging therapeutic strategies. By revealing the complexities of AD, this review aims to contribute to the growing body of knowledge surrounding this devastating disease.
Collapse
Affiliation(s)
- Pushpa Tryphena Kamatham
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Rashi Shukla
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, India.
| | - Lalitkumar K Vora
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, UK.
| |
Collapse
|
6
|
Svendsen SP, Svendsen CN. Cell therapy for neurological disorders. Nat Med 2024; 30:2756-2770. [PMID: 39407034 DOI: 10.1038/s41591-024-03281-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 10/18/2024]
Abstract
Cell therapies for neurological disorders are entering the clinic and present unique challenges and opportunities compared with conventional medicines. They have the potential to replace damaged nervous tissue and integrate into the brain or spinal cord to produce functional effects for the lifetime of the patient, which could revolutionize the way clinicians treat debilitating neurological disorders. The major challenge has been cell sourcing, which historically relied mainly on fetal brain tissue. This has largely been overcome with the advent of pluripotent stem cell technology and the ability to make almost any cell of the nervous system at scale. Furthermore, advances in gene editing now allow the generation of genetically modified cells that could perform better and evade the immune system. With all the remarkable new approaches to treat neurological disorders, we take a critical look at the state of current clinical trials and how challenges may be overcome with the evolving technology and innovation occurring in the stem cell field.
Collapse
Affiliation(s)
- Soshana P Svendsen
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
| | - Clive N Svendsen
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Zhao Y, Liu K, Wang Y, Ma Y, Guo W, Shi C. Human-mouse chimeric brain models constructed from iPSC-derived brain cells: Applications and challenges. Exp Neurol 2024; 379:114848. [PMID: 38857749 DOI: 10.1016/j.expneurol.2024.114848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
The establishment of reliable human brain models is pivotal for elucidating specific disease mechanisms and facilitating the discovery of novel therapeutic strategies for human brain disorders. Human induced pluripotent stem cell (iPSC) exhibit remarkable self-renewal capabilities and can differentiate into specialized cell types. This makes them a valuable cell source for xenogeneic or allogeneic transplantation. Human-mouse chimeric brain models constructed from iPSC-derived brain cells have emerged as valuable tools for modeling human brain diseases and exploring potential therapeutic strategies for brain disorders. Moreover, the integration and functionality of grafted stem cells has been effectively assessed using these models. Therefore, this review provides a comprehensive overview of recent progress in differentiating human iPSC into various highly specialized types of brain cells. This review evaluates the characteristics and functions of the human-mouse chimeric brain model. We highlight its potential roles in brain function and its ability to reconstruct neural circuitry in vivo. Additionally, we elucidate factors that influence the integration and differentiation of human iPSC-derived brain cells in vivo. This review further sought to provide suitable research models for cell transplantation therapy. These research models provide new insights into neuropsychiatric disorders, infectious diseases, and brain injuries, thereby advancing related clinical and academic research.
Collapse
Affiliation(s)
- Ya Zhao
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Ke Liu
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China; Gansu University of traditional Chinese medicine, Lanzhou 730030, PR China
| | - Yinghua Wang
- Medical College of Yan'an University, Yan'an 716000, PR China
| | - Yifan Ma
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China; Gansu University of traditional Chinese medicine, Lanzhou 730030, PR China
| | - Wenwen Guo
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | - Changhong Shi
- Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| |
Collapse
|
8
|
Si Y, Hayat MA, Hu J. NSPCs-ES: mechanisms and functional impact on central nervous system diseases. Biomed Mater 2024; 19:042011. [PMID: 38916246 DOI: 10.1088/1748-605x/ad5819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
Patients with central neuronal damage may suffer severe consequences, but effective therapies remain unclear. Previous research has established the transplantation of neural stem cells that generate new neurons to replace damaged ones. In a new field of scientific research, the extracellular secretion of NPSCs (NSPCs-ES) has been identified as an alternative to current chemical drugs. Many preclinical studies have shown that NSPCs-ES are effective in models of various central nervous system diseases (CNS) injuries, from maintaining functional structures at the cellular level to providing anti-inflammatory functions at the molecular level, as well as improving memory and motor functions, reducing apoptosis in neurons, and mediating multiple signaling pathways. The NSPC-ES can travel to the damaged tissue and exert a broad range of therapeutic effects by supporting and nourishing damaged neurons. However, gene editing and cell engineering techniques have recently improved therapeutic efficacy by modifying NSPCs-ES. Consequently, future research and application of NSPCs-ES may provide a novel strategy for the treatment of CNS diseases in the future. In this review, we summarize the current progress on these aspects.
Collapse
Affiliation(s)
- Yu Si
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, People's Republic of China
| | - Muhammad Abid Hayat
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, People's Republic of China
| | - Jiabo Hu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212002, People's Republic of China
- Zhenjiang Blood Center, Zhenjiang, Jiangsu 212013, People's Republic of China
| |
Collapse
|
9
|
Fuchigami T, Itokazu Y, Yu RK. Ganglioside GD3 regulates neural stem cell quiescence and controls postnatal neurogenesis. Glia 2024; 72:167-183. [PMID: 37667994 PMCID: PMC10840680 DOI: 10.1002/glia.24468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/14/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
The postnatal neural stem cell (NSC) pool hosts quiescent and activated radial glia-like NSCs contributing to neurogenesis throughout adulthood. However, the underlying regulatory mechanism during the transition from quiescent NSCs to activated NSCs in the postnatal NSC niche is not fully understood. Lipid metabolism and lipid composition play important roles in regulating NSC fate determination. Biological lipid membranes define the individual cellular shape and help maintain cellular organization and are highly heterogeneous in structure and there exist diverse microdomains (also known as lipid rafts), which are enriched with sugar molecules, such as glycosphingolipids. An often overlooked but key aspect is that the functional activities of proteins and genes are highly dependent on their molecular environments. We previously reported that ganglioside GD3 is the predominant species in NSCs and that the reduced postnatal NSC pools are observed in global GD3-synthase knockout (GD3S-KO) mouse brains. The specific roles of GD3 in determining the stage and cell-lineage determination of NSCs remain unclear, since global GD3S-KO mice cannot distinguish if GD3 regulates postnatal neurogenesis or developmental impacts. Here, we show that inducible GD3 deletion in postnatal radial glia-like NSCs promotes NSC activation, resulting in the loss of the long-term maintenance of the adult NSC pools. The reduced neurogenesis in the subventricular zone (SVZ) and the dentate gyrus (DG) of GD3S-conditional-knockout mice led to the impaired olfactory and memory functions. Thus, our results provide convincing evidence that postnatal GD3 maintains the quiescent state of radial glia-like NSCs in the adult NSC niche.
Collapse
Affiliation(s)
- Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert K. Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
10
|
Chen KS, Noureldein MH, McGinley LM, Hayes JM, Rigan DM, Kwentus JF, Mason SN, Mendelson FE, Savelieff MG, Feldman EL. Human neural stem cells restore spatial memory in a transgenic Alzheimer's disease mouse model by an immunomodulating mechanism. Front Aging Neurosci 2023; 15:1306004. [PMID: 38155736 PMCID: PMC10753006 DOI: 10.3389/fnagi.2023.1306004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction Stem cells are a promising therapeutic in Alzheimer's disease (AD) given the complex pathophysiologic pathways involved. However, the therapeutic mechanisms of stem cells remain unclear. Here, we used spatial transcriptomics to elucidate therapeutic mechanisms of human neural stem cells (hNSCs) in an animal model of AD. Methods hNSCs were transplanted into the fimbria fornix of the hippocampus using the 5XFAD mouse model. Spatial memory was assessed by Morris water maze. Amyloid plaque burden was quantified. Spatial transcriptomics was performed and differentially expressed genes (DEGs) identified both globally and within the hippocampus. Subsequent pathway enrichment and ligand-receptor network analysis was performed. Results hNSC transplantation restored learning curves of 5XFAD mice. However, there were no changes in amyloid plaque burden. Spatial transcriptomics showed 1,061 DEGs normalized in hippocampal subregions. Plaque induced genes in microglia, along with populations of stage 1 and stage 2 disease associated microglia (DAM), were normalized upon hNSC transplantation. Pathologic signaling between hippocampus and DAM was also restored. Discussion hNSCs normalized many dysregulated genes, although this was not mediated by a change in amyloid plaque levels. Rather, hNSCs appear to exert beneficial effects in part by modulating microglia-mediated neuroinflammation and signaling in AD.
Collapse
Affiliation(s)
- Kevin S. Chen
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Mohamed H. Noureldein
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Lisa M. McGinley
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Diana M. Rigan
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Jacquelin F. Kwentus
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Shayna N. Mason
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Masha G. Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
11
|
Mo H, Kim J, Kim JY, Kim JW, Han H, Choi SH, Rim YA, Ju JH. Intranasal administration of induced pluripotent stem cell-derived cortical neural stem cell-secretome as a treatment option for Alzheimer's disease. Transl Neurodegener 2023; 12:50. [PMID: 37946307 PMCID: PMC10634159 DOI: 10.1186/s40035-023-00384-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disorder in the elderly, resulting in gradual destruction of cognitive abilities. Research on the development of various AD treatments is underway; however, no definitive treatment has been developed yet. Herein, we present induced pluripotent stem cell (iPSC)-derived cortical neural stem cell secretome (CNSC-SE) as a new treatment candidate for AD and explore its efficacy. METHODS We first assessed the effects of CNSC-SE treatment on neural maturation and electromagnetic signal during cortical nerve cell differentiation. Then to confirm the efficacy in vivo, CNSC-SE was administered to the 5×FAD mouse model through the nasal cavity (5 μg/g, once a week, 4 weeks). The cell-mediated effects on nerve recovery, amyloid beta (Aβ) plaque aggregation, microglial and astrocyte detection in the brain, and neuroinflammatory responses were investigated. Metabolomics analysis of iPSC-derived CNSC-SE revealed that it contained components that could exert neuro-protective effects or amplify cognitive restorative effects. RESULTS Human iPSC-derived CNSC-SE increased neuronal proliferation and dendritic structure formation in vitro. Furthermore, CNSC-SE-treated iPSC-derived cortical neurons acquired electrical network activity and action potential bursts. The 5×FAD mice treated with CNSC-SE showed memory restoration and reduced Aβ plaque accumulation. CONCLUSIONS Our findings suggest that the iPSC-derived CNSC-SE may serve as a potential, non-invasive therapeutic option for AD in reducing amyloid infiltration and restoring memory.
Collapse
Affiliation(s)
- Hyunkyung Mo
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine and Health Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Juryun Kim
- YiPSCELL, Inc, Omnibus Park, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jennifer Yejean Kim
- Department of Biology, Georgetown University, 3700 O St NW, Washington, DC, 20057, USA
| | - Jang Woon Kim
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Heeju Han
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine and Health Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Si Hwa Choi
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Department of Biomedicine and Health Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yeri Alice Rim
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Ji Hyeon Ju
- CiSTEM Laboratory, Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- YiPSCELL, Inc, Omnibus Park, Banpo-daero 222, Seocho-gu, Seoul, 06591, Republic of Korea.
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
12
|
Chen KS, Noureldein MH, McGinley LM, Hayes JM, Rigan DM, Kwentus JF, Mason SN, Mendelson FE, Savelieffd MG, Feldman EL. Human neural stem cells restore spatial memory in a transgenic Alzheimer's disease mouse model by an immunomodulating mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565161. [PMID: 37961246 PMCID: PMC10635057 DOI: 10.1101/2023.11.01.565161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
INTRODUCTION Stem cells are a promising therapeutic in Alzheimer's disease (AD) given the complex pathophysiologic pathways involved. However, the therapeutic mechanisms of stem cells remain unclear. Here, we used spatial transcriptomics to elucidate therapeutic mechanisms of human neural stem cells (hNSCs) in an animal model of AD. METHODS hNSCs were transplanted into the fimbria fornix of the hippocampus using the 5XFAD mouse model. Spatial memory was assessed by Morris water maze. Amyloid plaque burden was quantified. Spatial transcriptomics was performed and differentially expressed genes (DEGs) identified both globally and within the hippocampus. Subsequent pathway enrichment and ligand-receptor network analysis was performed. RESULTS hNSC transplantation restored learning curves of 5XFAD mice. However, there were no changes in amyloid plaque burden. Spatial transcriptomics showed 1061 DEGs normalized in hippocampal subregions. Plaque induced genes in microglia, along with populations of stage 1 and stage 2 disease associated microglia (DAM), were normalized upon hNSC transplantation. Pathologic signaling between hippocampus and DAM was also restored. DISCUSSION hNSCs normalized many dysregulated genes, although this was not mediated by a change in amyloid plaque levels. Rather, hNSCs appear to exert beneficial effects in part by modulating microglia-mediated neuroinflammation and signaling in AD.
Collapse
|
13
|
Voloshin N, Tyurin-Kuzmin P, Karagyaur M, Akopyan Z, Kulebyakin K. Practical Use of Immortalized Cells in Medicine: Current Advances and Future Perspectives. Int J Mol Sci 2023; 24:12716. [PMID: 37628897 PMCID: PMC10454025 DOI: 10.3390/ijms241612716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
In modern science, immortalized cells are not only a convenient tool in fundamental research, but they are also increasingly used in practical medicine. This happens due to their advantages compared to the primary cells, such as the possibility to produce larger amounts of cells and to use them for longer periods of time, the convenience of genetic modification, the absence of donor-to-donor variability when comparing the results of different experiments, etc. On the other hand, immortalization comes with drawbacks: possibilities of malignant transformation and/or major phenotype change due to genetic modification itself or upon long-term cultivation appear. At first glance, such issues are huge hurdles in the way of immortalized cells translation into medicine. However, there are certain ways to overcome such barriers that we describe in this review. We determined four major areas of usage of immortalized cells for practical medicinal purposes, and each has its own means to negate the drawbacks associated with immortalization. Moreover, here we describe specific fields of application of immortalized cells in which these problems are of much lesser concern, for example, in some cases where the possibility of malignant growth is not there at all. In general, we can conclude that immortalized cells have their niches in certain areas of practical medicine where they can successfully compete with other therapeutic approaches, and more preclinical and clinical trials with them should be expected.
Collapse
Affiliation(s)
- Nikita Voloshin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
| | - Pyotr Tyurin-Kuzmin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
| | - Maxim Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
| | - Zhanna Akopyan
- Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Konstantin Kulebyakin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
- Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
14
|
Voronova AD, Karsuntseva EK, Stepanova OV, Chadin AV, Shishkina VV, Andretsova SS, Fursa GA, Shport SV, Reshetov IV, Chekhonin VP. Modeling of Alzheimer's Disease to Study the Efficacy of Cell Therapy (Review). Bull Exp Biol Med 2023; 175:524-529. [PMID: 37768457 DOI: 10.1007/s10517-023-05899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 09/29/2023]
Abstract
We analyzed the main approaches to the modeling of Alzheimer's disease for studying the effectiveness of cell therapy. Recent advances in regenerative medicine in the field of neuroscience create prospects for the use of various cell preparations for the treatment of Alzheimer's disease. Experimental data on the use of neural stem/progenitor cells, mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells in various models of Alzheimer's disease are presented. Of particular importance is the standardization of protocols. The use of a standardized protocol in modeling of Alzheimer's disease will allow a comparative analysis of the effectiveness and safety of treatment to identify the optimal cell preparation. The data obtained on experimental animals can form the basis for further preclinical and clinical studies of cell therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- A D Voronova
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - E K Karsuntseva
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - O V Stepanova
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- E. I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Chadin
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V V Shishkina
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - S S Andretsova
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
| | - G A Fursa
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - S V Shport
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I V Reshetov
- University Clinical Hospital, I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - V P Chekhonin
- V. P. Serbsky National Medical Research Centre of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
15
|
Jeyaraman M, Rajendran RL, Muthu S, Jeyaraman N, Sharma S, Jha SK, Muthukanagaraj P, Hong CM, Furtado da Fonseca L, Santos Duarte Lana JF, Ahn BC, Gangadaran P. An update on stem cell and stem cell-derived extracellular vesicle-based therapy in the management of Alzheimer's disease. Heliyon 2023; 9:e17808. [PMID: 37449130 PMCID: PMC10336689 DOI: 10.1016/j.heliyon.2023.e17808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 05/10/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Globally, neurological diseases pose a major burden to healthcare professionals in terms of the management and prevention of the disorder. Among neurological diseases, Alzheimer's disease (AD) accounts for 50%-70% of dementia and is the fifth leading cause of mortality worldwide. AD is a progressive, degenerative neurological disease, with the loss of neurons and synapses in the cerebral cortex and subcortical regions. The management of AD remains a debate among physicians as no standard and specific "disease-modifying" modality is available. The concept of 'Regenerative Medicine' is aimed at regenerating the degenerated neural tissues to reverse the pathology in AD. Genetically modified engineered stem cells modify the course of AD after transplantation into the brain. Extracellular vesicles (EVs) are an emerging new approach in cell communication that involves the transfer of cellular materials from parental cells to recipient cells, resulting in changes at the molecular and signaling levels in the recipient cells. EVs are a type of vesicle that can be transported between cells. Many have proposed that EVs produced from mesenchymal stem cells (MSCs) may have therapeutic promise in the treatment of AD. The biology of AD, as well as the potential applications of stem cells and their derived EVs-based therapy, were explored in this paper.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu, 600056, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Orthopedics, Government Dindigul Medical College and Hospital, Dindigul, Tamil Nadu, 624001, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Orthopedics, Shri Sathya Sai Medical College and Research Institute, Sri Balaji Vidyapeeth, Chengalpet, Tamil Nadu, 603108, India
| | - Shilpa Sharma
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Purushothaman Muthukanagaraj
- Department of Internal Medicine & Psychiatry, SUNY-Upstate Binghamton Clinical Campus, Binghamton, NY, 13904, USA
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Lucas Furtado da Fonseca
- Department of Orthopedics, The Federal University of São Paulo, São Paulo, 04023-062, SP, Brazil
| | | | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| |
Collapse
|
16
|
Attaluri S, Jaimes Gonzalez J, Kirmani M, Vogel AD, Upadhya R, Kodali M, Madhu LN, Rao S, Shuai B, Babu RS, Huard C, Shetty AK. Intranasally administered extracellular vesicles from human induced pluripotent stem cell-derived neural stem cells quickly incorporate into neurons and microglia in 5xFAD mice. Front Aging Neurosci 2023; 15:1200445. [PMID: 37424631 PMCID: PMC10323752 DOI: 10.3389/fnagi.2023.1200445] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Extracellular vesicles (EVs) released by human-induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) have robust antiinflammatory and neurogenic properties due to therapeutic miRNAs and proteins in their cargo. Hence, hiPSC-NSC-EVs are potentially an excellent biologic for treating neurodegenerative disorders, including Alzheimer's disease (AD). Methods This study investigated whether intranasally (IN) administered hiPSC-NSC-EVs would quickly target various neural cell types in the forebrain, midbrain, and hindbrain regions of 3-month-old 5xFAD mice, a model of β-amyloidosis and familial AD. We administered a single dose of 25 × 109 hiPSC-NSC-EVs labeled with PKH26, and different cohorts of naïve and 5xFAD mice receiving EVs were euthanized at 45 min or 6 h post-administration. Results At 45 min post-administration, EVs were found in virtually all subregions of the forebrain, midbrain, and hindbrain of naïve and 5xFAD mice, with predominant targeting and internalization into neurons, interneurons, and microglia, including plaque-associated microglia in 5xFAD mice. EVs also came in contact with the plasma membranes of astrocytic processes and the soma of oligodendrocytes in white matter regions. Evaluation of CD63/CD81 expression with the neuronal marker confirmed that PKH26 + particles found within neurons were IN administered hiPSC-NSC-EVs. At 6 h post-administration, EVs persisted in all cell types in both groups, with the distribution mostly matching what was observed at 45 min post-administration. Area fraction (AF) analysis revealed that, in both naïve and 5xFAD mice, higher fractions of EVs incorporate into forebrain regions at both time points. However, at 45 min post-IN administration, AFs of EVs within cell layers in forebrain regions and within microglia in midbrain and hindbrain regions were lower in 5xFAD mice than naïve mice, implying that amyloidosis reduces EV penetrance. Discussion Collectively, the results provide novel evidence that IN administration of therapeutic hiPSC-NSC-EVs is an efficient avenue for directing such EVs into neurons and glia in all brain regions in the early stage of amyloidosis. As pathological changes in AD are observed in multiple brain areas, the ability to deliver therapeutic EVs into various neural cells in virtually every brain region in the early stage of amyloidosis is attractive for promoting neuroprotective and antiinflammatory effects.
Collapse
|
17
|
Reiss AB, Muhieddine D, Jacob B, Mesbah M, Pinkhasov A, Gomolin IH, Stecker MM, Wisniewski T, De Leon J. Alzheimer's Disease Treatment: The Search for a Breakthrough. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1084. [PMID: 37374288 PMCID: PMC10302500 DOI: 10.3390/medicina59061084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
As the search for modalities to cure Alzheimer's disease (AD) has made slow progress, research has now turned to innovative pathways involving neural and peripheral inflammation and neuro-regeneration. Widely used AD treatments provide only symptomatic relief without changing the disease course. The recently FDA-approved anti-amyloid drugs, aducanumab and lecanemab, have demonstrated unclear real-world efficacy with a substantial side effect profile. Interest is growing in targeting the early stages of AD before irreversible pathologic changes so that cognitive function and neuronal viability can be preserved. Neuroinflammation is a fundamental feature of AD that involves complex relationships among cerebral immune cells and pro-inflammatory cytokines, which could be altered pharmacologically by AD therapy. Here, we provide an overview of the manipulations attempted in pre-clinical experiments. These include inhibition of microglial receptors, attenuation of inflammation and enhancement of toxin-clearing autophagy. In addition, modulation of the microbiome-brain-gut axis, dietary changes, and increased mental and physical exercise are under evaluation as ways to optimize brain health. As the scientific and medical communities work together, new solutions may be on the horizon to slow or halt AD progression.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Dalia Muhieddine
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Berlin Jacob
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Michael Mesbah
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Aaron Pinkhasov
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Irving H. Gomolin
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | | | - Thomas Wisniewski
- Center for Cognitive Neurology, Departments of Neurology, Pathology and Psychiatry, NYU School of Medicine, New York, NY 10016, USA;
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| |
Collapse
|
18
|
Fuchigami T, Itokazu Y, Yu RK. Ganglioside GD3 regulates neural stem cell quiescence and controls postnatal neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532547. [PMID: 36993675 PMCID: PMC10055067 DOI: 10.1101/2023.03.14.532547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The postnatal neural stem cell (NSC) pool hosts quiescent and activated radial glia-like NSCs contributing to neurogenesis throughout adulthood. However, the underlying regulatory mechanism during the transition from quiescent NSCs to activated NSCs in the postnatal NSC niche is not fully understood. Lipid metabolism and lipid composition play important roles in regulating NSC fate determination. Biological lipid membranes define the individual cellular shape and help maintain cellular organization and are highly heterogenous in structure and there exist diverse microdomains (also known as lipid rafts), which are enriched with sugar molecules, such as glycosphingolipids. An often overlooked but key aspect is that the functional activities of proteins and genes are highly dependent upon their molecular environments. We previously reported that ganglioside GD3 is the predominant species in NSCs and that the reduced postnatal NSC pools are observed in global GD3-synthase knockout (GD3S-KO) mouse brains. The specific roles of GD3 in determining the stage and cell-lineage determination of NSCs remain unclear, since global GD3S-KO mice cannot distinguish if GD3 regulates postnatal neurogenesis or developmental impacts. Here we show that inducible GD3 deletion in postnatal radial glia-like NSCs promotes the NSC activation, resulting in the loss of the long-term maintenance of the adult NSC pools. The reduced neurogenesis in the subventricular zone (SVZ) and the dentate gyrus (DG) of GD3S-conditional-knockout mice led to impaired olfactory and memory functions. Thus, our results provide convincing evidence that postnatal GD3 maintains the quiescent state of radial glia-like NSCs in the adult NSC niche.
Collapse
Affiliation(s)
- Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert K. Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
19
|
Zhou Z, Shi B, Xu Y, Zhang J, liu X, Zhou X, Feng B, Ma J, Cui H. Neural stem/progenitor cell therapy for Alzheimer disease in preclinical rodent models: a systematic review and meta-analysis. Stem Cell Res Ther 2023; 14:3. [PMID: 36600321 PMCID: PMC9814315 DOI: 10.1186/s13287-022-03231-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a common progressive neurodegenerative disease characterized by memory impairments, and there is no effective therapy. Neural stem/progenitor cell (NSPC) has emerged as potential novel therapy for AD, and we aim to explore whether neural stem/progenitor cell therapy was effective for rodent models of AD. METHODS We searched PubMed, Embase, Cochrane Library and Web of Science up to December 6, 2022. The outcomes included cognitive function, pathological features and BDNF. The GetData Graph Digitizer software (version 2.26) was applied to extract numerical values, and RevMan 5.3 and Stata 16 were used to analyze data. The SYRCLE risk of bias tool was used to assess study quality. RESULTS We evaluated 22 mice studies and 8 rat studies. Compared to control groups, cognitive function of NSPC groups of both mice studies (SMD = - 1.96, 95% CI - 2.47 to - 1.45, I2 = 75%, P < 0.00001) and rat studies (SMD = - 1.35, 95% CI - 2.11 to - 0.59, I2 = 77%, P = 0.0005) was apparently improved. In mice studies, NSPC group has lower Aβ deposition (SMD = - 0.96, 95% CI - 1.40 to - 0.52, P < 0.0001) and p-tau level (SMD = - 4.94, 95% CI - 7.29 to - 2.95, P < 0.0001), higher synaptic density (SMD = 2.02, 95% CI 0.50-3.55, P = 0.009) and BDNF (SMD = 1.69, 95% CI 0.61-2.77, P = 0.002). Combined with nanoformulation (SMD = - 1.29, 95% CI - 2.26 to - 0.32, I2 = 65%, P = 0.009) and genetically modified (SMD = - 1.29, 95% CI - 1.92 to - 0.66, I2 = 60%, P < 0.0001) could improve the effect of NSPC. In addition, both xenogeneic and allogeneic transplant of NSPC could reverse the cognitive impairment of AD animal models. CONCLUSIONS Our results suggested that NSPC therapy could improve the cognitive function and slow down the progression of AD. Due to the limitations of models, more animal trials and clinical trials are needed.
Collapse
Affiliation(s)
- Zijing Zhou
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Ben Shi
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Yaxing Xu
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Jinyu Zhang
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Xin liu
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Xinghong Zhou
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Baofeng Feng
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Jun Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China. .,Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China. .,Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| | - Huixian Cui
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| |
Collapse
|
20
|
Duan Y, Lyu L, Zhan S. Stem Cell Therapy for Alzheimer's Disease: A Scoping Review for 2017-2022. Biomedicines 2023; 11:biomedicines11010120. [PMID: 36672626 PMCID: PMC9855936 DOI: 10.3390/biomedicines11010120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) has been a major causal factor for mortality among elders around the world. The treatments for AD, however, are still in the stage of development. Stem cell therapy, compared to drug therapies and many other therapeutic options, has many advantages and is very promising in the future. There are four major types of stem cells used in AD therapy: neural stem cells, mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells. All of them have applications in the treatments, either at the (1) cellular level, in an (2) animal model, or at the (3) clinical level. In general, many more types of stem cells were studied on the cellular level and animal model, than the clinical level. We suggest for future studies to increase research on various types of stem cells and include cross-disciplinary research with other diseases. In the future, there could also be improvements in the timeliness of research and individualization for stem cell therapies for AD.
Collapse
Affiliation(s)
- Yunxiao Duan
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Linshuoshuo Lyu
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510, USA
| | - Siyan Zhan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
- Correspondence:
| |
Collapse
|
21
|
Zeng XX, Zeng JB. Systems Medicine as a Strategy to Deal with Alzheimer's Disease. J Alzheimers Dis 2023; 96:1411-1426. [PMID: 37980671 DOI: 10.3233/jad-230739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The traits of Alzheimer's disease (AD) include amyloid plaques made of Aβ1-40 and Aβ1-42, and neurofibrillary tangles by the hyperphosphorylation of tau protein. AD is a complex disorder that is heterogenous in genetical, neuropathological, and clinical contexts. Current available therapeutics are unable to cure AD. Systems medicine is a strategy by viewing the body as a whole system, taking into account each individual's unique health profile, provide treatment and associated nursing care clinically for the patient, aiming for precision. Since the onset of AD can lead towards cognitive impairment, it is vital to intervene and diagnose early and prevent further progressive loss of neurons. Moreover, as the individual's brain functions are impaired due to neurodegeneration in AD, it is essential to reconstruct the neurons or brain cells to enable normal brain functions. Although there are different subtypes of AD due to varied pathological lesions, in the majority cases of AD, neurodegeneration and severe brain atrophy develop at the chronic stage. Novel approaches including RNA based gene therapy, stem cell based technology, bioprinting technology, synthetic biology for brain tissue reconstruction are researched in recent decades in the hope to decrease neuroinflammation and restore normal brain function in individuals of AD. Systems medicine include the prevention of disease, diagnosis and treatment by viewing the individual's body as a whole system, along with systems medicine based nursing as a strategy against AD that should be researched further.
Collapse
Affiliation(s)
- Xiao Xue Zeng
- Department of Health Management, Centre of General Practice, The Seventh Affiliated Hospital, Southern Medical University, Lishui Town, Nanhai District, Foshan City, Guangdong Province, P.R. China
| | - Jie Bangzhe Zeng
- Benjoe Institute of Systems Bio-Engineering, High Technology Park, Xinbei District, Changzhou City, Jiangsu Province, P.R. China
| |
Collapse
|
22
|
Brunet A, Goodell MA, Rando TA. Ageing and rejuvenation of tissue stem cells and their niches. Nat Rev Mol Cell Biol 2023; 24:45-62. [PMID: 35859206 PMCID: PMC9879573 DOI: 10.1038/s41580-022-00510-w] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 01/28/2023]
Abstract
Most adult organs contain regenerative stem cells, often organized in specific niches. Stem cell function is critical for tissue homeostasis and repair upon injury, and it is dependent on interactions with the niche. During ageing, stem cells decline in their regenerative potential and ability to give rise to differentiated cells in the tissue, which is associated with a deterioration of tissue integrity and health. Ageing-associated changes in regenerative tissue regions include defects in maintenance of stem cell quiescence, differentiation ability and bias, clonal expansion and infiltration of immune cells in the niche. In this Review, we discuss cellular and molecular mechanisms underlying ageing in the regenerative regions of different tissues as well as potential rejuvenation strategies. We focus primarily on brain, muscle and blood tissues, but also provide examples from other tissues, such as skin and intestine. We describe the complex interactions between different cell types, non-cell-autonomous mechanisms between ageing niches and stem cells, and the influence of systemic factors. We also compare different interventions for the rejuvenation of old regenerative regions. Future outlooks in the field of stem cell ageing are discussed, including strategies to counter ageing and age-dependent disease.
Collapse
Affiliation(s)
- Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Laboratories for the Biology of Ageing, Stanford University, Stanford, CA, USA.
| | - Margaret A Goodell
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX, USA.
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
| | - Thomas A Rando
- Glenn Laboratories for the Biology of Ageing, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Neurology Service, VA Palo Alto Health Care System, Palo Alto, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Chen X, Jiang S, Wang R, Bao X, Li Y. Neural Stem Cells in the Treatment of Alzheimer's Disease: Current Status, Challenges, and Future Prospects. J Alzheimers Dis 2023; 94:S173-S186. [PMID: 36336934 PMCID: PMC10473082 DOI: 10.3233/jad-220721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Alzheimer's disease (AD), a progressive dementia, is one of the world's most dangerous and debilitating diseases. Clinical trial results of amyloid-β (Aβ) and tau regulators based on the pretext of straightforward amyloid and tau immunotherapy were disappointing. There are currently no effective strategies for slowing the progression of AD. Further understanding of the mechanisms underlying AD and the development of novel therapeutic options are critical. Neurogenesis is impaired in AD, which contributes to memory deficits. Transplanted neural stem cells (NSCs) can regenerate degraded cholinergic neurons, and new neurons derived from NSCs can form synaptic connections with neighboring neurons. In theory, employing NSCs to replace and restore damaged cholinergic neurons and brain connections may offer new treatment options for AD. However there remain barriers to surmount before NSC-based therapy can be used clinically. The objective of this article is to describe recent advances in the treatment of AD models and clinical trials involving NSCs. In addition, we discuss the challenges and prospects associated with cell transplant therapy for AD.
Collapse
Affiliation(s)
- Xiaokun Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shenzhong Jiang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yongning Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
de Almeida MMA, Goodkey K, Voronova A. Regulation of microglia function by neural stem cells. Front Cell Neurosci 2023; 17:1130205. [PMID: 36937181 PMCID: PMC10014810 DOI: 10.3389/fncel.2023.1130205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Neural stem and precursor cells (NPCs) build and regenerate the central nervous system (CNS) by maintaining their pool (self-renewal) and differentiating into neurons, astrocytes, and oligodendrocytes (multipotency) throughout life. This has inspired research into pro-regenerative therapies that utilize transplantation of exogenous NPCs or recruitment of endogenous adult NPCs for CNS regeneration and repair. Recent advances in single-cell RNA sequencing and other "omics" have revealed that NPCs express not just traditional progenitor-related genes, but also genes involved in immune function. Here, we review how NPCs exert immunomodulatory function by regulating the biology of microglia, immune cells that are present in NPC niches and throughout the CNS. We discuss the role of transplanted and endogenous NPCs in regulating microglia fates, such as survival, proliferation, migration, phagocytosis and activation, in the developing, injured and degenerating CNS. We also provide a literature review on NPC-specific mediators that are responsible for modulating microglia biology. Our review highlights the immunomodulatory properties of NPCs and the significance of these findings in the context of designing pro-regenerative therapies for degenerating and diseased CNS.
Collapse
Affiliation(s)
- Monique M. A. de Almeida
- Department of Medical Genetics, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, Edmonton, AB, Canada
| | - Kara Goodkey
- Department of Medical Genetics, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB, Canada
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Multiple Sclerosis Centre and Department of Cell Biology, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
| |
Collapse
|
25
|
Kim JT, Kim TY, Youn DH, Han SW, Park CH, Lee Y, Jung H, Rhim JK, Park JJ, Ahn JH, Kim HC, Cho SM, Jeon JP. Human embryonic stem cell-derived cerebral organoids for treatment of mild traumatic brain injury in a mouse model. Biochem Biophys Res Commun 2022; 635:169-178. [PMID: 36274367 DOI: 10.1016/j.bbrc.2022.10.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE There are no effective treatments for relieving neuronal dysfunction after mild traumatic brain injury (TBI). Here, we evaluated therapeutic efficacy of human embryonic stem cell-derived cerebral organoids (hCOs) in a mild TBI model, in terms of repair of damaged cortical regions, neurogenesis, and improved cognitive function. METHODS Male C57BL/6 J mice were randomly divided into sham-operated, mild TBI, and mild TBI with hCO groups. hCOs cultured at 8 weeks were used for transplantation. Mice were sacrificed at 7 and 14 days after transplantation followed by immunofluorescence staining, cytokine profile microarray, and novel object recognition test. RESULTS 8W-hCOs transplantation significantly reduced neuronal cell death, recovered microvessel density, and promoted neurogenesis in the ipsilateral subventricular zone and dentate gyrus of hippocampus after mild TBI. In addition, increased angiogenesis into the engrafted hCOs was observed. Microarray results of hCOs revealed neuronal differentiation potential and higher expression of early brain development proteins associated with neurogenesis, angiogenesis and extracellular matrix remodeling. Ultimately, 8W-hCO transplantation resulted in reconstruction of damaged cortex and improvement in cognitive function after mild TBI. CONCLUSION hCO transplantation may be feasible for treating mild TBI-related neuronal dysfunction via reconstruction of damaged cortex and neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Tae Yeon Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Chan Hum Park
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Younghyurk Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Harry Jung
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jong Kook Rhim
- Department of Neurosurgery, Jeju National University College of Medicine, Jeju, South Korea
| | - Jeong Jin Park
- Department of Neurology, Konkuk University Medical Center, Seoul, South Korea
| | - Jun Hyong Ahn
- Department of Neurosurgery, Kangwon National University Hospital, Chuncheon, South Korea
| | - Heung Cheol Kim
- Department of Radiology, Hallym University College of Medicine, Chuncheon, South Korea
| | - Sung Min Cho
- Department of Neurosurgery, Yonsei University Wonju College of Medicine, Wonju, South Korea.
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, South Korea.
| |
Collapse
|
26
|
Damavandi AR, Mirmosayyeb O, Ebrahimi N, Zalpoor H, khalilian P, Yahiazadeh S, Eskandari N, Rahdar A, Kumar PS, Pandey S. Advances in nanotechnology versus stem cell therapy for the theranostics of multiple sclerosis disease. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Srivastava R, Li A, Datta T, Jha NK, Talukder S, Jha SK, Chen ZS. Advances in stromal cell therapy for management of Alzheimer’s disease. Front Pharmacol 2022; 13:955401. [PMID: 36267273 PMCID: PMC9576849 DOI: 10.3389/fphar.2022.955401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Deposition of misfolded proteins and synaptic failure affects the brain in Alzheimer’s disease (AD). Its progression results in amnesia and cognitive impairment. Absence of treatment is due to excessive loss of neurons in the patients and the delayed effects of drugs. The enhanced pluripotency, proliferation, differentiation, and recombination characteristics of stromal cells into nerve cells and glial cells present them as a potential treatment for AD. Successful evidence of action in animal models along with positive results in preclinical studies further encourage its utilization for AD treatment. With regard to humans, cell replacement therapy involving mesenchymal stromal cells, induced-pluripotent stromal cells, human embryonic stromal cells, and neural stems show promising results in clinical trials. However, further research is required prior to its use as stromal cell therapy in AD related disorders. The current review deals with the mechanism of development of anomalies such as Alzheimer’s and the prospective applications of stromal cells for treatment.
Collapse
Affiliation(s)
- Rashi Srivastava
- Chemical and Biochemical Engineering, Indian Institute of Technology, Patna, India
| | - Aidong Li
- Department of Rehabilitation, The Second People’s Hospital of Shenzhen, Shenzhen, China
| | - Tirtharaj Datta
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Salehikram Talukder
- Institute for Biotechnology, St. John’s University, New York City, NY, United States
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- *Correspondence: Saurabh Kumar Jha, ; Zhe-Sheng Chen,
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John’s University, New York City, NY, United States
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York City, NY, United States
- *Correspondence: Saurabh Kumar Jha, ; Zhe-Sheng Chen,
| |
Collapse
|
28
|
Brianna, Ling APK, Wong YP. Applying stem cell therapy in intractable diseases: a narrative review of decades of progress and challenges. Stem Cell Investig 2022; 9:4. [PMID: 36238449 PMCID: PMC9552054 DOI: 10.21037/sci-2022-021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/09/2022] [Indexed: 08/10/2023]
Abstract
Background and Objective Stem cell therapy (SCT) is one of the vastly researched branches of regenerative medicine as a therapeutic tool to treat incurable diseases. With the use of human stem cells such as embryonic stem cells (ESCs), adult stem cells (ASCs) and induced pluripotent stem cells (iPSCs), stem cell therapy aims to regenerate or repair damaged tissues and congenital defects. As stem cells are able to undergo infinite self-renewal, differentiate into various types of cells and secrete protective paracrine factors, many researchers have investigated the potential of SCT in regenerative medicine. Therefore, this review aims to provide a comprehensive review on the recent application of SCT in various intractable diseases, namely, haematological diseases, neurological diseases, diabetes mellitus, retinal degenerative disorders and COVID-19 infections along with the challenges faced in the clinical translation of SCT. Methods An extensive search was conducted on Google scholar, PubMed and Clinicaltrials.gov using related keywords. Latest articles on stem cell therapy application in selected diseases along with their challenges in clinical applications were selected. Key content and findings In vitro and in vivo studies involving SCT are shown to be safe and efficacious in treating various diseases covered in this review. There are also a number of small-scale clinical trials that validated the positive therapeutic outcomes of SCT. Nevertheless, the effectiveness of SCT are highly variable as some SCT works best in patients with early-stage diseases while in other diseases, SCT is more likely to work in patients in late stages of illnesses. Among the challenges identified in SCT translation are uncertainty in the underlying stem cell mechanism, ethical issues, genetic instability and immune rejection. Conclusions SCT will be a revolutionary treatment in the future that will provide hope to patients with intractable diseases. Therefore, studies ought to be done to ascertain the long-term effects of SCT while addressing the challenges faced in validating SCT for clinical use. Moreover, as there are many studies investigating the safety and efficacy of SCT, future studies should look into elucidating the regenerative and reparative capabilities of stem cells which largely remains unknown.
Collapse
Affiliation(s)
- Brianna
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Ying Pei Wong
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Yue C, Feng S, Chen Y, Jing N. The therapeutic prospects and challenges of human neural stem cells for the treatment of Alzheimer's Disease. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:28. [PMID: 36050613 PMCID: PMC9437172 DOI: 10.1186/s13619-022-00128-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder associated with aging. Due to its insidious onset, protracted progression, and unclear pathogenesis, it is considered one of the most obscure and intractable brain disorders, and currently, there are no effective therapies for it. Convincing evidence indicates that the irreversible decline of cognitive abilities in patients coincides with the deterioration and degeneration of neurons and synapses in the AD brain. Human neural stem cells (NSCs) hold the potential to functionally replace lost neurons, reinforce impaired synaptic networks, and repair the damaged AD brain. They have therefore received extensive attention as a possible source of donor cells for cellular replacement therapies for AD. Here, we review the progress in NSC-based transplantation studies in animal models of AD and assess the therapeutic advantages and challenges of human NSCs as donor cells. We then formulate a promising transplantation approach for the treatment of human AD, which would help to explore the disease-modifying cellular therapeutic strategy for the treatment of human AD.
Collapse
Affiliation(s)
- Chunmei Yue
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215000, China.
| | - Su Feng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- Bioland Laboratory/Guangzhou Laboratory, Guangzhou, 510005, China
| | - Yingying Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Bioland Laboratory/Guangzhou Laboratory, Guangzhou, 510005, China.
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
30
|
McGinley LM, Chen KS, Mason SN, Rigan DM, Kwentus JF, Hayes JM, Glass ED, Reynolds EL, Murphy GG, Feldman EL. Monoclonal antibody-mediated immunosuppression enables long-term survival of transplanted human neural stem cells in mouse brain. Clin Transl Med 2022; 12:e1046. [PMID: 36101963 PMCID: PMC9471059 DOI: 10.1002/ctm2.1046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As the field of stem cell therapy advances, it is important to develop reliable methods to overcome host immune responses in animal models. This ensures survival of transplanted human stem cell grafts and enables predictive efficacy testing. Immunosuppressive drugs derived from clinical protocols are frequently used but are often inconsistent and associated with toxic side effects. Here, using a molecular imaging approach, we show that immunosuppression targeting costimulatory molecules CD4 and CD40L enables robust survival of human xenografts in mouse brain, as compared to conventional tacrolimus and mycophenolate mofetil. METHODS Human neural stem cells were modified to express green fluorescent protein and firefly luciferase. Cells were implanted in the fimbria fornix of the hippocampus and viability assessed by non-invasive bioluminescent imaging. Cell survival was assessed using traditional pharmacologic immunosuppression as compared to monoclonal antibodies directed against CD4 and CD40L. This paradigm was also implemented in a transgenic Alzheimer's disease mouse model. RESULTS Graft rejection occurs within 7 days in non-immunosuppressed mice and within 14 days in mice on a traditional regimen. The addition of dual monoclonal antibody immunosuppression extends graft survival past 7 weeks (p < .001) on initial studies. We confirm dual monoclonal antibody treatment is superior to either antibody alone (p < .001). Finally, we demonstrate robust xenograft survival at multiple cell doses up to 6 months in both C57BL/6J mice and a transgenic Alzheimer's disease model (p < .001). The dual monoclonal antibody protocol demonstrated no significant adverse effects, as determined by complete blood counts and toxicity screen. CONCLUSIONS This study demonstrates an effective immunosuppression protocol for preclinical testing of stem cell therapies. A transition towards antibody-based strategies may be advantageous by enabling stem cell survival in preclinical studies that could inform future clinical trials.
Collapse
Affiliation(s)
- Lisa M. McGinley
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Kevin S. Chen
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Shayna N. Mason
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Diana M. Rigan
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - John M. Hayes
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Emily D. Glass
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
- Michigan Neuroscience InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Evan L. Reynolds
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Geoffrey G. Murphy
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
- Michigan Neuroscience InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Eva L. Feldman
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
31
|
Assessing fetal human neural stem cells tumorigenicity potential in athymic rats with penetrating traumatic brain injury (pTBI). Brain Res 2022; 1791:148002. [PMID: 35810769 DOI: 10.1016/j.brainres.2022.148002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022]
Abstract
Traumatic brain injuries (TBI) often produce disability in survivors due to unresolved inflammation and progressive neurodegeneration. The central nervous system in mammals is incapable of self-repair. Two decades of preclinical studies and clinical trials have provided insights into TBI pathophysiology that could be utilized to develop clinically relevant therapy. Our laboratory recently reported efficacy of clinical trial grade fetal human neural stem cells (hNSCs) in immunosuppressed rats with penetrating traumatic brain injury (pTBI). Next, in compliance with the United States Food and Drug Administration (USFDA) guidance, this study explores safety by assessing the tumorigenicity potential of intracranial hNSC transplants in athymic rats with pTBI. First, the maximum tolerated dose (MTD) was determined. Then, forty athymic pTBI rats were randomized to either: Group A. pTBI + vehicle or Group B. pTBI + hNSCs at MTD one week after injury with 6-months survival, sufficient time to uncover transplant associated tumorigenicity. A board-certified Pathologist examined hematoxylin-eosin (H&E), Ki67 immunostained brain and spinal cord, serial sections along with several abnormal peripheral masses for evidence of lesion, transplant, and oncogenesis. There was no evidence of transplant derived tumors or oncogenic tissue necrosis. Consistent with athymic literature, the lesion remained unchanged even after robust hNSC engraftment. This safety study supports the conclusion that hNSCs are safe for transplantation in pTBI. The differences in lesion expansion between immunosuppressed and athymic rats in the presence of hNSCs suggests an unexpected role for thymus derived cells in resolution of trauma induced inflammation.
Collapse
|
32
|
Culig L, Chu X, Bohr VA. Neurogenesis in aging and age-related neurodegenerative diseases. Ageing Res Rev 2022; 78:101636. [PMID: 35490966 PMCID: PMC9168971 DOI: 10.1016/j.arr.2022.101636] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
Abstract
Adult neurogenesis, the process by which neurons are generated in certain areas of the adult brain, declines in an age-dependent manner and is one potential target for extending cognitive healthspan. Aging is a major risk factor for neurodegenerative diseases and, as lifespans are increasing, these health challenges are becoming more prevalent. An age-associated loss in neural stem cell number and/or activity could cause this decline in brain function, so interventions that reverse aging in stem cells might increase the human cognitive healthspan. In this review, we describe the involvement of adult neurogenesis in neurodegenerative diseases and address the molecular mechanistic aspects of neurogenesis that involve some of the key aggregation-prone proteins in the brain (i.e., tau, Aβ, α-synuclein, …). We summarize the research pertaining to interventions that increase neurogenesis and regulate known targets in aging research, such as mTOR and sirtuins. Lastly, we share our outlook on restoring the levels of neurogenesis to physiological levels in elderly individuals and those with neurodegeneration. We suggest that modulating neurogenesis represents a potential target for interventions that could help in the fight against neurodegeneration and cognitive decline.
Collapse
Affiliation(s)
- Luka Culig
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xixia Chu
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
33
|
Functional Deficits of 5×FAD Neural Stem Cells Are Ameliorated by Glutathione Peroxidase 4. Cells 2022; 11:cells11111770. [PMID: 35681465 PMCID: PMC9179411 DOI: 10.3390/cells11111770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia affecting millions of people around the globe. Impaired neurogenesis is reported in AD as well as in AD animal models, although the underlying mechanism remains unclear. Elevated lipid peroxidation products are well-documented in AD. In current study, the role of lipid peroxidation on neural stem cell (NSCs) function is tested. Neural stem cells (NSCs) from 5×FAD mice, a widely used AD model with impaired neurogenesis, were observed to have increased levels of lipid reactive oxygen species compared to NSCs from control WT mice. 5×FAD NSCs exhibited altered differentiation potential as revealed by their propensity to differentiate into astrocytic lineage instead of neuronal lineage compared to WT NSCs. In addition, 5×FAD NSCs showed a reduced level of Gpx4, a key enzyme in reducing hydroperoxides in membrane lipids, and this reduction appeared to be caused by enhanced autophagy-lysosomal degradation of Gpx4 protein. To test if increasing Gpx4 could restore differentiation potential, NSCs from 5×FAD and Gpx4 double transgenic mice, i.e., 5×FAD/GPX4 mice were studied. Remarkably, upon differentiation, neuronal linage cells increased significantly in 5×FAD/GPX4 cultures compared to 5×FAD cultures. Taken together, the findings suggest that deficiency of lipid peroxidation defense contributes to functional decline of NSCs in AD.
Collapse
|
34
|
Rezk S, Lashen S, El-Adl M, Elshopakey GE, Elghareeb MM, Hendam BM, Caceci T, Cenciarelli C, Marei HE. Effects of Rosemary Oil (Rosmarinus officinalis) supplementation on the fate of the transplanted human olfactory bulb neural stem cells against ibotenic acid-induced neurotoxicity (Alzheimer model) in rat. Metab Brain Dis 2022; 37:973-988. [PMID: 35075502 DOI: 10.1007/s11011-021-00890-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/05/2021] [Indexed: 12/16/2022]
Abstract
Rosemary oil (ROO) is known to have multiple pharmacological effects: it is an antioxidant, anti-inflammatory, and cytoprotective. In the present study, we examined the effects of ROO on Human olfactory bulb neuronal stem cells (hOBNSCs) after their transplantation into rats, with the ibotenic (IBO) acid-induced cognitive deficit model. After 7 weeks, cognitive functions were assessed using the Morris water maze (MWM). After two months blood and hippocampus samples were collected for biochemical, gene expression, and histomorphometric analyses. Learning ability and memory function were significantly enhanced (P < 0.05) after hOBNSCs transplantation and were nearly returned to normal in the treated group. The IBO acid injection was associated with a significant decline (P < 0.05) of total leukocyte count (TLC) and a significant increase (P < 0.05) in total and toxic neutrophils. As well, the level of IL-1β, TNF-α CRP in serum and levels of MDA and NO in hippocampus tissue were significantly elevated (P < 0.05), while antioxidant markers (CAT, GSH, and SOD) were reduced (P < 0.05) in treated tissue compared to controls. The administration of ROO before or with cell transplantation attenuated all these parameters. In particular, the level of NO nearly returned to normal when rosemary was administrated before cell transplantation. Gene expression analysis revealed the potential protective effect of ROO and hOBNSCs via down-expression of R-βAmyl and R- CAS 3 and R-GFAP genes. The improvement in the histological organization of the hippocampus was detected after the hOBNSCs transplantation especially in h/ROO/hOBNSCs group.
Collapse
Affiliation(s)
- Shaymaa Rezk
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Samah Lashen
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Adl
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | - Mona M Elghareeb
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Basma M Hendam
- Department of Husbandry & Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Thomas Caceci
- Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine , Blacksburg, VA, USA
| | - Carlo Cenciarelli
- Departament of Biomedical Sciences, Institute of Translational Pharmacology-CNR, Rome, Italy
| | - Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
35
|
Cell models for Down syndrome-Alzheimer’s disease research. Neuronal Signal 2022; 6:NS20210054. [PMID: 35449591 PMCID: PMC8996251 DOI: 10.1042/ns20210054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
Down syndrome (DS) is the most common chromosomal abnormality and leads to intellectual disability, increased risk of cardiac defects, and an altered immune response. Individuals with DS have an extra full or partial copy of chromosome 21 (trisomy 21) and are more likely to develop early-onset Alzheimer’s disease (AD) than the general population. Changes in expression of human chromosome 21 (Hsa21)-encoded genes, such as amyloid precursor protein (APP), play an important role in the pathogenesis of AD in DS (DS-AD). However, the mechanisms of DS-AD remain poorly understood. To date, several mouse models with an extra copy of genes syntenic to Hsa21 have been developed to characterise DS-AD-related phenotypes. Nonetheless, due to genetic and physiological differences between mouse and human, mouse models cannot faithfully recapitulate all features of DS-AD. Cells differentiated from human-induced pluripotent stem cells (iPSCs), isolated from individuals with genetic diseases, can be used to model disease-related cellular and molecular pathologies, including DS. In this review, we will discuss the limitations of mouse models of DS and how these can be addressed using recent advancements in modelling DS using human iPSCs and iPSC-mouse chimeras, and potential applications of iPSCs in preclinical studies for DS-AD.
Collapse
|
36
|
Lim JY, Lee JE, Park SA, Park SI, Yon JM, Park JA, Jeun SS, Kim SJ, Lee HJ, Kim SW, Yang SH. Protective Effect of Human-Neural-Crest-Derived Nasal Turbinate Stem Cells against Amyloid-β Neurotoxicity through Inhibition of Osteopontin in a Human Cerebral Organoid Model of Alzheimer’s Disease. Cells 2022; 11:cells11061029. [PMID: 35326480 PMCID: PMC8947560 DOI: 10.3390/cells11061029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to validate the use of human brain organoids (hBOs) to investigate the therapeutic potential and mechanism of human-neural-crest-derived nasal turbinate stem cells (hNTSCs) in models of Alzheimer’s disease (AD). We generated hBOs from human induced pluripotent stem cells, investigated their characteristics according to neuronal markers and electrophysiological features, and then evaluated the protective effect of hNTSCs against amyloid-β peptide (Aβ1–42) neurotoxic activity in vitro in hBOs and in vivo in a mouse model of AD. Treatment of hBOs with Aβ1–42 induced neuronal cell death concomitant with decreased expression of neuronal markers, which was suppressed by hNTSCs cocultured under Aβ1–42 exposure. Cytokine array showed a significantly decreased level of osteopontin (OPN) in hBOs with hNTSC coculture compared with hBOs only in the presence of Aβ1–42. Silencing OPN via siRNA suppressed Aβ-induced neuronal cell death in cell culture. Notably, compared with PBS, hNTSC transplantation significantly enhanced performance on the Morris water maze, with reduced levels of OPN after transplantation in a mouse model of AD. These findings reveal that hBO models are useful to evaluate the therapeutic effect and mechanism of stem cells for application in treating AD.
Collapse
Affiliation(s)
- Jung Yeon Lim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jung Eun Lee
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Kyonggi-do, Korea
| | - Soon A Park
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sang In Park
- Institute of Catholic Integrative Medicine (ICIM), Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Korea
| | - Jung-Min Yon
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jeong-Ah Park
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seung Joon Kim
- Division of Pulmonology, Critical Care and Allergy, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Hong Jun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 28644, Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seung Ho Yang
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Kyonggi-do, Korea
| |
Collapse
|
37
|
Sharma KD, Alghazali KM, Hamzah RN, Pandanaboina SC, Nima Alsudani ZA, Muhi M, Watanabe F, Zhou GL, Biris AS, Xie JY. Gold Nanorod Substrate for Rat Fetal Neural Stem Cell Differentiation into Oligodendrocytes. NANOMATERIALS 2022; 12:nano12060929. [PMID: 35335742 PMCID: PMC8953860 DOI: 10.3390/nano12060929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023]
Abstract
Gold nanorods (AuNRs) have been proposed to promote stem cell differentiation in vitro and in vivo. In this study, we examined a particular type of AuNR in supporting the differentiation of rat fetal neural stem cells (NSCs) into oligodendrocytes (ODCs). AuNRs were synthesized according to the seed-mediated method resulting in nanorods with an aspect ratio of around 3 (~12 nm diameter, 36 nm length) and plasmon resonance at 520 and 780 nm, as confirmed by transmission electron microscopy (TEM) and UV-vis spectroscopy, respectively. A layer-by-layer approach was used to fabricate the AuNR substrate on the functionalized glass coverslips. NSCs were propagated for 10 days using fibroblast growth factor, platelet-derived growth-factor-supplemented culture media, and differentiated on an AuNR or poly-D-lysine (PDL)-coated surface using differentiation media containing triiodothyronine for three weeks. Results showed that NSCs survived better and differentiated faster on the AuNRs compared to the PDL surface. By week 1, almost all cells had differentiated on the AuNR substrate, whereas only ~60% differentiated on the PDL surface, with similar percentages of ODCs and astrocytes. This study indicates that functionalized AuNR substrate does promote NSC differentiation and could be a viable tool for tissue engineering to support the differentiation of stem cells.
Collapse
Affiliation(s)
- Krishna Deo Sharma
- Molecular Biosciences Graduate Program, Arkansas State University, State University, AR 72467, USA; (K.D.S.); (G.-L.Z.)
| | - Karrer M. Alghazali
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (K.M.A.); (R.N.H.); (Z.A.N.A.); (M.M.); (F.W.)
- NuShores BioSciences LLC, Little Rock, AR 72211, USA
| | - Rabab N. Hamzah
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (K.M.A.); (R.N.H.); (Z.A.N.A.); (M.M.); (F.W.)
| | | | - Zeid A. Nima Alsudani
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (K.M.A.); (R.N.H.); (Z.A.N.A.); (M.M.); (F.W.)
| | - Malek Muhi
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (K.M.A.); (R.N.H.); (Z.A.N.A.); (M.M.); (F.W.)
| | - Fumiya Watanabe
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (K.M.A.); (R.N.H.); (Z.A.N.A.); (M.M.); (F.W.)
| | - Guo-Lei Zhou
- Molecular Biosciences Graduate Program, Arkansas State University, State University, AR 72467, USA; (K.D.S.); (G.-L.Z.)
- Department of Biological Sciences, Arkansas State University, State University, AR 72467, USA
| | - Alexandru S. Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (K.M.A.); (R.N.H.); (Z.A.N.A.); (M.M.); (F.W.)
- Correspondence: (A.S.B.); (J.Y.X.); Tel.: +1-501-916-3456 (A.S.B.); +1-870-680-8877 (J.Y.X.); Fax: +1-501-916-3601 (A.S.B.); +1-870-680-8845 (J.Y.X.)
| | - Jennifer Yanhua Xie
- Molecular Biosciences Graduate Program, Arkansas State University, State University, AR 72467, USA; (K.D.S.); (G.-L.Z.)
- Department of Basic Sciences, New York Institute of Technology College of Osteopathic Medicine, Arkansas State University, Jonesboro, AR 72401, USA
- Correspondence: (A.S.B.); (J.Y.X.); Tel.: +1-501-916-3456 (A.S.B.); +1-870-680-8877 (J.Y.X.); Fax: +1-501-916-3601 (A.S.B.); +1-870-680-8845 (J.Y.X.)
| |
Collapse
|
38
|
Failure of Alzheimer’s Mice Brain Resident Neural Precursor Cells in Supporting Microglia-Mediated Amyloid β Clearance. Cells 2022; 11:cells11050876. [PMID: 35269501 PMCID: PMC8909275 DOI: 10.3390/cells11050876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
The failure of brain microglia to clear excess amyloid β (Aβ) is considered a leading cause of the progression of Alzheimer’s disease pathology. Resident brain neural precursor cells (NPCs) possess immune-modulatory and neuro-protective properties, which are thought to maintain brain homeostasis. We have recently showed that resident mouse brain NPCs exhibit an acquired decline in their trophic properties in the Alzheimer’s disease brain environment. Therefore, we hypothesized that functional NPCs may support microglial phagocytic activity, and that NPCs derived from the adult AD mouse brain may fail to support the clearance of Aβ by microglia. We first identified in the AD brain, in vivo and ex vivo, a subpopulation of microglia that express high Aβ phagocytic activity. Time-lapse microscopy showed that co-culturing newborn NPCs with microglia induced a significant increase in the fraction of microglia with high Aβ phagocytic activity. Freshly isolated NPCs from adult wild type, but not AD, mouse brain, induced an increase in the fraction of microglia with high Aβ phagocytic activity. Finally, we showed that NPCs also possess the ability to promote Aβ degradation within the microglia with high Aβ phagocytic activity. Thus, resident brain NPCs support microglial function to clear Aβ, but NPCs derived from the AD environment fail to do so. We suggest that the failure of AD brain NPCs to support Aβ clearance from the brain by microglia may accelerate disease pathology.
Collapse
|
39
|
Karvelas N, Bennett S, Politis G, Kouris NI, Kole C. Advances in stem cell therapy in Alzheimer's disease: a comprehensive clinical trial review. Stem Cell Investig 2022; 9:2. [PMID: 35280344 PMCID: PMC8898169 DOI: 10.21037/sci-2021-063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/27/2022] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia responsible for more than 121,499 deaths from AD in 2019 making AD the sixth-leading cause in the United States. AD is a progressive neurodegenerative disorder characterized by decline of memory, behavioral impairments that affects a person's ability to function independently ultimately leading to death. The current pressing need for a treatment for (AD) and advances in the field of cell therapy, has rendered stem cell therapeutics a promising field of research. Despite advancements in stem cell technology, confirmed by encouraging pre-clinical utilization of stem cells in AD animal models, the number of clinical trials evaluating the efficacy of stem cell therapy is limited, with the results of many ongoing clinical trials on cell therapy for AD still pending. Mesenchymal stem cells (MSCs) have been the main focus in these studies, reporting encouraging results concerning safety profile, however their efficacy remains unproven. In the current article we review the latest advances regarding different sources of stem cell therapy and present a comprehensive list of every available clinical trial in national and international registries. Finally, we discuss drawbacks arising from AD pathology and technical limitations that hinder the transition of stem cell technology from bench to bedside. Our findings emphasize the need to increase clinical trials towards uncovering the mode of action and the underlying therapeutic mechanisms of transplanted cells as well as the molecular mechanisms controlling regeneration and neuronal microenvironment.
Collapse
Affiliation(s)
- Nikolaos Karvelas
- Faculty of Medicine, National and Kapodistrian University of Athens, Athina, Greece
| | | | - Georgios Politis
- Faculty of Medicine, National and Kapodistrian University of Athens, Athina, Greece
| | | | - Christo Kole
- Faculty of Medicine, National and Kapodistrian University of Athens, Athina, Greece
| |
Collapse
|
40
|
Conversion of Human Fibroblasts into Induced Neural Stem Cells by Small Molecules. Int J Mol Sci 2022; 23:ijms23031740. [PMID: 35163660 PMCID: PMC8835839 DOI: 10.3390/ijms23031740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 02/05/2023] Open
Abstract
Induced neural stem cells (iNSCs) reprogrammed from somatic cells hold great potentials for drug discovery, disease modelling and the treatment of neurological diseases. Although studies have shown that human somatic cells can be converted into iNSCs by introducing transcription factors, these iNSCs are unlikely to be used for clinical application due to the safety concern of using exogenous genes and viral transduction vectors. Here, we report the successful conversion of human fibroblasts into iNSCs using a cocktail of small molecules. Furthermore, our results demonstrate that these human iNSCs (hiNSCs) have similar gene expression profiles to bona fide NSCs, can proliferate, and are capable of differentiating into glial cells and functional neurons. This study collectively describes a novel approach based on small molecules to produce hiNSCs from human fibroblasts, which may be useful for both research and therapeutic purposes.
Collapse
|
41
|
Luciani M, Garsia C, Mangiameli E, Meneghini V, Gritti A. Intracerebroventricular transplantation of human iPSC-derived neural stem cells (hiPSC-NSCs) into neonatal mice. Methods Cell Biol 2022; 171:127-147. [DOI: 10.1016/bs.mcb.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Jordan S, Zielinski M, Kortylewski M, Kuhn T, Bystritsky A. Noninvasive Delivery of Biologicals to the Brain. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:64-70. [PMID: 35746928 PMCID: PMC9063603 DOI: 10.1176/appi.focus.20210028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the past, psychotherapy and neuropharmacological approaches have been the most common treatments for disordered thoughts, moods, and behaviors. One new path of brain therapeutics is in the deployment of noninvasive approaches designed to reprogram brain function at the cellular level. Treatment at the cellular level may be considered for a wide array of disorders, ranging from mood disorders to neurodegenerative disorders. Brain-targeted biological therapy may provide minimally invasive and accurate delivery of treatment. The present article discusses the hurdles and advances that characterize the pathway to this goal.
Collapse
|
43
|
Zhang HA, Yuan CX, Liu KF, Yang QF, Zhao J, Li H, Yang QH, Song D, Quan ZZ, Qing H. Neural stem cell transplantation alleviates functional cognitive deficits in a mouse model of tauopathy. Neural Regen Res 2022; 17:152-162. [PMID: 34100451 PMCID: PMC8451553 DOI: 10.4103/1673-5374.314324] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The mechanisms of the transplantation of neural stem cells (NSCs) in the treatment of Alzheimer’s disease remain poorly understood. In this study, NSCs were transplanted into the hippocampal CA1 region of the rTg (tau P301L) 4510 mouse model, a tauopathy model that is thought to reflect the tau pathology associated with Alzheimer’s disease. The results revealed that NSC transplantation reduced the abnormal aggregation of tau, resulting in significant improvements in the short-term memory of the tauopathy model mice. Compared with wild-type and phosphate-buffered saline (PBS)-treated mice, mice that received NSC transplantations were characterized by changes in the expression of multiple proteins in brain tissue, particularly those related to the regulation of tau aggregation or misfolding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology (GO) function analysis revealed that these proteins were primarily enriched in pathways associated with long-term potentiation, neurogenesis, and other neurobiological processes. Changes in the expression levels of key proteins were verified by western blot assays. These data provided clues to improve the understanding of the functional capacity associated with NSC transplantation in Alzheimer’s disease treatment. This study was approved by the Beijing Animal Ethics Association and Ethics Committee of Beijing Institute of Technology (approval No. SYXK-BIT-school of life science-2017-M03) in 2017.
Collapse
Affiliation(s)
- He-Ao Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Chun-Xu Yuan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ke-Fu Liu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Qi-Fan Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Juan Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Qing-Hu Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhen-Zhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
44
|
Santos SIP, de Oliveira VC, Pieri NCG, Bressan FF, Ambrósio CE, Feitosa MLT. Isolation and characterization of neural stem cells from fetal canine spinal cord. Neurosci Lett 2021; 765:136293. [PMID: 34662661 DOI: 10.1016/j.neulet.2021.136293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
Neurogenesis in adult mammals occurs mainly in the subventricular and subgranular areas of the brain, but there are also reports of its occurrence in the spinal cord. In a study on rats, neural stem cells and neuroprogenitor cells could be obtained through primary spinal cord culture, but there are no studies on these cells in canine species, to date. Dogs represent an appropriate animal model for studies on neurogenesis and neurological disorders. In addition, they are animals of great affective value, and the therapeutic use of neural stem cells can represent a breakthrough in regenerative veterinary medicine. Therefore, this study aimed to determine a protocol for the isolation, culture, and characterization of neural and neuroprogenitor stem cells derived from the spinal cord of canine fetuses. The cells were isolated from spinal cord fragments and cultured in serum-free culture medium supplemented with EGF and FGF-2 growth factors. These cells were observed daily by optical microscopy to analyze their morphological characteristics. From the third day in vitro, it was possible to observe translucent cell groupings, similar to the neurospheres, which approximately ranged from 50 µm to 200 µm at seven days in vitro. Throughout the culture period, the neurospheres developed ribbons in their periphery that migrated and communicated with other neurospheres. RT-PCR revealed that the cells expressed the characteristic genes SOX2, NESTIN, and GFAP. In addition to gene expression, the cells were phenotypically marked in the immunofluorescence assay for the proteins Nestin, GFAP, and β-tubulin III, characterizing them as neurospheres. Our results suggest that the spinal cord may be a source of neural stem cells and neural progenitor cells in canine fetuses. These cells may be an interesting option for neurogenesis and neuroregenerative therapy studies.
Collapse
Affiliation(s)
- Sarah Ingrid Pinto Santos
- Department of Veterinary Clinics, State University of Maranhão, Maranhão, Brazil; Faculty of Animal Science and Food Engineering, Sao Paulo University, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
45
|
Liu D, Bobrovskaya L, Zhou XF. Cell Therapy for Neurological Disorders: The Perspective of Promising Cells. BIOLOGY 2021; 10:1142. [PMID: 34827135 PMCID: PMC8614777 DOI: 10.3390/biology10111142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
Neurological disorders are big public health challenges that are afflicting hundreds of millions of people around the world. Although many conventional pharmacological therapies have been tested in patients, their therapeutic efficacies to alleviate their symptoms and slow down the course of the diseases are usually limited. Cell therapy has attracted the interest of many researchers in the last several decades and has brought new hope for treating neurological disorders. Moreover, numerous studies have shown promising results. However, none of the studies has led to a promising therapy for patients with neurological disorders, despite the ongoing and completed clinical trials. There are many factors that may affect the outcome of cell therapy for neurological disorders due to the complexity of the nervous system, especially cell types for transplantation and the specific disease for treatment. This paper provides a review of the various cell types from humans that may be clinically used for neurological disorders, based on their characteristics and current progress in related studies.
Collapse
Affiliation(s)
| | | | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia; (D.L.); (L.B.)
| |
Collapse
|
46
|
Engrafted stem cell therapy for Alzheimer's disease: A promising treatment strategy with clinical outcome. J Control Release 2021; 338:837-857. [PMID: 34509587 DOI: 10.1016/j.jconrel.2021.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022]
Abstract
To date, although the microscopic alterations present in Alzheimer's disease (AD) have been well known for over a century only a handful of symptomatic treatments have been developed which are a far cry from a full cure providing volatile benefits. In this context, the intervention of stem cell therapy (SCT) has been proposed as an auxiliary treatment for AD as suggested by the rising number of pre-clinical studies that stem cell engraftment could provide an exciting future treatment regimen against neurodegeneration. Although, most of the primary enthusiasm about this approach was based on replacing deteriorating neurons, the latest studies have implied that the positive modulations fostered by stem cells are fuelled by bystander effects. Present review provides a detailed update on stem cell therapy for AD along with meticulous discussion regarding challenges in developing different stem cells from an aspect of experiment to clinical research and their potential in the milieu of AD hallmarks. Specifically, we focus and provide in depth view on recent advancements in the discipline of SCT aiming to repopulate or regenerate the degenerating neuronal circuitry in AD using stem-cell-on-a-chip and 3D bioprinting techniques. The focus is specifically on the successful restoration of cognitive functions upon engraftment of stem cells on in vivo models for the benefit of the current researchers and their understanding about the status of SCT in AD and finally summarizing on what future holds for SCT in the treatment of AD.
Collapse
|
47
|
Chan HJ, Yanshree, Roy J, Tipoe GL, Fung ML, Lim LW. Therapeutic Potential of Human Stem Cell Implantation in Alzheimer's Disease. Int J Mol Sci 2021; 22:10151. [PMID: 34576314 PMCID: PMC8471075 DOI: 10.3390/ijms221810151] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive debilitating neurodegenerative disease and the most common form of dementia in the older population. At present, there is no definitive effective treatment for AD. Therefore, researchers are now looking at stem cell therapy as a possible treatment for AD, but whether stem cells are safe and effective in humans is still not clear. In this narrative review, we discuss both preclinical studies and clinical trials on the therapeutic potential of human stem cells in AD. Preclinical studies have successfully differentiated stem cells into neurons in vitro, indicating the potential viability of stem cell therapy in neurodegenerative diseases. Preclinical studies have also shown that stem cell therapy is safe and effective in improving cognitive performance in animal models, as demonstrated in the Morris water maze test and novel object recognition test. Although few clinical trials have been completed and many trials are still in phase I and II, the initial results confirm the outcomes of the preclinical studies. However, limitations like rejection, tumorigenicity, and ethical issues are still barriers to the advancement of stem cell therapy. In conclusion, the use of stem cells in the treatment of AD shows promise in terms of effectiveness and safety.
Collapse
Affiliation(s)
| | | | | | | | | | - Lee Wei Lim
- School of Biomedical, Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (H.J.C.); (Y.); (J.R.); (G.L.T.); (M.-L.F.)
| |
Collapse
|
48
|
Mitra S, Gera R, Linderoth B, Lind G, Wahlberg L, Almqvist P, Behbahani H, Eriksdotter M. A Review of Techniques for Biodelivery of Nerve Growth Factor (NGF) to the Brain in Relation to Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:167-191. [PMID: 34453298 DOI: 10.1007/978-3-030-74046-7_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Age-dependent progressive neurodegeneration and associated cognitive dysfunction represent a serious concern worldwide. Currently, dementia accounts for the fifth highest cause of death, among which Alzheimer's disease (AD) represents more than 60% of the cases. AD is associated with progressive cognitive dysfunction which affects daily life of the affected individual and associated family. The cognitive dysfunctions are at least partially due to the degeneration of a specific set of neurons (cholinergic neurons) whose cell bodies are situated in the basal forebrain region (basal forebrain cholinergic neurons, BFCNs) but innervate wide areas of the brain. It has been explicitly shown that the delivery of the neurotrophic protein nerve growth factor (NGF) can rescue BFCNs and restore cognitive dysfunction, making NGF interesting as a potential therapeutic substance for AD. Unfortunately, NGF cannot pass through the blood-brain barrier (BBB) and thus peripheral administration of NGF protein is not viable therapeutically. NGF must be delivered in a way which will allow its brain penetration and availability to the BFCNs to modulate BFCN activity and viability. Over the past few decades, various methodologies have been developed to deliver NGF to the brain tissue. In this chapter, NGF delivery methods are discussed in the context of AD.
Collapse
Affiliation(s)
- Sumonto Mitra
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.
| | - Ruchi Gera
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Linderoth
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Göran Lind
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Per Almqvist
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Homira Behbahani
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.,Karolinska Universitets laboratoriet (LNP5), Karolinska University Hospital, Stockholm, Sweden
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
49
|
Aishwarya L, Arun D, Kannan S. Stem cells as a potential therapeutic option for treating neurodegenerative diseases. Curr Stem Cell Res Ther 2021; 17:590-605. [PMID: 35135464 DOI: 10.2174/1574888x16666210810105136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022]
Abstract
In future, neurodegenerative diseases will take over cancer's place and become the major cause of death in the world, especially in developed countries. Advancements in the medical field and its facilities have led to an increase in the old age population, and thus contributing to the increase in number of people suffering from neurodegenerative diseases. Economically it is of a great burden to society and the affected family. No current treatment aims to replace, protect, and regenerate lost neurons; instead, it alleviates the symptoms, extends the life span by a few months and creates severe side effects. Moreover, people who are affected are physically dependent for performing their basic activities, which makes their life miserable. There is an urgent need for therapy that could be able to overcome the deficits of conventional therapy for neurodegenerative diseases. Stem cells, the unspecialized cells with the properties of self-renewing and potency to differentiate into various cells types can become a potent therapeutic option for neurodegenerative diseases. Stem cells have been widely used in clinical trials to evaluate their potential in curing different types of ailments. In this review, we discuss the various types of stem cells and their potential use in the treatment of neurodegenerative disease based on published preclinical and clinical studies.
Collapse
Affiliation(s)
- Aishwarya L
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai-600 116. India
| | - Dharmarajan Arun
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai-600 116. India
| | - Suresh Kannan
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai-600 116. India
| |
Collapse
|
50
|
Lim JY, In Park S, Park SA, Jeon JH, Jung HY, Yon JM, Jeun SS, Lim HK, Kim SW. Potential application of human neural crest-derived nasal turbinate stem cells for the treatment of neuropathology and impaired cognition in models of Alzheimer's disease. Stem Cell Res Ther 2021; 12:402. [PMID: 34256823 PMCID: PMC8278635 DOI: 10.1186/s13287-021-02489-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
Background Stem cell transplantation is a fascinating therapeutic approach for the treatment of many neurodegenerative disorders; however, clinical trials using stem cells have not been as effective as expected based on preclinical studies. The aim of this study is to validate the hypothesis that human neural crest-derived nasal turbinate stem cells (hNTSCs) are a clinically promising therapeutic source of adult stem cells for the treatment of Alzheimer’s disease (AD). Methods hNTSCs were evaluated in comparison with human bone marrow-derived mesenchymal stem cells (hBM-MSCs) according to the effect of transplantation on AD pathology, including PET/CT neuroimaging, immune status indicated by microglial numbers and autophagic capacity, neuronal survival, and cognition, in a 5 × FAD transgenic mouse model of AD. Results We demonstrated that hNTSCs showed a high proliferative capacity and great neurogenic properties in vitro. Compared with hBM-MSC transplantation, hNTSC transplantation markedly reduced Aβ42 levels and plaque formation in the brains of the 5 × FAD transgenic AD mice on neuroimaging, concomitant with increased survival of hippocampal and cortex neurons. Moreover, hNTSCs strongly modulated immune status by reducing the number of microglia and the expression of the inflammatory cytokine IL-6 and upregulating autophagic capacity at 7 weeks after transplantation in AD models. Notably, compared with transplantation of hBM-MSCs, transplantation of hNTSCs significantly enhanced performance on the Morris water maze, with an increased level of TIMP2, which is necessary for spatial memory in young mice and neurons; this difference could be explained by the high engraftment of hNTSCs after transplantation. Conclusion The reliable evidence provided by these findings reveals a promising therapeutic effect of hNTSCs and indicates a step forward the clinical application of hNTSCs in patients with AD.
Collapse
Affiliation(s)
- Jung Yeon Lim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Sang In Park
- Institute of Catholic Integrative Medicine (ICIM), Incheon St. Mary's Hospital, The Catholic University of Korea, 56 Dongsu-ro, Bupyeong-gu, Incheon, 21431, Republic of Korea
| | - Soon A Park
- Department of Neurosurgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jung Ho Jeon
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Ho Yong Jung
- Institute of Catholic Integrative Medicine (ICIM), Incheon St. Mary's Hospital, The Catholic University of Korea, 56 Dongsu-ro, Bupyeong-gu, Incheon, 21431, Republic of Korea
| | - Jung-Min Yon
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, The Catholic University of Korea, 63-ro 10, Yeoungdeungpo-gu, Seoul, 07345, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|