1
|
Liu S, Zahorchak AF, Dobrowolski SF, Metes DM, Thomson AW, Abdelsamed HA. Epigenetic signature of human vitamin D3 and IL-10 conditioned regulatory DCs. Sci Rep 2024; 14:28748. [PMID: 39567586 PMCID: PMC11579388 DOI: 10.1038/s41598-024-79299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
During differentiation of precursor cells into their destination cell type, cell fate decisions are enforced by a broad array of epigenetic modifications, including DNA methylation, which is reflected by the transcriptome. Thus, regulatory dendritic cells (DCregs) acquire specific epigenetic programs and immunomodulatory functions during their differentiation from monocytes. To define the epigenetic signature of human DCregs generated in vitamin D3 (vitD3) and IL-10 compared to immune stimulatory DCs (sDCs), we measured levels of DNA methylation by whole genome bisulfite sequencing (WGBS). Distinct DNA methylation patterns were acquired by DCregs compared to sDCs. These patterns were located mainly in transcriptional regulatory regions. Associated genes were enriched in STAT3-signaling and valine catabolism in DCregs; conversely, pro-inflammatory pathways, e.g. pattern recognition receptor signaling, were enriched in sDCs. Further, DCreg differentially-methylated regions (DMRs) were enriched in binding motifs specific to the immunomodulatory transcription factor Krueppel-like factor 11 (KLF11), while activator protein-1 (AP-1) (Fos:Jun) transcription factor-binding motifs were enriched in sDC DMRs. Using publicly-available data-sets, we defined a common epigenetic signature shared between DCregs generated in vitD3 and IL-10, or dexamethasone or vitD3 alone. These insights may help pave the way for design of epigenetic-based approaches to enhance the production of DCregs as effective therapeutic agents.
Collapse
Affiliation(s)
- Silvia Liu
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, USA
| | - Alan F Zahorchak
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA
| | | | - Diana M Metes
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Angus W Thomson
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA.
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA.
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, USA.
| | - Hossam A Abdelsamed
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, USA.
- Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA.
- Immunology Center of Georgia, Augusta University, Augusta, USA.
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, USA.
| |
Collapse
|
2
|
Iesari S, Nava FL, Zais IE, Coubeau L, Ferraresso M, Favi E, Lerut J. Advancing immunosuppression in liver transplantation: A narrative review. Hepatobiliary Pancreat Dis Int 2024; 23:441-448. [PMID: 38523030 DOI: 10.1016/j.hbpd.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Immunosuppression is essential to ensure recipient and graft survivals after liver transplantation (LT). However, our understanding and management of the immune system remain suboptimal. Current immunosuppressive therapy cannot selectively inhibit the graft-specific immune response and entails a significant risk of serious side effects, i.e., among others, de novo cancers, infections, cardiovascular events, renal failure, metabolic syndrome, and late graft fibrosis, with progressive loss of graft function. Pharmacological research, aimed to develop alternative immunosuppressive agents in LT, is behind other solid-organ transplantation subspecialties, and, therefore, the development of new compounds and strategies should get priority in LT. The research trajectories cover mechanisms to induce T-cell exhaustion, to inhibit co-stimulation, to mitigate non-antigen-specific inflammatory response, and, lastly, to minimize the development and action of donor-specific antibodies. Moreover, while cellular modulation techniques are complex, active research is underway to foster the action of T-regulatory cells, to induce tolerogenic dendritic cells, and to promote the function of B-regulatory cells. We herein discuss current lines of research in clinical immunosuppression, particularly focusing on possible applications in the LT setting.
Collapse
Affiliation(s)
- Samuele Iesari
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy
| | - Francesca Laura Nava
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy
| | - Ilaria Elena Zais
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy
| | - Laurent Coubeau
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, 10 Avenue Hippocrate, 1200 Brussels, Belgium; Service de Chirurgie et Transplantation Abdominale, Cliniques Universitaires Saint-Luc, 55 Avenue Hippocrate, 1200 Brussels, Belgium
| | - Mariano Ferraresso
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 19 Via della Commenda, 20122 Milan, Italy
| | - Evaldo Favi
- General Surgery and Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 15 Via della Commenda, 20122 Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 19 Via della Commenda, 20122 Milan, Italy.
| | - Jan Lerut
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, 10 Avenue Hippocrate, 1200 Brussels, Belgium
| |
Collapse
|
3
|
Morali K, Giacomello G, Vuono M, Gregori S. Leveraging current insights on IL-10-producing dendritic cells for developing effective immunotherapeutic approaches. FEBS Lett 2024. [PMID: 39266465 DOI: 10.1002/1873-3468.15017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/14/2024]
Abstract
Dendritic cells (DC) are professional antigen-presenting cells involved in promoting and controlling immune responses. Different subsets of DC, named tolerogenic (tol)DC, play a critical role in the maintenance of tissue homeostasis and in fostering tolerance. These unique skills make tolDC especially attractive for strategies aimed at re-establishing/inducing tolerance in immune-mediated conditions. The generation of potent tolDC in vitro from peripheral blood monocytes has seen remarkable advancements. TolDC modulate T cell dynamics by favoring regulatory T cells (Tregs) and curbing effector/pathogenic T cells. Among the several methods developed for in vitro tolDC generation, IL-10 conditioning has been proven to be the most efficient, as IL-10-modulated tolDC were demonstrated to promote Tregs with the strongest suppressive activities. Investigating the molecular, metabolic, and functional profiles of tolDC uncovers essential pathways that facilitate their immunoregulatory functions. This Review provides an overview of current knowledge on the role of tolDC in health and disease, focusing on IL-10 production, functional characterization of in vitro generated tolDC, molecular and metabolic changes occurring in tolDC induced by tolerogenic agents, clinical applications of tolDC-based therapy, and finally new perspectives in the generation of effective tolDC.
Collapse
Affiliation(s)
- Konstantina Morali
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gloria Giacomello
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- PhD Course in Medicina Traslazionale e Molecolare (DIMET), University of Milano Bicocca, Italy
| | - Michela Vuono
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- PhD Course in Molecular Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Silvia Gregori
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
4
|
Carcone A, Mortreux F, Alais S, Mathieu C, Journo C, Dutartre H. Peculiar transcriptional reprogramming with functional impairment of dendritic cells upon exposure to transformed HTLV-1-infected cells. PLoS Pathog 2024; 20:e1012555. [PMID: 39283919 PMCID: PMC11426526 DOI: 10.1371/journal.ppat.1012555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/26/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
Manipulation of immune cell functions, independently of direct infection of these cells, emerges as a key process in viral pathophysiology. Chronic infection by Human T-cell Leukemia Virus type 1 (HTLV-1) is associated with immune dysfunctions, including misdirected responses of dendritic cells (DCs). Here, we interrogate the ability of transformed HTLV-1-infected T cells to manipulate human DC functions. We show that exposure to transformed HTLV-1-infected T cells induces a biased and peculiar transcriptional signature in monocyte-derived DCs, associated with an inefficient maturation and a poor responsiveness to subsequent stimulation by a TLR4 agonist. This poor responsiveness is also associated with a unique transcriptional landscape characterized by a set of genes whose expression is either conferred, impaired or abolished by HTLV-1 pre-exposure. Induction of this functional impairment requires several hours of coculture with transformed HTLV-1-infected cells, and associated mechanisms driven by viral capture, cell-cell contacts, and soluble mediators. Altogether, this cross-talk between infected T cells and DCs illustrate how HTLV-1 might co-opt communications between cells to induce a unique local tolerogenic immune microenvironment suitable for its own persistence.
Collapse
Affiliation(s)
- Auriane Carcone
- Centre International de Recherche en Infectiologie, Retroviral Oncogenesis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| | - Franck Mortreux
- Laboratory of Biology and Modelling of the Cell, University of Lyon, ENS de Lyon, University Claude Bernard, CNRS UMR 5239, Inserm U1210, Lyon, France
| | - Sandrine Alais
- Centre International de Recherche en Infectiologie, Retroviral Oncogenesis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| | - Cyrille Mathieu
- Centre International de Recherche en Infectiologie, équipe Neuro-Invasion, TROpism and VIRal Encephalitis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| | - Chloé Journo
- Centre International de Recherche en Infectiologie, Retroviral Oncogenesis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| | - Hélène Dutartre
- Centre International de Recherche en Infectiologie, Retroviral Oncogenesis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| |
Collapse
|
5
|
Malacco NL, Michi AN, Siciliani E, Madrigal AG, Sternlieb T, Fontes G, King IL, Cestari I, Jardim A, Stevenson MM, Lopes F. Helminth-derived metabolites induce tolerogenic functional, metabolic, and transcriptional signatures in dendritic cells that attenuate experimental colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.26.525718. [PMID: 39211070 PMCID: PMC11360915 DOI: 10.1101/2023.01.26.525718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory diseases in which abdominal pain, bloody diarrhea, weight loss, and fatigue collectively result in diminished quality of patient life. The disappearance of intestinal helminth infections in Western societies is associated with an increased prevalence of IBD and other immune-mediated inflammatory diseases. Evidence indicates that helminths induce tolerogenic dendritic cells (tolDCs), which promote intestinal tolerance and attenuate intestinal inflammation characteristic of IBD, but the exact mechanism is unclear. Helminth-derived excretory-secretory (HES) products including macromolecules, proteins, and polysaccharides have been shown to modulate the antigen presenting function of DCs with down-stream effects on effector CD4 + T cells. Previous studies indicate that DCs in helminth-infected animals induce tolerance to unrelated antigens and DCs exposed to HES display phenotypic and functional features of tolDCs. Here, we identify that nonpolar metabolites (HnpM) produced by a helminth, the murine gastrointestinal nematode Heligmosomoides polygyrus bakeri (Hpb), induce tolDCs as evidenced by decreased LPS-induced TNF and increased IL-10 secretion and reduced expression of MHC-II, CD86, and CD40. Furthermore, these DCs inhibited OVA-specific CD4 + T cell proliferation and induced CD4 + Foxp3 + regulatory T cells. Adoptive transfer of HnpM-induced tolDCs attenuated DSS-induced intestinal inflammation characteristic of IBD. Mechanistically, HnpM induced metabolic and transcriptional signatures in BMDCs consistent with tolDCs. Collectively, our findings provide groundwork for further investigation into novel mechanisms regulating DC tolerance and the role of helminth secreted metabolites in attenuating intestinal inflammation associated with IBD. Summary Sentence: Metabolites produced by Heligmosomoides polygyrus induce metabolic and transcriptional changes in DCs consistent with tolDCs, and adoptive transfer of these DCs attenuated DSS-induced intestinal inflammation.
Collapse
|
6
|
Benne N, Ter Braake D, Porenta D, Lau CYJ, Mastrobattista E, Broere F. Autoantigen-Dexamethasone Conjugate-Loaded Liposomes Halt Arthritis Development in Mice. Adv Healthc Mater 2024; 13:e2304238. [PMID: 38295848 DOI: 10.1002/adhm.202304238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Indexed: 02/13/2024]
Abstract
There is no curative treatment for chronic auto-inflammatory diseases including rheumatoid arthritis, and current treatments can induce off-target side effects due to systemic immune suppression. This work has previously shown that dexamethasone-pulsed tolerogenic dendritic cells loaded with the arthritis-specific antigen human proteoglycan can suppress arthritis development in a proteoglycan-induced arthritis mouse model. To circumvent ex vivo dendritic cell culture, and enhance antigen-specific effects, drug delivery vehicles, such as liposomes, provide an interesting approach. Here, this work uses anionic 1,2-distearoyl-sn-glycero-3-phosphoglycerol liposomes with enhanced loading of human proteoglycan-dexamethasone conjugates by cationic lysine tetramer addition. Antigen-pulsed tolerogenic dendritic cells induced by liposomal dexamethasone in vitro enhanced antigen-specific regulatory T cells to a similar extent as dexamethasone-induced tolerogenic dendritic cells. In an inflammatory adoptive transfer model, mice injected with antigen-dexamethasone liposomes have significantly higher antigen-specific type 1 regulatory T cells than mice injected with antigen only. The liposomes significantly inhibit the progression of arthritis compared to controls in preventative and therapeutic proteoglycan-induced arthritis mouse models. This coincides with systemic tolerance induction and an increase in IL10 expression in the paws of mice. In conclusion, a single administration of autoantigen and dexamethasone-loaded liposomes seems to be a promising antigen-specific treatment strategy for arthritis in mice.
Collapse
Affiliation(s)
- Naomi Benne
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands
| | - Daniëlle Ter Braake
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands
| | - Deja Porenta
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Chun Yin Jerry Lau
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht, 3584 CG, The Netherlands
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Enrico Mastrobattista
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Femke Broere
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CL, The Netherlands
| |
Collapse
|
7
|
Adamik J, Munson PV, Maurer DM, Hartmann FJ, Bendall SC, Argüello RJ, Butterfield LH. Immuno-metabolic dendritic cell vaccine signatures associate with overall survival in vaccinated melanoma patients. Nat Commun 2023; 14:7211. [PMID: 37938561 PMCID: PMC10632482 DOI: 10.1038/s41467-023-42881-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023] Open
Abstract
Efficacy of cancer vaccines remains low and mechanistic understanding of antigen presenting cell function in cancer may improve vaccine design and outcomes. Here, we analyze the transcriptomic and immune-metabolic profiles of Dendritic Cells (DCs) from 35 subjects enrolled in a trial of DC vaccines in late-stage melanoma (NCT01622933). Multiple platforms identify metabolism as an important biomarker of DC function and patient overall survival (OS). We demonstrate multiple immune and metabolic gene expression pathway alterations, a functional decrease in OCR/OXPHOS and increase in ECAR/glycolysis in patient vaccines. To dissect molecular mechanisms, we utilize single cell SCENITH functional profiling and show patient clinical outcomes (OS) correlate with DC metabolic profile, and that metabolism is linked to immune phenotype. With single cell metabolic regulome profiling, we show that MCT1 (monocarboxylate transporter-1), a lactate transporter, is increased in patient DCs, as is glucose uptake and lactate secretion. Importantly, pre-vaccination circulating myeloid cells in patients used as precursors for DC vaccine generation are significantly skewed metabolically as are several DC subsets. Together, we demonstrate that the metabolic profile of DC is tightly associated with the immunostimulatory potential of DC vaccines from cancer patients. We link phenotypic and functional metabolic changes to immune signatures that correspond to suppressed DC differentiation.
Collapse
Affiliation(s)
- Juraj Adamik
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, 94129, USA
| | - Paul V Munson
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, 94129, USA
| | - Deena M Maurer
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, 94129, USA
| | - Felix J Hartmann
- Systems Immunology and Single-Cell Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sean C Bendall
- Department of Pathology, Stanford University, Palo Alto, CA, 94304, USA
| | - Rafael J Argüello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Lisa H Butterfield
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, 94129, USA.
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Li V, Binder MD, Kilpatrick TJ. The Tolerogenic Influence of Dexamethasone on Dendritic Cells Is Accompanied by the Induction of Efferocytosis, Promoted by MERTK. Int J Mol Sci 2023; 24:15903. [PMID: 37958886 PMCID: PMC10650502 DOI: 10.3390/ijms242115903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Many treatments for autoimmune diseases, caused by the loss of immune self-tolerance, are broadly immunosuppressive. Dendritic cells (DCs) can be induced to develop anti-inflammatory/tolerogenic properties to suppress aberrant self-directed immunity by promoting immune tolerance in an antigen-specific manner. Dexamethasone can generate tolerogenic DCs and upregulates MERTK expression. As MERTK can inhibit inflammation, we investigated whether dexamethasone's tolerogenic effects are mediated via MERTK, potentially providing a novel therapeutic approach. Monocyte-derived DCs were treated with dexamethasone, and with and without MERTK ligands or MERTK inhibitors. Flow cytometry was used to assess effects of MERTK modulation on co-stimulatory molecule expression, efferocytosis, cytokine secretion and T cell proliferation. The influence on expression of Rab17, which coordinates the diversion of efferocytosed material away from cell surface presentation, was assessed. Dexamethasone-treated DCs had upregulated MERTK expression, decreased expression of co-stimulatory molecules, maturation and proliferation of co-cultured T cells and increased uptake of myelin debris. MERTK ligands did not potentiate these properties, whilst specific MERTK inhibition only reversed dexamethasone's effect on myelin uptake. Cells undergoing efferocytosis had higher Rab17 expression. Dexamethasone-enhanced efferocytosis in DCs is MERTK-dependent and could exert its tolerogenic effects by increasing Rab17 expression to prevent the presentation of efferocytosed material on the cell surface to activate adaptive immune responses.
Collapse
Affiliation(s)
- Vivien Li
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia; (M.D.B.); (T.J.K.)
| | - Michele D. Binder
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia; (M.D.B.); (T.J.K.)
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Trevor J. Kilpatrick
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia; (M.D.B.); (T.J.K.)
| |
Collapse
|
9
|
van Wigcheren GF, Cuenca-Escalona J, Stelloo S, Brake J, Peeters E, Horrevorts SK, Frölich S, Ramos-Tomillero I, Wesseling-Rozendaal Y, van Herpen CML, van de Stolpe A, Vermeulen M, de Vries IJM, Figdor CG, Flórez-Grau G. Myeloid-derived suppressor cells and tolerogenic dendritic cells are distinctively induced by PI3K and Wnt signaling pathways. J Biol Chem 2023; 299:105276. [PMID: 37739035 PMCID: PMC10628850 DOI: 10.1016/j.jbc.2023.105276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 09/24/2023] Open
Abstract
Imbalanced immune responses are a prominent hallmark of cancer and autoimmunity. Myeloid cells can be overly suppressive, inhibiting protective immune responses or inactive not controlling autoreactive immune cells. Understanding the mechanisms that induce suppressive myeloid cells, such as myeloid-derived suppressor cells (MDSCs) and tolerogenic dendritic cells (TolDCs), can facilitate the development of immune-restoring therapeutic approaches. MDSCs are a major barrier for effective cancer immunotherapy by suppressing antitumor immune responses in cancer patients. TolDCs are administered to patients to promote immune tolerance with the intent to control autoimmune disease. Here, we investigated the development and suppressive/tolerogenic activity of human MDSCs and TolDCs to gain insight into signaling pathways that drive immunosuppression in these different myeloid subsets. Moreover, monocyte-derived MDSCs (M-MDSCs) generated in vitro were compared to M-MDSCs isolated from head-and-neck squamous cell carcinoma patients. PI3K-AKT signaling was identified as being crucial for the induction of human M-MDSCs. PI3K inhibition prevented the downregulation of HLA-DR and the upregulation of reactive oxygen species and MerTK. In addition, we show that the suppressive activity of dexamethasone-induced TolDCs is induced by β-catenin-dependent Wnt signaling. The identification of PI3K-AKT and Wnt signal transduction pathways as respective inducers of the immunomodulatory capacity of M-MDSCs and TolDCs provides opportunities to overcome suppressive myeloid cells in cancer patients and optimize therapeutic application of TolDCs. Lastly, the observed similarities between generated- and patient-derived M-MDSCs support the use of in vitro-generated M-MDSCs as powerful model to investigate the functionality of human MDSCs.
Collapse
Affiliation(s)
- Glenn F van Wigcheren
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands; Oncode Institute, The Netherlands
| | - Jorge Cuenca-Escalona
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Suzan Stelloo
- Oncode Institute, The Netherlands; Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Julia Brake
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Eline Peeters
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Sophie K Horrevorts
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Siebren Frölich
- Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Iván Ramos-Tomillero
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| | | | | | | | - Michiel Vermeulen
- Oncode Institute, The Netherlands; Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands; Oncode Institute, The Netherlands
| | - Georgina Flórez-Grau
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Li M. The role of vitamin D in chronic obstructive pulmonary disease with pulmonary hypertension. Pulm Circ 2023; 13:e12294. [PMID: 37808898 PMCID: PMC10551593 DOI: 10.1002/pul2.12294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/15/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023] Open
Abstract
Hypoxia pulmonary hypertension (PH) belongs to the third major category in PH classification. Chronic obstructive pulmonary disease (COPD) is a common cause of hypoxia PH. Low serum vitamin D concentration is considered to be a possible risk factor for chronic lung disease; epidemiological studies have found that vitamin D deficiency increases pulmonary artery pressure. Therefore, this study aimed to explore the role of vitamin D levels in COPD and chronic hypoxic PH. This retrospective study selected three groups of people as research subjects, including: Group N: normal control group (people without any chronic lung disease or PH); Group C: patients with COPD, but without PH; Group C + PH: patients with COPD and PH. Vitamin D levels and pulmonary artery pressure were observed in the three groups. Vitamin D levels of the three groups showed statistical differences in every pairwise comparison; the vitamin D level of Group C (20.27 ng/mL) was lower than Group N (23.48 ng/mL), Group C + PH was the lowest (14.92 ng/mL). The levels of vitamin D in the three groups in this study were generally low. Vitamin D is negatively correlated with pulmonary artery systolic blood pressure. Low vitamin D levels may have a certain relationship with the occurrence and development of COPD. Further reductions in vitamin D levels may influence the development of PH in COPD.
Collapse
Affiliation(s)
- Mengxi Li
- Department of Respiratory and Critical Care MedicineThe Affiliated People's Hospital of Ningbo UniversityNingboZhejiang ProvinceChina
| |
Collapse
|
11
|
Giannoukakis N. Tolerogenic dendritic cells in type 1 diabetes: no longer a concept. Front Immunol 2023; 14:1212641. [PMID: 37388741 PMCID: PMC10303908 DOI: 10.3389/fimmu.2023.1212641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Tolerogenic dendritic cells (tDC) arrest the progression of autoimmune-driven dysglycemia into clinical, insulin-requiring type 1 diabetes (T1D) and preserve a critical mass of β cells able to restore some degree of normoglycemia in new-onset clinical disease. The safety of tDC, generated ex vivo from peripheral blood leukocytes, has been demonstrated in phase I clinical studies. Accumulating evidence shows that tDC act via multiple layers of immune regulation arresting the action of pancreatic β cell-targeting effector lymphocytes. tDC share a number of phenotypes and mechanisms of action, independent of the method by which they are generated ex vivo. In the context of safety, this yields confidence that the time has come to test the best characterized tDC in phase II clinical trials in T1D, especially given that tDC are already being tested for other autoimmune conditions. The time is also now to refine purity markers and to "universalize" the methods by which tDC are generated. This review summarizes the current state of tDC therapy for T1D, presents points of intersection of the mechanisms of action that the different embodiments use to induce tolerance, and offers insights into outstanding matters to address as phase II studies are imminent. Finally, we present a proposal for co-administration and serially-alternating administration of tDC and T-regulatory cells (Tregs) as a synergistic and complementary approach to prevent and treat T1D.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
12
|
Aryl hydrocarbon receptor activity downstream of IL-10 signaling is required to promote regulatory functions in human dendritic cells. Cell Rep 2023; 42:112193. [PMID: 36870061 PMCID: PMC10066577 DOI: 10.1016/j.celrep.2023.112193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 12/06/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Interleukin (IL)-10 is a main player in peripheral immune tolerance, the physiological mechanism preventing immune reactions to self/harmless antigens. Here, we investigate IL-10-induced molecular mechanisms generating tolerogenic dendritic cells (tolDC) from monocytes. Using genomic studies, we show that IL-10 induces a pattern of accessible enhancers exploited by aryl hydrocarbon receptor (AHR) to promote expression of a set of core genes. We demonstrate that AHR activity occurs downstream of IL-10 signaling in myeloid cells and is required for the induction of tolerogenic activities in DC. Analyses of circulating DCs show that IL-10/AHR genomic signature is active in vivo in health. In multiple sclerosis patients, we instead observe significantly altered signature correlating with functional defects and reduced frequencies of IL-10-induced-tolDC in vitro and in vivo. Our studies identify molecular mechanisms controlling tolerogenic activities in human myeloid cells and may help in designing therapies to re-establish immune tolerance.
Collapse
|
13
|
Carenza C, Franzese S, Castagna A, Terzoli S, Simonelli M, Persico P, Bello L, Nibali MC, Pessina F, Kunderfranco P, Peano C, Balin S, Mikulak J, Calcaterra F, Bonecchi R, Savino B, Locati M, Della Bella S, Mavilio D. Perioperative corticosteroid treatment impairs tumor-infiltrating dendritic cells in patients with newly diagnosed adult-type diffuse gliomas. Front Immunol 2023; 13:1074762. [PMID: 36703985 PMCID: PMC9872516 DOI: 10.3389/fimmu.2022.1074762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Adult-type diffuse gliomas are malignant primary brain tumors characterized by very poor prognosis. Dendritic cells (DCs) are key in priming antitumor effector functions in cancer, but their role in gliomas remains poorly understood. Methods In this study, we characterized tumor-infiltrating DCs (TIDCs) in adult patients with newly diagnosed diffuse gliomas by using multi-parametric flow cytometry and single-cell RNA sequencing. Results We demonstrated that different subsets of DCs are present in the glioma microenvironment, whereas they are absent in cancer-free brain parenchyma. The largest cluster of TIDCs was characterized by a transcriptomic profile suggestive of severe functional impairment. Patients undergoing perioperative corticosteroid treatment showed a significant reduction of conventional DC1s, the DC subset with key functions in antitumor immunity. They also showed phenotypic and transcriptional evidence of a more severe functional impairment of TIDCs. Discussion Overall, the results of this study indicate that functionally impaired DCs are recruited in the glioma microenvironment. They are severely affected by dexamethasone administration, suggesting that the detrimental effects of corticosteroids on DCs may represent one of the mechanisms contributing to the already reported negative prognostic impact of steroids on glioma patient survival.
Collapse
Affiliation(s)
- Claudia Carenza
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy,Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Sara Franzese
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy,Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Alessandra Castagna
- Laboratory of Leukocyte Biology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Sara Terzoli
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Matteo Simonelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy,Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Pasquale Persico
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy,Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Lorenzo Bello
- Unit of Oncological Neurosurgery, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Marco Conti Nibali
- Unit of Oncological Neurosurgery, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy,Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Paolo Kunderfranco
- Bioinformatics Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Rozzano, Milan, Italy
| | - Simone Balin
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy,Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Francesca Calcaterra
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy,Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Raffaella Bonecchi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy,Laboratory of Chemokine Biology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Benedetta Savino
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy,Laboratory of Leukocyte Biology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy,Laboratory of Leukocyte Biology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Silvia Della Bella
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy,Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy,*Correspondence: Silvia Della Bella, ; Domenico Mavilio,
| | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy,Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy,*Correspondence: Silvia Della Bella, ; Domenico Mavilio,
| |
Collapse
|
14
|
NCoR1 controls immune tolerance in conventional dendritic cells by fine-tuning glycolysis and fatty acid oxidation. Redox Biol 2022; 59:102575. [PMID: 36565644 PMCID: PMC9804250 DOI: 10.1016/j.redox.2022.102575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) undergo rapid metabolic reprogramming to generate signal-specific immune responses. The fine control of cellular metabolism underlying DC immune tolerance remains elusive. We have recently reported that NCoR1 ablation generates immune-tolerant DCs through enhanced IL-10, IL-27 and SOCS3 expression. In this study, we did comprehensive metabolic profiling of these tolerogenic DCs and identified that they meet their energy requirements through enhanced glycolysis and oxidative phosphorylation (OXPHOS), supported by fatty acid oxidation-driven oxygen consumption. In addition, the reduced pyruvate and glutamine oxidation with a broken TCA cycle maintains the tolerogenic state of the cells. Mechanistically, the AKT-mTOR-HIF-1α-axis mediated glycolysis and CPT1a-driven β-oxidation were enhanced in these tolerogenic DCs. To confirm these observations, we used synthetic metabolic inhibitors and found that the combined inhibition of HIF-1α and CPT1a using KC7F2 and etomoxir, respectively, compromised the overall transcriptional signature of immunological tolerance including the regulatory cytokines IL-10 and IL-27. Functionally, treatment of tolerogenic DCs with dual KC7F2 and etomoxir treatment perturbed the polarization of co-cultured naïve CD4+ T helper (Th) cells towards Th1 than Tregs, ex vivo and in vivo. Physiologically, the Mycobacterium tuberculosis (Mtb) infection model depicted significantly reduced bacterial burden in BMcDC1 ex vivo and in CD103+ lung DCs in Mtb infected NCoR1DC-/-mice. The spleen of these infected animals also showed increased Th1-mediated responses in the inhibitor-treated group. These findings suggested strong involvement of NCoR1 in immune tolerance. Our validation in primary human monocyte-derived DCs (moDCs) showed diminished NCOR1 expression in dexamethasone-derived tolerogenic moDCs along with suppression of CD4+T cell proliferation and Th1 polarization. Furthermore, the combined KC7F2 and etomoxir treatment rescued the decreased T cell proliferative capacity and the Th1 phenotype. Overall, for the first time, we demonstrated here that NCoR1 mediated control of glycolysis and fatty acid oxidation fine-tunes immune tolerance versus inflammation balance in murine and human DCs.
Collapse
|
15
|
Schürmann M, Goon P, Sudhoff H. Review of potential medical treatments for middle ear cholesteatoma. Cell Commun Signal 2022; 20:148. [PMID: 36123729 PMCID: PMC9487140 DOI: 10.1186/s12964-022-00953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022] Open
Abstract
Middle ear cholesteatoma (MEC), is a destructive, and locally invasive lesion in the middle ear driven by inflammation with an annual incidence of 10 per 100,000. Surgical extraction/excision remains the only treatment strategy available and recurrence is high (up to 40%), therefore developing the first pharmaceutical treatments for MEC is desperately required. This review was targeted at connecting the dysregulated inflammatory network of MEC to pathogenesis and identification of pharmaceutical targets. We summarized the numerous basic research endeavors undertaken over the last 30+ years to identify the key targets in the dysregulated inflammatory pathways and judged the level of evidence for a given target if it was generated by in vitro, in vivo or clinical experiments. MEC pathogenesis was found to be connected to cytokines characteristic for Th1, Th17 and M1 cells. In addition, we found that the inflammation created damage associated molecular patterns (DAMPs), which further promoted inflammation. Similar positive feedback loops have already been described for other Th1/Th17 driven inflammatory diseases (arthritis, Crohn’s disease or multiple sclerosis). A wide-ranging search for molecular targeted therapies (MTT) led to the discovery of over a hundred clinically approved drugs already applied in precision medicine. Based on exclusion criteria designed to enable fast translation as well as efficacy, we condensed the numerous MTTs down to 13 top drugs. The review should serve as groundwork for the primary goal, which is to provide potential pharmaceutical therapies to MEC patients for the first time in history. Video Abstract
Middle ear cholesteatoma (MEC) is a destructive and locally invasive ulcerated lesion in the middle ear driven by inflammation which occurs in 10 out of 100,000 people annually. Surgical extraction/excision is the only treatment strategy available and recurrence is high (up to 40% after ten years), therefore developing the first pharmaceutical treatments for MEC is desperately required. This review is focused on the connections between inflammation and MEC pathogenesis. These connections can be used as attack points for pharmaceuticals. For this we summarized the results of research undertaken over the last 30 + years. MEC pathogenesis can be described by specific inflammatory dysregulation already known from arthritis, Crohn’s disease or multiple sclerosis. A hallmark of this dysregulation are positive feedback loops of the inflammation further amplifying itself in a vicious circle-like manner. We have identified over one hundred drugs which are already used in clinic to treat other inflammatory diseases, and could potentially be repurposed to treat MEC. To improve and expedite clinical success rates, we applied certain criteria based on our literature searches and condensed these drugs down to the 13 top drugs. We hope the review will serve as groundwork for the primary goal, which is to provide potential pharmaceutical therapies to MEC patients for the first time in history.
Collapse
Affiliation(s)
- Matthias Schürmann
- Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany
| | - Peter Goon
- Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany.,Department of Medicine, National University of Singapore, and National University Health System, Singapore, Singapore
| | - Holger Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, Universität Bielefeld, Teutoburger Str. 50, 33604, Bielefeld, Germany.
| |
Collapse
|
16
|
Distinct metabolic states guide maturation of inflammatory and tolerogenic dendritic cells. Nat Commun 2022; 13:5184. [PMID: 36056019 PMCID: PMC9440236 DOI: 10.1038/s41467-022-32849-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 08/20/2022] [Indexed: 12/17/2022] Open
Abstract
Cellular metabolism underpins immune cell functionality, yet our understanding of metabolic influences in human dendritic cell biology and their ability to orchestrate immune responses is poorly developed. Here, we map single-cell metabolic states and immune profiles of inflammatory and tolerogenic monocytic dendritic cells using recently developed multiparametric approaches. Single-cell metabolic pathway activation scores reveal simultaneous engagement of multiple metabolic pathways in distinct monocytic dendritic cell differentiation stages. GM-CSF/IL4-induce rapid reprogramming of glycolytic monocytes and transient co-activation of mitochondrial pathways followed by TLR4-dependent maturation of dendritic cells. Skewing of the mTOR:AMPK phosphorylation balance and upregulation of OXPHOS, glycolytic and fatty acid oxidation metabolism underpin metabolic hyperactivity and an immunosuppressive phenotype of tolerogenic dendritic cells, which exhibit maturation-resistance and a de-differentiated immune phenotype marked by unique immunoregulatory receptor signatures. This single-cell dataset provides important insights into metabolic pathways impacting the immune profiles of human dendritic cells. Assessing metabolic activity within single cells rather than at a population level has a number of advantages. Here, the authors use a flow and mass cytometry based approach that assess the metabolic differences between populations of human immune stimulatory and tolerogenic dendritic cells.
Collapse
|
17
|
Dendritic Cells and Their Immunotherapeutic Potential for Treating Type 1 Diabetes. Int J Mol Sci 2022; 23:ijms23094885. [PMID: 35563276 PMCID: PMC9099521 DOI: 10.3390/ijms23094885] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) results from the destruction of pancreatic beta cells through a process that is primarily mediated by T cells. Emerging evidence suggests that dendritic cells (DCs) play a crucial role in initiating and developing this debilitating disease. DCs are professional antigen-presenting cells with the ability to integrate signals arising from tissue infection or injury that present processed antigens from these sites to naïve T cells in secondary lymphoid organs, thereby triggering naïve T cells to differentiate and modulate adaptive immune responses. Recent advancements in our knowledge of the various subsets of DCs and their cellular structures and methods of orchestration over time have resulted in a better understanding of how the T cell response is shaped. DCs employ various arsenal to maintain their tolerance, including the induction of effector T cell deletion or unresponsiveness and the generation and expansion of regulatory T cell populations. Therapies that suppress the immunogenic effects of dendritic cells by blocking T cell costimulatory pathways and proinflammatory cytokine production are currently being sought. Moreover, new strategies are being developed that can regulate DC differentiation and development and harness the tolerogenic capacity of these cells. Here, in this report, we focus on recent advances in the field of DC immunology and evaluate the prospects of DC-based therapeutic strategies to treat T1D.
Collapse
|
18
|
Robertson H, Li J, Kim HJ, Rhodes JW, Harman AN, Patrick E, Rogers NM. Transcriptomic Analysis Identifies A Tolerogenic Dendritic Cell Signature. Front Immunol 2021; 12:733231. [PMID: 34745103 PMCID: PMC8564488 DOI: 10.3389/fimmu.2021.733231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/30/2021] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DC) are central to regulating innate and adaptive immune responses. Strategies that modify DC function provide new therapeutic opportunities in autoimmune diseases and transplantation. Current pharmacological approaches can alter DC phenotype to induce tolerogenic DC (tolDC), a maturation-resistant DC subset capable of directing a regulatory immune response that are being explored in current clinical trials. The classical phenotypic characterization of tolDC is limited to cell-surface marker expression and anti-inflammatory cytokine production, although these are not specific. TolDC may be better defined using gene signatures, but there is no consensus definition regarding genotypic markers. We address this shortcoming by analyzing available transcriptomic data to yield an independent set of differentially expressed genes that characterize human tolDC. We validate this transcriptomic signature and also explore gene differences according to the method of tolDC generation. As well as establishing a novel characterization of tolDC, we interrogated its translational utility in vivo, demonstrating this geneset was enriched in the liver, a known tolerogenic organ. Our gene signature will potentially provide greater understanding regarding transcriptional regulators of tolerance and allow researchers to standardize identification of tolDC used for cellular therapy in clinical trials.
Collapse
Affiliation(s)
- Harry Robertson
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Jennifer Li
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Hani Jieun Kim
- Computational Systems Biology Group, Children's Medical Research Institute, Westmead, NSW, Australia.,School of Mathematics and Statistics, University of Sydney, Camperdown, NSW, Australia
| | - Jake W Rhodes
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Andrew N Harman
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW, Australia.,The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Ellis Patrick
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia.,School of Mathematics and Statistics, University of Sydney, Camperdown, NSW, Australia.,Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Natasha M Rogers
- Kidney Injury Group, Centre for Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, NSW, Australia.,Renal and Transplantation Medicine, Westmead Hospital, Westmead, NSW, Australia.,Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Hafkamp FMJ, Groot Kormelink T, de Jong EC. Targeting DCs for Tolerance Induction: Don't Lose Sight of the Neutrophils. Front Immunol 2021; 12:732992. [PMID: 34675923 PMCID: PMC8523850 DOI: 10.3389/fimmu.2021.732992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022] Open
Abstract
Chronic inflammatory disorders (CID), such as autoimmune diseases, are characterized by overactivation of the immune system and loss of immune tolerance. T helper 17 (Th17) cells are strongly associated with the pathogenesis of multiple CID, including psoriasis, rheumatoid arthritis, and inflammatory bowel disease. In line with the increasingly recognized contribution of innate immune cells to the modulation of dendritic cell (DC) function and DC-driven adaptive immune responses, we recently showed that neutrophils are required for DC-driven Th17 cell differentiation from human naive T cells. Consequently, recruitment of neutrophils to inflamed tissues and lymph nodes likely creates a highly inflammatory loop through the induction of Th17 cells that should be intercepted to attenuate disease progression. Tolerogenic therapy via DCs, the central orchestrators of the adaptive immune response, is a promising strategy for the treatment of CID. Tolerogenic DCs could restore immune tolerance by driving the development of regulatory T cells (Tregs) in the periphery. In this review, we discuss the effects of the tolerogenic adjuvants vitamin D3 (VD3), corticosteroids (CS), and retinoic acid (RA) on both DCs and neutrophils and their potential interplay. We briefly summarize how neutrophils shape DC-driven T-cell development in general. We propose that, for optimization of tolerogenic DC therapy for the treatment of CID, both DCs for tolerance induction and the neutrophil inflammatory loop should be targeted while preserving the potential Treg-enhancing effects of neutrophils.
Collapse
Affiliation(s)
| | | | - Esther C. de Jong
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Mandal AK, Wenban C, Heer RS, Baktash V, Missouris CG. Does Vitamin D have a role to play in Covid-19 in the dexamethasone era? Diabetes Metab Syndr 2021; 15:102237. [PMID: 34364302 PMCID: PMC8321685 DOI: 10.1016/j.dsx.2021.102237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Amit Kj Mandal
- Wexham Park Hospital, Frimley Health NHS Foundation Trust, UK
| | | | - Randeep S Heer
- Wexham Park Hospital, Frimley Health NHS Foundation Trust, UK
| | - Vadir Baktash
- Wexham Park Hospital, Frimley Health NHS Foundation Trust, UK
| | | |
Collapse
|
21
|
Wenban C, Heer RS, Baktash V, Kandiah P, Katsanouli T, Pandey A, Goindoo R, Ajaz A, Van den Abbeele K, Mandal AKJ, Missouris CG. Dexamethasone treatment may mitigate adverse effects of vitamin D deficiency in hospitalized Covid-19 patients. J Med Virol 2021; 93:6605-6610. [PMID: 34273116 PMCID: PMC8426812 DOI: 10.1002/jmv.27215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
AIMS We have previously demonstrated that vitamin D deficiency might be associated with worse outcomes in hospitalized Covid-19 patients. The aim of our study was to explore this relationship with dexamethasone therapy. METHODS We prospectively studied two cohorts of hospitalized Covid-19 patients between March and April and between September and December 2020 (n = 192). Patients were tested for serum 25-hydroxyvitamin D (25-OH-D) levels during admission. The first cohort not treated with dexamethasone (n = 107) was divided into vitamin D deficient (25-OH-D ≤ 30 nmol/L) (n = 47) and replete subgroups (25-OH-D > 30 nmol/L) (n = 60). The second cohort treated with dexamethasone (n = 85) was similarly divided into deficient (25-OH-D ≤ 30 nmol/L) (n = 27) and replete subgroups (25-OH-D > 30 nmol/L) (n = 58). Primary outcome was in-hospital mortality and secondary outcomes were elevation in markers of cytokine storm and ventilatory requirement. RESULTS No mortality difference was identified between cohorts and subgroups. The "no dexamethasone" cohort 25-OH-D deplete subgroup recorded significantly higher peak D-Dimer levels (1874 vs. 1233 µgFEU/L) (p = 0.0309), CRP (177 vs. 107.5) (p = 0.0055), and ventilatory support requirement (25.5% vs. 6.67%) (p = 0.007) compared to the replete subgroup. Among the 25-OH-D deplete subgroup higher peak neutrophil counts, peak CRP, peak LDH, peak ferritin, and lower trough lymphocyte counts were observed, without statistical significance. In the "dexamethasone" cohort, there was no apparent association between 25-OH-D deficiency and markers of cytokine storm or ventilatory requirement. CONCLUSION Vitamin D deficiency is associated with elevated markers of cytokine storm and higher ventilatory requirements in hospitalized Covid-19 patients. Dexamethasone treatment appears to mitigate adverse effects of vitamin D deficiency.
Collapse
Affiliation(s)
- Charlotte Wenban
- Department of Medicine, Wexham Park Hospital, Frimley Health NHS Foundation Trust, Slough, UK
| | - Randeep S Heer
- Department of Medicine, Wexham Park Hospital, Frimley Health NHS Foundation Trust, Slough, UK
| | - Vadir Baktash
- Department of Medicine, Wexham Park Hospital, Frimley Health NHS Foundation Trust, Slough, UK
| | - Pirabakaran Kandiah
- Department of Medicine, Wexham Park Hospital, Frimley Health NHS Foundation Trust, Slough, UK
| | - Theodora Katsanouli
- Department of Medicine, Wexham Park Hospital, Frimley Health NHS Foundation Trust, Slough, UK
| | - Asmita Pandey
- Department of Medicine, Wexham Park Hospital, Frimley Health NHS Foundation Trust, Slough, UK
| | - Ryan Goindoo
- Department of Medicine, Wexham Park Hospital, Frimley Health NHS Foundation Trust, Slough, UK
| | - Afiyah Ajaz
- Department of Medicine, Wexham Park Hospital, Frimley Health NHS Foundation Trust, Slough, UK
| | | | - Amit K J Mandal
- Department of Medicine, Wexham Park Hospital, Frimley Health NHS Foundation Trust, Slough, UK
| | - Constantinos G Missouris
- Department of Medicine, Wexham Park Hospital, Frimley Health NHS Foundation Trust, Slough, UK.,Department of Clinical Cardiology, University of Nicosia Medical School, Nicosia, Cyprus
| |
Collapse
|
22
|
Transfection of Vitamin D3-Induced Tolerogenic Dendritic Cells for the Silencing of Potential Tolerogenic Genes. Identification of CSF1R-CSF1 Signaling as a Glycolytic Regulator. Int J Mol Sci 2021; 22:ijms22147363. [PMID: 34298983 PMCID: PMC8305050 DOI: 10.3390/ijms22147363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 10/31/2022] Open
Abstract
The use of autologous tolerogenic dendritic cells (tolDC) has become a promising strategy to re-establish immune tolerance in autoimmune diseases. Among the different strategies available, the use of vitamin D3 for the generation of tolDC (VitD3-tolDC) has been widely tested because of their immune regulatory properties. To identify molecules and pathways involved in the generation of VitD3-tolDC, we established an easy and fast gene silencing method based on the use of Viromer blue to introduce siRNA into monocytes on day 1 of culture differentiation. The analysis of the effect of CD209 (DC-SIGN) and CD115 (CSF1R) down-modulation on the phenotype and functionality of transfected VitD3-tolDC revealed a partial role of CD115 in their tolerogenicity. Further investigations showed that CSF1R-CSF1 signaling is involved in the induction of cell metabolic reprogramming, triggering glycolysis to produce high amounts of lactate, a novel suppressive mechanism of T cell proliferation, recently found in autologous tolerogenic dendritic cells (ATDCs).
Collapse
|
23
|
Zhou L, Li H, Zhang XX, Zhao Y, Wang J, Pan LC, Du GS, He Q, Li XL. Rapamycin treated tol-dendritic cells derived from BM-MSCs reversed graft rejection in a rat liver transplantation model by inducing CD8 +CD45RC -Treg. Mol Immunol 2021; 137:11-19. [PMID: 34182227 DOI: 10.1016/j.molimm.2021.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the influence of tolerance dendritic cells (tolDCs), generated from Bone marrow mesenchymal stem cells (BM-MSCs) treated with rapamycin (Rapa) on liver allograft survival in a rat acute liver transplantation model. METHODS Different GM-CSF induction project was used to obtain immature DCs (imDCs), mature DCs (matDCs) or tolDCs from BM-MSCs. First, MLR was performed to analyze the activity of tolDCs on polyclonaly stimulated total T cells. Then, co-cultured imDCs, matDCs and tolDCs with CD8+T cells isolated by magnetic activated cell sorting to analyze the influence on its regulatory characteristic. Last, the established rat acute liver transplantation model were adoptive transfused with imDCs, matDCs or tolDCs isolated by anti-CD11c immunomagnetic beads. The phenotype of DC cells and level of CD8+Treg in the culture system and in vivo, the expression of CD8 and CD45RC in the tissues were analyzed by flow cytometry and immunohistochemistry, respectively. RESULTS The loGM-CSF plus IL-4 decreased the costimulatory molecules of CD80/86 and MHC class II of DCs comparison with hiGM-CSF from BM-MSCs no matter whether stimulation by LPS (P<0.05). Rapa treated not only reduced the expression of CD80/86 and MHC class II but also down-regulated the expression of CD11c after LPS stimulation which was more obviously in tolDCs by loGM-CSF project (P<0.05). Moreover, tolDCs displayed a rather higher level of IL-10 and low level of IL-12p70 than others (P<0.01), which shown a rather lower stimulative effect on the proliferation of T cells comparison with matDCs and imDCs. Co-cultured with CD8+Treg showed an improvement on induction of CD8+TCR+CD45RC-T cells (CD8+Treg) in ex vivo. The rats transfused with tolDCs has a delayed survival benefits with high level of CD8+Tregs (P<0.01) and high expression of CD45RC in liver tissue (P<0.01) and spleen when comparison with other groups. The infused tolDCs improved a mean survival time (MST) of 32 days comparison with a MTS of 9.5 days and 15.75 days displayed by rat that per-infused with matDCs and imDCs, respectively. CONCLUSION Rapa modified tolDCs derived from BM-MSCs reversed graft rejection by improve tolerance characteristics of CD8+CD45RC-Treg in acute liver rat transplantation.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China
| | - Han Li
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xin-Xue Zhang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yang Zhao
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jing Wang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China
| | - Li-Chao Pan
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Guo-Sheng Du
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qiang He
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Xian-Liang Li
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
24
|
Nazitto R, Amon LM, Mast FD, Aitchison JD, Aderem A, Johnson JS, Diercks AH. ILF3 Is a Negative Transcriptional Regulator of Innate Immune Responses and Myeloid Dendritic Cell Maturation. THE JOURNAL OF IMMUNOLOGY 2021; 206:2949-2965. [PMID: 34031149 DOI: 10.4049/jimmunol.2001235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/31/2021] [Indexed: 12/31/2022]
Abstract
APCs such as myeloid dendritic cells (DCs) are key sentinels of the innate immune system. In response to pathogen recognition and innate immune stimulation, DCs transition from an immature to a mature state that is characterized by widespread changes in host gene expression, which include the upregulation of cytokines, chemokines, and costimulatory factors to protect against infection. Several transcription factors are known to drive these gene expression changes, but the mechanisms that negatively regulate DC maturation are less well understood. In this study, we identify the transcription factor IL enhancer binding factor 3 (ILF3) as a negative regulator of innate immune responses and DC maturation. Depletion of ILF3 in primary human monocyte-derived DCs led to increased expression of maturation markers and potentiated innate responses during stimulation with viral mimetics or classic innate agonists. Conversely, overexpression of short or long ILF3 isoforms (NF90 and NF110) suppressed DC maturation and innate immune responses. Through mutagenesis experiments, we found that a nuclear localization sequence in ILF3, and not its dual dsRNA-binding domains, was required for this function. Mutation of the domain associated with zinc finger motif of ILF3's NF110 isoform blocked its ability to suppress DC maturation. Moreover, RNA-sequencing analysis indicated that ILF3 regulates genes associated with cholesterol homeostasis in addition to genes associated with DC maturation. Together, our data establish ILF3 as a transcriptional regulator that restrains DC maturation and limits innate immune responses through a mechanism that may intersect with lipid metabolism.
Collapse
Affiliation(s)
- Rodolfo Nazitto
- Department of Immunology, University of Washington School of Medicine, Seattle, WA.,Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - Lynn M Amon
- Center for Infectious Disease Research, Seattle, WA; and
| | - Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - Alan Aderem
- Department of Immunology, University of Washington School of Medicine, Seattle, WA.,Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - Jarrod S Johnson
- Center for Infectious Disease Research, Seattle, WA; and.,Department of Biochemistry, University of Utah, Salt Lake City, UT
| | - Alan H Diercks
- Department of Immunology, University of Washington School of Medicine, Seattle, WA;
| |
Collapse
|
25
|
Rapamycin Alternatively Modifies Mitochondrial Dynamics in Dendritic Cells to Reduce Kidney Ischemic Reperfusion Injury. Int J Mol Sci 2021; 22:ijms22105386. [PMID: 34065421 PMCID: PMC8160749 DOI: 10.3390/ijms22105386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) are unique immune cells that can link innate and adaptive immune responses and Immunometabolism greatly impacts their phenotype. Rapamycin is a macrolide compound that has immunosuppressant functions and is used to prevent graft loss in kidney transplantation. The current study evaluated the therapeutic potential of ex-vivo rapamycin treated DCs to protect kidneys in a mouse model of acute kidney injury (AKI). For the rapamycin single (S) treatment (Rapa-S-DC), Veh-DCs were treated with rapamycin (10 ng/mL) for 1 h before LPS. In contrast, rapamycin multiple (M) treatment (Rapa-M-DC) were exposed to 3 treatments over 7 days. Only multiple ex-vivo rapamycin treatments of DCs induced a persistent reprogramming of mitochondrial metabolism. These DCs had 18-fold more mitochondria, had almost 4-fold higher oxygen consumption rates, and produced more ATP compared to Veh-DCs (Veh treated control DCs). Pathway analysis showed IL10 signaling as a major contributing pathway to the altered immunophenotype after Rapamycin treatment compared to vehicle with significantly lower cytokines Tnfa, Il1b, and Il6, while regulators of mitochondrial content Pgc1a, Tfam, and Ho1 remained elevated. Critically, adoptive transfer of rapamycin-treated DCs to WT recipients 24 h before bilateral kidney ischemia significantly protected the kidneys from injury with a significant 3-fold improvement in kidney function. Last, the infusion of DCs containing higher mitochondria numbers (treated ex-vivo with healthy isolated mitochondria (10 µg/mL) one day before) also partially protected the kidneys from IRI. These studies demonstrate that pre-emptive infusion of ex-vivo reprogrammed DCs that have higher mitochondria content has therapeutic capacity to induce an anti-inflammatory regulatory phenotype to protect kidneys from injury.
Collapse
|
26
|
Lin J, Wang H, Liu C, Cheng A, Deng Q, Zhu H, Chen J. Dendritic Cells: Versatile Players in Renal Transplantation. Front Immunol 2021; 12:654540. [PMID: 34093544 PMCID: PMC8170486 DOI: 10.3389/fimmu.2021.654540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Dendritic cells (DCs) induce and regulate adaptive immunity through migrating and maturing in the kidney. In this procedure, they can adopt different phenotypes—rejection-associated DCs promote acute or chronic injury renal grafts while tolerogenic DCs suppress the overwhelmed inflammation preventing damage to renal functionality. All the subsets interact with effector T cells and regulatory T cells (Tregs) stimulated by the ischemia–reperfusion procedure, although the classification corresponding to different effects remains controversial. Thus, in this review, we discuss the origin, maturation, and pathological effects of DCs in the kidney. Then we summarize the roles of divergent DCs in renal transplantation: taking both positive and negative stages in ischemia–reperfusion injury (IRI), switching phenotypes to induce acute or chronic rejection, and orchestrating surface markers for allograft tolerance via alterations in metabolism. In conclusion, we prospect that multidimensional transcriptomic analysis will revolute researches on renal transplantation by addressing the elusive mononuclear phagocyte classification and providing a holistic view of DC ontogeny and subpopulations.
Collapse
Affiliation(s)
- Jinwen Lin
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Disease, Institute of Nephrology, Zhejiang University, Hangzhou, China.,The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, China
| | - Hongyi Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Chenxi Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ao Cheng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qingwei Deng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Huijuan Zhu
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, National Key Clinical Department of Kidney Disease, Institute of Nephrology, Zhejiang University, Hangzhou, China.,The Third Grade Laboratory under the National State, Administration of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
27
|
Ríos-Ríos WDJ, Sosa-Luis SA, Torres-Aguilar H. Current advances in using tolerogenic dendritic cells as a therapeutic alternative in the treatment of type 1 diabetes. World J Diabetes 2021; 12:603-615. [PMID: 33995848 PMCID: PMC8107985 DOI: 10.4239/wjd.v12.i5.603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/26/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of insulin-producing β-cells of the pancreatic islets by autoreactive T cells, leading to high blood glucose levels and severe long-term complications. The typical treatment indicated in T1D is exogenous insulin administration, which controls glucose levels; however, it does not stop the autoimmune process. Various strategies have been implemented aimed at stopping β-cell destruction, such as cellular therapy. Dendritic cells (DCs) as an alternative in cellular therapy have gained great interest for autoimmune disease therapy due to their plasticity to acquire immunoregulatory properties both in vivo and in vitro, performing functions such as anti-inflammatory cytokine secretion and suppression of autoreactive lymphocytes, which are dependent of their tolerogenic phenotype, displayed by features such as semimature phenotype, low surface expression of stimulatory molecules to prime T cells, as well as the elevated expression of inhibitory markers. DCs may be obtained and propagated easily in optimal amounts from peripheral blood or bone marrow precursors, such as monocytes or hematopoietic stem cells, respectively; therefore, various protocols have been established for tolerogenic (tol)DCs manufacturing for therapeutic research in the treatment of T1D. In this review, we address the current advances in the use of tolDCs for T1D therapy, encompassing protocols for their manufacturing, the data obtained from preclinical studies carried out, and the status of clinical research evaluating the safety, feasibility, and effectiveness of tolDCs.
Collapse
Affiliation(s)
- William de Jesús Ríos-Ríos
- Department of Biochemical Sciences Faculty, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico
| | - Sorely Adelina Sosa-Luis
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Honorio Torres-Aguilar
- Department of Biochemical Sciences Faculty, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68120, Mexico
| |
Collapse
|
28
|
Karnia MJ, Korewo D, Myślińska D, Ciepielewski ZM, Puchalska M, Konieczna-Wolska K, Kowalski K, Kaczor JJ. The Positive Impact of Vitamin D on Glucocorticoid-Dependent Skeletal Muscle Atrophy. Nutrients 2021; 13:nu13030936. [PMID: 33799389 PMCID: PMC7998166 DOI: 10.3390/nu13030936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/28/2022] Open
Abstract
(1) The study aimed to investigate whether vitamin D3 supplementation would positively affect rats with glucocorticoids-induced muscle atrophy as measured by skeletal muscle mass in two experimental conditions: chronic dexamethasone (DEX) administration and a model of the chronic stress response. (2) The study lasted 28 consecutive days and was performed on 45 male Wistar rats randomly divided into six groups. These included two groups treated by abdominal injection of DEX at a dose of 2 mg/kg/day supplemented with vegetable oil (DEX PL; n = 7) or with vitamin D3 600 IU/kg/day (DEX SUP; n = 8), respectively, and a control group treated with an abdominal injection of saline (CON; n = 6). In addition, there were two groups of rats chronically stressed by cold water immersion (1 hour/day in a glass box with 1-cm-deep ice/water mixture; temperature ~4 °C), which were supplemented with vegetable oil as a placebo (STR PL; n = 9) or vitamin D3 at 600 IU/kg/day (STR SUP; n = 9). The last group was of sham-stressed rats (SHM; n = 6). Blood, soleus, extensor digitorum longus, gastrocnemius, tibialis anterior, and quadriceps femoris muscles were collected and weighed. The heart, liver, spleen, and thymus were removed and weighed immediately after sacrifice. The plasma corticosterone (CORT) and vitamin D3 metabolites were measured. (3) We found elevated CORT levels in both cold water-immersed groups; however, they did not alter body and muscle weight. Body weight and muscle loss occurred in groups with exogenously administered DEX, with the exception of the soleus muscle in rats supplemented with vitamin D3. Decreased serum 25(OH)D3 concentrations in DEX-treated rats were observed, and the cold water immersion did not affect vitamin D3 levels. (4) Our results indicate that DEX-induced muscle loss was abolished in rats supplemented with vitamin D3, especially in the soleus muscle.
Collapse
Affiliation(s)
- Mateusz Jakub Karnia
- Department of Physiology and Biochemistry, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1, 80-336 Gdansk, Poland; (M.J.K.); (D.K.)
| | - Daria Korewo
- Department of Physiology and Biochemistry, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1, 80-336 Gdansk, Poland; (M.J.K.); (D.K.)
| | - Dorota Myślińska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (D.M.); (Z.M.C.); (M.P.); (K.K.-W.)
| | - Ziemowit Maciej Ciepielewski
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (D.M.); (Z.M.C.); (M.P.); (K.K.-W.)
| | - Monika Puchalska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (D.M.); (Z.M.C.); (M.P.); (K.K.-W.)
| | - Klaudia Konieczna-Wolska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (D.M.); (Z.M.C.); (M.P.); (K.K.-W.)
| | - Konrad Kowalski
- Masdiag-Diagnostic Mass Spectrometry Laboratory, Stefana Żeromskiego 33, 01-882 Warsaw, Poland;
| | - Jan Jacek Kaczor
- Department of Physiology and Biochemistry, Gdansk University of Physical Education and Sport, Kazimierza Górskiego 1, 80-336 Gdansk, Poland; (M.J.K.); (D.K.)
- Correspondence: ; Tel.: +48-58-554-72-55
| |
Collapse
|
29
|
Ness S, Lin S, Gordon JR. Regulatory Dendritic Cells, T Cell Tolerance, and Dendritic Cell Therapy for Immunologic Disease. Front Immunol 2021; 12:633436. [PMID: 33777019 PMCID: PMC7988082 DOI: 10.3389/fimmu.2021.633436] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DC) are antigen-presenting cells that can communicate with T cells both directly and indirectly, regulating our adaptive immune responses against environmental and self-antigens. Under some microenvironmental conditions DC develop into anti-inflammatory cells which can induce immunologic tolerance. A substantial body of literature has confirmed that in such settings regulatory DC (DCreg) induce T cell tolerance by suppression of effector T cells as well as by induction of regulatory T cells (Treg). Many in vitro studies have been undertaken with human DCreg which, as a surrogate marker of antigen-specific tolerogenic potential, only poorly activate allogeneic T cell responses. Fewer studies have addressed the abilities of, or mechanisms by which these human DCreg suppress autologous effector T cell responses and induce infectious tolerance-promoting Treg responses. Moreover, the agents and properties that render DC as tolerogenic are many and varied, as are the cells’ relative regulatory activities and mechanisms of action. Herein we review the most current human and, where gaps exist, murine DCreg literature that addresses the cellular and molecular biology of these cells. We also address the clinical relevance of human DCreg, highlighting the outcomes of pre-clinical mouse and non-human primate studies and early phase clinical trials that have been undertaken, as well as the impact of innate immune receptors and symbiotic microbial signaling on the immunobiology of DCreg.
Collapse
Affiliation(s)
- Sara Ness
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shiming Lin
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - John R Gordon
- Department of Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Division of Respirology, Critical Care and Sleep Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
30
|
Ricci A, Pagliuca A, D'Ascanio M, Innammorato M, De Vitis C, Mancini R, Giovagnoli S, Facchiano F, Sposato B, Anibaldi P, Marcolongo A, De Dominicis C, Laghi A, Muscogiuri E, Sciacchitano S. Circulating Vitamin D levels status and clinical prognostic indices in COVID-19 patients. Respir Res 2021; 22:76. [PMID: 33658032 PMCID: PMC7928197 DOI: 10.1186/s12931-021-01666-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/17/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Several immune mechanisms activate in COVID-19 pathogenesis. Usually, coronavirus infection is characterized by dysregulated host immune responses, interleukine-6 increase, hyper-activation of cytotoxic CD8 T lymphocytes. Interestingly, Vitamin D deficiency has been often associated with altered immune responses and infections. In the present study, we evaluated Vitamin D plasma levels in patients affected with different lung involvement during COVID-19 infection. METHODS Lymphocyte phenotypes were assessed by flow cytometry. Thoracic CT scan involvement was obtained by an image analysis program. RESULTS Vitamin D levels were deficient in (80%) of patients, insufficient in (6.5%) and normal in (13.5%). Patients with very low Vitamin D plasma levels had more elevated D-Dimer values, a more elevated B lymphocyte cell count, a reduction of CD8 + T lymphocytes with a low CD4/CD8 ratio, more compromised clinical findings (measured by LIPI and SOFA scores) and thoracic CT scan involvement. CONCLUSIONS Vitamin D deficiency is associated with compromised inflammatory responses and higher pulmonary involvement in COVID-19 affected patients. Vitamin D assessment, during COVID-19 infection, could be a useful analysis for possible therapeutic interventions. TRIAL REGISTRATION 'retrospectively registered'.
Collapse
Affiliation(s)
- Alberto Ricci
- Respiratory Unit, Sant'Andrea Hospital, Sapienza University of Rome, Via di grottarossa, 1035, Rome, Italy.,Sant'Andrea Hospital, Rome, Italy
| | - Alessandra Pagliuca
- Respiratory Unit, Sant'Andrea Hospital, Sapienza University of Rome, Via di grottarossa, 1035, Rome, Italy.,Sant'Andrea Hospital, Rome, Italy
| | - Michela D'Ascanio
- Respiratory Unit, Sant'Andrea Hospital, Sapienza University of Rome, Via di grottarossa, 1035, Rome, Italy.,Sant'Andrea Hospital, Rome, Italy
| | - Marta Innammorato
- Respiratory Unit, Sant'Andrea Hospital, Sapienza University of Rome, Via di grottarossa, 1035, Rome, Italy. .,Sant'Andrea Hospital, Rome, Italy.
| | | | | | | | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Bruno Sposato
- Respiratory Unit, Misericordia Hospital, Grosseto, Italy
| | | | | | | | | | | | - Salvatore Sciacchitano
- Respiratory Unit, Sant'Andrea Hospital, Sapienza University of Rome, Via di grottarossa, 1035, Rome, Italy.,Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166, Rome, Italy
| |
Collapse
|
31
|
Castenmiller C, Keumatio-Doungtsop BC, van Ree R, de Jong EC, van Kooyk Y. Tolerogenic Immunotherapy: Targeting DC Surface Receptors to Induce Antigen-Specific Tolerance. Front Immunol 2021; 12:643240. [PMID: 33679806 PMCID: PMC7933040 DOI: 10.3389/fimmu.2021.643240] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DCs) are well-established as major players in the regulation of immune responses. They either induce inflammatory or tolerogenic responses, depending on the DC-subtype and stimuli they receive from the local environment. This dual capacity of DCs has raised therapeutic interest for their use to modify immune-activation via the generation of tolerogenic DCs (tolDCs). Several compounds such as vitamin D3, retinoic acid, dexamethasone, or IL-10 and TGF-β have shown potency in the induction of tolDCs. However, an increasing interest exists in defining tolerance inducing receptors on DCs for new targeting strategies aimed to develop tolerance inducing immunotherapies, on which we focus particular in this review. Ligation of specific cell surface molecules on DCs can result in antigen presentation to T cells in the presence of inhibitory costimulatory molecules and tolerogenic cytokines, giving rise to regulatory T cells. The combination of factors such as antigen structure and conformation, delivery method, and receptor specificity is of paramount importance. During the last decades, research provided many tools that can specifically target various receptors on DCs to induce a tolerogenic phenotype. Based on advances in the knowledge of pathogen recognition receptor expression profiles in human DC subsets, the most promising cell surface receptors that are currently being explored as possible targets for the induction of tolerance in DCs will be discussed. We also review the different strategies that are being tested to target DC receptors such as antigen-carbohydrate conjugates, antibody-antigen fusion proteins and antigen-adjuvant conjugates.
Collapse
Affiliation(s)
- Charlotte Castenmiller
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Brigitte-Carole Keumatio-Doungtsop
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ronald van Ree
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands.,Department of Otorhinolaryngology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Esther C de Jong
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
32
|
Navarro-Barriuso J, Mansilla MJ, Quirant-Sánchez B, Teniente-Serra A, Ramo-Tello C, Martínez-Cáceres EM. Vitamin D3-Induced Tolerogenic Dendritic Cells Modulate the Transcriptomic Profile of T CD4 + Cells Towards a Functional Hyporesponsiveness. Front Immunol 2021; 11:599623. [PMID: 33552054 PMCID: PMC7856150 DOI: 10.3389/fimmu.2020.599623] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/30/2020] [Indexed: 12/22/2022] Open
Abstract
The use of autologous tolerogenic dendritic cells (tolDC) has become a promising alternative for the treatment of autoimmune diseases. Among the different strategies available, the use of vitamin D3 for the generation of tolDC (vitD3-tolDC) constitutes one of the most robust approaches due to their immune regulatory properties, which are currently being tested in clinical trials. However, the mechanisms that vitD3-tolDC trigger for the induction of tolerance remain elusive. For this reason, we performed a full phenotypical, functional, and transcriptomic characterization of T cells upon their interaction with autologous, antigen-specific vitD3-tolDC. We observed a strong antigen-specific reduction of T cell proliferation, combined with a decrease in the relative prevalence of TH1 subpopulations and IFN-γ production. The analysis of the transcriptomic profile of T CD4+ cells evidenced a significant down-modulation of genes involved in cell cycle and cell response to mainly pro-inflammatory immune-related stimuli, highlighting the role of JUNB gene as a potential biomarker of these processes. Consequently, our results show the induction of a strong antigen-specific hyporesponsiveness combined with a reduction on the TH1 immune profile of T cells upon their interaction with vitD3-tolDC, which manifests the regulatory properties of these cells and, therefore, their therapeutic potential in the clinic.
Collapse
Affiliation(s)
- Juan Navarro-Barriuso
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María José Mansilla
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bibiana Quirant-Sánchez
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Aina Teniente-Serra
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Ramo-Tello
- Multiple Sclerosis Unit, Department of Neurosciences, Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Eva M. Martínez-Cáceres
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
33
|
Modulatory effect of rapamycin and tacrolimus on monocyte-derived dendritic cells phenotype and function. Immunobiology 2020; 226:152031. [PMID: 33278711 DOI: 10.1016/j.imbio.2020.152031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 10/16/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Immunosuppressive-drugs are needed after solid organ transplantation to prevent allograft rejection but induce severe side effects. Understanding the alloimmune response is critical to modulate it and to achieve graft operational tolerance. The role of regulatory T cells and tolerogenic dendritic cells (Tol-DCs) is undoubtedly essential in tolerance induction. Tacrolimus is considered as the cornerstone of immunosuppression in solid organ transplantation. mTOR inhibitor such as rapamycin are thought to induce tolerance and are used as anticancer drugs in several cancers. The aim of this study was to better understand the effect of these immunosuppressive drugs on the differentiation, maturation and function of human monocyte derived dendritic cells (DCs). MATERIAL AND METHODS DCs were differentiated from monocytes of healthy donors with either rapamycin (Rapa-DCs) or tacrolimus (Tac-DCs). The phenotype was evaluated by flow cytometry analysis. The production of pro- and anti-inflammatory cytokines was assessed by ELISA. The mRNA expression level of IDO and PD-L1 was assessed by RTqPCR. Mixed leukocytes reactions were performed to analyse suppressive activity of DCs. RESULTS Rapa-DC were characterised by a lower expression of the co-stimulatory molecules and CD83 than control-DCs (CTR-DC) (p < 0.05). In contrast, tacrolimus had no effect on the expression of surface markers compared to CTR-DCs. Rapamycin reduced both IL-12 and IL-10 secretions (p < 0.05). Rapa-DCs had a suppressive effect on CD4+ allogenic T cells compared to CTR-DCs (p < 0.05). However, neither Rapa-DCs nor Tac-DCs favoured the emergence of a CD4+CD25highFoxp3+ population compared to CTR-DCs. Surprisingly, Rapa-DCs had a reduced expression of IDO and PD-L1 compared to Tac-DCs and CTR-DCs. CONCLUSION Rapa-DCs exhibit an incomplete phenotypic tolerogenic profile. To our knowledge this is the first paper showing a reduction of expression of pro-tolerogenic enzyme IDO in DCs. Tacrolimus does not change the phenotypical or functional characteristics of moDCs.
Collapse
|
34
|
DC-SIGN signalling induced by Trichinella spiralis products contributes to the tolerogenic signatures of human dendritic cells. Sci Rep 2020; 10:20283. [PMID: 33219293 PMCID: PMC7679451 DOI: 10.1038/s41598-020-77497-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/11/2020] [Indexed: 12/28/2022] Open
Abstract
Tolerogenic dendritic cells (tolDCs) are central players in the maintenance of immune tolerance and thereby have been identified as the most favourable candidates for cell therapy of autoimmune diseases. We have recently shown that excretory-secretory products (ES L1) released by Trichinella spiralis larvae induce stable human tolDCs in vitro via Toll-like receptor 2 (TLR2) and TLR4. However, engagement of these receptors did not fully explain the tolerogenic profile of DCs. Here, we observed for the first time that dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) interacts with highly glycosylated ES L1 and contributes to the generation of ES L1-induced tolDCs. Blocking DC-SIGN interfered with the ES L1-induced higher expression of CD40 and CCR7 and the production of IL-10 and TGF-β by DCs. The cooperation of TLR2, TLR4 and DC-SIGN receptors is of importance for the capacity of DCs to prime T cell response toward Th2 and to induce expansion of CD4+CD25+Foxp3+ T cells, as well as for the production of IL-10 and TGF-β by these cells. Overall, these results indicate that induction of tolDCs by ES L1 involves engagement of multiple pattern recognition receptors namely, TLR2, TLR4 and DC-SIGN.
Collapse
|
35
|
Zhuang Q, Cai H, Cao Q, Li Z, Liu S, Ming Y. Tolerogenic Dendritic Cells: The Pearl of Immunotherapy in Organ Transplantation. Front Immunol 2020; 11:552988. [PMID: 33123131 PMCID: PMC7573100 DOI: 10.3389/fimmu.2020.552988] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Over a half century, organ transplantation has become an effective method for the treatment of end-stage visceral diseases. Although the application of immunosuppressants (IS) minimizes the rate of allograft rejection, the common use of IS bring many adverse effects to transplant patients. Moreover, true transplant tolerance is very rare in clinical practice. Dendritic cells (DCs) are thought to be the most potent antigen-presenting cells, which makes a bridge between innate and adaptive immunity. Among their subsets, a small portion of DCs with immunoregulatory function was known as tolerogenic DC (Tol-DC). Previous reports demonstrated the ability of adoptively transferred Tol-DC to approach transplant tolerance in animal models. In this study, we summarized the properties, ex vivo generation, metabolism, and clinical attempts of Tol-DC. Tol-DC is expected to become a substitute for IS to enable patients to achieve immune tolerance in the future.
Collapse
Affiliation(s)
- Quan Zhuang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Haozheng Cai
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Qingtai Cao
- Hunan Normal University School of Medicine, Changsha, China
| | - Zixin Li
- Hunan Normal University School of Medicine, Changsha, China
| | - Shu Liu
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Yingzi Ming
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| |
Collapse
|
36
|
Zhang X, Zheng P, Prestwood TR, Zhang H, Carmi Y, Tolentino LL, Wu N, Choi O, Winer DA, Strober S, Kang ES, Alonso MN, Engleman EG. Human Regulatory Dendritic Cells Develop From Monocytes in Response to Signals From Regulatory and Helper T Cells. Front Immunol 2020; 11:1982. [PMID: 32973804 PMCID: PMC7461788 DOI: 10.3389/fimmu.2020.01982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/22/2020] [Indexed: 01/19/2023] Open
Abstract
Dendritic cells (DCs) are powerful antigen presenting cells, derived from bone marrow progenitors (cDCs) and monocytes (moDCs), that can shape the immune response by priming either proinflammatory or tolerogenic immune effector cells. The cellular mechanisms responsible for the generation of DCs that will prime a proinflammatory or tolerogenic response are poorly understood. Here we describe a novel mechanism by which tolerogenic DCs are formed from monocytes. When human monocytes were cultured with CD4+FoxP3+ natural regulatory T cells (Tregs) and T helper cells (Th) from healthy donor blood, they differentiated into regulatory DCs (DCReg), capable of generating induced Tregs from naïve T cells. DCReg exhibited morphology, surface phenotype, cytokine secretion, and transcriptome that were distinct from other moDCs including those derived from monocytes cultured with Th or with GM-CSF/IL-4, as well as macrophages (MΦ). Direct cell contact between monocytes, Tregs and Th, along with Treg-derived CTLA-4, IL-10 and TGF-β, was required for the phenotypic differentiation of DCReg, although only IL-10 was required for imprinting the Treg-inducing capacity of DCReg. High ratios of Treg:Th, along with monocytes and DCReg similar in function and phenotype to those induced in vitro, were present in situ in human colorectal cancer specimens. Thus, through the combined actions of Tregs and Th, monocytes differentiate into DCs with regulatory properties, forming a positive feedback loop to reinforce Treg initiated immune regulation. This mechanism may contribute to immune tolerance in tissues such as tumors, which contain an abundance of Tregs, Th and monocytes.
Collapse
Affiliation(s)
- Xiangyue Zhang
- Department of Pathology, Blood Center, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Pingping Zheng
- Bone Marrow Transplantation, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Tyler R Prestwood
- Department of Pathology, Blood Center, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Hong Zhang
- Department of Pathology, Blood Center, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Yaron Carmi
- Department of Pathology, Blood Center, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Lorna L Tolentino
- Department of Pathology, Blood Center, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Nancy Wu
- Department of Pathology, Blood Center, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Okmi Choi
- Department of Pathology, Blood Center, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Daniel A Winer
- Buck Institute for Research on Aging, Novato, CA, United States.,Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Samuel Strober
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University of Medicine, Stanford, CA, United States
| | - Eun-Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| | - Michael N Alonso
- Department of Pathology, Blood Center, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Edgar G Engleman
- Department of Pathology, Blood Center, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
37
|
Cauwels A, Tavernier J. Tolerizing Strategies for the Treatment of Autoimmune Diseases: From ex vivo to in vivo Strategies. Front Immunol 2020; 11:674. [PMID: 32477325 PMCID: PMC7241419 DOI: 10.3389/fimmu.2020.00674] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Autoimmune diseases such as multiple sclerosis (MS), type I diabetes (T1D), inflammatory bowel diseases (IBD), and rheumatoid arthritis (RA) are chronic, incurable, incapacitating and at times even lethal conditions. Worldwide, millions of people are affected, predominantly women, and their number is steadily increasing. Currently, autoimmune patients require lifelong immunosuppressive therapy, often accompanied by severe adverse side effects and risks. Targeting the fundamental cause of autoimmunity, which is the loss of tolerance to self- or innocuous antigens, may be achieved via various mechanisms. Recently, tolerance-inducing cellular therapies, such as tolerogenic dendritic cells (tolDCs) and regulatory T cells (Tregs), have gained considerable interest. Their safety has already been evaluated in patients with MS, arthritis, T1D, and Crohn’s disease, and clinical trials are underway to confirm their safety and therapeutic potential. Cell-based therapies are inevitably expensive and time-consuming, requiring laborious ex vivo manufacturing. Therefore, direct in vivo targeting of tolerogenic cell types offers an attractive alternative, and several strategies are being explored. Type I IFN was the first disease-modifying therapy approved for MS patients, and approaches to endogenously induce IFN in autoimmune diseases are being pursued vigorously. We here review and discuss tolerogenic cellular therapies and targeted in vivo tolerance approaches and propose a novel strategy for cell-specific delivery of type I IFN signaling to a cell type of choice.
Collapse
Affiliation(s)
- Anje Cauwels
- VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium.,Orionis Biosciences, Ghent, Belgium
| |
Collapse
|
38
|
Ritprajak P, Kaewraemruaen C, Hirankarn N. Current Paradigms of Tolerogenic Dendritic Cells and Clinical Implications for Systemic Lupus Erythematosus. Cells 2019; 8:cells8101291. [PMID: 31640263 PMCID: PMC6830089 DOI: 10.3390/cells8101291] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/05/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Tolerogenic dendritic cells (tolDCs) are central players in the initiation and maintenance of immune tolerance and subsequent prevention of autoimmunity. Recent advances in treatment of autoimmune diseases including systemic lupus erythematosus (SLE) have focused on inducing specific tolerance to avoid long-term use of immunosuppressive drugs. Therefore, DC-targeted therapies to either suppress DC immunogenicity or to promote DC tolerogenicity are of high interest. This review describes details of the typical characteristics of in vivo and ex vivo tolDC, which will help to select a protocol that can generate tolDC with high functional quality for clinical treatment of autoimmune disease in individual patients. In addition, we discuss the recent studies uncovering metabolic pathways and their interrelation intertwined with DC tolerogenicity. This review also highlights the clinical implications of tolDC-based therapy for SLE treatment, examines the current clinical therapeutics in patients with SLE, which can generate tolDC in vivo, and further discusses on possibility and limitation on each strategy. This synthesis provides new perspectives on development of novel therapeutic approaches for SLE and other autoimmune diseases.
Collapse
Affiliation(s)
- Patcharee Ritprajak
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Chamraj Kaewraemruaen
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
- Immunology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
39
|
Navarro-Barriuso J, Mansilla MJ, Quirant-Sánchez B, Ardiaca-Martínez A, Teniente-Serra A, Presas-Rodríguez S, ten Brinke A, Ramo-Tello C, Martínez-Cáceres EM. MAP7 and MUCL1 Are Biomarkers of Vitamin D3-Induced Tolerogenic Dendritic Cells in Multiple Sclerosis Patients. Front Immunol 2019; 10:1251. [PMID: 31293564 PMCID: PMC6598738 DOI: 10.3389/fimmu.2019.01251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
The administration of autologous tolerogenic dendritic cells (tolDC) has become a promising alternative for the treatment of autoimmune diseases, such as multiple sclerosis (MS). Specifically, the use of vitamin D3 for the generation of tolDC (vitD3-tolDC) constitutes one of the most widely studied approaches, as it has evidenced significant immune regulatory properties, both in vitro and in vivo. In this article, we generated human vitD3-tolDC from monocytes from healthy donors and MS patients, characterized in both cases by a semi-mature phenotype, secretion of IL-10 and inhibition of allogeneic lymphocyte proliferation. Additionally, we studied their transcriptomic profile and selected a number of differentially expressed genes compared to control mature and immature dendritic cells for their analysis. Among them, qPCR results validated CYP24A1, MAP7 and MUCL1 genes as biomarkers of vitD3-tolDC in both healthy donors and MS patients. Furthermore, we constructed a network of protein interactions based on the literature, which manifested that MAP7 and MUCL1 genes are both closely connected between them and involved in immune-related functions. In conclusion, this study evidences that MAP7 and MUCL1 constitute robust and potentially functional biomarkers of the generation of vitD3-tolDC, opening the window for their use as quality controls in clinical trials for MS.
Collapse
Affiliation(s)
- Juan Navarro-Barriuso
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - María José Mansilla
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Bibiana Quirant-Sánchez
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alicia Ardiaca-Martínez
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Aina Teniente-Serra
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Silvia Presas-Rodríguez
- Multiple Sclerosis Unit, Department of Neurosciences, Germans Trias i Pujol University Hospital, Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Anja ten Brinke
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Cristina Ramo-Tello
- Multiple Sclerosis Unit, Department of Neurosciences, Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Eva M. Martínez-Cáceres
- Division of Immunology, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
40
|
Oakes RS, Froimchuk E, Jewell CM. Engineering Biomaterials to Direct Innate Immunity. ADVANCED THERAPEUTICS 2019; 2:1800157. [PMID: 31236439 PMCID: PMC6590522 DOI: 10.1002/adtp.201800157] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Indexed: 12/18/2022]
Abstract
Small alterations during early stages of innate immune response can drive large changes in how adaptive immune cells develop and function during protective immunity or disease. Controlling these events creates exciting potential in development of immune engineered vaccines and therapeutics. This progress report discusses recent biomaterial technologies exploiting innate immunity to dissect immune function and to design new vaccines and immunotherapies for infectious diseases, cancer, and autoimmunity. Across these examples, an important idea is the possibility to co-opt innate immune mechanisms to enhance immunity during infection and cancer. During inflammatory or autoimmune disease, some of these same innate immune mechanisms can be manipulated in different ways to control excess inflammation by promotion of immunological tolerance.
Collapse
Affiliation(s)
- R. S. Oakes
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - E. Froimchuk
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - C. M. Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, Maryland 21201, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
41
|
Ten Brinke A, Martinez-Llordella M, Cools N, Hilkens CMU, van Ham SM, Sawitzki B, Geissler EK, Lombardi G, Trzonkowski P, Martinez-Caceres E. Ways Forward for Tolerance-Inducing Cellular Therapies- an AFACTT Perspective. Front Immunol 2019; 10:181. [PMID: 30853957 PMCID: PMC6395407 DOI: 10.3389/fimmu.2019.00181] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Clinical studies with cellular therapies using tolerance-inducing cells, such as tolerogenic antigen-presenting cells (tolAPC) and regulatory T cells (Treg) for the prevention of transplant rejection and the treatment of autoimmune diseases have been expanding the last decade. In this perspective, we will summarize the current perspectives of the clinical application of both tolAPC and Treg, and will address future directions and the importance of immunomonitoring in clinical studies that will result in progress in the field.
Collapse
Affiliation(s)
- Anja Ten Brinke
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marc Martinez-Llordella
- Department of Inflammation Biology, MRC Centre for Transplantation, School of Immunology and Microbial Sciences, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Catharien M U Hilkens
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Birgit Sawitzki
- Charité-Universitaetsmedizin Berlin, Berlin Institute of Health, Institute for Medical Immunology, Humboldt-Universitaet zu Berlin, Berlin, Germany
| | - Edward K Geissler
- Section of Experimental Surgery, Department of Surgery, University Hospital Regensburg, University of Regensburg, Regensburg, Germany
| | - Giovanna Lombardi
- Division of Transplantation Immunology and Mucosal Biology, MRC Centre for Transplantation, Guy's Hospital, King's College London, London, United Kingdom
| | - Piotr Trzonkowski
- Department of Clinical Immunology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Eva Martinez-Caceres
- Division of Immunology, Germans Trias i Pujol University Hospital, LCMN, IGTP, Badalona, Spain.,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
42
|
Djedovic N, Jevtić B, Mansilla MJ, Petković F, Blaževski J, Timotijević G, Navarro-Barriuso J, Martinez-Caceres E, Mostarica Stojković M, Miljković Đ. Comparison of dendritic cells obtained from autoimmunty-prone and resistant rats. Immunobiology 2019; 224:470-476. [PMID: 30765133 DOI: 10.1016/j.imbio.2019.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/16/2019] [Indexed: 01/07/2023]
Abstract
Dendritic cells (DC) are responsible for the initiation and shaping of the adaptive immune response and are in the focus of autoimmunity research. We were interested in comparison of DC obtained from autoimmunity-prone Dark Agouti (DA) rats and autoimmunity-resistant Albino Oxford (AO) rats. DC were generated from bone marrow precursors and matured (mDC) by lipopolysaccharide. Tolerogenic DC (tolDC) obtained by vitamin D3 treatment were studied in parallel. Profile of cytokine production was different in AO and DA mDC and tolDC. Expression of MHC class II molecules and CD86 were higher in DA DC, while vitamin D3 reduced their expression in dendritic cells of both strains. Allogeneic proliferation of CD4+ T cells was reduced by AO tolDC, but not with DA tolDC in comparison to respective mDC. Finally, expression of various genes identified as differentially expressed in human mDC and tolDC was also analyzed in AO and DA DC. Again, AO and DA DC differed in the expression of the analyzed genes. To conclude, AO and DA DC differ in production of cytokines, expression of antigen presentation-related molecules and in regulation of CD4+ T proliferation. The difference is valuable for understanding the divergence of the strains in their susceptibility to autoimmunity.
Collapse
Affiliation(s)
- Neda Djedovic
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Serbia
| | - M José Mansilla
- Immunology Division, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain; Department of Cellular Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Filip Petković
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Serbia
| | - Jana Blaževski
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Serbia
| | - Gordana Timotijević
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Serbia
| | - Juan Navarro-Barriuso
- Immunology Division, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain; Department of Cellular Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Eva Martinez-Caceres
- Immunology Division, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain
| | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Serbia.
| |
Collapse
|
43
|
Cafferata EA, Alvarez C, Diaz KT, Maureira M, Monasterio G, González FE, Covarrubias C, Vernal R. Multifunctional nanocarriers for the treatment of periodontitis: Immunomodulatory, antimicrobial, and regenerative strategies. Oral Dis 2019; 25:1866-1878. [PMID: 30565778 DOI: 10.1111/odi.13023] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/31/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022]
Abstract
Periodontitis is an inflammatory disease, in which the host immuno-inflammatory response against the dysbiotic subgingival biofilm leads to the breakdown of periodontal tissues. Most of the available treatments seem to be effective in the short-term; nevertheless, permanent periodical controls and patient compliance compromise long-term success. Different strategies have been proposed for the modulation of the host immune response as potential therapeutic tools to take a better care of most susceptible periodontitis patients, such as drug local delivery approaches. Though, maintaining an effective drug concentration for a prolonged period of time has not been achieved yet. In this context, advanced drug delivery strategies using biodegradable nanocarriers have been proposed to avoid toxicity and frequency-related problems of treatment. The versatility of distinct nanocarriers allows the improvement of their loading and release capabilities and could be potentially used for microbiological control, periodontal regeneration, and/or immunomodulation. In the present review, we revise and discuss the most frequent biodegradable nanocarrier strategies proposed for the treatment of periodontitis, including polylactic-co-glycolic acid (PLGA), chitosan, and silica-derived nanoparticles, and further suggest novel therapeutic strategies.
Collapse
Affiliation(s)
- Emilio A Cafferata
- Periodontal Biology Laboratory, Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Faculty of Dentistry, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Carla Alvarez
- Periodontal Biology Laboratory, Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Karla T Diaz
- School of Public Health, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Miguel Maureira
- Laboratory of Nanobiomaterials, ICOD, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Gustavo Monasterio
- Periodontal Biology Laboratory, Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Fermín E González
- Laboratory of Experimental Immunology and Cancer, Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Cristian Covarrubias
- Laboratory of Nanobiomaterials, ICOD, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Rolando Vernal
- Periodontal Biology Laboratory, Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|