1
|
Victorio CBL, Ganasarajah A, Novera W, Ong J, Msallam R, Chacko AM. Translocator protein (TSPO) is a biomarker of Zika virus (ZIKV) infection-associated neuroinflammation. Emerg Microbes Infect 2024; 13:2348528. [PMID: 38662785 PMCID: PMC11132733 DOI: 10.1080/22221751.2024.2348528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Zika is a systemic inflammatory disease caused by infection with Zika virus (ZIKV). ZIKV infection in adults is associated with encephalitis marked by elevated expression of pro-inflammatory cytokines and chemokines, as well as increased brain infiltration of immune cells. In this study, we demonstrate that ZIKV encephalitis in a mouse infection model exhibits increased brain TSPO expression. TSPO expression on brain-resident and infiltrating immune cells in ZIKV infection correlates with disease and inflammation status in the brain. Brain TSPO expression can also be sensitively detected ex vivo and in vitro using radioactive small molecule probes that specifically bind to TSPO, such as [3H]PK11195. TSPO expression on brain-resident and infiltrating immune cells is a biomarker of ZIKV neuroinflammation, which can also be a general biomarker of acute viral neuroinflammatory disease.
Collapse
Affiliation(s)
- Carla Bianca Luena Victorio
- Laboratory for Translational and Molecular Imaging (LTMI), Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Arun Ganasarajah
- Laboratory for Translational and Molecular Imaging (LTMI), Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Wisna Novera
- Laboratory for Translational and Molecular Imaging (LTMI), Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Joanne Ong
- Laboratory for Translational and Molecular Imaging (LTMI), Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Rasha Msallam
- Laboratory for Translational and Molecular Imaging (LTMI), Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Ann-Marie Chacko
- Laboratory for Translational and Molecular Imaging (LTMI), Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
2
|
Campos RK, Liang Y, Azar SR, Ly J, Camargos VN, Hager-Soto EE, Eyzaguirre E, Sun J, Rossi SL. CD8 + T cell response promotes viral clearance and reduces chances of severe testicular damage in mouse models of long-term Zika virus infection of the testes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.575592. [PMID: 38328060 PMCID: PMC10849515 DOI: 10.1101/2024.01.22.575592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Zika virus (ZIKV) causes human testicular inflammation and alterations in sperm parameters and causes testicular damage in mouse models. The involvement of individual immune cells in testicular damage is not fully understood. We detected virus in the testes of the interferon (IFN) α/β receptor -/- A129 mice three weeks post-infection and found elevated chemokines in the testes, suggesting chronic inflammation and long-term infection play a role in testicular damage. In the testes, myeloid cells and CD4 + T cells were absent at 7 dpi but were present at 23 days post-infection (dpi), and CD8 + T cell infiltration started at 7 dpi. CD8 -/- mice with an antibody-depleted IFN response had a significant reduction in spermatogenesis, indicating that CD8 + T cells are essential to prevent testicular damage during long-term ZIKV infections. Our findings on the dynamics of testicular immune cells and importance of CD8 + T cells functions as a framework to understand mechanisms underlying observed inflammation and sperm alterations in humans.
Collapse
|
3
|
Clancy CS, Smart G, Rhoderick JF, O’Donnell KL, Rosenke R, Schäfer A, Marzi A. Establishing a Mouse Model for Sexual Transmission and Male Reproductive Tract Persistence of Ebola Virus. J Infect Dis 2023; 228:S554-S558. [PMID: 37102262 PMCID: PMC10651199 DOI: 10.1093/infdis/jiad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023] Open
Abstract
Ebola virus disease (EVD) has resulted in the death of over 15 000 people since its discovery in 1976. At least 1 incident of re-emergence of EVD has been associated with persistent male reproductive tract infection in a patient surviving EVD greater than 500 days prior. To date, animal models of Ebola virus (EBOV) infection have failed to fully characterize the pathogenesis of reproductive tract infection. Furthermore, no animal model of sexual transmission of EBOV exists. In this study, we describe a roadmap to modeling sexual transmission of EBOV using a mouse-adapted EBOV isolate in immunocompetent male mice and female Ifnar-/- mice.
Collapse
Affiliation(s)
- Chad S Clancy
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, USA
| | - Gabrielle Smart
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, USA
| | - J Fred Rhoderick
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, USA
| | - Kyle L O’Donnell
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, USA
| |
Collapse
|
4
|
Escaffre O, Juelich TL, Smith JK, Zhang L, Bourne N, Freiberg AN. The Susceptibility of BALB/c Mice to a Mouse-Adapted Ebola Virus Intravaginal Infection. Viruses 2023; 15:1590. [PMID: 37515275 PMCID: PMC10386242 DOI: 10.3390/v15071590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Ebola virus (EBOV) causes Ebola virus disease (EVD), which is characterized by hemorrhagic fever with high mortality rates in humans. EBOV sexual transmission has been a concern since the 2014-2016 outbreak in Africa, as persistent infection in the testis and transmission to women was demonstrated. The only study related to establishing an intravaginal small animal infection model was recently documented in IFNAR-/- mice using wild-type and mouse-adapted EBOV (maEBOV), and resulted in 80% mortality, supporting epidemiological data. However, this route of transmission is still poorly understood in women, and the resulting EVD from it is understudied. Here, we contribute to this field of research by providing data from immunocompetent BALB/c mice. We demonstrate that progesterone priming increased the likelihood of maEBOV vaginal infection and of exhibiting the symptoms of disease and seroconversion. However, our data suggest subclinical infection, regardless of the infective dose. We conclude that maEBOV can infect BALB/c mice through vaginal inoculation, but that this route of infection causes significantly less disease compared to intraperitoneal injection at a similar dose, which is consistent with previous studies using other peripheral routes of inoculation in that animal model. Our data are inconsistent with the disease severity described in female patients, therefore suggesting that BALB/c mice are unsuitable for modeling typical EVD following vaginal challenge with maEBOV. Further studies are required to determine the mechanisms by which EVD is attenuated in BALB/c mice, using maEBOV via the vaginal route, as in our experimental set-up.
Collapse
Affiliation(s)
- Olivier Escaffre
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infections & Immunity and Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Terry L Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Jennifer K Smith
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Nigel Bourne
- Institute for Human Infections & Immunity and Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infections & Immunity and Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| |
Collapse
|
5
|
Motawee ME, Damanhory AA, Sakr H, Khalifa MM, Atia T, Elfiky MM, Maher M, Sakr HI. An electron microscopic and biochemical study of the potential protective effect of ginger against Cadmium-induced testicular pathology in rats. Front Physiol 2022; 13:996020. [PMID: 36262262 PMCID: PMC9574188 DOI: 10.3389/fphys.2022.996020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/05/2022] [Indexed: 01/10/2023] Open
Abstract
Background: Cadmium (Cd) is a toxic heavy metal used in many industries. Since the second half of the 20th century, legislation on Cd use was put to limit the exponential rise in its environmental levels. This study aimed to investigate Cd’s functional and ultrastructural changes on rats’ reproductive systems and the role of Zingiber officinale (Ginger) in protecting against Cd-induced toxicity. Methods: Thirty adult male albino rats were randomly assigned into three equal groups (n = 10); control, Cd-exposed/untreated, and Cd-exposed/Gin-treated. Rat testes were weighed, and testicular tissue sections were examined under the electron microscope. Semen analysis, morphological examination of spermatozoa, and serum levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone were measured. In addition, testicular tissue homogenates were analyzed for malondialdehyde (MDA), nitric oxide (NO), and reduced glutathione (GSH) levels. Results: Cd-induced significant reduction in the mean testicular weight and GSH levels and plasma testosterone, LH and FSH levels with a concomitant increase in testicular MDA and NO levels. There was also a deterioration in semen analysis parameters and spermatozoa morphology, with testicular structural damage in the form of architecture distortion and necrosis of seminiferous tubules and testicular interstitial cells. Daily administration of ginger for 4 weeks protected against CD-induced toxicity, preserving tissue architecture, improved plasma levels of testosterone, LH and FSH and testicular levels of GSH, and reduced testicular levels of MDA, NO. Conclusion: Ginger has a protective effect on Cd-induced deterioration of testicular tissue’s structural and functional integrity by improving testicular tissue antioxidant capacity and steroid production, which ameliorates sex hormone levels in the blood.
Collapse
Affiliation(s)
- Moustafa E. Motawee
- Department of Histology and Cytology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Ahmed A. Damanhory
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hany Sakr
- Department of Pathology and Laboratory Medicine, VAMC, Northeast Ohio Health Care System, Louis Stokes, Cleveland, OH, United States
| | - Mohamed Mansour Khalifa
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Tarek Atia
- Department of Histology and Cytology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohamed M. Elfiky
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Muhammad Maher
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hader I. Sakr
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- *Correspondence: Hader I. Sakr,
| |
Collapse
|
6
|
Evidence of Spreading Zika Virus Infection Caused by Males of Different Species. Viruses 2022; 14:v14092047. [PMID: 36146853 PMCID: PMC9506123 DOI: 10.3390/v14092047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Zika virus (ZIKV) is a positive-sense single-stranded RNA flavivirus and is mainly transmitted by Aedes mosquitoes. This arbovirus has had a significant impact on health in recent years by causing malformations, such as microcephaly in babies and Guillain–Barré syndrome in adults. Some evidence indicates that ZIKV can be sexually transmitted and may persist in the male reproductive tract for an extended period in humans. Knockout and vasectomized mice have been used as models to reveal ZIKV infection in the male reproductive tract as a virus source. ZIKV presence in male and female mosquito reproductive tracts and eggs point to venereal and vertical/transovarian transmission, again demonstrating that the reproductive tract can be involved in the spread of ZIKV. Moreover, eggs protected by eggshells have the potential to be a ZIKV reservoir. Given the +-lack of vaccines and therapies for Zika fever and the underestimated prevalence rate, an understanding of ZIKV infection and its spread from the reproductive tract, which is protected from the immune system and potentially active for virus transmission, is imperative. We must also develop cheaper, more efficient techniques for virological surveillance inside vectors and humans, control vectors with ecofriendly insecticides, and promote condom use to avoid ZIKV contamination during sexual intercourse, as recommended by the World Health Organization.
Collapse
|
7
|
Victorio CBL, Ong J, Tham JY, Reolo MJ, Novera W, Msallam R, Watanabe S, Kalimuddin S, Low JG, Vasudevan SG, Chacko AM. Preclinical evaluation of [ 18F]FDG-PET as a biomarker of lymphoid tissue disease and inflammation in Zika virus infection. Eur J Nucl Med Mol Imaging 2022; 49:4516-4528. [PMID: 35876869 PMCID: PMC9309455 DOI: 10.1007/s00259-022-05892-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/25/2022] [Indexed: 11/05/2022]
Abstract
Purpose Zika (ZIKV) is a viral inflammatory disease affecting adults, children, and developing fetuses. It is endemic to tropical and sub-tropical countries, resulting in half the global population at risk of infection. Despite this, there are no approved therapies or vaccines against ZIKV disease. Non-invasive imaging biomarkers are potentially valuable tools for studying viral pathogenesis, prognosticating host response to disease, and evaluating in vivo efficacy of experimental therapeutic interventions. In this study, we evaluated [18F]fluorodeoxyglucose ([18F]FDG)-positron emission tomography (PET) as an imaging biomarker of ZIKV disease in a mouse model and correlated metabolic tracer tissue uptake with real-time biochemical, virological, and inflammatory features of tissue infection. Methods [18F]FDG-PET/CT imaging was performed in an acute, lethal ZIKV mouse infection model, at increasing stages of disease severity. [18F]FDG-PET findings were corroborated with ex vivo wholemount-tissue autoradiography and tracer biodistribution studies. Tracer uptake was also correlated with in situ tissue disease status, including viral burden and inflammatory response. Immune profiling of the spleen by flow cytometry was performed to identify the immune cell subsets driving tissue pathology and enhancing tracer uptake in ZIKV disease. Results Foci of increased [18F]FDG uptake were consistently detected in lymphoid tissues—particularly the spleen—of ZIKV-infected animals. Splenic uptake increased with disease severity, and corroborated findings in tissue pathology. Increased splenic uptake also correlated with increased viral replication and elevated expression of pro-inflammatory cytokines within these tissues. ZIKV-infected spleens were characterized by increased infiltration of myeloid cells, as well as increased proliferation of both myeloid and lymphoid cells. The increased cell proliferation correlated with increased tracer uptake in the spleen. Our findings support the use of [18F]FDG as an imaging biomarker to detect and track ZIKV disease in real time and highlight the dependency of affected tissue on the nature of the viral infection. Conclusion [18F]FDG uptake in the spleen is a useful surrogate for interrogating in situ tissue viral burden and inflammation status in this ZIKV murine model.
Supplementary Information The online version contains supplementary material available at 10.1007/s00259-022-05892-9.
Collapse
Affiliation(s)
- Carla Bianca Luena Victorio
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Joanne Ong
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Jing Yang Tham
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Marie Jennifer Reolo
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Wisna Novera
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Rasha Msallam
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Satoru Watanabe
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Shirin Kalimuddin
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Department of Infectious Diseases, Singapore General Hospital, 20 College Road, Singapore, 169856, Singapore
| | - Jenny G Low
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Department of Infectious Diseases, Singapore General Hospital, 20 College Road, Singapore, 169856, Singapore
| | - Subhash G Vasudevan
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Ann-Marie Chacko
- Laboratory for Translational and Molecular Imaging, Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
8
|
Ball EE, Pesavento PA, Van Rompay KKA, Keel MK, Singapuri A, Gomez-Vazquez JP, Dudley DM, O’Connor DH, Breitbach ME, Maness NJ, Schouest B, Panganiban A, Coffey LL. Zika virus persistence in the male macaque reproductive tract. PLoS Negl Trop Dis 2022; 16:e0010566. [PMID: 35788751 PMCID: PMC9299295 DOI: 10.1371/journal.pntd.0010566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/20/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Zika virus (ZIKV) is unique among mosquito-borne flaviviruses in that it is also vertically and sexually transmitted by humans. The male reproductive tract is thought to be a ZIKV reservoir; however, the reported magnitude and duration of viral persistence in male genital tissues vary widely in humans and non-human primate models. ZIKV tissue and cellular tropism and potential effects on male fertility also remain unclear. The objective of this study was to resolve these questions by analyzing archived genital tissues from 51 ZIKV-inoculated male macaques and correlating data on plasma viral kinetics, tissue tropism, and ZIKV-induced pathological changes in the reproductive tract. We hypothesized that ZIKV would persist in the male macaque genital tract for longer than there was detectable viremia, where it would localize to germ and epithelial cells and associate with lesions. We detected ZIKV RNA and infectious virus in testis, epididymis, seminal vesicle, and prostate gland. In contrast to prepubertal males, sexually mature macaques were significantly more likely to harbor persistent ZIKV RNA or infectious virus somewhere in the genital tract, with detection as late as 60 days post-inoculation. ZIKV RNA localized primarily to testicular stem cells/sperm precursors and epithelial cells, including Sertoli cells, epididymal duct epithelium, and glandular epithelia of the seminal vesicle and prostate gland. ZIKV infection was associated with microscopic evidence of inflammation in the epididymis and prostate gland of sexually mature males, pathologies that were absent in uninfected controls, which could have significant effects on male fertility. The findings from this study increase our understanding of persistent ZIKV infection which can inform risk of sexual transmission during assisted reproductive therapies as well as potential impacts on male fertility. Zika virus (ZIKV) spread since 2015 led to establishment of urban epidemic cycles involving humans and Aedes mosquitoes. ZIKV is also sexually and vertically transmitted and causes congenital Zika syndrome. Together, these features show that ZIKV poses significant global public health risks. By virtue of similar reproductive anatomy and physiology to humans, macaques serve as a useful model for ZIKV infection. However, macaque studies to date have been limited by small sample size, typically 1 to 5 animals. Although mounting evidence identifies the male reproductive tract as a significant ZIKV reservoir, data regarding the duration of ZIKV persistence, potential for sexual transmission, and male genitourinary sequelae remain sparse. Here, we analyzed archived genital tissues from more than 50 ZIKV-inoculated male macaques. Our results show that ZIKV can persist in the male macaque reproductive tract after the resolution of viremia, with virus localization to sperm precursors and epithelial cells, and microscopic evidence of inflammation in the epididymis and prostate gland. Our findings help explain cases of sexual transmission of ZIKV in humans, which also carries a risk for transmission via assisted fertility procedures, even after resolution of detectable viremia.
Collapse
Affiliation(s)
- Erin E. Ball
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
- United States Army, Veterinary Corps
| | - Patricia A. Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Koen K. A. Van Rompay
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
- California National Primate Research Center, University of California, Davis, California, United States of America
| | - M. Kevin Keel
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Anil Singapuri
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Jose P. Gomez-Vazquez
- Center for Animal Disease Modeling and Surveillance, University of California, Davis, California, United States of America
| | - Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Meghan E. Breitbach
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Nicholas J. Maness
- Division of Microbiology, Tulane National Primate Research Center, Covington, Los Angeles, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Blake Schouest
- Division of Microbiology, Tulane National Primate Research Center, Covington, Los Angeles, United States of America
| | - Antonito Panganiban
- Division of Microbiology, Tulane National Primate Research Center, Covington, Los Angeles, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Lark L. Coffey
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Balint E, Montemarano A, Feng E, Ashkar AA. From Mosquito Bites to Sexual Transmission: Evaluating Mouse Models of Zika Virus Infection. Viruses 2021; 13:v13112244. [PMID: 34835050 PMCID: PMC8625727 DOI: 10.3390/v13112244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/02/2021] [Indexed: 01/04/2023] Open
Abstract
Following the recent outbreak of Zika virus (ZIKV) infections in Latin America, ZIKV has emerged as a global health threat due to its ability to induce neurological disease in both adults and the developing fetus. ZIKV is largely mosquito-borne and is now endemic in many parts of Africa, Asia, and South America. However, several reports have demonstrated persistent ZIKV infection of the male reproductive tract and evidence of male-to-female sexual transmission of ZIKV. Sexual transmission may broaden the reach of ZIKV infections beyond its current geographical limits, presenting a significant threat worldwide. Several mouse models of ZIKV infection have been developed to investigate ZIKV pathogenesis and develop effective vaccines and therapeutics. However, the majority of these models focus on mosquito-borne infection, while few have considered the impact of sexual transmission on immunity and pathogenesis. This review will examine the advantages and disadvantages of current models of mosquito-borne and sexually transmitted ZIKV and provide recommendations for the effective use of ZIKV mouse models.
Collapse
|
10
|
King EL, Irigoyen N. Zika Virus and Neuropathogenesis: The Unanswered Question of Which Strain Is More Prone to Causing Microcephaly and Other Neurological Defects. Front Cell Neurosci 2021; 15:695106. [PMID: 34658789 PMCID: PMC8514627 DOI: 10.3389/fncel.2021.695106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Despite being perceived to be a relatively innocuous pathogen during its circulation in Africa in the 20th century, consequent outbreaks in French Polynesia and Latin America revealed the Zika virus (ZIKV) to be capable of causing severe neurological defects. Foetuses infected with the virus during pregnancy developed a range of pathologies including microcephaly, cerebral calcifications and macular scarring. These are now collectively known as Congenital Zika syndrome (CZS). It has been established that the neuropathogenesis of ZIKV results from infection of neural progenitor cells in the developing cerebral cortex. Following this, two main hypotheses have emerged: the virus causes either apoptosis or premature differentiation of neural progenitor cells, reducing the final number of mature neurons in the cerebral cortex. This review describes the cellular processes which could potentially cause virus induced apoptosis or premature differentiation, leading to speculation that a combination of the two may be responsible for the pathologies associated with ZIKV. The review also discusses which specific lineages of the ZIKV can employ these mechanisms. It has been unclear in the past whether the virus evolved its neurotropic capability following circulation in Africa, or if the virus has always caused microcephaly but public health surveillance in Africa had failed to detect it. Understanding the true neuropathogenesis of ZIKV is key to being prepared for further outbreaks in the future, and it will also provide insight into how neurotropic viruses can cause profound and life-long neurological defects.
Collapse
Affiliation(s)
- Emily Louise King
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Miller MR, Fagre AC, Clarkson TC, Markle ED, Foy BD. Three Immunocompetent Small Animal Models That Do Not Support Zika Virus Infection. Pathogens 2021; 10:pathogens10080971. [PMID: 34451435 PMCID: PMC8401401 DOI: 10.3390/pathogens10080971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that is primarily transmitted to humans through the bite of an infected mosquito. ZIKV causes disease in infected humans with added complications of Guillain-Barré syndrome and birth defects in infants born to mothers infected during pregnancy. There are several large immunocompetent animal models for ZIKV including non-human primates (NHPs). NHP models closely reflect human infection; however, due to sample size restrictions, investigations into the effects of transmission route and the impacts on disease dynamics have been understudied. Mice have been widely used for modeling ZIKV infection, yet there are few ZIKV-susceptible immunocompetent mouse models and none of these have been used to investigate sexual transmission. In an effort to identify a small immunocompetent animal model to characterize sexual transmission of ZIKV, we attempt experimental infection of multimammate mice, New Zealand white rabbits, and Hartley guinea pigs. The multimammate mouse is the natural reservoir of Lassa fever virus and has been identified to harbor other human pathogens. Likewise, while NZW rabbits are susceptible to West Nile virus, they have not yet been examined for their susceptibility to infection with ZIKV. Guinea pigs have been successfully used as models for ZIKV infection, but only in immunocompromised life stages (young or pregnant). Here, it was found that the multimammate mouse and New Zealand White (NZW) rabbits are not susceptible ZIKV infection as determined by a lack viral RNA in tissues and fluids collected. Sexually mature male Hartley guinea pigs were inoculated subcutaneously and by mosquito bite, but found to be refractory to ZIKV infection, contrary to findings of other studies in young and pregnant guinea pigs. Interestingly, here it is shown that adult male guinea pigs are not susceptible to ZIKV infection, even when infected by natural route (e.g., mosquito bite). Although a new small animal model for the sexual transmission for ZIKV was not established through this study, these findings provide information on outbred animal species that are not permissive to infection (NZW rabbits and multimammate mice) and new information surrounding limitations of a previously established animal model (guinea pigs).
Collapse
|
12
|
Pletnev AG, Maximova OA, Liu G, Kenney H, Nagata BM, Zagorodnyaya T, Moore I, Chumakov K, Tsetsarkin KA. Epididymal epithelium propels early sexual transmission of Zika virus in the absence of interferon signaling. Nat Commun 2021; 12:2469. [PMID: 33927207 PMCID: PMC8084954 DOI: 10.1038/s41467-021-22729-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/23/2021] [Indexed: 11/21/2022] Open
Abstract
Recognition of Zika virus (ZIKV) sexual transmission (ST) among humans challenges our understanding of the maintenance of mosquito-borne viruses in nature. Here we dissected the relative contributions of the components of male reproductive system (MRS) during early male-to-female ZIKV transmission by utilizing mice with altered antiviral responses, in which ZIKV is provided an equal opportunity to be seeded in the MRS tissues. Using microRNA-targeted ZIKV clones engineered to abolish viral infectivity to different parts of the MRS or a library of ZIKV genomes with unique molecular identifiers, we pinpoint epithelial cells of the epididymis (rather than cells of the testis, vas deferens, prostate, or seminal vesicles) as a most likely source of the sexually transmitted ZIKV genomes during the early (most productive) phase of ZIKV shedding into the semen. Incorporation of this mechanistic knowledge into the development of a live-attenuated ZIKV vaccine restricts its ST potential.
Collapse
Affiliation(s)
- Alexander G Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Olga A Maximova
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Guangping Liu
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather Kenney
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bianca M Nagata
- Infectious Disease and Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Tatiana Zagorodnyaya
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Ian Moore
- Infectious Disease and Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Konstantin Chumakov
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Konstantin A Tsetsarkin
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Blitvich BJ, Magalhaes T, Laredo-Tiscareño SV, Foy BD. Sexual Transmission of Arboviruses: A Systematic Review. Viruses 2020; 12:v12090933. [PMID: 32854298 PMCID: PMC7552039 DOI: 10.3390/v12090933] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) are primarily maintained in nature in transmission cycles between hematophagous arthropods and vertebrate hosts, but an increasing number of arboviruses have been isolated from or indirectly detected in the urogenital tract and sexual secretions of their vertebrate hosts, indicating that further investigation on the possibility of sexual transmission of these viruses is warranted. The most widely recognized sexually-transmitted arbovirus is Zika virus but other arboviruses, including Crimean-Congo hemorrhagic fever virus and dengue virus, might also be transmitted, albeit occasionally, by this route. This review summarizes our current understanding on the ability of arboviruses to be sexually transmitted. We discuss the sexual transmission of arboviruses between humans and between vertebrate animals, but not arthropod vectors. Every taxonomic group known to contain arboviruses (Asfarviridae, Bunyavirales, Flaviviridae, Orthomyxoviridae, Reoviridae, Rhabdoviridae and Togaviridae) is covered.
Collapse
Affiliation(s)
- Bradley J. Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
- Correspondence: ; Tel.: +1-515-294-9861; Fax: +1-515-294-8500
| | - Tereza Magalhaes
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (T.M.); (B.D.F.)
| | - S. Viridiana Laredo-Tiscareño
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Brian D. Foy
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (T.M.); (B.D.F.)
| |
Collapse
|
14
|
Maternal Zika Virus (ZIKV) Infection following Vaginal Inoculation with ZIKV-Infected Semen in Timed-Pregnant Olive Baboons. J Virol 2020; 94:JVI.00058-20. [PMID: 32188737 PMCID: PMC7269433 DOI: 10.1128/jvi.00058-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/14/2020] [Indexed: 12/15/2022] Open
Abstract
Zika virus (ZIKV) infection is now firmly linked to congenital Zika syndrome (CZS), including fetal microcephaly. While Aedes species of mosquito are the primary vector for ZIKV, sexual transmission of ZIKV is a significant route of infection. ZIKV has been documented in human, mouse, and nonhuman primate (NHP) semen. It is critical to establish NHP models of the vertical transfer of ZIKV that recapitulate human pathogenesis. We hypothesized that vaginal deposition of ZIKV-infected baboon semen would lead to maternal infection and vertical transfer in the olive baboon (Papio anubis). Epidemiological studies suggest an increased rate of CZS in the Americas compared to the original link to CZS in French Polynesia; therefore, we also compared the French Polynesian (FP) ZIKV isolate to the Puerto Rican (PR) isolate. Timed-pregnant baboons (n = 6) were inoculated via vaginal deposition of baboon semen containing 106 focus-forming units (FFU) of ZIKV (n = 3 for FP isolate H/PF/2013; n = 3 for PR isolate PRVABC59) at midgestation (86 to 95 days of gestation [dG]; term, 183 dG) on day 0 (all dams) and then at 7-day intervals through 3 weeks. Maternal blood, saliva, and cervicovaginal wash (CVW) samples were obtained. Animals were euthanized at 28 days (n = 5) or 39 days (n = 1) after the initial inoculation, and maternal/fetal tissues were collected. Viremia was achieved in 3/3 FP ZIKV-infected dams and 2/3 PR ZIKV-infected dams. ZIKV RNA was detected in CVW samples of 5/6 dams. ZIKV RNA was detected in lymph nodes but not the ovaries, uterus, cervix, or vagina in FP isolate-infected dams. ZIKV RNA was detected in lymph nodes (3/3), uterus (2/3), and vagina (2/3) in PR isolate-infected dams. Placenta, amniotic fluid, and fetal tissues were ZIKV RNA negative in the FP isolate-infected dams, whereas 2/3 PR isolate-infected dam placentas were ZIKV RNA positive. We conclude that ZIKV-infected semen is a means of ZIKV transmission during pregnancy in primates. The PR isolate appeared more capable of widespread dissemination to tissues, including reproductive tissues and placenta, than the FP isolate.IMPORTANCE Zika virus remains a worldwide health threat, with outbreaks still occurring in the Americas. While mosquitos are the primary vector for the spread of the virus, sexual transmission of Zika virus is also a significant means of infection, especially in terms of passage from an infected to an uninfected partner. While sexual transmission has been documented in humans, and male-to-female transmission has been reported in mice, ours is the first study in nonhuman primates to demonstrate infection via vaginal deposition of Zika virus-infected semen. The latter is important since a recent publication indicated that human semen inhibited, in a laboratory setting, Zika virus infection of reproductive tissues. We also found that compared to the French Polynesian isolate, the Puerto Rican Zika virus isolate led to greater spread throughout the body, particularly in reproductive tissues. The American isolates of Zika virus appear to have acquired mutations that increase their efficacy.
Collapse
|
15
|
Borges ED, Vireque AA, Berteli TS, Ferreira CR, Silva AS, Navarro PA. An update on the aspects of Zika virus infection on male reproductive system. J Assist Reprod Genet 2019; 36:1339-1349. [PMID: 31147867 PMCID: PMC6642278 DOI: 10.1007/s10815-019-01493-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/17/2019] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is mainly transmitted through Aedes mosquito bites, but sexual and post-transfusion transmissions have been reported. During acute infection, ZIKV is detectable in most organs and body fluids including human semen. Although it is not currently epidemic, there is a concern that the virus can still reemerge since the male genital tract might harbor persistent reservoirs that could facilitate viral transmission over extended periods, raising concerns among public health and assisted reproductive technologies (ART) experts and professionals. So far, the consensus is that ZIKV infection in the testes or epididymis might affect sperm development and, consequently, male fertility. Still, diagnostic tests have not yet been adapted to resource-restricted countries. This manuscript provides an updated overview of the cellular and molecular mechanisms of ZIKV infection and reviews data on ZIKV persistence in semen and associated risks to the male reproductive system described in human and animal models studies. We provide an updated summary of the impact of the recent ZIKV outbreak on human-ART, weighing on current recommendations and diagnostic approaches, both available and prospective, with special emphasis on mass spectrometry-based biomarker discovery. In the light of the identified gaps in our accumulated knowledge on the subject, we highlight the importance for couples seeking ART to follow the constantly revised guidelines and the need of specific ZIKV diagnosis tools for semen screening to contain ZIKV virus spread and make ART safer.
Collapse
Affiliation(s)
- E D Borges
- Department of Obstetrics and Gynecology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- Invitra - Assisted Reproductive Technologies LTD, Supera Innovation and Technology Park, Ribeirão Preto, São Paulo, 14056-680, Brazil.
| | - A A Vireque
- Invitra - Assisted Reproductive Technologies LTD, Supera Innovation and Technology Park, Ribeirão Preto, São Paulo, 14056-680, Brazil
| | - T S Berteli
- Department of Obstetrics and Gynecology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - C R Ferreira
- Metabolite Profiling Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - A S Silva
- Department of Social Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - P A Navarro
- Department of Obstetrics and Gynecology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
- National Institutes of Hormones and Woman's Health, CNPq, Brasilia, Brazil
| |
Collapse
|
16
|
McDonald EM, Duggal NK, Delorey MJ, Oksanish J, Ritter JM, Brault AC. Duration of seminal Zika viral RNA shedding in immunocompetent mice inoculated with Asian and African genotype viruses. Virology 2019; 535:1-10. [PMID: 31254742 PMCID: PMC7931630 DOI: 10.1016/j.virol.2019.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022]
Abstract
Prior to the emergence of Asian genotype Zika virus (ZIKV) in the Western hemisphere, sexual transmission in humans was documented. Sexual transmission by African genotype ZIKVs has not been assessed in laboratory animal models, due to rapid and high mortality rates of immunodeficient mice following inoculation. To overcome these limitations, immunocompetent C57Bl/6 mice were used to longitudinally assess Asian and African genotype ZIKV sexual transmission potential. Furthermore, to determine if enhanced pathogenesis of African genotype ZIKVs is due to structural determinants, PRVABC59 prM/E was replaced with African MR766 prM/E (chimeric ZIKV). The African genotype and chimeric ZIKV elicited greater pathogenic effects in the male reproductive tract and generated higher viremias. Yet, the duration, magnitude and efficiency of seminal shedding of infectious virus and viral RNA were similar between chimeric-, African and Asian genotype ZIKV-inoculated mice. These data show that increased male reproductive tract pathology does not increase sexual transmission potential.
Collapse
Affiliation(s)
- Erin M McDonald
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Nisha K Duggal
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Mark J Delorey
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - James Oksanish
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Jana M Ritter
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Aaron C Brault
- Division of Vector-borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA.
| |
Collapse
|
17
|
Zika Virus Associated Pathology and Antigen Presence in the Testicle in the Absence of Sexual Transmission During Subacute to Chronic Infection in a Mouse Model. Sci Rep 2019; 9:8325. [PMID: 31171800 PMCID: PMC6554467 DOI: 10.1038/s41598-019-44582-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/09/2019] [Indexed: 11/09/2022] Open
Abstract
Zika virus (ZIKV) is an arboviral infection that has been shown to be sexually transmitted. The study outlined herein aims to determine if accessory sex glands and epididymal epithelial cells are sources of viral persistence in subacute and chronic ZIKV infection, and if infection of these organs is important in sexual transmission during long-term (chronic) infection. Male interferon type I receptor knockout (Ifnar-/-) mice were challenged with ZIKV and reproductive tissues were harvested 14 and 35 days post infection (DPI) for inoculation studies and 14, 35 and 70 DPI for histopathology. Artificial insemination fluid derived from epididymal flush and seminal plasma from the prostate and seminal vesicle was obtained from ZIKV inoculated and sham-infected males. Naïve interferon type I and II receptor knockout (AG129) female mice were pre-treated with progesterone and inoculated intravaginally with artificial insemination fluid from ZIKV-infected males. ZIKV RNA was detected in the artificial insemination fluid generated from epididymal flush or seminal plasma from ZIKV infected males at 14 and 35 DPI. ZIKV antigens were only detected in seminiferous tubules at 14 DPI. Epididymal epithelial cells did not show ZIKV antigen immunoreactivity at 14, 35 or 70 DPI. Severe fibrosing orchitis (end stage orchitis) was observed at 35 and 70 DPI. Mild inflammation and peri-tubular fibrosis were observed in the epididymis following clearance of virus. Viral RNA was not detected by PCR in whole blood samples of females from any intravaginal experimental group and only detected in 20% of subcutaneously inoculated animals (derived from 1 experimentally infected male) at 35 DPI. While ZIKV RNA and antigens can be detected in the male reproductive tract at 14 DPI and RNA can also be detected at 35 DPI, intravaginal inoculation of artificial insemination fluid from these time-points failed to result in viremia in naïve females inoculated intravaginally. These studies support the hypothesis that epididymal epithelial cells are critical to sexual transmission in immunocompromised mice. Additionally, acute but not chronic male reproductive tract infection with ZIKV results in infectious virus capable of being sexually transmitted in mice.
Collapse
|