1
|
Yang Y, Wei Y, Chen L. [Research progress on iron metabolism in the occurrence and development of periodontitis]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:541-549. [PMID: 38965980 PMCID: PMC11528136 DOI: 10.3724/zdxbyxb-2024-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024]
Abstract
Iron metabolism refers to the process of absorption, transport, excretion and storage of iron in organisms, including the biological activities of iron ions and iron-binding proteins in cells. Clinical research and animal experiments have shown that iron metabolism is associated with the progress of periodontitis. Iron metabolism not only enhances the proliferation and toxicity of periodontal pathogens, but also activate host immune-inflammatory response mediated by macrophages, neutrophils and lymphocytes. In addition, iron metabolism is also involved in regulating cellular death sensitivity of gingival fibroblasts and osteoblasts and promoting the differentiation of osteoclasts, which plays a regulatory role in the regeneration and repair of periodontal tissue. This article reviews the research progress on the pathogenesis of periodontitis from the perspective of iron metabolism, aiming to provide new ideas for the treatment of periodontitis.
Collapse
Affiliation(s)
- Yuting Yang
- Department of Periodontics, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Yingming Wei
- Department of Periodontics, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lili Chen
- Department of Periodontics, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
2
|
Fu Y, Xu T, Guo M, Lv W, Ma N, Zhang L. Identification of disulfidptosis- and ferroptosis-related transcripts in periodontitis by bioinformatics analysis and experimental validation. Front Genet 2024; 15:1402663. [PMID: 39045324 PMCID: PMC11263038 DOI: 10.3389/fgene.2024.1402663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/18/2024] [Indexed: 07/25/2024] Open
Abstract
Background Disulfidptosis and ferroptosis are forms of programmed cell death that may be associated with the pathogenesis of periodontitis. Our study developed periodontitis-associated biomarkers combining disulfidptosis and ferroptosis, which provides a new perspective on the pathogenesis of periodontitis. Methods Firstly, we obtained the periodontitis dataset from public databases and found disulfidptosis- and ferroptosis-related differentially expressed transcripts based on the disulfidptosis and ferroptosis transcript sets. After that, transcripts that are tissue biomarkers for periodontitis were found using three machine learning methods. We also generated transcript subclusters from two periodontitis microarray datasets: GSE16134 and GSE23586. Furthermore, three transcripts with the best classification efficiency were further screened. Their expression and classification efficacy were validated using qRT-PCR. Finally, periodontal clinical indicators of 32 clinical patients were collected, and the correlation between three transcripts above and periodontal clinical indicators was analyzed. Results We identified six transcripts that are tissue biomarkers for periodontitis, the top three transcripts with the best classification, and delineated two expression patterns in periodontitis. Conclusions Our study found that disulfidptosis and ferroptosis were associated with immune responses and may involve periodontitis genesis.
Collapse
Affiliation(s)
| | | | | | | | - Ning Ma
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Li Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
3
|
Chen J, Ou L, Liu W, Gao F. Exploring the molecular mechanisms of ferroptosis-related genes in periodontitis: a multi-dataset analysis. BMC Oral Health 2024; 24:611. [PMID: 38802844 PMCID: PMC11129485 DOI: 10.1186/s12903-024-04342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
PURPOSE This study aims to elucidate the biological functions of ferroptosis-related genes in periodontitis, along with their correlation to tumor microenvironment (TME) features such as immune infiltration. It aims to provide potential diagnostic markers of ferroptosis for clinical management of periodontitis. METHODS Utilizing the periodontitis-related microarray dataset GSE16134 from the Gene Expression Omnibus (GEO) and a set of 528 ferroptosis-related genes identified in prior studies, this research unveils differentially expressed ferroptosis-related genes in periodontitis. Subsequently, a protein-protein interaction network was constructed. Subtyping of periodontitis was explored, followed by validation through immune cell infiltration and gene set enrichment analyses. Two algorithms, randomForest and SVM(Support Vector Machine), were employed to reveal potential ferroptosis diagnostic markers for periodontitis. The diagnostic efficacy, immune correlation, and potential transcriptional regulatory networks of these markers were further assessed. Finally, potential targeted drugs for differentially expressed ferroptosis markers in periodontitis were predicted. RESULTS A total of 36 ferroptosis-related genes (30 upregulated, 6 downregulated) were identified from 829 differentially expressed genes between 9 periodontitis samples and the control group. Subsequent machine learning algorithm screening highlighted 4 key genes: SLC1A5(Solute Carrier Family 1 Member 5), SLC2A14(Solute Carrier Family 1 Member 14), LURAP1L(Leucine Rich Adaptor Protein 1 Like), and HERPUD1(Homocysteine Inducible ER Protein With Ubiquitin Like Domain 1). Exploration of these 4 key genes, supported by time-correlated ROC analysis, demonstrated reliability, while immune infiltration results indicated a strong correlation between key genes and immune factors. Furthermore, Gene Set Enrichment Analysis (GSEA) was conducted for the four key genes, revealing enrichment in GO/KEGG pathways that have a significant impact on periodontitis. Finally, the study predicted potential transcriptional regulatory networks and targeted drugs associated with these key genes in periodontitis. CONCLUSIONS The ferroptosis-related genes identified in this study, including SLC1A5, SLC2A14, LURAP1L, and HERPUD1, may serve as novel diagnostic and therapeutic targets for periodontitis. They are likely involved in the occurrence and development of periodontitis through mechanisms such as immune infiltration, cellular metabolism, and inflammatory chemotaxis, potentially linking the ferroptosis pathway to the progression of periodontitis. Targeted drugs such as flurofamide, L-733060, memantine, tetrabenazine, and WAY-213613 hold promise for potential therapeutic interventions in periodontitis associated with these ferroptosis-related genes.
Collapse
Affiliation(s)
- Jili Chen
- Department of Periodontics, Panyu Branch, Stomatological Hospital, School of Stomatology, Southern Medical University, No.366 Jiangnan Dadao Nan, Haizhu District, Guangzhou, Guangdong, 510220, China
| | - Lijia Ou
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha, 410006, China
| | - Weizhen Liu
- Department of Periodontics, Panyu Branch, Stomatological Hospital, School of Stomatology, Southern Medical University, No.366 Jiangnan Dadao Nan, Haizhu District, Guangzhou, Guangdong, 510220, China
| | - Feng Gao
- Department of Periodontics, Panyu Branch, Stomatological Hospital, School of Stomatology, Southern Medical University, No.366 Jiangnan Dadao Nan, Haizhu District, Guangzhou, Guangdong, 510220, China.
| |
Collapse
|
4
|
Torres A, Michea MA, Végvári Á, Arce M, Pérez V, Alcota M, Morales A, Vernal R, Budini M, Zubarev RA, González FE. A multi-platform analysis of human gingival crevicular fluid reveals ferroptosis as a relevant regulated cell death mechanism during the clinical progression of periodontitis. Int J Oral Sci 2024; 16:43. [PMID: 38802345 PMCID: PMC11130186 DOI: 10.1038/s41368-024-00306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Ferroptosis is implicated in the pathogenesis of numerous chronic-inflammatory diseases, yet its association with progressive periodontitis remains unexplored. To investigate the involvement and significance of ferroptosis in periodontitis progression, we assessed sixteen periodontitis-diagnosed patients. Disease progression was clinically monitored over twelve weeks via weekly clinical evaluations and gingival crevicular fluid (GCF) collection was performed for further analyses. Clinical metrics, proteomic data, in silico methods, and bioinformatics tools were combined to identify protein profiles linked to periodontitis progression and to explore their potential connection with ferroptosis. Subsequent western blot analyses validated key findings. Finally, a single-cell RNA sequencing (scRNA-seq) dataset (GSE164241) for gingival tissues was analyzed to elucidate cellular dynamics during periodontitis progression. Periodontitis progression was identified as occurring at a faster rate than traditionally thought. GCF samples from progressing and non-progressing periodontal sites showed quantitative and qualitatively distinct proteomic profiles. In addition, specific biological processes and molecular functions during progressive periodontitis were revealed and a set of hub proteins, including SNCA, CA1, HBB, SLC4A1, and ANK1 was strongly associated with the clinical progression status of periodontitis. Moreover, we found specific proteins - drivers or suppressors - associated with ferroptosis (SNCA, FTH1, HSPB1, CD44, and GCLC), revealing the co-occurrence of this specific type of regulated cell death during the clinical progression of periodontitis. Additionally, the integration of quantitative proteomic data with scRNA-seq analysis suggested the susceptibility of fibroblasts to ferroptosis. Our analyses reveal proteins and processes linked to ferroptosis for the first time in periodontal patients, which offer new insights into the molecular mechanisms of progressive periodontal disease. These findings may lead to novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Alfredo Torres
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago, Chile
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - M Angélica Michea
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Marion Arce
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Valentina Pérez
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Marcela Alcota
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Alicia Morales
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Rolando Vernal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Mauricio Budini
- Laboratory of Cellular and Molecular Pathology, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Roman A Zubarev
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Fermín E González
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago, Chile.
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile.
| |
Collapse
|
5
|
Lösser L, Ledesma-Colunga MG, Andrés Sastre E, Scholtysek C, Hofbauer LC, Noack B, Baschant U, Rauner M. Transferrin receptor 2 mitigates periodontitis-driven alveolar bone loss. J Cell Physiol 2024; 239:e31172. [PMID: 38214117 DOI: 10.1002/jcp.31172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Periodontitis is associated with significant alveolar bone loss. Patients with iron overload suffer more frequently from periodontitis, however, the underlying mechanisms remain largely elusive. Here, we investigated the role of transferrin receptor 2 (Tfr2), one of the main regulators of iron homeostasis, in the pathogenesis of periodontitis and the dental phenotype under basal conditions in mice. As Tfr2 suppresses osteoclastogenesis, we hypothesized that deficiency of Tfr2 may exacerbate periodontitis-induced bone loss. Mice lacking Tfr2 (Tfr2-/- ) and wild-type (Tfr2+/+ ) littermates were challenged with experimental periodontitis. Mandibles and maxillae were collected for microcomputed tomography and histology analyses. Osteoclast cultures from Tfr2+/+ and Tfr2-/- mice were established and analyzed for differentiation efficiency, by performing messenger RNA expression and protein signaling pathways. After 8 days, Tfr2-deficient mice revealed a more severe course of periodontitis paralleled by higher immune cell infiltration and a higher histological inflammation index than Tfr2+/+ mice. Moreover, Tfr2-deficient mice lost more alveolar bone compared to Tfr2+/+ littermates, an effect that was only partially iron-dependent. Histological analysis revealed a higher number of osteoclasts in the alveolar bone of Tfr2-deficient mice. In line, Tfr2-deficient osteoclastic differentiation ex vivo was faster and more efficient as reflected by a higher number of osteoclasts, a higher expression of osteoclast markers, and an increased resorptive activity. Mechanistically, Tfr2-deficient osteoclasts showed a higher p38-MAPK signaling and inhibition of p38-MAPK signaling in Tfr2-deficient cells reverted osteoclast formation to Tfr2+/+ levels. Taken together, our data indicate that Tfr2 modulates the inflammatory response in periodontitis thereby mitigating effects on alveolar bone loss.
Collapse
Affiliation(s)
- Lennart Lösser
- Department of Medicine III & Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Maria G Ledesma-Colunga
- Department of Medicine III & Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Enrique Andrés Sastre
- Department of Medicine III & Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Carina Scholtysek
- Department of Internal Medicine 3, University of Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), University of Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Barbara Noack
- Policlinic of Operative Dentistry, Periodontology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Department of Medicine III & Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
6
|
Lê S, Minty M, Boyer É, Blasco-Baque V, Bonnaure-Mallet M, Meuric V. [Oral microbiota and liver]. Med Sci (Paris) 2024; 40:42-48. [PMID: 38299902 DOI: 10.1051/medsci/2023194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
The liver has many important biological functions for the body, as it is involved in the storage and distribution of nutrients (carbohydrates to glycogen, lipids to triglycerides), the digestion of fats, the synthesis of blood proteins, and the detoxification of alcohol and drugs. The liver can be affected by various diseases such as viral or drug-induced hepatitis, fibrosis and cirrhosis, in which damaged hepatocytes are progressively replaced by scar tissue.
Collapse
Affiliation(s)
- Sylvie Lê
- Département dentaire, université Paul Sabatier III (UPS), Toulouse, France - Service d'odontologie Toulouse, CHU Toulouse, Toulouse, France - UMR1297 Inserm, équipe InCOMM (Intestine ClinicOmics Metabolism & Microbiota), Institut des maladies métaboliques et cardiovasculaires (I2MC), université Paul Sabatier, Toulouse, France
| | - Matthieu Minty
- Département dentaire, université Paul Sabatier III (UPS), Toulouse, France - Service d'odontologie Toulouse, CHU Toulouse, Toulouse, France - UMR1297 Inserm, équipe InCOMM (Intestine ClinicOmics Metabolism & Microbiota), Institut des maladies métaboliques et cardiovasculaires (I2MC), université Paul Sabatier, Toulouse, France
| | - Émile Boyer
- Inserm U1317, Inrae, université de Rennes, CHU de Rennes, site Pontchaillou-Villejean, Rennes, France
| | - Vincent Blasco-Baque
- Département dentaire, université Paul Sabatier III (UPS), Toulouse, France - Service d'odontologie Toulouse, CHU Toulouse, Toulouse, France - UMR1297 Inserm, équipe InCOMM (Intestine ClinicOmics Metabolism & Microbiota), Institut des maladies métaboliques et cardiovasculaires (I2MC), université Paul Sabatier, Toulouse, France
| | - Martine Bonnaure-Mallet
- Inserm U1317, Inrae, université de Rennes, CHU de Rennes, site Pontchaillou-Villejean, Rennes, France
| | - Vincent Meuric
- Inserm U1317, Inrae, université de Rennes, CHU de Rennes, site Pontchaillou-Villejean, Rennes, France
| |
Collapse
|
7
|
Anne Marie U, Murererehe J, Rehman M, Chittilla M, Uwambaye P, Razzaque MS. Oral manifestations of iron imbalance. Front Nutr 2023; 10:1272902. [PMID: 37899821 PMCID: PMC10611504 DOI: 10.3389/fnut.2023.1272902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/11/2023] [Indexed: 10/31/2023] Open
Affiliation(s)
- Uwitonze Anne Marie
- Department of Preventive and Community Dentistry, School of Dentistry, University of Rwanda College of Medicine and Health Sciences, Kigali, Rwanda
| | - Julienne Murererehe
- Department of Preventive and Community Dentistry, School of Dentistry, University of Rwanda College of Medicine and Health Sciences, Kigali, Rwanda
| | - Mahum Rehman
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Mythri Chittilla
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Peace Uwambaye
- Department of Preventive and Community Dentistry, School of Dentistry, University of Rwanda College of Medicine and Health Sciences, Kigali, Rwanda
| | - Mohammed S. Razzaque
- Department of Preventive and Community Dentistry, School of Dentistry, University of Rwanda College of Medicine and Health Sciences, Kigali, Rwanda
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| |
Collapse
|
8
|
Lewis JP, Gui Q. Iron Deficiency Modulates Metabolic Landscape of Bacteroidetes Promoting Its Resilience during Inflammation. Microbiol Spectr 2023; 11:e0473322. [PMID: 37314331 PMCID: PMC10434189 DOI: 10.1128/spectrum.04733-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/05/2023] [Indexed: 06/15/2023] Open
Abstract
Bacteria have to persist under low iron conditions in order to adapt to the nutritional immunity of a host. Since the knowledge of iron stimulon of Bacteroidetes is sparse, we examined oral (Porphyromonas gingivalis and Prevotella intermedia) and gut (Bacteroides thataiotaomicron) representatives for their ability to adapt to iron deplete and iron replete conditions. Our transcriptomics and comparative genomics analysis show that many iron-regulated mechanisms are conserved within the phylum. They include genes upregulated in low iron, as follows: fldA (flavodoxin), hmu (hemin uptake operon), and loci encoding ABC transporters. Downregulated genes were frd (ferredoxin), rbr (rubrerythrin), sdh (succinate dehydrogenase/fumarate reductase), vor (oxoglutarate oxidoreductase/dehydrogenase), and pfor (pyruvate:ferredoxin/flavodoxin oxidoreductase). Some genus-specific mechanisms, such as the sus of B. thetaiotaomicron coding for carbohydrate metabolism and the xusABC coding for xenosiderophore utilization were also identified. While all bacteria tested in our study had the nrfAH operon coding for nitrite reduction and were able to reduce nitrite levels present in culture media, the expression of the operon was iron dependent only in B. thetaiotaomicron. It is noteworthy that we identified a significant overlap between regulated genes found in our study and the B. thetaiotaomicron colitis study (W. Zhu, M. G. Winter, L. Spiga, E. R. Hughes et al., Cell Host Microbe 27:376-388, 2020, http://dx.doi.org/10.1016/j.chom.2020.01.010). Many of those commonly regulated genes were also iron regulated in the oral bacterial genera. Overall, this work points to iron being the master regulator enabling bacterial persistence in the host and paves the way for a more generalized investigation of the molecular mechanisms of iron homeostasis in Bacteroidetes. IMPORTANCE Bacteroidetes are an important group of anaerobic bacteria abundant both in the oral and gut microbiomes. Although iron is a required nutrient for most living organisms, the molecular mechanisms of adaptation to the changing levels of iron are not well known in this group of bacteria. We defined the iron stimulon of Bacteroidetes by examination of the transcriptomic response of Porphyromonas gingivalis and Prevotella intermedia (both belong to the oral microbiome) and Bacteroidetes thetaiotaomicron (belongs to the gut microbiome). Our results indicate that many of the iron-regulated operons are shared among the three genera. Furthermore, using bioinformatics analysis, we identified a significant overlap between our in vitro studies and transcriptomic data derived from a colitis study, thus underscoring the biological significance of our work. Defining the iron-dependent stimulon of Bacteroidetes can help to identify the molecular mechanisms of iron-dependent regulation as well as better understand the persistence of the anaerobes in the human host.
Collapse
Affiliation(s)
- Janina P. Lewis
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Qin Gui
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
9
|
Chen K, Ma S, Deng J, Jiang X, Ma F, Li Z. Ferroptosis: A New Development Trend in Periodontitis. Cells 2022; 11:3349. [PMID: 36359745 PMCID: PMC9654795 DOI: 10.3390/cells11213349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 01/17/2024] Open
Abstract
Periodontitis is a chronic inflammatory disease associated with bacterial biofilm. It is characterized by loss of periodontal support tissue and has long been considered as a "silent disease". Because it is difficult to prevent and has a health impact that can not be ignored, researchers have been focusing on a mechanism-based treatment model. Ferroptosis is an iron-dependent regulatory form of cell death, that directly or indirectly affects glutathione peroxidase through different signaling pathways, resulting in a decrease in cell antioxidant capacity, accumulation of reactive oxygen species and lipid peroxidation, which cause oxidative cell death and tissue damage. Recently, some studies have proven that iron overload, oxidative stress, and lipid peroxidation exist in the process of periodontitis. Based on this, this article reviews the relationship between periodontitis and ferroptosis, in order to provide a theoretical reference for future research on the prevention and treatment of periodontal disease.
Collapse
Affiliation(s)
- Kexiao Chen
- Medical Center of Stomatology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
- School of Stomatology, Jinan University, Guangzhou 510630, China
| | - Shuyuan Ma
- Medical Center of Stomatology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Jianwen Deng
- Medical Center of Stomatology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
- School of Stomatology, Jinan University, Guangzhou 510630, China
| | - Xinrong Jiang
- Medical Center of Stomatology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
- School of Stomatology, Jinan University, Guangzhou 510630, China
| | - Fengyu Ma
- Medical Center of Stomatology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
- School of Stomatology, Jinan University, Guangzhou 510630, China
| | - Zejian Li
- Medical Center of Stomatology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
- School of Stomatology, Jinan University, Guangzhou 510630, China
- Chaoshan Hospital, The First Affiliated Hospital of Jinan University, Chaozhou 515600, China
| |
Collapse
|
10
|
Chathoth K, Fostier L, Martin B, Baysse C, Mahé F. A Multi-Skilled Mathematical Model of Bacterial Attachment in Initiation of Biofilms. Microorganisms 2022; 10:microorganisms10040686. [PMID: 35456739 PMCID: PMC9029265 DOI: 10.3390/microorganisms10040686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 01/25/2023] Open
Abstract
The initial step of biofilm formation is bacteria attachment to biotic or abiotic surfaces and other bacteria through intra or interspecies interactions. Adhesion can be influenced by physicochemical conditions of the environment, such as iron. There is no available mathematical model of bacterial attachment giving realistic initiation rather than random adhesion. We describe a simple stochastic attachment model, from the simplest case in two dimensions with one bacterial species attaching on a homogeneous flat surface to more complex situations, with either several bacterial species, inhomogeneous or non-flat surfaces, or in three dimensions. The model depends on attachment probabilities (on the surface, laterally, or vertically on bacteria). Effects of each of these parameters were analyzed. This mathematical model is then applied to experimental oral microcolonies of Porphyromonas gingivalis, Streptococcus gordonii, and Treponema denticola, either as mono-, two, or three species, under different iron concentrations. The model allows to characterize the adhesion of three bacterial species and explore the effect of iron on attachment. This model appears as a powerful tool for initial attachment analysis of bacterial species. It will enable further modeling of biofilm formation in later steps with biofilm initialization more relevant to real-life subgingival biofilms.
Collapse
Affiliation(s)
- Kanchana Chathoth
- CIMIAD, NUMECAN INSERM U1241, Université de Rennes 1, F-35043 Rennes, France; (K.C.); (B.M.); (C.B.)
| | - Louis Fostier
- IRMAR, CNRS UMR 6625, Université de Rennes, F-35000 Rennes, France;
| | - Bénédicte Martin
- CIMIAD, NUMECAN INSERM U1241, Université de Rennes 1, F-35043 Rennes, France; (K.C.); (B.M.); (C.B.)
| | - Christine Baysse
- CIMIAD, NUMECAN INSERM U1241, Université de Rennes 1, F-35043 Rennes, France; (K.C.); (B.M.); (C.B.)
| | - Fabrice Mahé
- IRMAR, CNRS UMR 6625, Université de Rennes, F-35000 Rennes, France;
- Correspondence:
| |
Collapse
|
11
|
Agossa K, Dubar M, Lemaire G, Blaizot A, Catteau C, Bocquet E, Nawrocki L, Boyer E, Meuric V, Siepmann F. Effect of Lactobacillus reuteri on Gingival Inflammation and Composition of the Oral Microbiota in Patients Undergoing Treatment with Fixed Orthodontic Appliances: Study Protocol of a Randomized Control Trial. Pathogens 2022; 11:112. [PMID: 35215057 PMCID: PMC8878988 DOI: 10.3390/pathogens11020112] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
The effect of probiotics in improving or maintaining oral health in orthodontic patients is understudied. The aim of this study is to evaluate the effect of probiotic administration in addition to tooth brushing on clinical gingival inflammation, plaque formation, subgingival microbiota composition, and salivary biomarkers of inflammation in adolescents with fixed orthodontic appliances. The present study is a 6-month, double-blind, two-arm, placebo-controlled, single-center trial, in which 116 adolescent volunteers aged 12-16 years will be recruited from the patients of the orthodontics clinic of the University Hospital of Lille, France. Subjects who meet the eligibility criteria will be allocated to one of the following groups: (i) control: two placebo lozenges per day for 90 days together with regular oral hygiene, (ii) test: two probiotic lozenges per day for 90 days together with regular oral hygiene. Clinical assessment and biological sample collection will be performed at baseline, 3 and 6 months. In addition, compliance outcomes and adverse events will be monitored.
Collapse
Affiliation(s)
- Kevimy Agossa
- Univ. Lille, Inserm, CHU Lille, U1008—Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France;
- Department of Periodontology, School of Dentistry, University of Lille, Place de Verdun, F-59000 Lille, France; (M.D.); (G.L.)
| | - Marie Dubar
- Department of Periodontology, School of Dentistry, University of Lille, Place de Verdun, F-59000 Lille, France; (M.D.); (G.L.)
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172, F-59000 Lille, France
| | - Grégoire Lemaire
- Department of Periodontology, School of Dentistry, University of Lille, Place de Verdun, F-59000 Lille, France; (M.D.); (G.L.)
| | - Alessandra Blaizot
- Department of Dental Public Health, School of Dentistry, CHU Lille, Univ. Lille, F-59000 Lille, France; (A.B.); (C.C.)
| | - Céline Catteau
- Department of Dental Public Health, School of Dentistry, CHU Lille, Univ. Lille, F-59000 Lille, France; (A.B.); (C.C.)
| | - Emmanuël Bocquet
- Department of Orthodontics, School of Dentistry, CHU Lille, Univ. Lille, F-59037 Lille, France;
| | - Laurent Nawrocki
- Department of Oral Surgery, School of Dentistry, CHU Lille, Univ. Lille, F-59037 Lille, France;
| | - Emile Boyer
- INSERM, INRAE, Université de Rennes 1, CHU de Rennes, Nutrition Metabolisms and Cancer, F-35000 Rennes, France; (E.B.); (V.M.)
- Teaching Hospital Pontchaillou, 2 rue Henri le Guilloux, F-35033 Rennes, France
| | - Vincent Meuric
- INSERM, INRAE, Université de Rennes 1, CHU de Rennes, Nutrition Metabolisms and Cancer, F-35000 Rennes, France; (E.B.); (V.M.)
- Teaching Hospital Pontchaillou, 2 rue Henri le Guilloux, F-35033 Rennes, France
| | - Florence Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008—Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France;
| |
Collapse
|
12
|
Microbiota in Periodontitis: Advances in the Omic Era. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:19-43. [DOI: 10.1007/978-3-030-96881-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Rombout-Sestrienkova E, Brandts L, Koek GH, van Deursen CTBM. Patients with hereditary hemochromatosis reach safe range of transferrin saturation sooner with erythrocytaphereses than with phlebotomies. J Clin Apher 2021; 37:100-105. [PMID: 34897777 PMCID: PMC9299622 DOI: 10.1002/jca.21956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023]
Abstract
Introduction For the maintenance treatment of patients with hereditary hemochromatosis (HH), it is advised to keep the transferrin saturation (TSAT) <70% to prevent formation of non‐transferrin‐bound iron and labile plasma iron. The period of the initial iron depletion may last up to 1 year or longer and during this period, the patient is exposed to elevated TSAT levels. Therapeutic erythrocytapheresis (TE) is a modality which has proven to reduce treatment duration of patients with iron overload from HH. In this study, we investigated the time to reach TSAT <70% for both treatment modalities. Methods From a previous randomized controlled trial comparing erythrocytaphereses with phlebotomies (PBMs), we performed an analysis in a subgroup of patients who presented with TSAT >70%. Mann‐Whitney U tests were performed to compare the number of treatments and the number of weeks to reach the interim goal of a persistent level of <70% for TSAT between TE and PBM. Results The period to reach TSAT levels of <70% was statistically significant shorter for the TE group compared to the PBM treatment group (median treatment procedures [IQR] 2.0 (5) vs 16.0 (23), P‐value: <.001, and median treatment duration [IQR]: 5.5 (11) vs 19.0 (29) weeks, P‐value: .007). Conclusion Patients with HH reach a safe TSAT <70% significantly sooner and with less treatment procedures with TE compared to PBM.
Collapse
Affiliation(s)
- Eva Rombout-Sestrienkova
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Department of Transfusion Medicine, Sanquin Blood Supply, Maastricht, The Netherlands
| | - Lloyd Brandts
- Clinical Epidemiology and Medical Technology Assessment (KEMTA), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ger H Koek
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre+, Maastricht, The Netherlands.,School of Nutrition and Translational Research in Metabolism (NUTRIM), University Maastricht, Maastricht, The Netherlands
| | - Cees Th B M van Deursen
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Department of Internal Medicine Gastroenterology and Clinical Geriatrics, Zuyderland Medical Center, Heerlen, The Netherlands
| |
Collapse
|
14
|
Costa SA, Ribeiro CCC, Moreira ARO, Carvalho Souza SDF. High serum iron markers are associated with periodontitis in post-menopausal women: A population-based study (NHANES III). J Clin Periodontol 2021; 49:221-229. [PMID: 34879443 DOI: 10.1111/jcpe.13580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 11/25/2021] [Indexed: 11/26/2022]
Abstract
AIM To investigate the association between increased serum markers of iron (ferritin and transferrin saturation) and the severity and extent of periodontitis in post-menopausal (PM) women. MATERIALS AND METHODS Data from 982 PM women participating in NHANES III were analysed. Exposures were high ferritin (≥300 μg/ml) and transferrin saturation (≥45%). The primary outcome was moderate/severe periodontitis defined according to Centers for Disease Control and Prevention and the American Academy of Periodontology. The extent of periodontitis was also assessed as outcome: proportion of sites affected by clinical attachment loss ≥4 mm and probing depth ≥4 mm. Crude and adjusted prevalence ratio (PR) and mean ratio (MR) were estimated using Poisson regression. RESULTS The prevalence of moderate/severe periodontitis was 27.56%. High ferritin was associated with moderate/severe periodontitis in the crude (PR 1.55, p = .018) and in the final adjusted model (PR 1.53, p = .008). High ferritin and transferrin saturation levels were associated with a higher proportion of sites with clinical attachment loss ≥4 mm (p < .05). CONCLUSIONS The increasing serum iron markers seem to contribute to periodontitis severity and extent in PM women.
Collapse
|
15
|
Han P, Liu T, Vaquette C, Frazer D, Anderson G, Ivanovski S. Iron accumulation is associated with periodontal destruction in a mouse model of HFE-related haemochromatosis. J Periodontal Res 2021; 57:294-304. [PMID: 34855211 DOI: 10.1111/jre.12959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/03/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate the effect of Hfe gene mutation on the distribution of iron and periodontal bone loss in periodontal tissues. BACKGROUND DATA It remains unclear how tissue iron loading affects the periodontium architectures in a genetic animal model of hereditary haemochromatosis (HH). METHODS Male C57BL/6 Hfe-/- (8 weeks old) and wild-type (WT) mice were utilized to examine the iron distribution in periodontal tissues, as well as periodontal tissues changes using micro-computed tomography and histomorphometric analysis. Furthermore, tissue inflammatory mediators, bone markers and periodontal pathogens were carried out in PFA-fixed paraffin-embedded tissues using ELISA, RT-qPCR and genomic DNA qPCR, respectively. RESULTS Excessive iron deposition was found in the periodontal ligament, gingiva and alveolar bone in Hfe-/- mice relative to their WT counterparts. This, in turn, was associated with significant periodontal bone loss, increased cemento-enamel junction-alveolar bone crest distance and decreased expression of molecules involved in bone development and turnover. Furthermore, the pro-inflammatory cytokine - interleukin 6 and periodontal bacteria - Campylobacter rectus were significantly increased in Hfe-/- mice compared with WT controls. CONCLUSION Our results suggest that the iron loading in a mouse model of HH decreases alveolar bone formation and leads to alterations in the inflammatory state in the periodontium. Periodontal health should be assessed during the clinical assessment of HFE-HH patients.
Collapse
Affiliation(s)
- Pingping Han
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Epigenetics Nanodiagnostics and therapeutics Group, The University of Queensland, Herston, QLD, Australia.,School of Dentistry, The University of Queensland, Herston, QLD, Australia
| | - Tianqing Liu
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Cedryck Vaquette
- School of Dentistry, The University of Queensland, Herston, QLD, Australia
| | - David Frazer
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Gregory Anderson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Sašo Ivanovski
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), Epigenetics Nanodiagnostics and therapeutics Group, The University of Queensland, Herston, QLD, Australia.,School of Dentistry, The University of Queensland, Herston, QLD, Australia
| |
Collapse
|
16
|
Khocht A, Orlich M, Paster B, Bellinger D, Lenoir L, Irani C, Fraser G. Cross-sectional comparisons of subgingival microbiome and gingival fluid inflammatory cytokines in periodontally healthy vegetarians versus non-vegetarians. J Periodontal Res 2021; 56:1079-1090. [PMID: 34449089 DOI: 10.1111/jre.12922] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/04/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Vegetarian diets are known to reduce inflammation. The objective of this study was to test the hypothesis that reduced inflammation associated with a vegetarian diet would promote a more commensal subgingival bacterial profile. METHODS A total of 39 periodontally healthy subjects (PD ≤3 mm, bleeding on probing <10%) were enrolled. Dietary intake was assessed by a food frequency questionnaire. A comprehensive periodontal examination was performed. Gingival crevicular fluid (GCF) and subgingival plaque samples were collected. GCF samples were assessed for interleukin-1β, interleukin-6, interleukin-8, tumor necrosis factor-alpha, and interleukin-10. Plaque samples were analyzed for bacteria using 16S rDNA sequencing on an Illumina platform. GenBank database was used for taxonomy classification. RESULTS Twenty-three subjects were categorized as vegetarian and 16 non-vegetarians. Clinical periodontal measures and GCF cytokine levels were statistically comparable between the two groups. Measures of microbial richness and alpha diversity were also comparable between the two dietary groups. Vegetarians harbored higher levels of phyla associated with gingival health (Actinobacteria, and Proteobacteria). Two species known to be associated with periodontitis (Mogibacterium timidum and Veillonella rogosae) were prominent in non-vegetarians. Pearson's correlations between GCF inflammatory cytokines and microbial taxa differed between vegetarians and non-vegetarians. In vegetarians, the anti-inflammatory cytokine IL-10 positively correlated with two species known to be associated with periodontal health (Peptidiphaga sp. HMT183 and Rothia aeria). CONCLUSIONS Diet is directly and indirectly associated with the microbial composition of subgingival plaque. A vegetarian diet may promote a subgingival microbiota associated with periodontal health.
Collapse
Affiliation(s)
- Ahmed Khocht
- Department of Periodontics, School of Dentistry, Loma Linda University, Loma Linda, California, USA
| | - Michael Orlich
- Department of Preventive Medicine, School of Medicine, Loma Linda University, Loma Linda, California, USA.,School of Public Health, Loma Linda University, Loma Linda, California, USA
| | - Bruce Paster
- Forsyth Institute, Cambridge, Massachusetts, USA
| | - Denise Bellinger
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Leticia Lenoir
- Department of Periodontics, School of Dentistry, Loma Linda University, Loma Linda, California, USA
| | - Crissy Irani
- Institute for Community Partnerships, Loma Linda University Health, Loma Linda, California, USA
| | - Gary Fraser
- Department of Preventive Medicine, School of Medicine, Loma Linda University, Loma Linda, California, USA.,School of Public Health, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
17
|
Sawayama H, Miyamoto Y, Mima K, Kato R, Ogawa K, Hiyoshi Y, Shimokawa M, Akiyama T, Kiyozumi Y, Iwagami S, Iwatsuki M, Baba Y, Yoshida N, Baba H. Preoperative iron status is a prognosis factor for stage II and III colorectal cancer. Int J Clin Oncol 2021; 26:2037-2045. [PMID: 34302234 DOI: 10.1007/s10147-021-01995-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Iron deficiency anemia is represented in colorectal cancer (CRC) patients. Iron surplus load to increase non-transferrin bound iron (NTBI), and NTBI promotes cancer progression and influences microbiota. This study investigated whether preoperative serum iron status was associated with prognosis after CRC resection. METHODS We evaluated preoperative iron and transferrin saturation (TSAT), which was calculated as iron divided by total iron-binding capacity, in 327 patients who underwent surgery for Stage II-III CRC. Fe < 60 μg/dl and TSAT > 40% were defined as low and high iron, respectively. The associations between iron status and overall survival (OS) were evaluated in univariate and multivariate Cox proportional hazards analysis. RESULTS Of the 327 patients, 179 (54.7%), 124 (37.9%) and 24 (7.3%) had low, normal and high iron, respectively. In univariate analysis, low iron was associated with shorter OS (hazard ratio [HR] 2.821, 95% confidence interval [CI] 1.451-5.485, P = 0.002). High iron was also associated with shorter OS (HR 3.396, 95% CI 1.359-8.489, P = 0.009). In multivariate analysis, high age (P = 0.002), depth of invasion pT4 (P = 0.012), lymph-node metastasis presence (P = 0.035), low albumin (P = 0.011), low iron (HR 2.282, 95% CI 1.163-4.478, P = 0.016) and high iron (HR 3.757, 95% CI 1.486-9.494 P = 0.005) were independently associated with shorter OS. High iron was associated with the amount of intratumoral Fusobacterium nucleatum compared with normal iron. CONCLUSION Both low and high preoperative iron in Stage II-III CRC patients were associated with unfavorable OS in univariate and multivariate analyses.
Collapse
Affiliation(s)
- Hiroshi Sawayama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Rikako Kato
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Katsuhiro Ogawa
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yukiharu Hiyoshi
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| | - Mototsugu Shimokawa
- Department of Biostatistics, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takahiko Akiyama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yuki Kiyozumi
- Department of Biostatistics, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Shiro Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.
| |
Collapse
|
18
|
Sullivan KE, Mylniczenko ND, Nelson SE, Coffin B, Lavin SR. Practical Management of Iron Overload Disorder (IOD) in Black Rhinoceros (BR; Diceros bicornis). Animals (Basel) 2020; 10:ani10111991. [PMID: 33138144 PMCID: PMC7692874 DOI: 10.3390/ani10111991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Black rhinoceros under human care are predisposed to Iron Overload Disorder that is unlike the hereditary condition seen in humans. We aim to address the black rhino caretaker community at multiple perspectives (keeper, curator, veterinarian, nutritionist, veterinary technician, and researcher) to describe approaches to Iron Overload Disorder in black rhinos and share learnings. This report includes sections on (1) background on how iron functions in comparative species and how Iron Overload Disorder appears to work in black rhinos, (2) practical recommendations for known diagnostics, (3) a brief review of current investigations on inflammatory and other potential biomarkers, (4) nutrition knowledge and advice as prevention, and (5) an overview of treatment options including information on chelation and details on performing large volume voluntary phlebotomy. The aim is to use evidence to support the successful management of this disorder to ensure optimal animal health, welfare, and longevity for a sustainable black rhinoceros population. Abstract Critically endangered black rhinoceros (BR) under human care are predisposed to non-hemochromatosis Iron Overload Disorder (IOD). Over the last 30 years, BR have been documented with diseases that have either been induced by or exacerbated by IOD, prompting significant efforts to investigate and address this disorder. IOD is a multi-factorial chronic disease process requiring an evidence-based and integrative long-term approach. While research continues to elucidate the complexities of iron absorption, metabolism, and dysregulation in this species, preventive treatments are recommended and explained herein. The aim of this report is to highlight the accumulated evidence in nutrition, clinical medicine, and behavioral husbandry supporting the successful management of this disorder to ensure optimal animal health, welfare, and longevity for a sustainable black rhinoceros population.
Collapse
|
19
|
Chathoth K, Martin B, Cornelis P, Yvenou S, Bonnaure-Mallet M, Baysse C. The events that may contribute to subgingival dysbiosis: a focus on the interplay between iron, sulfide and oxygen. FEMS Microbiol Lett 2020; 367:5860280. [DOI: 10.1093/femsle/fnaa100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
This minireview considers the disruption of the host–microbiota harmless symbiosis in the subgingival niche. The establishment of a chronic infection by subversion of a commensal microbiota results from a complex and multiparametric sequence of events. This review narrows down to the interplay between oxygen, iron and sulfide that can result in a vicious cycle that would favor peroxygenic and glutathione producing streptococci as well as sulfidogenic anaerobic pathogens in the subgingival niche. We propose hypothesis and discuss strategies for the therapeutic modulation of the microbiota to prevent periodontitis and promote oral health.
Collapse
Affiliation(s)
- Kanchana Chathoth
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| | - Bénédicte Martin
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| | - Pierre Cornelis
- Department of Bioengineering Sciences, Laboratory of Microbiology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, F-27000 Évreux, France
| | - Stéven Yvenou
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| | - Martine Bonnaure-Mallet
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
- CHU Pontchaillou Rennes, 35000 Rennes, France
| | - Christine Baysse
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| |
Collapse
|
20
|
Costa SA, Moreira ARO, Costa CPS, Carvalho Souza SDF. Iron overload and periodontal status in patients with sickle cell anaemia: A case series. J Clin Periodontol 2020; 47:668-675. [PMID: 32189376 DOI: 10.1111/jcpe.13284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/14/2020] [Accepted: 03/15/2020] [Indexed: 12/13/2022]
Abstract
AIM To investigate the association among iron overload, periodontal status, and periodontitis progression rate in sickle cell anaemia (SCA). MATERIALS AND METHODS This case series evaluated 123 patients. Clinical attachment level (CAL) and probing depth (PD) were evaluated at six sites per tooth. Alveolar bone loss was estimated using periapical radiography. Study outcomes were periodontal status (measured as number of sites with CAL of ≥3 mm, CAL of ≥5 mm, PD of ≥4 mm, and PD of ≥6 mm) and periodontitis progression rate (determined as ratio of alveolar bone loss to age). Serum transferrin saturation and ferritin levels were obtained from medical records. Poisson regression was performed to estimate associations. Covariables included in the adjusted models (comorbidities, skin colour, socioeconomic class, and vaso-occlusive crisis) were defined by DAGs. RESULTS Serum transferrin saturation level revealed a significant positive association with the number of sites with CAL of ≥3 mm, CAL of ≥5 mm, PD of ≥4 mm, and PD of ≥6 mm. Patients with serum transferrin saturation level of >45% were 1.93 times more likely to have rapid periodontitis progression. CONCLUSION High serum transferrin saturation level is associated with a greater extent of periodontitis and rapid periodontitis progression in SCA.
Collapse
|
21
|
Boyer E, Martin B, Le Gall-David S, Fong SB, Deugnier Y, Bonnaure-Mallet M, Meuric V. Periodontal pathogens and clinical parameters in chronic periodontitis. Mol Oral Microbiol 2019; 35:19-28. [PMID: 31782910 DOI: 10.1111/omi.12274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022]
Abstract
The use of next generation sequencing and bioinformatics has revealed the complexity and richness of the human oral microbiota. While some species are well known for their periodontal pathogenicity, the molecular-based approaches for bacterial identification have raised awareness about new putative periodontal pathogens. Although they are found increased in case of periodontitis, there is currently a lack of data on their interrelationship with the periodontal measures. We processed the sequencing data of the subgingival microbiota of 75 patients with hemochromatosis and chronic periodontitis in order to characterize the well-described and newly identified subgingival periodontal pathogens. We used correlation tests and statistical models to assess the association between the periodontal pathogens and mean pocket depth, and to determine the most relevant bacterial biomarkers of periodontitis severity. Based on correlation test results, nine taxa were selected and included in the statistical models. The multiple linear regression models adjusted for systemic and periodontal clinical variables showed that mean pocket depth was negatively associated with Aggregatibacter and Rothia, and positively associated with Porphyromonas. Furthermore, a bacterial ratio that was previously described as a signature of dysbiosis in periodontitis (%Porphyromonas+%Treponema+%Tannerella)/(%Rothia+%Corynebacterium) was the most significant predictor. In this specific population, we found that the best model in predicting the mean pocket depth was microbial dysbiosis using the dysbiosis ratio taxa formula. While further studies are needed to assess the validity of these results on the general population, such a dysbiosis ratio could be used in the future to monitor the subgingival microbiota.
Collapse
Affiliation(s)
- Emile Boyer
- INSERM, INRAE, Univ Rennes 1, CHU de Rennes, Nutrition Metabolisms and Cancer, Rennes, France
| | - Bénédicte Martin
- INSERM, INRAE, Univ Rennes 1, CHU de Rennes, Nutrition Metabolisms and Cancer, Rennes, France
| | - Sandrine Le Gall-David
- INSERM, INRAE, Univ Rennes 1, CHU de Rennes, Nutrition Metabolisms and Cancer, Rennes, France
| | - Shao B Fong
- INSERM, INRAE, Univ Rennes 1, CHU de Rennes, Nutrition Metabolisms and Cancer, Rennes, France
| | | | - Martine Bonnaure-Mallet
- INSERM, INRAE, Univ Rennes 1, CHU de Rennes, Nutrition Metabolisms and Cancer, Rennes, France
| | - Vincent Meuric
- INSERM, INRAE, Univ Rennes 1, CHU de Rennes, Nutrition Metabolisms and Cancer, Rennes, France
| |
Collapse
|