1
|
Huang K, Cai H. The interplay between osteoarthritis and osteoporosis: Mechanisms, implications, and treatment considerations - A narrative review. Exp Gerontol 2024; 197:112614. [PMID: 39442896 DOI: 10.1016/j.exger.2024.112614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
This comprehensive review examines the relationship between osteoarthritis (OA) and osteoporosis (OP), two common disorders in the elderly. OA involves joint cartilage degeneration and pain, while OP leads to fractures due to reduced bone mass. Despite different pathologies, both conditions share risk factors such as age and genetics. Studies reveal mixed results: some show higher bone mineral density (BMD) in OA patients, suggesting an inverse relationship, while others find no significant link. Proposed mechanisms include mechanical loading, bone remodeling, and inflammation. Clinical strategies focus on maintaining bone health in OA and monitoring joint health in OP, with treatments like bisphosphonates and exercise. Understanding these interactions is crucial for developing integrated treatments to improve patient outcomes and quality of life. Further research is needed to clarify these complex mechanisms.
Collapse
Affiliation(s)
- Kai Huang
- Tongde Hospital of Zhejiang Province, Hangzhou 310012, China.
| | - Haili Cai
- The 903rd Hospital of People's Liberation Army, Hangzhou 310013, China.
| |
Collapse
|
2
|
Wang X, Jia Q, Yu L, Huang J, Wang X, Zhou L, Mijiti W, Xie Z, Dong S, Xie Z, Ma H. Filamin B knockdown impairs differentiation and function in mouse pre-osteoblasts via aberrant transcription and alternative splicing. Heliyon 2024; 10:e39334. [PMID: 39498024 PMCID: PMC11533582 DOI: 10.1016/j.heliyon.2024.e39334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
Objective Filamin B (FLNB) encodes an actin-binding protein that is known to function as a novel RNA-binding protein involved in cell movement and signal transduction and plays a pivotal role in bone growth. This study aimed to investigate possible FLNB function in the skeletal system by characterizing the effecs of FLNB knockdown in mouse preosteoblast cells. Methods Stable FLNB MC3T3-E1 knockdown cells were constructed for RNA-seq and alternative splicing event (ASE) analysis of genes involved in osteoblast differentiation and function that may be regulated by FLNB. Standard transwell, MTT, ALP, qPCR, Western blot, and alizarin red staining assays were used to assess functional changes of FLNB-knockdown MC3T3-E1 cells. Results Analysis of differentially expressed genes (DEGs) in FLNB knockdown cells revealed enrichment for genes related to osteoblast proliferation, differentiation and migration, such as ITGA10, Cebpβ, Grem1, etc. Alternative splicing (AS) analysis showed changes in the predominant mRNA isoforms of skeletal development-related genes, especially Tpx2 and Evc. Functional asslysis indicated that proliferation, migration, and differentiation were all inhibited upon FLNB knockdown in MC3T3-E1 cells compared to that in vector control cells. Conclusions FLNB participates in regulating the transcription and AS of genes required for osteoblast development and function, consequently affecting growth and development in MC3T3-E1 cells.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
- Key Laboratory of High Incidence Disease Research in Xinjiang Medical University, Ministry of Education, Urumqi, 830011, Xinjiang, China
| | - Qiyu Jia
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Li Yu
- Department of Integrated Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, China
| | - Jinyong Huang
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Xin Wang
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Lijun Zhou
- School of Public Health, Xinjiang Medical University, Urumqi, 830011 Xinjiang, China
| | - Wubulikasimu Mijiti
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Zhenzi Xie
- School of Basic Medicine, Xinjiang Medical University, Urumqi, 830011 Xinjiang, China
| | - Shiming Dong
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Zengru Xie
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
| | - Hairong Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Urumqi, 830011, Xinjiang, China
- Key Laboratory of High Incidence Disease Research in Xinjiang Medical University, Ministry of Education, Urumqi, 830011, Xinjiang, China
| |
Collapse
|
3
|
Wang J, Zhang Y, Tang Q, Zhang Y, Yin Y, Chen L. Application of Antioxidant Compounds in Bone Defect Repair. Antioxidants (Basel) 2024; 13:789. [PMID: 39061858 PMCID: PMC11273992 DOI: 10.3390/antiox13070789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Bone defects caused by trauma, tumor resection, and infections are significant clinical challenges. Excessive reactive oxygen species (ROS) usually accumulate in the defect area, which may impair the function of cells involved in bone formation, posing a serious challenge for bone repair. Due to the potent ROS scavenging ability, as well as potential anti-inflammatory and immunomodulatory activities, antioxidants play an indispensable role in the maintenance and protection of bone health and have gained increasing attention in recent years. This narrative review aims to give an overview of the main research directions on the application of antioxidant compounds in bone defect repair over the past decade. In addition, the positive effects of various antioxidants and their biomaterial delivery systems in bone repair are summarized to provide new insights for exploring antioxidant-based strategies for bone defect repair.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yubing Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
4
|
Wielogórska-Partyka M, Adamski M, Siewko K, Popławska-Kita A, Buczyńska A, Myśliwiec P, Krętowski AJ, Adamska A. Patient classification and attribute assessment based on machine learning techniques in the qualification process for surgical treatment of adrenal tumours. Sci Rep 2024; 14:11209. [PMID: 38755394 PMCID: PMC11099046 DOI: 10.1038/s41598-024-61786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Adrenal gland incidentaloma is frequently identified through computed tomography and poses a common clinical challenge. Only selected cases require surgical intervention. The primary aim of this study was to compare the effectiveness of selected machine learning (ML) techniques in proper qualifying patients for adrenalectomy and to identify the most accurate algorithm, providing a valuable tool for doctors to simplify their therapeutic decisions. The secondary aim was to assess the significance of attributes for classification accuracy. In total, clinical data were collected from 33 patients who underwent adrenalectomy. Histopathological assessments confirmed the proper selection of 21 patients for surgical intervention according to the guidelines, with accuracy reaching 64%. Statistical analysis showed that Supported Vector Machines (linear) were significantly better than the baseline (p < 0.05), with accuracy reaching 91%, and imaging features of the tumour were found to be the most crucial attributes. In summarise, ML methods may be helpful in qualifying patients for adrenalectomy.
Collapse
Affiliation(s)
- Marta Wielogórska-Partyka
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Adamski
- Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, 15-351, Bialystok, Poland.
| | - Katarzyna Siewko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Anna Popławska-Kita
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Angelika Buczyńska
- Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Myśliwiec
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Adam Jacek Krętowski
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
- Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Adamska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
5
|
Fan W, Meng Y, Zhang J, Li M, Zhang Y, Qu X, Xiu X. To investigate the mechanism of Yiwei Decoction in the treatment of premature ovarian insufficiency-related osteoporosis using transcriptomics, network pharmacology and molecular docking techniques. Sci Rep 2023; 13:19016. [PMID: 37923747 PMCID: PMC10624676 DOI: 10.1038/s41598-023-45699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
To investigate the molecular mechanism of Yiwei Decoction (YWD) in preventing Premature ovarian insufficiency (POI)-related osteoporosis from the hypothalamic perspective , and to screen for the key active and acting molecules in YWD. Cyclophosphamide was used to create the POI rat model. Groups A, B, and C were established. The Model + YWD group was group A, the model control group was group B, and the normal control group was group C. ELISA was used to determine serum GnRH and FSH levels after gavage. The transcription levels of mRNAs in each group's hypothalamus tissues were examined using RNA-seq sequencing technology. The GSEA method was used to enrich pathways based on the gene expression levels of each group. The TCM-active ingredient-target-disease network map was created using differentially expressed mRNAs (DEmRNAs) and network pharmacology. The molecular docking method was employed to investigate the affinity of the active ingredient with key targets. GnRH and FSH levels in POI rats' serum were reduced by YWD. Between groups A and B, there were 638 DEmRNAs (P < 0.05) and 55 high-significance DEmRNAs (P-adjust < 0.01). The MAPK, Hedgehog, Calcium, and B cell receptor pathways are primarily enriched in DEmRNAs from Group A and Group B. The GSEA pathway enrichment analysis indicates that YWD may regulate Long-term potentiation, Amphetamine addiction, and the Renin-angiotensin system and play a role in preventing osteoporosis. The Chinese herbal medicine (CHM)-Active ingredient-Target-disease network map includes 137 targets, 4 CHMs, and 22 active ingredients. The result of docking indicated that Stigmasterol, interacts well with the core proteins ALB, VCL and KAT5. Following the screening, we identified the targets, active components, and key pathways associated with YWD osteoporosis prevention. Most of these key targets and pathways are associated with osteoporosis, but further experimental validation is required.
Collapse
Affiliation(s)
- Weisen Fan
- First Clinical College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| | - Yan Meng
- School of Health, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| | - Jing Zhang
- School of Health, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| | - Muzhen Li
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| | - Yingjie Zhang
- First Clinical College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China.
| | - Xintian Qu
- First Clinical College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| | - Xin Xiu
- First Clinical College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| |
Collapse
|
6
|
Dashti P, Thaler R, Hawse JR, Galvan ML, van der Eerden BJ, van Wijnen AJ, Dudakovic A. G-protein coupled receptor 5C (GPRC5C) is required for osteoblast differentiation and responds to EZH2 inhibition and multiple osteogenic signals. Bone 2023; 176:116866. [PMID: 37558192 PMCID: PMC10962865 DOI: 10.1016/j.bone.2023.116866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
Osteoblast differentiation is epigenetically suppressed by the H3K27 methyltransferase EZH2, and induced by the morphogen BMP2 and transcription factor RUNX2. These factors also regulate distinct G protein coupled receptors (GPRCs; e.g., PTH1R, GPR30/GPER1). Because GPRCs transduce many physiological stimuli, we examined whether BMP2 or EZH2 inhibition (i.e., GSK126) regulates other GPRC genes in osteoblasts. RNA-seq screening of >400 mouse GPRC-related genes showed that many GPRCs are downregulated during osteogenic differentiation. The orphan receptor GPRC5C, along with a small subset of other GPRCs, is induced by BMP2 or GSK126 during Vitamin C dependent osteoblast differentiation, but not by all-trans retinoic acid. ChIP-seq analysis revealed that GSK126 reduces H3K27me3 levels at the GPRC5C gene locus in differentiating MC3T3-E1 osteoblasts, consistent with enhanced GPRC5C mRNA expression. Loss of function analyses revealed that shRNA-mediated depletion of GPRC5C decreases expression of bone markers (e.g., BGLAP and IBSP) and mineral deposition in response to BMP2 or GSK126. GPRC5C mRNA was found to be reduced in the osteopenic bones of KLF10 null mice which have compromised BMP2 signaling. GPRC5C mRNA is induced by the bone-anabolic activity of 17β-estradiol in trabecular but not cortical bone following ovariectomy. Collectively, these findings suggest that GPRC5C protein is a key node in a pro-osteogenic axis that is normally suppressed by EZH2-mediated H3K27me3 marks and induced during osteoblast differentiation by GSK126, BMP2, and/or 17β-estradiol. Because GPRC5C protein is an understudied orphan receptor required for osteoblast differentiation, identification of ligands that induce GPRC5C signaling may support therapeutic strategies to mitigate bone-related disorders.
Collapse
Affiliation(s)
- Parisa Dashti
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - John R Hawse
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Bram J van der Eerden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Andre J van Wijnen
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Biochemistry, University of Vermont, Burlington, VT, USA.
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
Li C, Zhao R, Yang H, Ren L. Construction of Bone Hypoxic Microenvironment Based on Bone-on-a-Chip Platforms. Int J Mol Sci 2023; 24:ijms24086999. [PMID: 37108162 PMCID: PMC10139217 DOI: 10.3390/ijms24086999] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The normal physiological activities and functions of bone cells cannot be separated from the balance of the oxygenation level, and the physiological activities of bone cells are different under different oxygenation levels. At present, in vitro cell cultures are generally performed in a normoxic environment, and the partial pressure of oxygen of a conventional incubator is generally set at 141 mmHg (18.6%, close to the 20.1% oxygen in ambient air). This value is higher than the mean value of the oxygen partial pressure in human bone tissue. Additionally, the further away from the endosteal sinusoids, the lower the oxygen content. It follows that the construction of a hypoxic microenvironment is the key point of in vitro experimental investigation. However, current methods of cellular research cannot realize precise control of oxygenation levels at the microscale, and the development of microfluidic platforms can overcome the inherent limitations of these methods. In addition to discussing the characteristics of the hypoxic microenvironment in bone tissue, this review will discuss various methods of constructing oxygen gradients in vitro and measuring oxygen tension from the microscale based on microfluidic technology. This integration of advantages and disadvantages to perfect the experimental study will help us to study the physiological responses of cells under more physiological-relevant conditions and provide a new strategy for future research on various in vitro cell biomedicines.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Rong Zhao
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Ren
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
8
|
Ibáñez-Cabellos JS, Pallardó FV, García-Giménez JL, Seco-Cervera M. Oxidative Stress and Epigenetics: miRNA Involvement in Rare Autoimmune Diseases. Antioxidants (Basel) 2023; 12:antiox12040800. [PMID: 37107175 PMCID: PMC10135388 DOI: 10.3390/antiox12040800] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Autoimmune diseases (ADs) such as Sjögren’s syndrome, Kawasaki disease, and systemic sclerosis are characterized by chronic inflammation, oxidative stress, and autoantibodies, which cause joint tissue damage, vascular injury, fibrosis, and debilitation. Epigenetics participate in immune cell proliferation and differentiation, which regulates the development and function of the immune system, and ultimately interacts with other tissues. Indeed, overlapping of certain clinical features between ADs indicate that numerous immunologic-related mechanisms may directly participate in the onset and progression of these diseases. Despite the increasing number of studies that have attempted to elucidate the relationship between miRNAs and oxidative stress, autoimmune disorders and oxidative stress, and inflammation and miRNAs, an overall picture of the complex regulation of these three actors in the pathogenesis of ADs has yet to be formed. This review aims to shed light from a critical perspective on the key AD-related mechanisms by explaining the intricate regulatory ROS/miRNA/inflammation axis and the phenotypic features of these rare autoimmune diseases. The inflamma-miRs miR-155 and miR-146, and the redox-sensitive miR miR-223 have relevant roles in the inflammatory response and antioxidant system regulation of these diseases. ADs are characterized by clinical heterogeneity, which impedes early diagnosis and effective personalized treatment. Redox-sensitive miRNAs and inflamma-miRs can help improve personalized medicine in these complex and heterogeneous diseases.
Collapse
Affiliation(s)
| | - Federico V. Pallardó
- U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain
- Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Correspondence: (F.V.P.); (J.L.G.-G.); (M.S.-C.); Tel.: +34-963-864-646 (F.V.P.)
| | - José Luis García-Giménez
- U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain
- Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Correspondence: (F.V.P.); (J.L.G.-G.); (M.S.-C.); Tel.: +34-963-864-646 (F.V.P.)
| | - Marta Seco-Cervera
- Hospital Dr. Peset, Fundación para la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO, 46010 Valencia, Spain
- Correspondence: (F.V.P.); (J.L.G.-G.); (M.S.-C.); Tel.: +34-963-864-646 (F.V.P.)
| |
Collapse
|
9
|
Abstract
Changes in bone architecture and metabolism with aging increase the likelihood of osteoporosis and fracture. Age-onset osteoporosis is multifactorial, with contributory extrinsic and intrinsic factors including certain medical problems, specific prescription drugs, estrogen loss, secondary hyperparathyroidism, microenvironmental and cellular alterations in bone tissue, and mechanical unloading or immobilization. At the histological level, there are changes in trabecular and cortical bone as well as marrow cellularity, lineage switching of mesenchymal stem cells to an adipogenic fate, inadequate transduction of signals during skeletal loading, and predisposition toward senescent cell accumulation with production of a senescence-associated secretory phenotype. Cumulatively, these changes result in bone remodeling abnormalities that over time cause net bone loss typically seen in older adults. Age-related osteoporosis is a geriatric syndrome due to the multiple etiologies that converge upon the skeleton to produce the ultimate phenotypic changes that manifest as bone fragility. Bone tissue is dynamic but with tendencies toward poor osteoblastic bone formation and relative osteoclastic bone resorption with aging. Interactions with other aging physiologic systems, such as muscle, may also confer detrimental effects on the aging skeleton. Conversely, individuals who maintain their BMD experience a lower risk of fractures, disability, and mortality, suggesting that this phenotype may be a marker of successful aging. © 2023 American Physiological Society. Compr Physiol 13:4355-4386, 2023.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of Medicine, Divisions of Geriatric Medicine and Gerontology, Endocrinology, and Hospital Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.,The Department of Physiology and Biomedical Engineering, and the Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
10
|
Nie H, Wang F, Zeng X, Bao H, Liu X. Analysis of Communal Molecular Mechanism Between Chronic Obstructive Pulmonary Disease and Osteoporosis. Int J Chron Obstruct Pulmon Dis 2023; 18:259-271. [PMID: 36937804 PMCID: PMC10017835 DOI: 10.2147/copd.s395492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) patients with osteoporosis (OP) usually experience more frequent exacerbations, worse quality of life, and heavier economic burden, however, few studies have investigated common molecular mechanisms of COPD and OP. Objective To explore the relationship between COPD and OP through bioinformatics analysis. Methods The miRNA microarray data of COPD and OP were retrieved from the Gene Expression Database (GEO), and the differentially expressed microRNAs (DEmiRNAs) were screened and the intersection was obtained. The Targetscan, miRDB, and miRWalk databases were used to predict the target genes of DEmiRNA, and the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the R package clusterProfiler, the STRING database was used to analyze the target protein-protein interaction network (PPI) and screens to determine the core modules and core genes. Results Two DEmiRNAs (miR-23a-5p, miR-194-3p) have been found in COPD and OP, which have predicted 76 and 114 target genes, respectively. GO functional annotations of miR-23a-5p were significantly enriched in CD40 signaling pathway, ubiquitin-conjugating enzyme activity, etc; KEGG pathways of miR-23a-5p were significantly enriched in ubiquitin-mediated proteolysis, folate biosynthesis, and regulation of actin cytoskeleton. GO function annotations of miR-194-3p were significantly enriched in T cell activation regulation, ubiquitin protein ligase activity, and DNA transcription factor binding; KEGG pathways of miR-194-3p were significantly enriched in cell adhesion molecules, intercellular tight junctions, and lysosomal pathway. PPI analysis found target coding proteins formed complex regulatory networks. Ten core genes (TP53, SRC, PXN, CHD4, SYK, TNRC6B, PML, KAT5, BRD1 and IGF2) were picked out among them, then we used the MCODE plugin found three core subnetworks. Conclusion Two identical DEmiRNAs (miR-23a-5p, miR-194-3p) exist in the peripheral blood of COPD and OP patients, which are important biomarkers for COPD patients with OP and may represent novel targets for diagnosis and treatment of COPD patients with OP.
Collapse
Affiliation(s)
- Hui Nie
- The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
- Department of Gerontal Respiratory Medicine, the First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Fei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Xiaoli Zeng
- Department of Gerontal Respiratory Medicine, the First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Hairong Bao
- Department of Gerontal Respiratory Medicine, the First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Xiaoju Liu
- Department of Gerontal Respiratory Medicine, the First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
- Correspondence: Xiaoju Liu, Department of Gerontal Respiratory Medicine, the First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People’s Republic of China, Email
| |
Collapse
|
11
|
Gene Expression Profiling of Markers of Inflammation, Angiogenesis, Coagulation and Fibrinolysis in Patients with Coronary Artery Disease with Very High Lipoprotein(a) Levels Treated with PCSK9 Inhibitors. J Cardiovasc Dev Dis 2022; 9:jcdd9070211. [PMID: 35877573 PMCID: PMC9324258 DOI: 10.3390/jcdd9070211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Besides lipids, inflammation, angiogenesis, coagulation and fibrinolysis play very important roles in coronary artery disease (CAD). We measured gene expression of the inflammatory markers interleukin (IL)-1β (IL1B) and interferon (IFN)-γ (IFNG), vascular endothelial growth factor-A (VEGF-A) (VEGFA), and coagulation and fibrinolysis markers tissue factor (TF) (F3) and plasminogen activator inhibitor-1 (PAI-1) (SERPINE) in healthy controls and CAD patients with high lipoprotein(a) (Lp(a)). The aim of our study was to identify, first, if there is a difference in these markers between controls and patients; secondly, if these markers are associated with lipids; and third, what the influence of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors is on these markers. We included 124 subjects, 27 controls and 97 patients with CAD (30 in placebo and 67 in the PCSK9 group). Blood samples were collected for lipid and gene measurement. The results showed higher expression of IL1B (p < 0.0001), VEGFA (p < 0.0001), and F3 (p = 0.018) in controls in comparison with patients. Significant correlations were observed between IL1B and lipids. Treatment with PCSK9 inhibitors increased VEGFA (p < 0.0001) and F3 (p = 0.001), and decreased SERPINE (p = 0.043). The results of our study underpin the importance of IL-1β, VEGF-A and TF in CAD as well as the effect of PCSK9 treatment on these markers.
Collapse
|
12
|
Lu L, Wang L, Wu J, Yang M, Chen B, Wang H, Gan K. DNMT3a promotes osteoblast differentiation and alleviates osteoporosis via the PPARγ/ SCD1/ GLUT1 axis. Epigenomics 2022; 14:777-792. [PMID: 35765985 DOI: 10.2217/epi-2021-0391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: This study was designed to elucidate the role of DNMT3a and PPARγ functions in postmenopausal osteoporosis. Materials & methods: Mice were ovariectomized to establish an in vivo osteoporosis model and MC3T3-E1-14 osteoblasts were induced to differentiate. Gain- or loss-of-function approaches were used to manipulate the expression of PPARγ, DNMT3a and SCD1, followed by an evaluation of their role in postmenopausal osteoporosis both in vivo and in vitro. Results: DNMT3a induced methylation of the PPARγ promoter region, consequently stimulating osteoblast differentiation. PPARγ elevated SCD1, which decreased GLUT1 and inhibited osteoblast differentiation. Inhibition of PPARγ reduced SCD1 while increasing GLUT1 expression, thus alleviating postmenopausal osteoporosis in mice. Conclusion: DNMT3a promotes osteoblast differentiation and prevents postmenopausal osteoporosis by regulating the PPARγ/SCD1/GLUT1 axis.
Collapse
Affiliation(s)
- Liangjie Lu
- Department of Orthopaedics, Ningbo Medical Center, Lihuili Hospital, Ningbo, 315000, China
| | - Lijun Wang
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jiqiong Wu
- Department of Orthopaedics, Ningbo Medical Center, Lihuili Hospital, Ningbo, 315000, China
| | - Minjie Yang
- Department of Orthopaedics, Jiujiang No. 1 People's Hospital, Jiujiang, 332000, China
| | - Binhui Chen
- Department of Orthopaedics, Ningbo Medical Center, Lihuili Hospital, Ningbo, 315000, China
| | - Huihan Wang
- Department of Orthopaedics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Kaifeng Gan
- Department of Orthopaedics, Ningbo Medical Center, Lihuili Hospital, Ningbo, 315000, China
| |
Collapse
|
13
|
Bobak CA, Abhimanyu, Natarajan H, Gandhi T, Grimm SL, Nishiguchi T, Koster K, Longlax SC, Dlamini Q, Kahari J, Mtetwa G, Cirillo JD, O’Malley J, Hill JE, Coarfa C, DiNardo AR. Increased DNA methylation, cellular senescence and premature epigenetic aging in guinea pigs and humans with tuberculosis. Aging (Albany NY) 2022; 14:2174-2193. [PMID: 35256539 PMCID: PMC8954968 DOI: 10.18632/aging.203936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/22/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Tuberculosis (TB) is the archetypical chronic infection, with patients having months of symptoms before diagnosis. In the two years after successful therapy, survivors of TB have a three-fold increased risk of death. METHODS Guinea pigs were infected with Mycobacterium tuberculosis (Mtb) for 45 days, followed by RRBS DNA methylation analysis. In humans, network analysis of differentially expressed genes across three TB cohorts were visualized at the pathway-level. Serum levels of inflammation were measured by ELISA. Horvath (DNA methylation) and RNA-seq biological clocks were used to investigate shifts in chronological age among humans with TB. RESULTS Guinea pigs with TB demonstrated DNA hypermethylation and showed system-level similarity to humans with TB (p-value = 0.002). The transcriptome in TB in multiple cohorts was enriched for DNA methylation and cellular senescence. Senescence associated proteins CXCL9, CXCL10, and TNF were elevated in TB patients compared to healthy controls. Humans with TB demonstrate 12.7 years (95% CI: 7.5, 21.9) and 14.38 years (95% CI: 10.23-18.53) of cellular aging as measured by epigenetic and gene expression based cellular clocks, respectively. CONCLUSIONS In both guinea pigs and humans, TB perturbs epigenetic processes, promoting premature cellular aging and inflammation, a plausible means to explain the long-term detrimental health outcomes after TB.
Collapse
Affiliation(s)
- Carly A. Bobak
- Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Abhimanyu
- The Global Tuberculosis Program, Baylor College of Medicine, Houston, TX 77030, USA
- William Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harini Natarajan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755, USA
| | - Tanmay Gandhi
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sandra L. Grimm
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tomoki Nishiguchi
- The Global Tuberculosis Program, Baylor College of Medicine, Houston, TX 77030, USA
- William Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kent Koster
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health, Bryan, TX 77807, USA
| | - Santiago Carrero Longlax
- The Global Tuberculosis Program, Baylor College of Medicine, Houston, TX 77030, USA
- William Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qiniso Dlamini
- Baylor-Swaziland Children’s Foundation, Mbabane, Swaziland
| | | | - Godwin Mtetwa
- Baylor-Swaziland Children’s Foundation, Mbabane, Swaziland
| | - Jeffrey D. Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health, Bryan, TX 77807, USA
| | - James O’Malley
- Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
- The Dartmouth Institute, Dartmouth College, Hanover, NH 03755, USA
| | - Jane E. Hill
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Molecular and Cellular Biology Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew R. DiNardo
- The Global Tuberculosis Program, Baylor College of Medicine, Houston, TX 77030, USA
- William Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX 77030, USA
- Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
14
|
Bei J, Zhu S, Du M, Hu Z, Tang Z, Chen C, Yang K, Zhong Y, Zhu X, Li W, Hu Z. Integrative analysis of multiomics data identified acetylation as key variable of excessive energy metabolism in hyperthyroidism-induced osteoporosis rats. J Proteomics 2022; 252:104451. [PMID: 34883266 DOI: 10.1016/j.jprot.2021.104451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Results from the previous experiment have demonstrated bone loss and excess metabolism in Hyperthyroidism-induced rats. Thus, an underlying relationship between metabolism and bone loss was speculated. In addition, previous studies have shown the influence of acetylation on metabolism in tissues and diseases. The hypothesis from this case study suggests that excessive metabolism is induced by acetylation of vital metabolism enzymes. RESULTS In the case study, a HYP-induced osteoporosis rat model was used and the glucose metabolite was tested through the acetylation of proteins by the mass spectrometer. The results showed that pivotal enzymes of Glycolysis-Tricarboxylic acid cycle-Oxidative phosphorylation were acetylated along with upregulated metabolites. With all acetyly-lysine sites of related enzymes listed, the results in this study showed that bone loss in HYP rats was accompanied by the upregulation of CREB-binding protein (Crebbp, CBP). Furthermore, it is also indicated that CBP has a close relationship with the enhancement of LDHA which promotes glucose metabolism. CONCLUSIONS Acetylation is highly correlated with excessive energy metabolism in HYP-induced osteoporotic rats, where a representation relationship between CBP and LDHA is demonstrated. SIGNIFICANCE Hyperthyroidism may lead to osteoporosis. Our study found an interesting phenomenon of hyperthyroidism induced-osteoporosis is that osteoporosis is accompanied by excessive glucose metabolism. In this process, some molecular mechanisms are still unclear. This study indicates a high degree of acetylation of metabolic enzymes, which may be closely related to excessive glucose metabolism. The relationship between CBP and LDHA was also investigated in this study, which showed that CBP and LDHA had some extent interaction. Glucose metabolism and acetylation maybe all associated with hyperthyroidism induced-osteoporosis. This data provides new insights into the molecular mechanisms of hyperthyroidism induced-osteoporosis.
Collapse
Affiliation(s)
- Jiaxin Bei
- Department of Infectious Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shaoping Zhu
- Institute of Laboratory Animal Center, Guangdong Medical University, Zhanjiang, China
| | - Minqun Du
- Guangdong Women and Children's Hospital, Guangzhou, China
| | - Zhihui Hu
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zheng Tang
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Cailing Chen
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Kevin Yang
- Department of Cardiology, Sun Yat-sen University, Guangzhou, China
| | - Ying Zhong
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xianhong Zhu
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zhuoqing Hu
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Anti-Osteoporotic Mechanisms of Polyphenols Elucidated Based on In Vivo Studies Using Ovariectomized Animals. Antioxidants (Basel) 2022; 11:antiox11020217. [PMID: 35204100 PMCID: PMC8868308 DOI: 10.3390/antiox11020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/27/2022] Open
Abstract
Polyphenols are widely known for their antioxidant activity, i.e., they have the ability to suppress oxidative stress, and this behavior is mediated by the autoxidation of their phenolic hydroxyl groups. Postmenopausal osteoporosis is a common health problem that is associated with estrogen deficiency. Since oxidative stress is thought to play a key role in the onset and progression of osteoporosis, it is expected that polyphenols can serve as a safe and suitable treatment in this regard. Therefore, in this review, we aimed to elucidate the anti-osteoporotic mechanisms of polyphenols reported by in vivo studies involving the use of ovariectomized animals. We categorized the polyphenols as resveratrol, purified polyphenols other than resveratrol, or polyphenol-rich substances or extracts. Literature data indicated that resveratrol activates sirtuin 1, and thereafter, suppresses osteoclastogenic pathways, such as the receptor activator of the nuclear factor kappa B (RANK) ligand (RANKL) pathway, and promotes osteoblastogenic pathways, such as the wingless-related MMTV integration site pathway. Further, we noted that purified polyphenols and polyphenol-rich substances or extracts exert anti-inflammatory and/or antioxidative effects, which inhibit RANKL/RANK binding via the NF-κB pathway, resulting in the suppression of osteoclastogenesis. In conclusion, antioxidative and anti-inflammatory polyphenols, including resveratrol, can be safe and effective for the treatment of postmenopausal osteoporosis based on their ability to regulate the imbalance between bone formation and resorption.
Collapse
|
16
|
Rauner M, Foessl I, Formosa MM, Kague E, Prijatelj V, Lopez NA, Banerjee B, Bergen D, Busse B, Calado Â, Douni E, Gabet Y, Giralt NG, Grinberg D, Lovsin NM, Solan XN, Ostanek B, Pavlos NJ, Rivadeneira F, Soldatovic I, van de Peppel J, van der Eerden B, van Hul W, Balcells S, Marc J, Reppe S, Søe K, Karasik D. Perspective of the GEMSTONE Consortium on Current and Future Approaches to Functional Validation for Skeletal Genetic Disease Using Cellular, Molecular and Animal-Modeling Techniques. Front Endocrinol (Lausanne) 2021; 12:731217. [PMID: 34938269 PMCID: PMC8686830 DOI: 10.3389/fendo.2021.731217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
The availability of large human datasets for genome-wide association studies (GWAS) and the advancement of sequencing technologies have boosted the identification of genetic variants in complex and rare diseases in the skeletal field. Yet, interpreting results from human association studies remains a challenge. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary. Multiple unknowns exist for putative causal genes, including cellular localization of the molecular function. Intermediate traits ("endophenotypes"), e.g. molecular quantitative trait loci (molQTLs), are needed to identify mechanisms of underlying associations. Furthermore, index variants often reside in non-coding regions of the genome, therefore challenging for interpretation. Knowledge of non-coding variance (e.g. ncRNAs), repetitive sequences, and regulatory interactions between enhancers and their target genes is central for understanding causal genes in skeletal conditions. Animal models with deep skeletal phenotyping and cell culture models have already facilitated fine mapping of some association signals, elucidated gene mechanisms, and revealed disease-relevant biology. However, to accelerate research towards bridging the current gap between association and causality in skeletal diseases, alternative in vivo platforms need to be used and developed in parallel with the current -omics and traditional in vivo resources. Therefore, we argue that as a field we need to establish resource-sharing standards to collectively address complex research questions. These standards will promote data integration from various -omics technologies and functional dissection of human complex traits. In this mission statement, we review the current available resources and as a group propose a consensus to facilitate resource sharing using existing and future resources. Such coordination efforts will maximize the acquisition of knowledge from different approaches and thus reduce redundancy and duplication of resources. These measures will help to understand the pathogenesis of osteoporosis and other skeletal diseases towards defining new and more efficient therapeutic targets.
Collapse
Affiliation(s)
- Martina Rauner
- Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- University Hospital Carl Gustav Carus, Dresden, Germany
| | - Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| | - Melissa M. Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Erika Kague
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Vid Prijatelj
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nerea Alonso Lopez
- Rheumatology and Bone Disease Unit, CGEM, Institute of Genetics and Cancer (IGC), Edinburgh, United Kingdom
| | - Bodhisattwa Banerjee
- Musculoskeletal Genetics Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dylan Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ângelo Calado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Eleni Douni
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Institute for Bioinnovation, B.S.R.C. “Alexander Fleming”, Vari, Greece
| | - Yankel Gabet
- Department of Anatomy & Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalia García Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Nika M. Lovsin
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Xavier Nogues Solan
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Barbara Ostanek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Nathan J. Pavlos
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | | | - Ivan Soldatovic
- Institute of Medical Statistics and Informatic, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Bram van der Eerden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wim van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sjur Reppe
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
- Marcus Research Institute, Hebrew SeniorLife, Boston, MA, United States
| |
Collapse
|
17
|
Sibilia V, Bottai D, Maggi R, Pagani F, Chiaramonte R, Giannandrea D, Citro V, Platonova N, Casati L. Sex Steroid Regulation of Oxidative Stress in Bone Cells: An In Vitro Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212168. [PMID: 34831936 PMCID: PMC8621144 DOI: 10.3390/ijerph182212168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023]
Abstract
Environmental stimuli, including sex hormones and oxidative stress (OS), affect bone balance, modifying the epigenetic profiles of key osteogenic genes. Nonetheless, the interplay between sex steroids, epigenome and OS has yet be fully elucidated. This paper aims to study in vitro the role of sex steroids in OS-induced alteration in bone cells’ homeostasis, and to assess the possible contribution of epigenetic modifications. Toward this purpose, osteoblast (MC3T3-E1) and osteocyte (MLOY-4) cell lines were exposed to two different sources of free oxygen radicals, i.e., tert-butyl hydroperoxide and dexamethasone, and the protective effect of pre-treatment with androgens and estrogens was evaluated. In particular, we analyzed parameters that reflect bone cell homeostasis such as cell viability, cell migration, transcriptomic profile, transcriptional activity, and epigenetic signature. Our findings indicate that estrogens and androgens counteract OS effects. Using partially overlapping strategies, they reduce OS outcomes regarding cell viability, cell migration, the transcriptomic profile of gene families involved in bone remodeling, and epigenetic profile, i.e., H3K4me3 level. Additionally, we demonstrated that the protective effect of steroids against OS on bone homeostasis is partially mediated by the Akt pathway. Overall, these results suggest that the hormonal milieu may influence the mechanisms of age-related bone disease.
Collapse
Affiliation(s)
- Valeria Sibilia
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milano, Italy; (V.S.); (F.P.)
| | - Daniele Bottai
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (D.B.); (R.C.); (D.G.); (V.C.); (N.P.)
| | - Roberto Maggi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Francesca Pagani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milano, Italy; (V.S.); (F.P.)
| | - Raffaella Chiaramonte
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (D.B.); (R.C.); (D.G.); (V.C.); (N.P.)
| | - Domenica Giannandrea
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (D.B.); (R.C.); (D.G.); (V.C.); (N.P.)
| | - Valentina Citro
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (D.B.); (R.C.); (D.G.); (V.C.); (N.P.)
| | - Natalia Platonova
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (D.B.); (R.C.); (D.G.); (V.C.); (N.P.)
| | - Lavinia Casati
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (D.B.); (R.C.); (D.G.); (V.C.); (N.P.)
- Correspondence:
| |
Collapse
|
18
|
Xu Y, Ma J, Xu G, Ma D. Recent advances in the epigenetics of bone metabolism. J Bone Miner Metab 2021; 39:914-924. [PMID: 34250565 DOI: 10.1007/s00774-021-01249-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/03/2021] [Indexed: 12/22/2022]
Abstract
Osteoporosis is a common form of metabolic bone disease that is costly to treat and is primarily diagnosed on the basis of bone mineral density. As the influences of genetic lesions and environmental factors are increasingly studied in the pathological development of osteoporosis, regulated epigenetics are emerging as the important pathogenesis mechanisms in osteoporosis. Recently, osteoporosis genome-wide association studies and multi-omics technologies have revealed that susceptibility loci and the misregulation of epigenetic modifiers are key factors in osteoporosis. Over the past decade, extensive studies have demonstrated epigenetic mechanisms, such as DNA methylation, histone/chromatin modifications, and non-coding RNAs, as potential contributing factors in osteoporosis that affect disease initiation and progression. Herein, we review recent advances in epigenetics in osteoporosis, with a focus on exploring the underlying mechanisms and potential diagnostic/prognostic biomarker applications for osteoporosis.
Collapse
Affiliation(s)
- Yuexin Xu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jing Ma
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Guohua Xu
- Department of Orthopedic Surgery, The Spine Surgical Center, Changzheng Hospital, Second Military Medical University, Shanghai, 20000, China.
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Das AB, Seddon AR, O'Connor KM, Hampton MB. Regulation of the epigenetic landscape by immune cell oxidants. Free Radic Biol Med 2021; 170:131-149. [PMID: 33444713 DOI: 10.1016/j.freeradbiomed.2020.12.453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Excessive production of microbicidal oxidants by neutrophils can damage host tissue. The short-term response of cells to oxidative stress is well understood, but the mechanisms behind long-term consequences require further clarification. Epigenetic pathways mediate cellular adaptation, and are therefore a potential target of oxidative stress. Indeed, there is evidence that many proteins and metabolites involved in epigenetic pathways are redox sensitive. In this review we provide an overview of the epigenetic landscape and discuss the potential for redox regulation. Using this information, we highlight specific examples where neutrophil oxidants react with epigenetic pathway components. We also use published data from redox proteomics to map out known intersections between oxidative stress and epigenetics that may signpost helpful directions for future investigation. Finally, we discuss the role neutrophils play in adaptive pathologies with a focus on tumour initiation and progression. We hope this information will stimulate further discourse on the emerging field of redox epigenomics.
Collapse
Affiliation(s)
- Andrew B Das
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Annika R Seddon
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Karina M O'Connor
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
20
|
Čamernik K, Mihelič A, Mihalič R, Marolt Presen D, Janež A, Trebše R, Marc J, Zupan J. Increased Exhaustion of the Subchondral Bone-Derived Mesenchymal Stem/ Stromal Cells in Primary Versus Dysplastic Osteoarthritis. Stem Cell Rev Rep 2021; 16:742-754. [PMID: 32200505 DOI: 10.1007/s12015-020-09964-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem/ stromal cell (MSC) exhaustion has been suggested to be a hallmark of aging. Osteoarthritis has a complex etiology that comprises several factors. Dysplasia has been shown to be an individual risk factor for osteoarthritis. Subchondral bone changes are often the first detectable alterations in osteoarthritis. In this study, we aimed to determine whether skeletal MSCs are differentially affected in patients with primary versus dysplastic osteoarthritis. Patients undergoing hip arthroplasty due to primary osteoarthritis (n = 11) and osteoarthritis with hip dysplasia (n = 10) were included in the study. Femoral head subchondral bone was used for isolation of MSCs. The cells were compared using detailed ex-vivo and in-vitro analyses, which included immunophenotyping, colony-forming-unit fibroblast assay, growth kinetics, senescence, multilineage potential, immunophenotyping, and MSC marker-gene expression profiling. Isolated cells from primary osteoarthritis patients showed decreased viability in comparison with those from dysplasia patients, with similar mesenchymal fractions (i.e., CD45/ CD19/ CD14/ CD34-negative cells). In-vitro expanded MSCs from primary osteoarthritis patients showed reduced osteogenic and chondrogenic potential in comparison with dysplasia patients. There were no differences in clonogenicity, growth kinetics, senescence, adipogenic potential, and immunophenotype between these groups. Gene expression profiling showed well-known marker of bone marrow MSCs, the leptin receptor, to be significantly lower for primary osteoarthritis patients. Our study shows that the pathology of primary osteoarthritis is accompanied by bone MSC exhaustion, while biomechanical dysfunction associated with hip dysplasia can induce secondary osteoarthritis without this MSC impairment. Our study suggests that subchondral bone MSC exhaustion is implicated in the pathology of primary osteoarthritis.
Collapse
Affiliation(s)
- Klemen Čamernik
- University of Ljubljana, Faculty of Pharmacy, Chair of Clinical Biochemistry, Askerceva 7, 1000, Ljubljana, Slovenia
| | - Anže Mihelič
- Valdoltra Orthopaedic Hospital, Jadranska 31, 6280, Ankaran, Slovenia
| | - Rene Mihalič
- Valdoltra Orthopaedic Hospital, Jadranska 31, 6280, Ankaran, Slovenia
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, A-1200, Vienna, Austria
| | - Andrej Janež
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre, Zaloška cesta 2, 1000, Ljubljana, Slovenia
| | - Rihard Trebše
- Valdoltra Orthopaedic Hospital, Jadranska 31, 6280, Ankaran, Slovenia
| | - Janja Marc
- University of Ljubljana, Faculty of Pharmacy, Chair of Clinical Biochemistry, Askerceva 7, 1000, Ljubljana, Slovenia
| | - Janja Zupan
- University of Ljubljana, Faculty of Pharmacy, Chair of Clinical Biochemistry, Askerceva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
21
|
Zhu H, Zhu S, Shang X, Meng X, Jing S, Yu L, Deng Y. Exhausting circ_0136474 and Restoring miR-766-3p Attenuate Chondrocyte Oxidative Injury in IL-1β-Induced Osteoarthritis Progression Through Regulating DNMT3A. Front Genet 2021; 12:648709. [PMID: 34093648 PMCID: PMC8177824 DOI: 10.3389/fgene.2021.648709] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Circular RNA circ_0136474 is a new contributor of human osteoarthritis (OA) by suppressing chondrocyte proliferation. However, its role and mechanism in OA chondrocyte injury remain ill defined. Herein, we performed real-time quantitative PCR to detect RNA expression of circ_0136474, microRNA (miR)-766-3p, and DNA methyltransferase 3A (DNMT3A) and utilized Western blotting to measure protein expression of DNMT3A, matrix metalloproteinase-1 (MMP1), MMP13, collagen II, proliferating cell nuclear antigen (PCNA) and B cell lymphoma (Bcl)-2, and Bcl-2-associated X protein (Bax). Direct interaction between miR-766-3p and circ_0136474 or DNMT3A was confirmed by bioinformatics algorithms, dual-luciferase reporter assay, and RNA immunoprecipitation. Functional experiments including cell counting kit-8 assay, flow cytometry, and special assay kits were employed to measure oxidative injury in interleukin (IL)-1β-induced OA-like chondrocytes. First, IL-1β administration induced cell viability inhibition, collagen II suppression, and promotion of MMP1 and MMP13 in human chondrocyte CHON-001 cells. Expression of circ_0136474 and DNMT3A was upregulated, and miR-766-3p was downregulated in human OA cartilages and IL-1β-induced CHON-001 cells. Functionally, both blocking circ_0136474 and upregulating miR-766-3p could rescue cell viability and levels of PCNA, Bcl-2, reduced glutathione (GSH), and total superoxide dismutase (SOD), and attenuate apoptosis rate and levels of Bax, reactive oxygen species (ROS), and lipid peroxidation malondialdehyde (MDA). Mechanically, circ_0136474 served as miR-766-3p sponge to govern miR-766-3p-targeted DNMT3A expression. Accidently, restoring DNMT3A counteracted the miR-766-3p upregulation role, and silencing miR-766-3p weakened circ_0136474 knockdown effect in IL-1β-induced CHON-001 cells. In conclusion, exhausting circ_0136474 could mitigate OA chondrocyte oxidative injury through regulating miR-766-3p/DNMT3A axis.
Collapse
Affiliation(s)
- Haiquan Zhu
- Department of Emergency Surgery, The First People's Hospital of Lianyungang, Lianyungang, China.,Department of Emergency Surgery, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China.,Department of Emergency Surgery, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China.,Department of Emergency Surgery, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Shaobo Zhu
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiuchao Shang
- Department of Emergency Surgery, The First People's Hospital of Lianyungang, Lianyungang, China.,Department of Emergency Surgery, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China.,Department of Emergency Surgery, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China.,Department of Emergency Surgery, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Xiangsheng Meng
- Department of Emergency Surgery, The First People's Hospital of Lianyungang, Lianyungang, China.,Department of Emergency Surgery, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China.,Department of Emergency Surgery, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China.,Department of Emergency Surgery, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Sheng Jing
- Department of Emergency Surgery, The First People's Hospital of Lianyungang, Lianyungang, China.,Department of Emergency Surgery, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China.,Department of Emergency Surgery, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China.,Department of Emergency Surgery, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Li Yu
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Deng
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Schwab N, Ju Y, Hazrati LN. Early onset senescence and cognitive impairment in a murine model of repeated mTBI. Acta Neuropathol Commun 2021; 9:82. [PMID: 33964983 PMCID: PMC8106230 DOI: 10.1186/s40478-021-01190-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022] Open
Abstract
Mild traumatic brain injury (mTBI) results in broad neurological symptoms and an increased risk of being diagnosed with a neurodegenerative disease later in life. While the immediate oxidative stress response and post-mortem pathology of the injured brain has been well studied, it remains unclear how early pathogenic changes may drive persistent symptoms and confer susceptibility to neurodegeneration. In this study we have used a mouse model of repeated mTBI (rmTBI) to identify early gene expression changes at 24 h or 7 days post-injury (7 dpi). At 24 h post-injury, gene expression of rmTBI mice shows activation of the DNA damage response (DDR) towards double strand DNA breaks, altered calcium and cell–cell signalling, and inhibition of cell death pathways. By 7 dpi, rmTBI mice had a gene expression signature consistent with induction of cellular senescence, activation of neurodegenerative processes, and inhibition of the DDR. At both timepoints gliosis, microgliosis, and axonal damage were evident in the absence of any gross lesion, and by 7 dpi rmTBI also mice had elevated levels of IL1β, p21, 53BP1, DNA2, and p53, supportive of DNA damage-induced cellular senescence. These gene expression changes reflect establishment of processes usually linked to brain aging and suggests that cellular senescence occurs early and most likely prior to the accumulation of toxic proteins. These molecular changes were accompanied by spatial learning and memory deficits in the Morris water maze. To conclude, we have identified DNA damage-induced cellular senescence as a repercussion of repeated mild traumatic brain injury which correlates with cognitive impairment. Pathways involved in senescence may represent viable treatment targets of post-concussive syndrome. Senescence has been proposed to promote neurodegeneration and appears as an effective target to prevent long-term complications of mTBI, such as chronic traumatic encephalopathy and other related neurodegenerative pathologies.
Collapse
|
23
|
Pignolo RJ, Law SF, Chandra A. Bone Aging, Cellular Senescence, and Osteoporosis. JBMR Plus 2021; 5:e10488. [PMID: 33869998 PMCID: PMC8046105 DOI: 10.1002/jbm4.10488] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Changes in aging bone that lead to osteoporosis are mediated at multiple levels, including hormonal alterations, skeletal unloading, and accumulation of senescent cells. This pathological interplay is superimposed upon medical conditions, potentially bone-wasting medications, modifiable and unmodifiable personal risk factors, and genetic predisposition that accelerate bone loss with aging. In this study, the focus is on bone hemostasis and its dysregulation with aging. The major physiological changes with aging in bone and the role of cellular senescence in contributing to age-related osteoporosis are summarized. The aspects of bone aging are reviewed including remodeling deficits, uncoupling phenomena, inducers of cellular senescence related to bone aging, roles of the senescence-associated secretory phenotype, radiation-induced bone loss as a model for bone aging, and the accumulation of senescent cells in the bone microenvironment as a predominant mechanism for age-related osteoporosis. The study also addresses the rationale and potential for therapeutic interventions based on the clearance of senescent cells or suppression of the senescence-associated secretory phenotype. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of MedicineMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Susan F Law
- Department of MedicineMayo ClinicRochesterMNUSA
| | - Abhishek Chandra
- Department of MedicineMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| |
Collapse
|
24
|
Chandra A, Rajawat J. Skeletal Aging and Osteoporosis: Mechanisms and Therapeutics. Int J Mol Sci 2021; 22:ijms22073553. [PMID: 33805567 PMCID: PMC8037620 DOI: 10.3390/ijms22073553] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
Bone is a dynamic organ maintained by tightly regulated mechanisms. With old age, bone homeostasis, which is maintained by an intricate balance between bone formation and bone resorption, undergoes deregulation. Oxidative stress-induced DNA damage, cellular apoptosis, and cellular senescence are all responsible for this tissue dysfunction and the imbalance in the bone homeostasis. These cellular mechanisms have become a target for therapeutics to treat age-related osteoporosis. Genetic mouse models have shown the importance of senescent cell clearance in alleviating age-related osteoporosis. Furthermore, we and others have shown that targeting cellular senescence pharmacologically was an effective tool to alleviate age- and radiation-induced osteoporosis. Senescent cells also have an altered secretome known as the senescence associated secretory phenotype (SASP), which may have autocrine, paracrine, or endocrine function. The current review discusses the current and potential pathways which lead to a senescence profile in an aged skeleton and how bone homeostasis is affected during age-related osteoporosis. The review has also discussed existing therapeutics for the treatment of osteoporosis and rationalizes for novel therapeutic options based on cellular senescence and the SASP as an underlying pathogenesis of an aging bone.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
- Department of Internal Medicine, Division of Geriatric Medicine and Gerontology, Mayo Clinic, Rochester, MN 55902, USA
- Robert and Arlene Kogod Aging Center, Mayo Clinic, Rochester, MN 55902, USA
- Correspondence: ; Tel.: +1-507-266-1847
| | - Jyotika Rajawat
- Department of Zoology, University of Lucknow, University Rd, Babuganj, Hasanganj, Lucknow, Uttar Pradesh 226007, India;
| |
Collapse
|
25
|
Soranno DE, Kirkbride-Romeo L, Wennersten SA, Ding K, Cavasin MA, Baker P, Altmann C, Bagchi RA, Haefner KR, Steinkühler C, Montford JR, Keith B, Gist KM, McKinsey TA, Faubel S. Acute Kidney Injury Results in Long-Term Diastolic Dysfunction That Is Prevented by Histone Deacetylase Inhibition. ACTA ACUST UNITED AC 2021; 6:119-133. [PMID: 33665513 PMCID: PMC7907538 DOI: 10.1016/j.jacbts.2020.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/06/2023]
Abstract
This is the first long-term (1-year) study to evaluate both the kidney and systemic sequelae of acute kidney injury in mice. Serial kidney function was measured via transcutaneous glomerular filtration rate. AKI resulted in diastolic dysfunction, followed by hypertension. Ejection fraction was preserved. One year after AKI, cardiac ATP levels were reduced compared with sham controls. Mice treated with the histone deacetylase inhibitor, ITF2357, maintained normal diastolic function normal blood pressure, and normal cardiac ATP after AKI. Metabolomics data suggest that treatment with ITF2357 preserves pathways related to energy metabolism.
Growing epidemiological data demonstrate that acute kidney injury (AKI) is associated with long-term cardiovascular morbidity and mortality. Here, the authors present a 1-year study of cardiorenal outcomes following bilateral ischemia-reperfusion injury in male mice. These data suggest that AKI causes long-term dysfunction in the cardiac metabolome, which is associated with diastolic dysfunction and hypertension. Mice treated with the histone deacetylase inhibitor, ITF2357, had preservation of cardiac function and remained normotensive throughout the study. ITF2357 did not protect against the development of kidney fibrosis after AKI.
Collapse
Affiliation(s)
- Danielle E Soranno
- Department of Pediatrics, Pediatric Nephrology, University of Colorado, Aurora, Colorado, USA.,Department of Medicine, Division of Renal Disease and Hypertension, University of Colorado, Aurora, Colorado, USA.,Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lara Kirkbride-Romeo
- Department of Pediatrics, Pediatric Nephrology, University of Colorado, Aurora, Colorado, USA
| | - Sara A Wennersten
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Medicine, Division of Cardiology, University of Colorado, Aurora, Colorado, USA
| | - Kathy Ding
- Department of Pediatrics, Pediatric Nephrology, University of Colorado, Aurora, Colorado, USA
| | - Maria A Cavasin
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Medicine, Division of Cardiology, University of Colorado, Aurora, Colorado, USA
| | - Peter Baker
- Department of Pediatrics, Clinical Genetics and Metabolism, University of Colorado, Aurora, Colorado, USA
| | - Christopher Altmann
- Department of Medicine, Division of Renal Disease and Hypertension, University of Colorado, Aurora, Colorado, USA
| | - Rushita A Bagchi
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Medicine, Division of Cardiology, University of Colorado, Aurora, Colorado, USA
| | - Korey R Haefner
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Medicine, Division of Cardiology, University of Colorado, Aurora, Colorado, USA
| | | | - John R Montford
- Department of Medicine, Division of Renal Disease and Hypertension, University of Colorado, Aurora, Colorado, USA.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
| | - Brysen Keith
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Katja M Gist
- Department of Pediatrics, Pediatric Cardiology, University of Colorado, Aurora, Colorado, USA
| | - Timothy A McKinsey
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Medicine, Division of Cardiology, University of Colorado, Aurora, Colorado, USA
| | - Sarah Faubel
- Department of Medicine, Division of Renal Disease and Hypertension, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
26
|
Zhang J, Zhao H, Yao G, Qiao P, Li L, Wu S. Therapeutic potential of iron chelators on osteoporosis and their cellular mechanisms. Biomed Pharmacother 2021; 137:111380. [PMID: 33601146 DOI: 10.1016/j.biopha.2021.111380] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022] Open
Abstract
Iron is an essential trace element in the metabolism of almost all living organisms. Iron overload can disrupt bone homeostasis by significant inhibition of osteogenic differentiation and stimulation of osteoclastogenesis, consequently leading to osteoporosis. Iron accumulation is also involved in the osteoporosis induced by multiple factors, such as estrogen deficiency, ionizing radiation, and mechanical unloading. Iron chelators are first developed for treating iron overloaded disorders. However, growing evidence suggests that iron chelators can be potentially used for the treatment of bone loss. In this review, we focus on the therapeutic effects of iron chelators on bone loss. Iron chelators have therapeutic effects not only on iron overload induced osteoporosis, but also on osteoporosis induced by estrogen deficiency, ionizing radiation, and mechanical unloading, and in Alzheimer's disease-associated osteoporotic deficits. Iron chelators differently affect the cellular behaviors of bone cells. For osteoblast lineage cells (bone mesenchymal stem cells and osteoblasts), iron chelation stimulates osteogenic differentiation. Conversely, iron chelation significantly inhibits osteoclast differentiation. These different responses may be associated with the different needs of iron during differentiation. Fibroblast growth factor 23, angiogenesis, and antioxidant capability are also involved in the osteoprotective effects of iron chelators.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| | - Hai Zhao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Gang Yao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Penghai Qiao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Longfei Li
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shuguang Wu
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
27
|
Hendrix J, Nijs J, Ickmans K, Godderis L, Ghosh M, Polli A. The Interplay between Oxidative Stress, Exercise, and Pain in Health and Disease: Potential Role of Autonomic Regulation and Epigenetic Mechanisms. Antioxidants (Basel) 2020; 9:E1166. [PMID: 33238564 PMCID: PMC7700330 DOI: 10.3390/antiox9111166] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress can be induced by various stimuli and altered in certain conditions, including exercise and pain. Although many studies have investigated oxidative stress in relation to either exercise or pain, the literature presents conflicting results. Therefore, this review critically discusses existing literature about this topic, aiming to provide a clear overview of known interactions between oxidative stress, exercise, and pain in healthy people as well as in people with chronic pain, and to highlight possible confounding factors to keep in mind when reflecting on these interactions. In addition, autonomic regulation and epigenetic mechanisms are proposed as potential mechanisms of action underlying the interplay between oxidative stress, exercise, and pain. This review highlights that the relation between oxidative stress, exercise, and pain is poorly understood and not straightforward, as it is dependent on the characteristics of exercise, but also on which population is investigated. To be able to compare studies on this topic, strict guidelines should be developed to limit the effect of several confounding factors. This way, the true interplay between oxidative stress, exercise, and pain, and the underlying mechanisms of action can be revealed and validated via independent studies.
Collapse
Affiliation(s)
- Jolien Hendrix
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (J.H.); (J.N.); (K.I.)
- Centre for Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (L.G.); (M.G.)
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (J.H.); (J.N.); (K.I.)
- Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Unit of Physiotherapy, Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
- University of Gothenburg Center for Person-Centred Care (GPCC), Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Kelly Ickmans
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (J.H.); (J.N.); (K.I.)
- Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Research Foundation—Flanders (FWO), 1050 Brussels, Belgium
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (L.G.); (M.G.)
- External Service for Prevention and Protection at Work (IDEWE), 3001 Heverlee, Belgium
| | - Manosij Ghosh
- Centre for Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (L.G.); (M.G.)
- Research Foundation—Flanders (FWO), 1050 Brussels, Belgium
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (J.H.); (J.N.); (K.I.)
- Centre for Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (L.G.); (M.G.)
- Research Foundation—Flanders (FWO), 1050 Brussels, Belgium
| |
Collapse
|
28
|
Sharma S, Bhonde R. Genetic and epigenetic stability of stem cells: Epigenetic modifiers modulate the fate of mesenchymal stem cells. Genomics 2020; 112:3615-3623. [DOI: 10.1016/j.ygeno.2020.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
|
29
|
Chang Y, He J, Tang J, Chen K, Wang Z, Xia Q, Li H. Investigation of the gene co-expression network and hub genes associated with acute mountain sickness. Hereditas 2020; 157:13. [PMID: 32299499 PMCID: PMC7164164 DOI: 10.1186/s41065-020-00127-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Background Acute mountain sickness has become a heavily researched topic in recent years. However, the genetic mechanism and effects have not been elucidated. Our goal is to construct a gene co-expression network to identify the key modules and hub genes associated with high altitude hypoxia. Results The GSE46480 dataset of rapidly transported healthy adults with acute mountain sickness was selected and analyzed by weighted gene co-expression network analysis (WGCNA) to construct a co-expression network. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the data set were carried out using Database for Annotation Visualization and Integrated Discovery (DAVID), and the hub genes were selected. We found that the turquoise module was most significantly correlated with acute mountain sickness. The functional enrichment analysis showed that the turquoise module was related to the apoptotic process, protein transport, and translation processes. The metabolic pathway analysis identified hsa03010:ribosome and hsa04144:endocytosis as the most important pathways in the turquoise module. Ten top 10 hub genes (MRPL3, PSMC6, AIMP1, HAT1, DPY30, ATP5L, COX7B, UQCRB, DPM1, and COMMD6) for acute mountain sickness were identified. Conclusion One module and 10 hub genes were identified, which were related to acute mountain sickness. The reference provided by this module may help to elucidate the mechanism of acute mountain sickness. In addition, the hub genes may be used in the future as a biomarker and therapeutic target for accurate diagnosis and treatment.
Collapse
Affiliation(s)
- Yue Chang
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, 300162, China.,Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, 300162, China
| | - Jiange He
- Institute of Special War Trauma Emergency Technology, Characteristic Medical Center of People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, 300162, China
| | - Jiqiang Tang
- Department of Orthopaedics, Characteristic Medical Center of People's Armed Police Force, Tianjin, 300162, China
| | - Kai Chen
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, 300162, China.,Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, 300162, China
| | - Zhenguo Wang
- Department of Hepatopancreatobiliary and Splenic Medicine, Characteristic Medical Center of People's Armed Police Force, Tianjin, 300162, China
| | - Qun Xia
- Institute of Special War Trauma Emergency Technology, Characteristic Medical Center of People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, 300162, China.
| | - Hai Li
- Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis and Treatment, Tianjin, 300162, China. .,Division of Gastroenterology and Hepatology, Tianjin Xiqing Hospital, No.403 Xiqing Road, Xiqing District, Tianjin, 300380, China.
| |
Collapse
|
30
|
Jiang Y, Luo W, Wang B, Wang X, Gong P, Xiong Y. Resveratrol promotes osteogenesis via activating SIRT1/FoxO1 pathway in osteoporosis mice. Life Sci 2020; 246:117422. [DOI: 10.1016/j.lfs.2020.117422] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 12/27/2022]
|
31
|
Abstract
Osteoarthritis (OA) is a degenerative disease of the articular cartilage with subchondral bone lesions. Osteoarthritis etiologies are mainly related to age, obesity, strain, trauma, joint congenital anomalies, joint deformities, and other factors. Osteoarthritis seriously affects the quality of life; however, there is no effective way to cure osteoarthritis. Aerobic exercise refers to a dynamic rhythmic exercise involving the large muscle groups of the body with aerobic metabolism. More and more evidence shows that exercise has become a useful tool for the treatment of osteoarthritis. This chapter will discuss the role of exercise in the prevention and treatment of osteoarthritis.
Collapse
Affiliation(s)
- Lei Chen
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Yu
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Ren Q, Wu Y, Ma J, Shan Q, Liu S, Liu Y. Carbon black-induced detrimental effect on osteoblasts at low concentrations: Remarkably compromised differentiation without significant cytotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 178:211-220. [PMID: 31009927 DOI: 10.1016/j.ecoenv.2019.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/06/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Due to similar aerodynamic and micro-nano sized properties between airborne particles and synthetic nanoparticles, a large number of studies have been conducted using carbon-based particles, such as carbon black (CB), carbon nanotubes and graphite, in order to achieve deeper understandings of their adverse effects on human health. It has been reported that particulate matters can aggravate morbidity of patients suffering from bone and joint diseases, e.g. arthritis. However, the molecular mechanism is still elusive thus far. Under this context, we employed two cell lines of osteoblasts, MC3T3-E1 and MG-63, upon exposure to 4 different CB samples with differential physicochemical properties in research of mechanistic insights. Our results indicated that the carbon/oxygen ratio differed in these 4 CB materials showing the order: SB4A < Printex U < C1864 < C824455. In stark contrast, their cytotoxicity and capacity to trigger reactive oxygen species (ROS) in MC3T3-E1 and MG-63 cells closely correlated to oxygen content, revealing the reverse order: SB4A < Printex U < C1864 < C824455. It would be reasonable to speculate that ROS production was a predominant cause of CB cytotoxicity, which strongly relied on the oxygen content of CB. Our study further manifested that all CB samples even at low concentrations significantly inhibited osteoblast differentiation, as reflected by remarkably reduced activity of alkaline phosphatase (ALP) and compromised expression of the differentiation-related genes. And the inhibition on osteoblast differentiation also closely correlated to oxygen content of CB samples. Taken together, our combined data recognized oxygen-associated toxicity towards osteoblasts for CBs. More importantly, we uncovered a new adverse effect of CB exposure: suppression on osteoblast differentiation, which has been overlooked in the past.
Collapse
Affiliation(s)
- Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yakun Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Qiuli Shan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yajun Liu
- Beijing Jishuitan Hospital, Peking University Health Science Center, Beijing, 100035, PR China.
| |
Collapse
|
33
|
Li L, Liu F, Huang W, Wang J, Wan Y, Li M, Pang Y, Yin Z. Ricolinostat (ACY-1215) inhibits VEGF expression via PI3K/AKT pathway and promotes apoptosis in osteoarthritic osteoblasts. Biomed Pharmacother 2019; 118:109357. [PMID: 31548177 DOI: 10.1016/j.biopha.2019.109357] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 01/07/2023] Open
Abstract
Osteoarthritis (OA) is involved in these pathophysiological changes of articular cartilage, subchondral bone and synovium. As a selective HDAC6 inhibitor, Ricolinostat (ACY-1215) has demonstrated chondroprotective effects in OA. However, its efficacy remains unclear in subchondral bone. In this study, we found that the mRNA and protein levels of HDAC6 were elevated in human OA osteoblasts in vitro. PI3K/AKT signaling pathway was suppressed with downregulation of VEGF expression in osteoblasts after ACY-1215 treatment. ACY-1215 promoted apoptosis of OA osteoblast in a concentration-dependent manner, and the expression of apoptosis-related proteins was also changed by activating caspase pathway. Moreover, western blotting showed decreased expression of MMP9 and MMP13 in IL-1β-induced chondrocytes after co-culture with ACY-1215-stimulated osteoblasts. These data of immunohistochemistry and micro-CT from OA model mice also demonstrated the weak staining of MMPs in cartilage and prevention of aberrant subchondral bone formation after ACY-1215 injection. Therefore, high expression of HDAC6 in osteoblasts also contributed to the OA progression, and our study provided a new evidence that HDAC6 inhibitor may be a potential therapeutic drug for OA.
Collapse
Affiliation(s)
- Lei Li
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, #269 Jixi Road, Hefei, Anhui, China
| | - Fuen Liu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, #269 Jixi Road, Hefei, Anhui, China
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, #269 Jixi Road, Hefei, Anhui, China
| | - Jun Wang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, #269 Jixi Road, Hefei, Anhui, China
| | - Yunpeng Wan
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, #269 Jixi Road, Hefei, Anhui, China
| | - Meng Li
- Department of Orthopaedics, The First Affiliated Hospital of University of Science and Technology of China, #17 Lujiang Raod, Hefei, Anhui, China
| | - Yiqun Pang
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, #17 Lujiang Raod, Hefei, Anhui, China
| | - Zongsheng Yin
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, #269 Jixi Road, Hefei, Anhui, China.
| |
Collapse
|
34
|
Hepatic Osteodystrophy-Molecular Mechanisms Proposed to Favor Its Development. Int J Mol Sci 2019; 20:ijms20102555. [PMID: 31137669 PMCID: PMC6566554 DOI: 10.3390/ijms20102555] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
Almost all patients with chronic liver diseases (CLD) show altered bone metabolism. Depending on the etiology, this manifests in a severe osteoporosis in up to 75% of the affected patients. Due to high prevalence, the generic term hepatic osteodystrophy (HOD) evolved, describing altered bone metabolism, decreased bone mineral density, and deterioration of bone structure in patients with CLD. Once developed, HOD is difficult to treat and increases the risk of fragility fractures. Existing fractures affect the quality of life and, more importantly, long-term prognosis of these patients, which presents with increased mortality. Thus, special care is required to support the healing process. However, for early diagnosis (reduce fracture risk) and development of adequate treatment strategies (support healing of existing fractures), it is essential to understand the underlying mechanisms that link disturbed liver function with this bone phenotype. In the present review, we summarize proposed molecular mechanisms favoring the development of HOD and compromising the healing of associated fractures, including alterations in vitamin D metabolism and action, disbalances in transforming growth factor beta (TGF-β) and bone morphogenetic protein (BMP) signaling with histone deacetylases (HDACs) as secondary regulators, as well as alterations in the receptor activator of nuclear factor kappa B ligand (RANKL)–osteoprotegerin (OPG) system mediated by sclerostin. Based on these mechanisms, we give an overview on the limitations of early diagnosis of HOD with established serum markers.
Collapse
|