1
|
Tibenda JJ, Wang N, Li N, Dang Y, Zhu Y, Wang X, Zhang Z, Zhao Q. Research progress of circular RNAs in myocardial ischemia. Life Sci 2024; 352:122809. [PMID: 38908786 DOI: 10.1016/j.lfs.2024.122809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/24/2024]
Abstract
Circular RNAs (circRNAs) are a type of single-stranded RNA that forms a covalently closed continuous loop. Its structure, stability, properties, and cell- and tissue-specificity have gained considerable recognition in the research and clinical sectors, as its role has been observed in different diseases, such as cardiovascular diseases, cancers, and central nervous system diseases, etc. Cardiovascular disease is still named as the number one cause of death globally, with myocardial ischemia (MI) accounting for 15 % of mortality annually. A number of circRNAs have been identified and are being studied for their ability to reduce MI by inhibiting the molecular mechanisms associated with myocardial ischemia reperfusion injury, such as inflammation, oxidative stress, autophagy, apoptosis, and so on. CircRNAs play a significant role as crucial regulatory elements at transcriptional levels, regulating different proteins, and at posttranscriptional levels, having interactions with RNA-binding proteins, ribosomal proteins, micro-RNAS, and long non-coding RNAS, making it possible to exert their effects through the circRNA-miRNA-mRNA axis. CircRNAs are a potential novel biomarker and therapeutic target for myocardial ischemia and cardiovascular diseases in general. The purpose of this review is to summarize the relationship, function, and mechanism observed between circRNAs and MI injury, as well as to provide directions for future research and clinical trials.
Collapse
Affiliation(s)
- Jonnea Japhet Tibenda
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Niuniu Wang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Nuan Li
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Yanning Dang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Yafei Zhu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Zhengjun Zhang
- Department of Cardiology, General Hospital of Ningxia Medical University, Ningxia, China.
| | - Qipeng Zhao
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China.
| |
Collapse
|
2
|
Gristina V, Pepe F, Genova C, Bazan Russo TD, Gottardo A, Russo G, Incorvaia L, Galvano A, Badalamenti G, Bazan V, Troncone G, Russo A, Malapelle U. Harnessing the potential of genomic characterization of mutational profiles to improve early diagnosis of lung cancer. Expert Rev Mol Diagn 2024; 24:793-802. [PMID: 39267426 DOI: 10.1080/14737159.2024.2403081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
INTRODUCTION Lung Cancer (LC) continues to be a leading cause of cancer-related mortality globally, largely due to the asymptomatic nature of its early stages and the limitations of current diagnostic methods such as Low-Dose Computed Tomography (LDCT), whose often result in late diagnosis, highlighting an urgent need for innovative, minimally invasive diagnostic techniques that can improve early detection rates. AREAS COVERED This review delves into the potential of genomic characterization and mutational profiling to enhance early LC diagnosis, exploring the current state and limitations of traditional diagnostic approaches and the revolutionary role of Liquid Biopsies (LB), including cell-free DNA (cfDNA) analysis through fragmentomics and methylomics. New genomic technologies that allow for earlier detection of LC are scrutinized, alongside a detailed discussion on the literature that shaped our understanding in this field. EXPERT OPINION Despite the promising advancements in genomic characterization techniques, several challenges remain, such as the heterogeneity of LC mutations, the high cost, and limited accessibility of Next-Generation Sequencing (NGS) technologies. Additionally, there is a critical need of standardized protocols for interpreting mutational data. Future research should focus on overcoming these barriers to integrate these novel diagnostic methods into standard clinical practice, potentially revolutionizing the management of LC patients.
Collapse
Affiliation(s)
- Valerio Gristina
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Carlo Genova
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Academic Oncology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Tancredi Didier Bazan Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Andrea Gottardo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Lorena Incorvaia
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Antonio Galvano
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Giuseppe Badalamenti
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Antonio Russo
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Oh HJ, Imam-Aliagan AB, Kim YB, Kim HJ, Izaguirre IA, Sung CK, Yim H. Clinical applications of circulating biomarkers in non-small cell lung cancer. Front Cell Dev Biol 2024; 12:1449232. [PMID: 39239557 PMCID: PMC11375801 DOI: 10.3389/fcell.2024.1449232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Despite recent advances in cancer diagnostics and treatment, the mortality associated with lung cancer is still the highest in the world. Late-stage diagnosis, often accompanied by metastasis, is a major contributor to the high mortality rates, emphasizing the urgent need for reliable and readily accessible diagnostic tools that can detect biomarkers unique to lung cancer. Circulating factors, such as circulating tumor DNA and extracellular vesicles, from liquid biopsy have been recognized as diagnostic or prognostic markers in lung cancer. Numerous clinical studies are currently underway to investigate the potential of circulating tumor DNA, circulating tumor RNA, exosomes, and exosomal microRNA within the context of lung cancer. Those clinical studies aim to address the poor diagnostics and limited treatment options for lung cancer, with the ultimate goal of developing clinical markers and personalized therapies. In this review, we discuss the roles of each circulating factor, its current research status, and ongoing clinical studies of circulating factors in non-small cell lung cancer. Additionally, we discuss the circulating factors specifically found in lung cancer stem cells and examine approved diagnostic assays designed to detect circulating biomarkers in lung cancer patients.
Collapse
Affiliation(s)
- Hyun-Ji Oh
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Abdulhamid B Imam-Aliagan
- Department of Biological and Health Sciences, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Yeo-Bin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Hyun-Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Issac A Izaguirre
- Department of Biological and Health Sciences, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Chang K Sung
- Department of Biological and Health Sciences, College of Arts and Sciences, Texas A&M University-Kingsville, Kingsville, TX, United States
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Israni DK, Patel ML, Dodiya RK. Exploring the versatility of miRNA-128: a comprehensive review on its role as a biomarker and therapeutic target in clinical pathways. Mol Biol Rep 2024; 51:860. [PMID: 39068606 DOI: 10.1007/s11033-024-09822-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
MicroRNAs (miRNAs/ miRs) are short, noncoding RNAs, usually consisting of 18 to 24 nucleotides, that control gene expression after the process of transcription and have crucial roles in several clinical processes. This article seeks to provide an in-depth review and evaluation of the many activities of miR-128, accentuating its potential as a versatile biomarker and target for therapy; The circulating miR-128 has garnered interest because of its substantial influence on gene regulation and its simplicity in extraction. Several miRNAs, such as miR-128, have been extracted from circulating blood cells, cerebrospinal fluid, and plasma/serum. The miR-128 molecule can specifically target a diverse range of genes, enabling it to have intricate physiological impacts by concurrently regulating many interrelated pathways. It has a vital function in several biological processes, such as modulating the immune system, regulating brain plasticity, organizing the cytoskeleton, and inducing neuronal death. In addition, miR-128 modulates genes associated with cell proliferation, the cell cycle, apoptosis, plasma LDL levels, and gene expression regulation in cardiac development. The dysregulation of miR-128 expression and activity is associated with the development of immunological responses, changes in neural plasticity, programmed cell death, cholesterol metabolism, and heightened vulnerability to autoimmune illnesses, neuroimmune disorders, cancer, and cardiac problems; The paper highlights the importance of studying the consequences of miR-128 dysregulation in these specific locations. By examining the implications of miRNA-128 dysregulation in these areas, the article underscores its significance in diagnosis and treatment, providing a foundation for research and clinical applications.
Collapse
Affiliation(s)
- Dipa K Israni
- Department of Pharmacology, L.J. Institute of Pharmacy, LJ University, SG Highway, Sanand Cross-Road, Ahmedabad, Gujarat, 382210, India.
| | - Manish L Patel
- LJ Institute of Pharmacy, LJ University, Ahmedabad, Gujarat, India
| | - Rohinee K Dodiya
- Department of Pharmacology, L.J. Institute of Pharmacy, LJ University, SG Highway, Sanand Cross-Road, Ahmedabad, Gujarat, 382210, India
| |
Collapse
|
5
|
Fotopoulos I, Nguyen OTD, Nøst TH, Markaki M, Lagani V, Mjelle R, Sandanger TM, Sætrom P, Tsamardinos I, Røe OD. Promising microRNAs in pre-diagnostic serum associated with lung cancer up to eight years before diagnosis: a HUNT study. J Cancer Res Clin Oncol 2024; 150:355. [PMID: 39031255 PMCID: PMC11271336 DOI: 10.1007/s00432-024-05882-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/04/2024] [Indexed: 07/22/2024]
Abstract
INTRODUCTION Blood biomarkers for early detection of lung cancer (LC) are in demand. There are few studies of the full microRNome in serum of asymptomatic subjects that later develop LC. Here we searched for novel microRNA biomarkers in blood from non-cancer, ever-smokers populations up to eight years before diagnosis. METHODS Serum samples from 98,737 subjects from two prospective population studies, HUNT2 and HUNT3, were considered initially. Inclusion criteria for cases were: ever-smokers; no known cancer at study entrance; 0-8 years from blood sampling to LC diagnosis. Each future LC case had one control matched to sex, age at study entrance, pack-years, smoking cessation time, and similar HUNT Lung Cancer Model risk score. A total of 240 and 72 serum samples were included in the discovery (HUNT2) and validation (HUNT3) datasets, respectively, and analysed by next-generation sequencing. The validated serum microRNAs were also tested in two pre-diagnostic plasma datasets from the prospective population studies NOWAC (n = 266) and NSHDS (n = 258). A new model adding clinical variables was also developed and validated. RESULTS Fifteen unique microRNAs were discovered and validated in the pre-diagnostic serum datasets when all cases were contrasted against all controls, all with AUC > 0.60. In combination as a 15-microRNAs signature, the AUC reached 0.708 (discovery) and 0.703 (validation). A non-small cell lung cancer signature of six microRNAs showed AUC 0.777 (discovery) and 0.806 (validation). Combined with clinical variables of the HUNT Lung Cancer Model (age, gender, pack-years, daily cough parts of the year, hours of indoor smoke exposure, quit time in years, number of cigarettes daily, body mass index (BMI)) the AUC reached 0.790 (discovery) and 0.833 (validation). These results could not be validated in the plasma samples. CONCLUSION There were a few significantly differential expressed microRNAs in serum up to eight years before diagnosis. These promising microRNAs alone, in concert, or combined with clinical variables have the potential to serve as early diagnostic LC biomarkers. Plasma is not suitable for this analysis. Further validation in larger prospective serum datasets is needed.
Collapse
Affiliation(s)
- Ioannis Fotopoulos
- Department of Computer Science, University of Crete, 700 13, Heraklion, Crete, Greece
| | - Olav Toai Duc Nguyen
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Prinsesse Kristinas Gate 1, 7030, Trondheim, Norway
- Cancer Clinic, Levanger Hospital, Nord-Trøndelag Health Trust, Kirkegata 2, 7600, Levanger, Norway
| | - Therese Haugdahl Nøst
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050 Langnes, 9037, Tromsø, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Postboks 8905, 7491, Trondheim, Norway
| | - Maria Markaki
- Institute of Applied and Computational Mathematics, FORTH, 700 13, Heraklion, Crete, Greece
| | - Vincenzo Lagani
- Institute of Chemical Biology, Ilia State University, 3/5, Kakuca Cholokashvili Ave, Tbilisi, Georgia
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology KAUST, Thuwal, Saudi Arabia
- SDAIA-KAUST Center of Excellence in Data Science and Artificial Intelligence, 23952, Thuwal, Saudi Arabia
| | - Robin Mjelle
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Prinsesse Kristinas Gate 1, 7030, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Postboks 8905, 7491, Trondheim, Norway
- Bioinformatics Core Facility, NTNU-Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Torkjel Manning Sandanger
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, P.O. Box 6050 Langnes, 9037, Tromsø, Norway
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Prinsesse Kristinas Gate 1, 7030, Trondheim, Norway
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU-Norwegian University of Science and Technology, Postboks 8905, 7491, Trondheim, Norway
- Bioinformatics Core Facility, NTNU-Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Department of Computer Science, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Ioannis Tsamardinos
- Department of Computer Science, University of Crete, 700 13, Heraklion, Crete, Greece
- Institute of Applied and Computational Mathematics, FORTH, 700 13, Heraklion, Crete, Greece
- JADBio Gnosis DA S.A., STEP-C, N. Plastira 100, 700-13, Heraklion, Greece
| | - Oluf Dimitri Røe
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Prinsesse Kristinas Gate 1, 7030, Trondheim, Norway.
- Cancer Clinic, Levanger Hospital, Nord-Trøndelag Health Trust, Kirkegata 2, 7600, Levanger, Norway.
- Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, 9000, Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University Hospital, 9000, Aalborg, Denmark.
| |
Collapse
|
6
|
Khameneh SC, Razi S, Lashanizadegan R, Akbari S, Sayaf M, Haghani K, Bakhtiyari S. MicroRNA-mediated metabolic regulation of immune cells in cancer: an updated review. Front Immunol 2024; 15:1424909. [PMID: 39007129 PMCID: PMC11239499 DOI: 10.3389/fimmu.2024.1424909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
The study of immunometabolism, which examines how immune cells regulate their metabolism to maintain optimal performance, has become an important area of focus in cancer immunology. Recent advancements in this field have highlighted the intricate connection between metabolism and immune cell function, emphasizing the need for further research. MicroRNAs (miRNAs) have gained attention for their ability to post-transcriptionally regulate gene expression and impact various biological processes, including immune function and cancer progression. While the role of miRNAs in immunometabolism is still being explored, recent studies have demonstrated their significant influence on the metabolic activity of immune cells, such as macrophages, T cells, B cells, and dendritic cells, particularly in cancer contexts. Disrupted immune cell metabolism is a hallmark of cancer progression, and miRNAs have been linked to this process. Understanding the precise impact of miRNAs on immune cell metabolism in cancer is essential for the development of immunotherapeutic approaches. Targeting miRNAs may hold potential for creating groundbreaking cancer immunotherapies to reshape the tumor environment and improve treatment outcomes. In summary, the recognition of miRNAs as key regulators of immune cell metabolism across various cancers offers promising potential for refining cancer immunotherapies. Further investigation into how miRNAs affect immune cell metabolism could identify novel therapeutic targets and lead to the development of innovative cancer immunotherapies.
Collapse
Affiliation(s)
| | - Sara Razi
- Vira Ideators of Modern Science, Tehran, Iran
- Vira Pioneers of Modern Science (VIPOMS), Tehran, Iran
| | | | | | - Masoud Sayaf
- Department of Cellular and Molecular Biology, Faculty of Basic Sciences, Azad University Central Tehran Branch, Tehran, Iran
| | - Karimeh Haghani
- Department of Clinical Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Salar Bakhtiyari
- Department of Clinical Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University School of Medicine, Chicago, IL, United States
| |
Collapse
|
7
|
Wu P, Li D, Zhang C, Dai B, Tang X, Liu J, Wu Y, Wang X, Shen A, Zhao J, Zi X, Li R, Sun N, He J. A unique circulating microRNA pairs signature serves as a superior tool for early diagnosis of pan-cancer. Cancer Lett 2024; 588:216655. [PMID: 38460724 DOI: 10.1016/j.canlet.2024.216655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/18/2023] [Accepted: 01/16/2024] [Indexed: 03/11/2024]
Abstract
Cancer remains a major burden globally and the critical role of early diagnosis is self-evident. Although various miRNA-based signatures have been developed in past decades, clinical utilization is limited due to a lack of precise cutoff value. Here, we innovatively developed a signature based on pairwise expression of miRNAs (miRPs) for pan-cancer diagnosis using machine learning approach. We analyzed miRNA spectrum of 15832 patients, who were divided into training, validation, test, and external test sets, with 13 different cancers from 10 cohorts. Five different machine-learning (ML) algorithms (XGBoost, SVM, RandomForest, LASSO, and Logistic) were adopted for signature construction. The best ML algorithm and the optimal number of miRPs included were identified using area under the curve (AUC) and youden index in validation set. The AUC of the best model was compared to previously published 25 signatures. Overall, Random Forest approach including 31 miRPs (31-miRP) was developed, proving highly efficient in cancer diagnosis across different datasets and cancer types (AUC range: 0.980-1.000). Regarding diagnosis of cancers at early stage, 31-miRP also exhibited high capacities, with AUC ranging from 0.961 to 0.998. Moreover, 31-miRP exhibited advantages in differentiating cancers from normal tissues (AUC range: 0.976-0.998) as well as differentiating cancers from corresponding benign lesions. Encouragingly, comparing to previously published 25 different signatures, 31-miRP also demonstrated clear advantages. In conclusion, 31-miRP acts as a powerful model for cancer diagnosis, characterized by high specificity and sensitivity as well as a clear cutoff value, thereby holding potential as a reliable tool for cancer diagnosis at early stage.
Collapse
Affiliation(s)
- Peng Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dongyu Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bing Dai
- School of Software, Tsinghua University, Beijing, 100084, China
| | - Xiaoya Tang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingjing Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yue Wu
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xingwu Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ao Shen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiapeng Zhao
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaohui Zi
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ruirui Li
- Department of Pathology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
8
|
Giordano C, Accattatis FM, Gelsomino L, Del Console P, Győrffy B, Giuliano M, Veneziani BM, Arpino G, De Angelis C, De Placido P, Pietroluongo E, Zinno F, Bonofiglio D, Andò S, Barone I, Catalano S. miRNAs in the Box: Potential Diagnostic Role for Extracellular Vesicle-Packaged miRNA-27a and miRNA-128 in Breast Cancer. Int J Mol Sci 2023; 24:15695. [PMID: 37958677 PMCID: PMC10649351 DOI: 10.3390/ijms242115695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Circulating extracellular vesicle (EV)-derived microRNAs (miRNAs) are now considered the next generation of cancer "theranostic" tools, with strong clinical relevance. Although their potential in breast cancer diagnosis has been widely reported, further studies are still required to address this challenging issue. The present study examined the expression profiles of EV-packaged miRNAs to identify novel miRNA signatures in breast cancer and verified their diagnostic accuracy. Circulating EVs were isolated from healthy controls and breast cancer patients and characterized following the MISEV 2018 guidelines. RNA-sequencing and real-time PCR showed that miRNA-27a and miRNA-128 were significantly down-regulated in patient-derived EVs compared to controls in screening and validation cohorts. Bioinformatics analyses of miRNA-target genes indicated several enriched biological processes/pathways related to breast cancer. Receiver operating characteristic (ROC) curves highlighted the ability of these EV-miRNAs to distinguish breast cancer patients from non-cancer controls. According to other reports, the levels of EV-miRNA-27a and EV-miRNA-128 are not associated with their circulating ones. Finally, evidence from the studies included in our systematic review underscores how the expression of these miRNAs in biofluids is still underinvestigated. Our findings unraveled the role of serum EV-derived miRNA-27a and miRNA-128 in breast cancer, encouraging further investigation of these two miRNAs within EVs towards improved breast cancer detection.
Collapse
Affiliation(s)
- Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy; (F.M.A.); (L.G.); (P.D.C.); (D.B.); (S.A.); (I.B.)
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Clinical Laboratory Unit, A.O. “Annunziata”, 87100 Cosenza, Italy
| | - Felice Maria Accattatis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy; (F.M.A.); (L.G.); (P.D.C.); (D.B.); (S.A.); (I.B.)
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy; (F.M.A.); (L.G.); (P.D.C.); (D.B.); (S.A.); (I.B.)
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Piercarlo Del Console
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy; (F.M.A.); (L.G.); (P.D.C.); (D.B.); (S.A.); (I.B.)
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Balázs Győrffy
- Departments of Bioinformatics and Pediatrics, Semmelweis University, 1094 Budapest, Hungary;
- TTK Cancer Biomarker Research Group, 1117 Budapest, Hungary
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80133 Naples, Italy; (M.G.); (G.A.); (C.D.A.); (P.D.P.); (E.P.)
| | - Bianca Maria Veneziani
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80133 Naples, Italy;
| | - Grazia Arpino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80133 Naples, Italy; (M.G.); (G.A.); (C.D.A.); (P.D.P.); (E.P.)
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80133 Naples, Italy; (M.G.); (G.A.); (C.D.A.); (P.D.P.); (E.P.)
| | - Pietro De Placido
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80133 Naples, Italy; (M.G.); (G.A.); (C.D.A.); (P.D.P.); (E.P.)
| | - Erica Pietroluongo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80133 Naples, Italy; (M.G.); (G.A.); (C.D.A.); (P.D.P.); (E.P.)
| | - Francesco Zinno
- Immunohaematology and Transfusion Medicine, A.O. “Annunziata”, 87100 Cosenza, Italy;
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy; (F.M.A.); (L.G.); (P.D.C.); (D.B.); (S.A.); (I.B.)
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy; (F.M.A.); (L.G.); (P.D.C.); (D.B.); (S.A.); (I.B.)
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy; (F.M.A.); (L.G.); (P.D.C.); (D.B.); (S.A.); (I.B.)
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy; (F.M.A.); (L.G.); (P.D.C.); (D.B.); (S.A.); (I.B.)
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Clinical Laboratory Unit, A.O. “Annunziata”, 87100 Cosenza, Italy
| |
Collapse
|
9
|
Han J, Hao W, Ma Y, Hou Y. MiR-128-3p promotes the progression of deep venous thrombosis through binding SIRT1. Phlebology 2023; 38:540-549. [PMID: 37465926 DOI: 10.1177/02683555231190268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
OBJECTIVES This research aimed to study the effect of microRNA-128-3p (miR-128-3p) on deep venous thrombosis (DVT). METHOD The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Transwell chamber method, and flow cytometry technique were used in the cell experiments. Potential interconnection between miR-128-3p and silent information regulator sirtuin 1 (SIRT1) was revealed by luciferase activity. The concentration of miR-128-3p and mRNA SIRT1 was assessed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The receiver operating characteristic (ROC) curve was used to test the predictive effect of miR-128-3p in DVT. RESULTS Decreased miR-128-3p expression was beneficial to cell proliferation and migration and inhibited inflammation, apoptosis, and adhesion of human umbilical vein endothelial cells (HUVECs). The impacts of miR-128-3p on HUVECs were achieved by targeting SIRT1. MiR-128-3p was upregulated in patients with DVT, and it was of great significance in differentiating patients with DVT. CONCLUSION Overexpression of miR-128-3p might become a biomarker for patients with DVT.
Collapse
Affiliation(s)
- Jinan Han
- Department of Vascular Surgery, Hulunbuir People's Hospital, Hulunbuir, China
| | - Wanjiang Hao
- Department of Intensive Medicine, Hulunbuir People's Hospital, Hulunbuir, China
| | - Yanping Ma
- Department of General Surgery, Hulunbuir People's Hospital, Hulunbuir, China
| | - Yanqiu Hou
- Department of Hematology, Hulunbuir People's Hospital, Hulunbuir, China
| |
Collapse
|
10
|
Restrepo JC, Dueñas D, Corredor Z, Liscano Y. Advances in Genomic Data and Biomarkers: Revolutionizing NSCLC Diagnosis and Treatment. Cancers (Basel) 2023; 15:3474. [PMID: 37444584 DOI: 10.3390/cancers15133474] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a significant public health concern with high mortality rates. Recent advancements in genomic data, bioinformatics tools, and the utilization of biomarkers have improved the possibilities for early diagnosis, effective treatment, and follow-up in NSCLC. Biomarkers play a crucial role in precision medicine by providing measurable indicators of disease characteristics, enabling tailored treatment strategies. The integration of big data and artificial intelligence (AI) further enhances the potential for personalized medicine through advanced biomarker analysis. However, challenges remain in the impact of new biomarkers on mortality and treatment efficacy due to limited evidence. Data analysis, interpretation, and the adoption of precision medicine approaches in clinical practice pose additional challenges and emphasize the integration of biomarkers with advanced technologies such as genomic data analysis and artificial intelligence (AI), which enhance the potential of precision medicine in NSCLC. Despite these obstacles, the integration of biomarkers into precision medicine has shown promising results in NSCLC, improving patient outcomes and enabling targeted therapies. Continued research and advancements in biomarker discovery, utilization, and evidence generation are necessary to overcome these challenges and further enhance the efficacy of precision medicine. Addressing these obstacles will contribute to the continued improvement of patient outcomes in non-small cell lung cancer.
Collapse
Affiliation(s)
- Juan Carlos Restrepo
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Diana Dueñas
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Zuray Corredor
- Grupo de Investigaciones en Odontología (GIOD), Facultad de Odontología, Universidad Cooperativa de Colombia, Pasto 520002, Colombia
- Facultad de Salud, Departamento de Ciencias Básicas, Universidad Libre, Cali 760026, Colombia
| | - Yamil Liscano
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| |
Collapse
|
11
|
Pourhamidi R, Moslemi A. Using the Precision Lasso for gene selection in diffuse large B cell lymphoma cancer. J Egypt Natl Canc Inst 2023; 35:19. [PMID: 37357234 DOI: 10.1186/s43046-023-00172-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/18/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Gene selection from gene expression profiles is the appropriate tool for diagnosing and predicting cancers. The aim of this study is to perform a Precision Lasso regression model on gene expression of diffuse large B cell lymphoma patients and to find marker genes related to DLBCL. METHODS In the present case-control study, the dataset included 180 gene expressions from 14 healthy individuals and 17 DLBCL patients. The marker genes were selected by fitting Ridge, Lasso, Elastic Net, and Precision Lasso regression models. RESULTS Based on our findings, the Precision Lasso, the Ridge, the Elastic Net, and the Lasso models choose the most marker genes, respectively. In addition, the top 20 genes are based on models compared with the results of clinical studies. The Precision Lasso and the Ridge models selected the most common genes with the clinical results, respectively. CONCLUSIONS The performance of the Precision Lasso model in selecting related genes could be considered more acceptable rather than other models.
Collapse
Affiliation(s)
- Rashed Pourhamidi
- Non Communicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Azam Moslemi
- Department of Biostatistics, School of Medicine, Arak University of Medical Sciences, Sardasht, Basij Square, Arak, Markazi Province, Iran.
| |
Collapse
|
12
|
Li M, Liu T, Cheng W, Jin H, Wang X. A test of miR-128-3p and miR-33a-5p in serum exosome as biomarkers for auxiliary diagnosis of non-small cell lung cancer. J Thorac Dis 2023; 15:2616-2626. [PMID: 37324093 PMCID: PMC10267929 DOI: 10.21037/jtd-23-398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
Background Lung cancer is the malignant tumor with the highest incidence and mortality rate in the world today, and non-small cell lung cancer (NSCLC) is its most common type. However, there is still a paucity of specific tumor markers for lung cancer screening. Herein, we detected and compared the levels of miR-128-3p and miR-33a-5p in serum exosomes of NSCLC patients and healthy volunteers, with the aim of identifying suitable exosomal microRNAs (miRNAs) as tumor biomarkers, and explored their value in the auxiliary diagnosis of NSCLC. Methods All participants were recruited from September 1, 2022 to December 30, 2022, and met the inclusion criteria. The case group included 20 patients with lung nodules who were highly suspected of having lung cancer (two cases were excluded). A total of 18 healthy volunteers (control group) were also enrolled. Blood samples were collected in both the case group before surgery and in the control group. Quantitative real-time polymerase chain reaction method was used to detect the expression of miR-128-3p and miR-33a-5p in serum exosomes. The main indicators of statistical analysis included the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. Results Compared with the healthy control group, the NSCLC case group had significantly lower expression levels of serum exosome miR-128-3p and miR-33a-5p (P<0.01, P<0.001), and there was a significant positive correlation between the two exosome miRNAs (r=0.848, P<0.01). The AUC values of miR-128-3p alone and miR-33a-5p alone in distinguishing case group and control group were 0.789 [95% confidence interval (CI): 0.637-0.940; sensitivity: 61.1%; specificity: 94.4%; P=0.003] and 0.821 (95% CI: 0.668-0.974; sensitivity: 77.8%; specificity: 83.3%; and P=0.001), respectively. The combination of miR-128-3p and miR-33a-5p had an AUC of 0.855 (95% CI: 0.719-0.991; P<0.001) for distinguishing case group and control group, which was greater than the AUC values of miR-128-3p alone and miR-33a-5p alone (cut-off value: 0.034; sensitivity: 83.3%; and specificity: 88.9%). However, there was no significant difference in the AUC among these three groups (P>0.05). Conclusions Serum exosome miR-128-3p and miR-33a-5p showed good performance in NSCLC screening and may be used as new biomarkers for large-scale NSCLC screening.
Collapse
Affiliation(s)
- Mengxing Li
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Tao Liu
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wen Cheng
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hai Jin
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaowei Wang
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
13
|
Wnuk J, Strzelczyk JK, Gisterek I. Clinical Value of Circulating miRNA in Diagnosis, Prognosis, Screening and Monitoring Therapy of Pancreatic Ductal Adenocarcinoma-A Review of the Literature. Int J Mol Sci 2023; 24:ijms24065113. [PMID: 36982210 PMCID: PMC10049684 DOI: 10.3390/ijms24065113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Pancreatic cancer (PC) is considered to be the seventh most common cause of cancer-related deaths. The number of deaths caused by PC is estimated to increase in the future. An early diagnosis of PC is crucial for improving treatment outcomes. The most common histopathological subtype of PC is pancreatic ductal adenocarcinoma (PDAC). MicroRNAs (miRNAs)-which are endogenous non-coding RNAs involved in the posttranscriptional regulation of multiple gene expression-constitute useful diagnostic and prognostic biomarkers in various neoplasms, including PDAC. Circulating miRNAs detected in a patient's serum or plasma are drawing more and more attention. Hence, this review aims at evaluating the clinical value of circulating miRNA in the screening, diagnosis, prognosis and monitoring of pancreatic ductal adenocarcinoma therapy.
Collapse
Affiliation(s)
- Jakub Wnuk
- Department of Oncology and Radiotherapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 35 Ceglana St., 40-515 Katowice, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Iwona Gisterek
- Department of Oncology and Radiotherapy, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 35 Ceglana St., 40-515 Katowice, Poland
| |
Collapse
|
14
|
Papadimitriou MA, Panoutsopoulou K, Pilala KM, Scorilas A, Avgeris M. Epi-miRNAs: Modern mediators of methylation status in human cancers. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1735. [PMID: 35580998 DOI: 10.1002/wrna.1735] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023]
Abstract
Methylation of the fundamental macromolecules, DNA/RNA, and proteins, is remarkably abundant, evolutionarily conserved, and functionally significant in cellular homeostasis and normal tissue/organism development. Disrupted methylation imprinting is strongly linked to loss of the physiological equilibrium and numerous human pathologies, and most importantly to carcinogenesis, tumor heterogeneity, and cancer progression. Mounting recent evidence has documented the active implication of miRNAs in the orchestration of the multicomponent cellular methylation machineries and the deregulation of methylation profile in the epigenetic, epitranscriptomic, and epiproteomic levels during cancer onset and progression. The elucidation of such regulatory networks between the miRNome and the cellular methylation machineries has led to the emergence of a novel subclass of miRNAs, namely "epi-miRNAs" or "epi-miRs." Herein, we have summarized the existing knowledge on the functional role of epi-miRs in the methylation dynamic landscape of human cancers and their clinical utility in modern cancer diagnostics and tailored therapeutics. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.,Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| |
Collapse
|
15
|
Alshahrani SH, Alameri AA, Kahar F, Alexis Ramírez-Coronel A, Fadhel Obaid R, Alsaikhan F, Zabibah RS, Qasim QA, Altalbawy FMA, Fakri Mustafa Y, Mirzaei R, Karampoor S. Overview of the role and action mechanism of microRNA-128 in viral infections. Microb Pathog 2023; 176:106020. [PMID: 36746316 DOI: 10.1016/j.micpath.2023.106020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
Recently in vivo and in vitro studies have provided evidence establishing the significance of microRNAs (miRNAs) in both physiological and pathological conditions. In this regard, the role of miRNA-128 (miR-128) in health and diseases has been found, and its critical regulatory role in the context of some viral diseases has been recently identified. For instance, it has been found that miR-128 can serve as an antiviral mediator and significantly limit the replication and dissemination of human immunodeficiency virus type 1 (HIV-1). Besides, it has been noted that poliovirus receptor-related 4 (PVRL4) is post-transcriptionally regulated by miR-128, representing possible miRNA targets that can modulate measles virus infection. Of note, the downregulation of seminal exosomes eca-miR-128 is associated with the long-term persistence of Equine arteritis virus (EAV) in the reproductive tract, and this particular miRNA is a putative regulator of chemokine ligand 16 (C-X-C motif) as determined by target prediction analysis. In this review, the latest information on the role and action mechanism of miR-128 in viral infections will be summarized and discussed in detail.
Collapse
Affiliation(s)
- Shadia Hamoud Alshahrani
- Medical Surgical Nursing Department, King Khalid University, Almahala, Khamis Mushate, Saudi Arabia
| | - Ameer A Alameri
- Department of Chemistry, University of Babylon, Babylon, Iraq
| | - Fitriani Kahar
- Medic Technology Laboratory, Poltekkes Kemenkes Semarang, Indonesia
| | - Andrés Alexis Ramírez-Coronel
- National University of Education, Azogues, Ecuador; Catholic University of Cuenca, Azogues Campus, Ecuador; University of Palermo, Buenos Aires, Argentina; CES University, Colombia, Azogues, Ecuador
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt; Department of Chemistry, University College of Duba, Tabuk University, Duba 71911, Saudi Arabia
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Du X, Li Y, Lian B, Yin X. microRNA-128-3p inhibits proliferation and accelerates apoptosis of gastric cancer cells via inhibition of TUFT1. World J Surg Oncol 2023; 21:47. [PMID: 36797791 PMCID: PMC9936645 DOI: 10.1186/s12957-023-02906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/26/2022] [Indexed: 02/18/2023] Open
Abstract
OBJECTIVE Gastric cancer (GC) is a malignant tumor rooting in the gastric mucosal epithelium, ranking the first among various malignant tumors. Therefore, the influence of microRNA-128-3p (miR-128-3p) by regulation of Tuftelin1 (TUFT1) on GC cells was investigated. METHODS The expression levels of miR-128-3p and TUFT1 in GC tissues and cells were detected. The correlation between miR-128-3p expression and overall survival of GC patients was analyzed. Human GC cells MGC803 were transfected with miR-128-3p or TUFT1-related oligonucleotides to figure their roles in viability, apoptosis, invasion, as well as epithelial-mesenchymal transition (EMT). The relationship between miR-128-3p and TUFT1 was validated. RESULTS miR-128-3p expression was low and TUFT1 expression was high in GC tissues. miR-128-3p expression was positively correlated with the overall survival of patients with GC. miR-128-3p targeted TUFT1. Up-regulated miR-128-3p or suppressed TUFT1 repressed viability, invasion, and EMT, and accelerated apoptosis of GC cells. Overexpressed TUFT1 reduced miR-128-3p-mediated growth inhibition of GC cells. CONCLUSION The study stresses that miR-128-3p can inhibit TUFT1 expression, thereby repressing GC cell activities.
Collapse
Affiliation(s)
- Xiong Du
- grid.507892.10000 0004 8519 1271Department of Pathology, Yanan University Affiliated Hospital, Yan’an, 716000 Shaanxi China
| | - Yanxin Li
- grid.507892.10000 0004 8519 1271Department of Pathology, Yanan University Affiliated Hospital, Yan’an, 716000 Shaanxi China
| | - Bin Lian
- Guangzhou Huayin Medical Laboratory Center. Ltd., Guangdong 510000 Guangzhou, China
| | - Xiangli Yin
- Department of Pathology, Xi'an International Medical Center Hospital, No.777, Xitai Road, High-Tech Zone, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
17
|
Zhou WZ, Wang XW, Zhu J, Chen MZ, Jin H. LncRNA-CASC15 knockdown inhibits the progression of esophageal squamous cell carcinoma through targeting miR-33a-5p/PTGS2 axis. Histol Histopathol 2023; 38:223-232. [PMID: 36111503 DOI: 10.14670/hh-18-517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
LncRNA CASC15 has been determined as a novel tumor-related lncRNA in many cancers. However, the in-detail role of CASC15 remains elusive in esophageal squamous cell carcinoma (ESCC). CASC15 expression level was detected in 113 ESCC tissues and paired adjacent normal tissues and in human ESCC cell lines. The effects of CASC15 on ESCC proliferation, migration, and invasion were assessed using CCK-8 and transwell assays. In addition, the potential downstream molecules of CASC15 were searched and confirmed by software algorithms, RT-qPCR, western blot, dual-luciferase reporter, and rescue experiments. CASC15 was upregulated in ESCC tissues and cell lines. CASC15 overexpression was associated with poorer prognosis in ESCC patients. Functionally, CASC15 knockdown inhibited cell proliferation, migration, and invasion of ESCC cells. Mechanistically, it was confirmed that CASC15 acts as competing endogenous RNA for miR-33a-5p to regulate PTGS2 expression. In addition, rescue assay showed that miR-33a-5p knockdown or PTGS2 overexpression abolished the cell proliferation, migration, and invasion inhibition role of CASC15 knockdown. In conclusion, this study indicates that CASC15 was upregulated in ESCC and CASC15 knockdown hindered ESCC progression through targeting the miR-33a-5p/PTGS2 axis. CASC15 might serve as a novel biomarker and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Wei-Zheng Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital of the Navy Medical University, Shanghai, PR China
| | - Xiao-Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of the Navy Medical University, Shanghai, PR China
| | - Ji Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of the Navy Medical University, Shanghai, PR China
| | - Ming-Zhi Chen
- Department of Thoracic and Cardiovascular Surgery, Yixing People's Hospital affiliated to Jiangsu University, Yixing, Jiangsu Province, PR China.
| | - Hai Jin
- Department of Thoracic Surgery, The First Affiliated Hospital of the Navy Medical University, Shanghai, PR China.
| |
Collapse
|
18
|
Cao XH, Chen X, Yang K, Wang YL, Liang MX, Fei YJ, Tang JH. Vaspin accelerates the proliferation, invasion and metastasis of Triple-Negative breast cancer through MiR-33a-5p/ABHD2. Cancer Med 2023; 12:4530-4542. [PMID: 36125462 PMCID: PMC9972114 DOI: 10.1002/cam4.5241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/17/2022] [Accepted: 09/02/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE To explore the influence and the underlying mechanism of vaspin (visceral adipose tissue-derived serpin) on the development of triple-negative breast malignancy. METHODS First, we analyzed medical records and screened out 22 breast cancer patients with different BMI according to inclusion and exclusion criterion, and measured serum vaspin of those patients. Then we studied the effects of vaspin on TNBC cell lines by using EdU assay, colony formation, transwell and wound-healing assay. Later, we used bioinformatics analysis to identify downstream effectors and verify with qRT-PCR, luciferase assay, western blot, etc. RESULTS: We found the vaspin level was positively correlated with BMI in breast malignant patients and vaspin could significantly enhance the proliferation, infiltration and transferring of triple-negative breast cancer cells by restraining the expression of miR-33a-5p. By using bioinformatic analysis and luciferase assay, we identified miR-33a-5p directly regulating ABHD2. CONCLUSION Vaspin, as a cancer-promoting cytokine, may inhibit miR-33a-5p thus increasing the level of ABHD2 to promote the development of the triple-negative breast cancer.
Collapse
Affiliation(s)
- Xin-Hui Cao
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Xiu Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Kai Yang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Ya-Lin Wang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Ming-Xing Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yin-Jiao Fei
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jin-Hai Tang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
19
|
Budi HS, Younus LA, Lafta MH, Parveen S, Mohammad HJ, Al-qaim ZH, Jawad MA, Parra RMR, Mustafa YF, Alhachami FR, Karampoor S, Mirzaei R. The role of miR-128 in cancer development, prevention, drug resistance, and immunotherapy. Front Oncol 2023; 12:1067974. [PMID: 36793341 PMCID: PMC9923359 DOI: 10.3389/fonc.2022.1067974] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/30/2022] [Indexed: 02/03/2023] Open
Abstract
A growing body of evidence has revealed that microRNA (miRNA) expression is dysregulated in cancer, and they can act as either oncogenes or suppressors under certain conditions. Furthermore, some studies have discovered that miRNAs play a role in cancer cell drug resistance by targeting drug-resistance-related genes or influencing genes involved in cell proliferation, cell cycle, and apoptosis. In this regard, the abnormal expression of miRNA-128 (miR-128) has been found in various human malignancies, and its verified target genes are essential in cancer-related processes, including apoptosis, cell propagation, and differentiation. This review will discuss the functions and processes of miR-128 in multiple cancer types. Furthermore, the possible involvement of miR-128 in cancer drug resistance and tumor immunotherapeutic will be addressed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Laith A. Younus
- Department of Clinical Laboratory Sciences, Faculty of Pharmacy, Jabir Ibn, Hayyan Medical University, Al Najaf Al Ashraf, Iraq
| | | | - Sameena Parveen
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | | | | | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Firas Rahi Alhachami
- Radiology Department, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Nasiriyah, Iraq
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
20
|
Huang L, Zhang L, Chen X. Updated review of advances in microRNAs and complex diseases: experimental results, databases, webservers and data fusion. Brief Bioinform 2022; 23:6696143. [PMID: 36094095 DOI: 10.1093/bib/bbac397] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are gene regulators involved in the pathogenesis of complex diseases such as cancers, and thus serve as potential diagnostic markers and therapeutic targets. The prerequisite for designing effective miRNA therapies is accurate discovery of miRNA-disease associations (MDAs), which has attracted substantial research interests during the last 15 years, as reflected by more than 55 000 related entries available on PubMed. Abundant experimental data gathered from the wealth of literature could effectively support the development of computational models for predicting novel associations. In 2017, Chen et al. published the first-ever comprehensive review on MDA prediction, presenting various relevant databases, 20 representative computational models, and suggestions for building more powerful ones. In the current review, as the continuation of the previous study, we revisit miRNA biogenesis, detection techniques and functions; summarize recent experimental findings related to common miRNA-associated diseases; introduce recent updates of miRNA-relevant databases and novel database releases since 2017, present mainstream webservers and new webserver releases since 2017 and finally elaborate on how fusion of diverse data sources has contributed to accurate MDA prediction.
Collapse
Affiliation(s)
- Li Huang
- Academy of Arts and Design, Tsinghua University, Beijing, 10084, China.,The Future Laboratory, Tsinghua University, Beijing, 10084, China
| | - Li Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.,Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
21
|
Abbasian MH, Ardekani AM, Sobhani N, Roudi R. The Role of Genomics and Proteomics in Lung Cancer Early Detection and Treatment. Cancers (Basel) 2022; 14:5144. [PMID: 36291929 PMCID: PMC9600051 DOI: 10.3390/cancers14205144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 08/17/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, with non-small-cell lung cancer (NSCLC) being the primary type. Unfortunately, it is often diagnosed at advanced stages, when therapy leaves patients with a dismal prognosis. Despite the advances in genomics and proteomics in the past decade, leading to progress in developing tools for early diagnosis, targeted therapies have shown promising results; however, the 5-year survival of NSCLC patients is only about 15%. Low-dose computed tomography or chest X-ray are the main types of screening tools. Lung cancer patients without specific, actionable mutations are currently treated with conventional therapies, such as platinum-based chemotherapy; however, resistances and relapses often occur in these patients. More noninvasive, inexpensive, and safer diagnostic methods based on novel biomarkers for NSCLC are of paramount importance. In the current review, we summarize genomic and proteomic biomarkers utilized for the early detection and treatment of NSCLC. We further discuss future opportunities to improve biomarkers for early detection and the effective treatment of NSCLC.
Collapse
Affiliation(s)
- Mohammad Hadi Abbasian
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 1497716316, Iran
| | - Ali M. Ardekani
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 1497716316, Iran
| | - Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Raheleh Roudi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
22
|
Zhou X, Ao X, Jia Z, Li Y, Kuang S, Du C, Zhang J, Wang J, Liu Y. Non-coding RNA in cancer drug resistance: Underlying mechanisms and clinical applications. Front Oncol 2022; 12:951864. [PMID: 36059609 PMCID: PMC9428469 DOI: 10.3389/fonc.2022.951864] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/02/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the most frequently diagnosed malignant diseases worldwide, posing a serious, long-term threat to patients’ health and life. Systemic chemotherapy remains the first-line therapeutic approach for recurrent or metastatic cancer patients after surgery, with the potential to effectively extend patient survival. However, the development of drug resistance seriously limits the clinical efficiency of chemotherapy and ultimately results in treatment failure and patient death. A large number of studies have shown that non-coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and circular RNAs, are widely involved in the regulation of cancer drug resistance. Their dysregulation contributes to the development of cancer drug resistance by modulating the expression of specific target genes involved in cellular apoptosis, autophagy, drug efflux, epithelial-to-mesenchymal transition (EMT), and cancer stem cells (CSCs). Moreover, some ncRNAs also possess great potential as efficient, specific biomarkers in diagnosis and prognosis as well as therapeutic targets in cancer patients. In this review, we summarize the recent findings on the emerging role and underlying mechanisms of ncRNAs involved in cancer drug resistance and focus on their clinical applications as biomarkers and therapeutic targets in cancer treatment. This information will be of great benefit to early diagnosis and prognostic assessments of cancer as well as the development of ncRNA-based therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Xuehao Zhou
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhaojun Jia
- College of New Materials and Chemical Engineering, Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Yiwen Li
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shouxiang Kuang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Chengcheng Du
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jinyu Zhang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ying Liu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
23
|
Xie Y, Zheng Z, He H, Chang Z. LncRNA NEAT1
induces autophagy through the
miR
‐128‐3p/
ADAM28
axis to suppress apoptosis of nonsmall‐cell lung cancer. Kaohsiung J Med Sci 2022; 38:933-949. [DOI: 10.1002/kjm2.12582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/08/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yue Xie
- Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University) Hangzhou Zhejiang Province China
| | - Zhao‐Wei Zheng
- Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University) Hangzhou Zhejiang Province China
| | - Hao‐Ting He
- Department of Surgery Tonglu Hospital of Traditional Chinese Medicine Hangzhou Zhejiang Province China
| | - Zhi‐Bo Chang
- Department of Thoracic Surgery Second Affiliated Hospital of Zhejiang University, School of Medicine Hangzhou Zhejiang Province China
| |
Collapse
|
24
|
Zhang H, Chen L, Wang Z, Sun Z, Shan Y, Li Q, Qi L, Wang H, Chen Y. Long noncoding RNA KCNQ1OT1 inhibits osteoclast differentiation by regulating the miR-128-3p/NFAT5 axis. Aging (Albany NY) 2022; 14:4486-4499. [PMID: 35587369 PMCID: PMC9186780 DOI: 10.18632/aging.204088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/07/2022] [Indexed: 11/25/2022]
Abstract
Noncoding RNAs play an important role in regulating osteoclast differentiation. We investigated whether and how potassium voltage-gated channel subfamily Q member 1 overlapping transcript 1 (KCNQ1OT1), a long noncoding RNA, regulates osteoclast differentiation. We found that the expression of KCNQ1OT1 was downregulated in osteoporotic bone tissue. Then transfection of KCNQ1OT1 overexpression vectors or small interfering RNAs showed that the proliferation, migration, and osteoclast differentiation of RAW 264.7 cells were inhibited by KCNQ1OT1 upregulation, while they were promoted by KCNQ1OT1 knockdown. Interestingly, we found and confirmed that miR-128-3p was a target of KCNQ1OT1 using online databases, dual luciferase reporter assays and quantitative real-time polymerase chain reaction, and that it inhibited the expression of miR-128-3p. Moreover, we confirmed that miR-128-3p directly targeted nuclear factor of activated T cell 5 (NFAT5), a protein that combines with osteoprotegerin and thus regulates osteoclastogenesis with the presence of the receptor activator of nuclear factor κB ligand. Furthermore, we demonstrated that both the knockdown of KCNQ1OT1 and the overexpression of miR-128-3p attenuate the expression of NFAT5, while upregulating the osteoclastogenesis markers c-Fos, NFATc1, and Ctsk. The results from overexpression of KCNQ1OT1 and the inhibition of miR-128-3p were contrary to the above. Finally, we found that the inhibition of osteoclast differentiation by KCNQ1OT1 overexpression could be rescued using a miR-128-3p mimic, while the enhancement of migration and osteoclast differentiation by si-NFAT5 could be reversed with a miR-128-3p inhibitor. These results suggested that KCNQ1OT1 regulates the osteoclast differentiation via the miR-128-3p/NFAT5 axis.
Collapse
Affiliation(s)
- Hengshuo Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Lu Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Ziyu Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Zhenqian Sun
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Yu Shan
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Qinghui Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Linzeng Qi
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.,Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Hongliang Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| |
Collapse
|
25
|
Wu J, Feng Z, Wang R, Li A, Wang H, He X, Shen Z. Integration of bioinformatics analysis and experimental validation identifies plasma exosomal miR-103b/877-5p/29c-5p as diagnostic biomarkers for early lung adenocarcinoma. Cancer Med 2022; 11:4411-4421. [PMID: 35585716 PMCID: PMC9741994 DOI: 10.1002/cam4.4788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/22/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to identify miRNAs in plasma exosomes as noninvasive biomarkers for the early diagnosis of lung adenocarcinoma (LUAD). First, exosomal miRNA profiling of three patients with early LUAD and three patients with benign lung disease were screened by next-generation sequencing (NGS) method. Sequencing results showed that 154 exosomal miRNAs were differentially expressed in the plasma of LUAD patients, among which 68 miRNAs were up-regulated and 86 miRNAs were down-regulated. GSE137140 is a GEO database containing serum miRNAs sequencing data from 1566 lung cancer patients and 1774 non-cancer patients controls. When comparing the sequencing data, it was found that most miRNAs (37/68) up-regulated in our LUAD group were also significantly up-regulated in GSE137140, suggesting that circulating miRNAs in lung cancer patients may be enriched in plasma exosomes. In GSE137140, the AUC of the combination of hsa-miR-103b, hsa-miR-29c-5p and hsa-miR-877-5p was 0.873, showing great potential as new tumor markers. To our knowledge, these three exosomal miRNAs have not been reported in lung cancer research. Furthermore, bioinformatics tools were used to analyze the target genes of three candidate miRNAs, which were indeed closely related to the occurrence and development of lung cancer. Bioinformatics algorithms deduced a highly conserved sequence in the 3'-UTR of SFRP4, FOXM1 and TMEM98 that could be bound with miR-103b/877-5p/29c-5p. A luciferase assay indicated that miR-103b/877-5p/29c-5p directly targeted the 3'-UTR of SFRP4, FOXM1 and TMEM98, respectively. Finally, three candidate miRNAs were validated by qRT-PCR in 17 early LUAD samples and 17 control plasma samples. Integration of bioinformatics analysis and experimental validation identifies, this study provides novel insights into miRNA-related networks in LUAD. Hsa-miR-103b, hsa-miR-29c-5p, and hsa-miR-877-5p may be used as diagnostic biomarkers for early LUAD.
Collapse
Affiliation(s)
- Jing Wu
- Department of Clinical LaboratoryAnhui Provincial Hospital Affiliated to Anhui Medical UniversityHefeiAnhuiChina
| | - Zian Feng
- Department of Clinical LaboratoryThe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Rui Wang
- Department of Clinical LaboratoryAnhui Provincial Hospital Affiliated to Anhui Medical UniversityHefeiAnhuiChina
| | - Ang Li
- Department of Clinical LaboratoryThe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Hong Wang
- Department of Radiation OncologyThe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Xiaodong He
- Anhui Provincial Center for Clinical LaboratoriesHefeiAnhuiChina
| | - Zuojun Shen
- Department of Clinical LaboratoryAnhui Provincial Hospital Affiliated to Anhui Medical UniversityHefeiAnhuiChina,Department of Clinical LaboratoryThe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| |
Collapse
|
26
|
Dong L, Huang J, Gao X, Du J, Wang Y, Zhao L. CircPCBP2 promotes the stemness and chemoresistance of DLBCL via targeting miR-33a/b to disinhibit PD-L1. Cancer Sci 2022; 113:2888-2903. [PMID: 35579082 PMCID: PMC9357607 DOI: 10.1111/cas.15402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
Diffuse large B‐cell lymphoma (DLBCL) is the most common lymphoid malignancy with a high relapse rate of up to 40%. The prognosis of the disease needs improvement and requires a understanding of its molecular mechanism. We investigated the mechanisms of DLBCL development and its sensitivity to chemotherapy by focusing on circPCBP2/miR‐33a/b/PD‐L1 axis. Human DLBCL specimens and cultured cancer cell lines were used. Features of circPCBP2 were systematically characterized through Sanger sequencing, Actinomycin D, RNase R treatment, and FISH. The expression levels of circPCBP2, miR‐33a/b, PD‐L1, stemness‐related markers, ERK/AKT and JAK2/STAT3 signaling were measured using qRT‐PCR, western blotting, and immunohistochemistry. Stemness of DLBCL cells was assessed through spheroid formation assay and flow cytometry. Cell viability and apoptosis upon cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) treatment were determined using MTT assay and flow cytometry, respectively. Interactions of circPCBP2‐miR‐33a/b and miR‐33a/b‐PD‐L1 were validated using dual luciferase activity assay and RNA‐RIP. Nude mouse xenograft model was used to assess the function of circPCBP2 in DLBCL growth in vivo. circPCBP2 was upregulated in human DLBCL specimens and cultured DLBCL cells while miR‐33a/b was reduced. Knockdown of circPCBP2 or miR‐33a/b overexpression inhibited the stemness of DLBCL cells and promoted cancer cell apoptosis upon CHOP treatment. circPCBP2 directly bound with miR‐33a/b while miR‐33a/b targeted PD‐L1 3’‐UTR. circPCBP2 disinhibited PD‐L1 signaling via sponging miR‐33a/b. miR‐33a/b inhibitor and activating PD‐L1 reversed the effects of circPCBP2 knockdown and miR‐33a/b mimics, respectively. circPBCP2 knockdown restrained DLBCL growth in vivo and potentiated the anti‐tumor effects of CHOP. In conclusion, circPCBP2 enhances DLBCL cell stemness but suppresses its sensitivity to CHOP via sponging miR‐33a/b to disinhibit PD‐L1 expression. circPCBP2/miR‐33a/b/PD‐L1 axis could serve as a diagnosis marker or therapeutic target for DLBCL.
Collapse
Affiliation(s)
- Lihua Dong
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, P.R. China
| | - Jingjing Huang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, P.R. China
| | - Xue Gao
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, P.R. China
| | - Jianwei Du
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, P.R. China
| | - Yesheng Wang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, P.R. China
| | - Lingdi Zhao
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, Henan Province, P.R. China
| |
Collapse
|
27
|
Li J, Li X, Li M, Qiu H, Saad C, Zhao B, Li F, Wu X, Kuang D, Tang F, Chen Y, Shu H, Zhang J, Wang Q, Huang H, Qi S, Ye C, Bryant A, Yuan X, Kurts C, Hu G, Cheng W, Mei Q. Differential early diagnosis of benign versus malignant lung cancer using systematic pathway flux analysis of peripheral blood leukocytes. Sci Rep 2022; 12:5070. [PMID: 35332177 PMCID: PMC8948197 DOI: 10.1038/s41598-022-08890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
Early diagnosis of lung cancer is critically important to reduce disease severity and improve overall survival. Newer, minimally invasive biopsy procedures often fail to provide adequate specimens for accurate tumor subtyping or staging which is necessary to inform appropriate use of molecular targeted therapies and immune checkpoint inhibitors. Thus newer approaches to diagnosis and staging in early lung cancer are needed. This exploratory pilot study obtained peripheral blood samples from 139 individuals with clinically evident pulmonary nodules (benign and malignant), as well as ten healthy persons. They were divided into three cohorts: original cohort (n = 99), control cohort (n = 10), and validation cohort (n = 40). Average RNAseq sequencing of leukocytes in these samples were conducted. Subsequently, data was integrated into artificial intelligence (AI)-based computational approach with system-wide gene expression technology to develop a rapid, effective, non-invasive immune index for early diagnosis of lung cancer. An immune-related index system, IM-Index, was defined and validated for the diagnostic application. IM-Index was applied to assess the malignancies of pulmonary nodules of 109 participants (original + control cohorts) with high accuracy (AUC: 0.822 [95% CI: 0.75-0.91, p < 0.001]), and to differentiate between phases of cancer immunoediting concept (odds ratio: 1.17 [95% CI: 1.1-1.25, p < 0.001]). The predictive ability of IM-Index was validated in a validation cohort with a AUC: 0.883 (95% CI: 0.73-1.00, p < 0.001). The difference between molecular mechanisms of adenocarcinoma and squamous carcinoma histology was also determined via the IM-Index (OR: 1.2 [95% CI 1.14-1.35, p = 0.019]). In addition, a structural metabolic behavior pattern and signaling property in host immunity were found (bonferroni correction, p = 1.32e - 16). Taken together our findings indicate that this AI-based approach may be used for "Super Early" cancer diagnosis and amend the current immunotherpay for lung cancer.
Collapse
Affiliation(s)
- Jian Li
- Institute of Molecular Medicine and Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Xiaoyu Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ming Li
- Department of Oncology, Wuhan Pulmonary Hospital, Wuhan, Hubei, People's Republic of China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Christian Saad
- Department of Computer Science, University of Augsburg, Augsburg, Germany
| | - Bo Zhao
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Fan Li
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaowei Wu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Dong Kuang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Fengjuan Tang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yaobing Chen
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongge Shu
- Radiology Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jing Zhang
- Radiology Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qiuxia Wang
- Radiology Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - He Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Shankang Qi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Changkun Ye
- Medical Research Center of Yu Huang Hospital, Yu Huang, Zhejiang, People's Republic of China
| | - Amy Bryant
- Department of Biochemical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, USA
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Weiting Cheng
- Department of Oncology, Wuhan No. 1 Hospital, Wuhan, Hubei, People's Republic of China.
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
28
|
Synthetic Circular miR-21 Sponge as Tool for Lung Cancer Treatment. Int J Mol Sci 2022; 23:ijms23062963. [PMID: 35328383 PMCID: PMC8955967 DOI: 10.3390/ijms23062963] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
Lung cancer is the most common cancer in the world and several miRNAs are associated with it. MiRNA sponges are presented as tools to inhibit miRNAs. We designed a system to capture miRNAs based on circular RNAs (circRNA). To demonstrate its usefulness, we chose miR-21, which is upregulated and implicated in lung cancer. We constructed a miR-21 sponge and inserted it into a vector that facilitates circular RNA production (Circ-21) to study its effect on growth, colony formation, and migration in lung cancer cell lines and multicellular tumor spheroids (MTS). Circ-21 induced a significant and time-dependent decrease in the growth of A549 and LL2 cells, but not in L132 cells. Furthermore, A549 and LL2 cells transfected with Circ-21 showed a lower number of colonies and migration than L132. Similar findings were seen in A549 and LL2 Circ-21 MTS, which showed a significant decrease in volume growth, but not in L132 Circ-21 MTS. Based on this, the miR-21 circular sponge may suppress the processes of tumorigenesis and progression. Therefore, our system based on circular sponges seems to be effective, as a tool for the capture of other miRNAs.
Collapse
|
29
|
Shueng PW, Shih KC, Gambhir SS, Kuo DY, Chuang HY. Cancer Detection Using an Artificial Secretable MicroRNA Found in Blood and Urine. Biomedicines 2022; 10:biomedicines10030621. [PMID: 35327423 PMCID: PMC8945529 DOI: 10.3390/biomedicines10030621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/25/2022] Open
Abstract
Biomarkers can potentially help in the detection and prognosis of diseases such as cancer, its recurrence, predicting response to therapy, and monitoring of response during and/or after treatment. Endogenous tumor blood biomarkers suffer from low concentrations that are not distinguishable from background noise and, if identified, the localization of the biomarker production site is not known. The use of exogenously introduced or artificial biomarkers can eliminate these issues. In this study, we show that cancer cells can be made to produce an artificial secreted microRNA (Sec-miR) that can be detected in media from cells in culture, and from both blood and urine in living mice. In culture, we show that chaining a number of Sec-miR sequences in a plasmid and transfecting cells with the plasmids could increase Sec-miR secretion as the number of sequences increases. Tumor induction in mice with a stably transfected HeLa cell line shows the presence and significant increase in the Sec-miR with time and tumor growth in plasma (p < 0.001, R2 = 0.5542). The relative half-life of the Sec-miR was seen to be 1.2 h in the plasma of living mice and was seen to appear in urine within 12 h. The transgene for the Sec-miR within a minicircle was introduced via the tail-vein into subcutaneous tumor-bearing mice. As the tumor growth increased with time, further in vivo transfection of the Sec-miR minicircles showed an increase in Sec-miR in both plasma and urine (R2 = 0.4546). This study demonstrated that an exogenous Sec-miR biomarker would allow for early tumor detection using in vitro diagnostics techniques.
Collapse
Affiliation(s)
- Pei-Wei Shueng
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei 220, Taiwan;
- School of Medicine, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Kuang-Chung Shih
- Division of Endocrinology and Metabolism, Department of Medicine, Cheng-Hsin General Hospital, Taipei 112, Taiwan;
| | - Sanjiv Sam Gambhir
- Molecular Imaging Program at Stanford, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Deng-Yu Kuo
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei 220, Taiwan;
- Correspondence: (D.-Y.K.); (H.-Y.C.); Tel.: +886-2-7728-1033 (D.-Y.K.); +886-2-2826-7241 (H.-Y.C.); Fax: +886-2-7728-2367 (D.-Y.K.); +886-2-2820-1095 (H.-Y.C.)
| | - Hui-Yen Chuang
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (D.-Y.K.); (H.-Y.C.); Tel.: +886-2-7728-1033 (D.-Y.K.); +886-2-2826-7241 (H.-Y.C.); Fax: +886-2-7728-2367 (D.-Y.K.); +886-2-2820-1095 (H.-Y.C.)
| |
Collapse
|
30
|
LINC00891 regulated by miR-128-3p/GATA2 axis impedes lung cancer cell proliferation, invasion and EMT by inhibiting RhoA pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 54:378-387. [PMID: 35538035 PMCID: PMC9828389 DOI: 10.3724/abbs.2022005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Long non-coding RNA (lncRNA) LINC00891 knockdown is associated with poor prognosis of lung adenocarcinoma, but the underlying mechanism remains to be further explored. Here, we found that LINC00891 expression is downregulated in lung cancer tissues and cell lines compared with that in adjacent normal tissues and normal lung epithelial cells. LINC00891 overexpression impedes cell proliferation, invasion, migration and epithelial-to-mesenchymal transition (EMT) process in lung cancer cells. Mechanistic research showed that GATA2 directly binds to LINC00891 promoter and transcriptionally regulates LINC00891 expression. Meanwhile, GATA2 was identified as a target of miR-128-3p, and it is negatively regulated by miR-128-3p. Moreover, overexpression of GATA2 suppresses lung cancer cell proliferation, invasion, migration, and EMT process. Furthermore, LINC00891 restrains the RhoA pathway activity, and treatment with CCG-1423 (a specific RhoA pathway inhibitor) antagonizes the promoting effect of LINC00891 knockdown on cell malignant behaviors. Additionally, silencing of LINC00891 promotes xenograft tumor growth, which can be reversed by administration with CCG-1423. In summary, LINC00891 regulated by the miR-128-3p/GATA2 axis restrains lung cancer cell malignant progression and hinders xenograft tumor growth by suppressing the RhoA pathway.
Collapse
|
31
|
Xie E, Lin M, Sun Z, Jin Y, Zhang S, Huang L, Sun R, Wang F, Pan S. Serum miR-27a is a biomarker for the prognosis of non-small cell lung cancer patients receiving chemotherapy. Transl Cancer Res 2022; 10:3458-3469. [PMID: 35116650 PMCID: PMC8799153 DOI: 10.21037/tcr-20-3276] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/08/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Lung cancer has a high incidence and a 5-year survival rate of less than 15%. Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer cases. Chemotherapy and immunotherapy are the most frequently used alternative treatments for patients with advanced-stage NSCLC in whom surgery failed. Previous studies have suggested that miR-27a is involved in cancer development and progression. The purpose of this study was to investigate the clinical value of miR-27a in the prognosis of NSCLC patients after chemotherapy. METHODS Flow cytometry was used to detect the apoptosis rate of SPC-A1 cells treated with optical cisplatin at different times. Simultaneously, the expression of miR-27a in supernatants and cells was detected. Fifty-two newly diagnosed NSCLC patients were recruited. All patients received gemcitabine and cisplatin as first-line chemotherapy and docetaxel as second-line chemotherapy. At the end of every chemotherapy cycle, a therapeutic evaluation was performed according to the RECIST criteria. The expression of serum miR-27a was detected in each cycle. RESULTS After treatment with 2.5 µg/mL cisplatin, the apoptosis rates of SPC-A1 cells were significantly greater than those of the paired untreated control groups at 12, 24, 48 and 72 h. The expression of miR-27a in supernatants and cells was also consistent with the apoptosis rate and changed a time-dependent manner. The chi-square test showed that an increase in miR-27a after chemotherapy was more common in patients who achieved partial response (PR) than in those who achieved no response (NR) (61.5% vs. 30.8%, P=0.026). Kaplan-Meier survival analysis indicated that patients with decreased miR-27a levels had poorer outcomes than those with increased miR-27a levels (P<0.05). Furthermore, dynamic changes in serum miR-27a with a gradual increasing trend during chemotherapy predicted a good prognosis. CONCLUSIONS Collectively, our results suggest that miR-27a is involved in the apoptosis of lung cancer cells and that serum miR-27a levels are related to the prognosis of NSCLC patients. The expression levels of miR-27a in the serum may be an independent predictor for the prognosis of NSCLC.
Collapse
Affiliation(s)
- Erfu Xie
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Mingxin Lin
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Ziwei Sun
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Yuexinzi Jin
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Shichang Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Lei Huang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Ruihong Sun
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Fang Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| | - Shiyang Pan
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,National Key Clinical Department of Laboratory Medicine, Nanjing, China
| |
Collapse
|
32
|
Newman LA, Useckaite Z, Johnson J, Sorich MJ, Hopkins AM, Rowland A. Selective Isolation of Liver-Derived Extracellular Vesicles Redefines Performance of miRNA Biomarkers for Non-Alcoholic Fatty Liver Disease. Biomedicines 2022; 10:biomedicines10010195. [PMID: 35052873 PMCID: PMC8773667 DOI: 10.3390/biomedicines10010195] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. Definitive diagnosis of the progressive form, non-alcoholic steatohepatitis (NASH), requires liver biopsy, which is highly invasive and unsuited to early disease or tracking changes. Inadequate performance of current minimally invasive tools is a critical barrier to managing NAFLD burden. Altered circulating miRNA profiles show potential for minimally invasive tracking of NAFLD. The selective isolation of the circulating extracellular vesicle subset that originates from hepatocytes presents an important opportunity for improving the performance of miRNA biomarkers of liver disease. The expressions of miR-122, -192, and -128-3p were quantified in total cell-free RNA, global EVs, and liver-specific EVs from control, NAFL, and NASH subjects. In ASGR1+ EVs, each miR biomarker trended positively with disease severity and expression was significantly higher in NASH subjects compared with controls. The c-statistic defining the performance of ASGR1+ EV derived miRNAs was invariably >0.78. This trend was not observed in the alternative sources. This study demonstrates the capacity for liver-specific isolation to transform the performance of EV-derived miRNA biomarkers for NAFLD, robustly distinguishing patients with NAFL and NASH.
Collapse
Affiliation(s)
- Lauren A. Newman
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.A.N.); (Z.U.); (M.J.S.); (A.M.H.)
| | - Zivile Useckaite
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.A.N.); (Z.U.); (M.J.S.); (A.M.H.)
| | - Jillian Johnson
- Early Clinical Development, Pfizer Global Research and Development, Groton, CT 06340, USA;
| | - Michael J. Sorich
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.A.N.); (Z.U.); (M.J.S.); (A.M.H.)
| | - Ashley M. Hopkins
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.A.N.); (Z.U.); (M.J.S.); (A.M.H.)
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (L.A.N.); (Z.U.); (M.J.S.); (A.M.H.)
- Correspondence: ; Tel.: +61-882-047-546
| |
Collapse
|
33
|
Liu C, Xiang X, Han S, Lim HY, Li L, Zhang X, Ma Z, Yang L, Guo S, Soo R, Ren B, Wang L, Goh BC. Blood-based liquid biopsy: Insights into early detection and clinical management of lung cancer. Cancer Lett 2022; 524:91-102. [PMID: 34656690 DOI: 10.1016/j.canlet.2021.10.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022]
Abstract
Currently, early detection of lung cancer relies on the characterisation of images generated from computed tomography (CT). However, lung tissue biopsy, a highly invasive surgical procedure, is required to confirm CT-derived diagnostic results with very high false-positive rates. Hence, a non-invasive or minimally invasive biomarkers is essential to complement the existing low-dose CT (LDCT) for early detection, improve responses to a certain treatment, predict cancer recurrence, and to evaluate prognosis. In the past decade, liquid biopsies (e.g., blood) have been demonstrated to be highly effective for lung cancer biomarker discovery. In this review, the roles of emerging liquid biopsy-derived biomarkers such as circulating nucleic acids, circulating tumour cells (CTCs), long non-coding RNA (lncRNA), and microRNA (miRNA), as well as exosomes, have been highlighted. The advantages and limitations of these blood-based minimally invasive biomarkers have been discussed. Furthermore, the current progress of the identified biomarkers for clinical management of lung cancer has been summarised. Finally, a potential strategy for the early detection of lung cancer, using a combination of LDCT scans and well-validated biomarkers, has been discussed.
Collapse
Affiliation(s)
- Cuiliu Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shuangqing Han
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Hannah Ying Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, 117543, Singapore
| | - Lingrui Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Xing Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Li Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuliang Guo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ross Soo
- Department of Haematology-Oncology, National University Cancer Institute, 119228, Singapore
| | - Boxu Ren
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China.
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | - Boon Cher Goh
- Department of Haematology-Oncology, National University Cancer Institute, 119228, Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| |
Collapse
|
34
|
Yildiz MT, Tutar L, Giritlioğlu NI, Bayram B, Tutar Y. MicroRNAs and Heat Shock Proteins in Breast Cancer Biology. Methods Mol Biol 2022; 2257:293-310. [PMID: 34432285 DOI: 10.1007/978-1-0716-1170-8_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Breast cancer has five major immune types; luminal A, luminal B, HER2, Basal-like, and normal-like. Cells produce a family of protein called heat shock proteins (Hsps) in response to exposure to thermal and other proteotoxic stresses play essential roles in cancer metabolism and this large family shows a diverse set of Hsp involvement in different breast cancer immune types. Recently, Hsp members categorized according to their immune type roles. Hsp family consists of several subtypes formed by molecular weight; Hsp70, Hsp90, Hsp100, Hsp40, Hsp60, and small molecule Hsps. Cancer cells employ Hsps as survival factors since most of these proteins prevent apoptosis. Several studies monitored Hsp roles in breast cancer cells and reported Hsp27 involvement in drug resistance, Hsp70 in tumor cell transformation-progression, and interaction with p53. Furthermore, the association of Hsp90 with steroid receptors and signaling proteins in patients with breast cancer directed research to focus on Hsp-based treatments. miRNAs are known to play key roles in all types of cancer that are upregulated or downregulated in cancer which respectively referred to as oncogenes (oncomirs) or tumor suppressors. Expression profiles of miRNAs may be used to classify, diagnose, and predict different cancer types. It is clear that miRNAs play regulatory roles in gene expression and this work reveals miRNA correlation to Hsp depending on specific breast cancer immune types. Deregulation of specific Hsp genes in breast cancer subtypes allows for identification of new targets for drug design and cancer treatment. Here, we performed miRNA network analysis by recruiting Hsp genes detected in breast cancer subtypes and reviewed some of the miRNAs related to aforementioned Hsp genes.
Collapse
Affiliation(s)
- Mehmet Taha Yildiz
- Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Lütfi Tutar
- Department of Molecular Biology and Genetics, Faculty of Art and Sciences, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Nazlı Irmak Giritlioğlu
- Department of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Banu Bayram
- Department of Nutrition and Dietetics, Hamidiye Faculty of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Yusuf Tutar
- Division of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, Istanbul, Turkey. .,Division of Biochemistry, Department of Basic Pharmaceutical Sciences, Hamidiye Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey.
| |
Collapse
|
35
|
Uzuner E, Ulu GT, Gürler SB, Baran Y. The Role of MiRNA in Cancer: Pathogenesis, Diagnosis, and Treatment. Methods Mol Biol 2022; 2257:375-422. [PMID: 34432288 DOI: 10.1007/978-1-0716-1170-8_18] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is also determined by the alterations of oncogenes and tumor suppressor genes. These gene expressions can be regulated by microRNAs (miRNA). At this point, researchers focus on addressing two main questions: "How are oncogenes and/or tumor suppressor genes regulated by miRNAs?" and "Which other mechanisms in cancer cells are regulated by miRNAs?" In this work we focus on gathering the publications answering these questions. The expression of miRNAs is affected by amplification, deletion or mutation. These processes are controlled by oncogenes and tumor suppressor genes, which regulate different mechanisms of cancer initiation and progression including cell proliferation, cell growth, apoptosis, DNA repair, invasion, angiogenesis, metastasis, drug resistance, metabolic regulation, and immune response regulation in cancer cells. In addition, profiling of miRNA is an important step in developing a new therapeutic approach for cancer.
Collapse
Affiliation(s)
- Erez Uzuner
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Gizem Tugçe Ulu
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Sevim Beyza Gürler
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yusuf Baran
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey.
| |
Collapse
|
36
|
Kaddour H, Kopcho S, Lyu Y, Shouman N, Paromov V, Pratap S, Dash C, Kim EY, Martinson J, McKay H, Epeldegui M, Margolick JB, Stapleton JT, Okeoma CM. HIV-infection and cocaine use regulate semen extracellular vesicles proteome and miRNAome in a manner that mediates strategic monocyte haptotaxis governed by miR-128 network. Cell Mol Life Sci 2021; 79:5. [PMID: 34936021 PMCID: PMC9134786 DOI: 10.1007/s00018-021-04068-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Extracellular vesicles (EVs) are regulators of cell-cell interactions and mediators of horizontal transfer of bioactive molecules between cells. EV-mediated cell-cell interactions play roles in physiological and pathophysiological processes, which maybe modulated by exposure to pathogens and cocaine use. However, the effect of pathogens and cocaine use on EV composition and function are not fully understood. RESULTS Here, we used systems biology and multi-omics analysis to show that HIV infection (HIV +) and cocaine (COC) use (COC +) promote the release of semen-derived EVs (SEV) with dysregulated extracellular proteome (exProtein), miRNAome (exmiR), and exmiR networks. Integrating SEV proteome and miRNAome revealed a significant decrease in the enrichment of disease-associated, brain-enriched, and HIV-associated miR-128-3p (miR-128) in HIV + COC + SEV with a concomitant increase in miR-128 targets-PEAK1 and RND3/RhoE. Using two-dimensional-substrate single cell haptotaxis, we observed that in the presence of HIV + COC + SEV, contact guidance provided by the extracellular matrix (ECM, collagen type 1) network facilitated far-ranging haptotactic cues that guided monocytes over longer distances. Functionalizing SEV with a miR-128 mimic revealed that the strategic changes in monocyte haptotaxis are in large part the result of SEV-associated miR-128. CONCLUSIONS We propose that compositionally and functionally distinct HIV + COC + and HIV-COC- SEVs and their exmiR networks may provide cells relevant but divergent haptotactic guidance in the absence of chemotactic cues, under both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Hussein Kaddour
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Steven Kopcho
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
| | - Yuan Lyu
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
| | - Nadia Shouman
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA
| | - Victor Paromov
- CRISALIS, School of Graduate Studies and Research, Proteomics Core, Meharry Medical College, Nashville, TN, 37208, USA
| | - Siddharth Pratap
- CRISALIS, School of Graduate Studies and Research, Bioinformatics Core, Meharry Medical College, Nashville, TN, 37208, USA
| | - Chandravanu Dash
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Eun-Young Kim
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jeremy Martinson
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Heather McKay
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Marta Epeldegui
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, UCLA AIDS Institute and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, USA
- David Geffen School of Medicine at UCLA, UCLA AIDS Institute, Los Angeles, USA
- UCLA Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Joseph B Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21207, USA
| | - Jack T Stapleton
- Departments of Internal Medicine, Microbiology and Immunology, University of Iowa and Iowa City Veterans Administration Healthcare, Iowa City, IA, 52242-1081, USA
| | - Chioma M Okeoma
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8651, USA.
| |
Collapse
|
37
|
Li Z, Li M, Xia P, Wang L, Lu Z. LncRNA FOXD3-AS1 Promotes Tumorigenesis of Glioma via Targeting miR-128-3p/ SZRD1 Axis. Cancer Manag Res 2021; 13:9037-9048. [PMID: 34916848 PMCID: PMC8666723 DOI: 10.2147/cmar.s324920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Background The aim of the current study was to investigate the roles of LncRNA FOXD3-AS1 (FOXD3-AS1) in the glioma progression, and its underlying mechanism of competing endogenous RNA (ceRNA) network of FOXD3-AS1/miR-128-3p/SZRD1. Materials and Methods The FOXD3-AS1 expression and its prognostic relation were detected by bioinformatics tool. Next, glioma cell lines (HS683, U251, T98G, and SNB-19) were used to verify the FOXD3-AS1 expression. Furthermore, the roles of the FOXD3-AS1/miR-128-3p/SZRD1 axis on the glioma development in vitro and in vivo were examined. Results Bioinformatics analysis showed that FOXD3-AS1 was upregulated in the glioma and linked with poor prognosis. Consistently, FOXD3-AS1 level was overexpressed in the glioma cell lines (HS683 and U251). Subsequently, we verified that silencing of FOXD3-AS1 (si-FOXD3-AS1) restrained the cell proliferation, invasion, and tumor growth in vivo, and induced G0/G1 arrest, and promoted apoptosis. Further study also stated that FOXD3-AS1 interacted with miR-128-3p and SZRD1 was the target gene of miR-128-3p. Moreover, overexpression of miR-128-3p restrained the cell proliferation and metastasis of glioma, and reduced the SZRD1 level. Rescue assay illustrated that miR-128-3p inhibitor could reverse the suppressive impact of si-FOXD3-AS1 on the glioma progression. Similarly, SZRD1 overexpression could neutralize the influences of miR-128-3p mimic on glioma progression. Conclusion FOXD3-AS1 promoted the tumorigenesis of glioma, and exerted its function to modulate SZRD1 by targeting miR-128-3p.
Collapse
Affiliation(s)
- Zhang Li
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Ming Li
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Pengcheng Xia
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Lili Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| |
Collapse
|
38
|
Clinical Value and Potential Mechanism of miRNA-33a-5p in Lung Squamous Cell Carcinoma. Anal Cell Pathol (Amst) 2021; 2021:6614331. [PMID: 34888137 PMCID: PMC8649614 DOI: 10.1155/2021/6614331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/15/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
This study is aimed at thoroughly exploring the expression status, clinical significance, and underlying molecular mechanism of miRNA-33a-5p in lung squamous cell carcinoma (LUSC). Here, we detected miRNA-33a-5p in 20 samples from patients with LUSCs and 20 matching non-LUSC specimens by in-house quantitative real-time PCR (RT-qPCR). Relationship between miRNA-33a-5p expression and clinicopathological traits was investigated from materials derived from miRNA sequencing and miRNA microarrays. A pool standard mean difference (SMD) and summary receiver operating characteristic curves (SROC) were calculated to evaluate the integrated expression value of miRNA-33a-5p in LUSC. Twelve online platforms were applied to select potential target genes of miRNA-33a-5p. The differentially expressed genes (DEGs) of LUSC and the candidate target genes of miRNA-33a-5p were overlapped to acquire a set of specific genes for further analyses of the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and protein–protein interaction (PPI) network. miRNA-33a-5p overexpressed in LUSC was supported by 706 LUSC and 261 non-LUSC samples gathering from RT-qPCR, miRNA-seq, and public miRNA microarrays. The pooled SMD was 0.56 (95% CI: -0.01-1.05), and the area under the curve (AUC) of the SROC was 0.78 (95% CI: 0.74-0.82). A total of 240 genes were identified as potential target genes of miRNA-33a-5p for functional enrichment analyses; the results suggested that these target genes may participate in several vital biological processes that promote the proliferation and progression of LUSC. miRNA-33a-5p may play an essential role in the occurrence and development of LUSC by targeting hub genes (ETS1, EDNRB, CYR61, and LRRK2) derived from the PPI network. In summary, our results indicated that miRNA-33a-5p may contribute as a prospective therapeutic target in LUSC.
Collapse
|
39
|
Sayyed AA, Gondaliya P, Bhat P, Mali M, Arya N, Khairnar A, Kalia K. Role of miRNAs In Cancer Diagnostics And Therapy: A Recent Update. Curr Pharm Des 2021; 28:471-487. [PMID: 34751112 DOI: 10.2174/1381612827666211109113305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/16/2021] [Indexed: 12/15/2022]
Abstract
The discovery of miRNAs has been one of the revolutionary developments and has led to the advent of new diagnostic and therapeutic opportunities for the management of cancer. In this regard, miRNA dysregulation has been shown to play a critical role in various stages of tumorigenesis, including tumor invasion, metastasis as well as angiogenesis. Therefore, miRNA profiling can provide accurate fingerprints for the development of diagnostic and therapeutic platforms. This review discusses the recent discoveries of miRNA-based tools for early detection of cancer as well as disease monitoring in cancers that are common, like breast, lung, hepatic, colorectal, oral and brain cancer. Based on the involvement of miRNA in different cancers as oncogenic miRNA or tumor suppressor miRNA, the treatment with miRNA inhibitors or mimics is recommended. However, the stability and targeted delivery of miRNA remain the major limitations of miRNA delivery. In relation to this, several nanoparticle-based delivery systems have been reported which have effectively delivered the miRNA mimics or inhibitors and showed the potential for transforming these advanced delivery systems from bench to bedside in the treatment of cancer metastasis and chemoresistance. Based on this, we attempted to uncover recently reported advanced nanotherapeutic approaches to deliver the miRNAs in the management of different cancers.
Collapse
Affiliation(s)
- Adil A Sayyed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| | - Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| | - Palak Bhat
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| | - Mukund Mali
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| | - Neha Arya
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat. India
| |
Collapse
|
40
|
Šutić M, Vukić A, Baranašić J, Försti A, Džubur F, Samaržija M, Jakopović M, Brčić L, Knežević J. Diagnostic, Predictive, and Prognostic Biomarkers in Non-Small Cell Lung Cancer (NSCLC) Management. J Pers Med 2021; 11:1102. [PMID: 34834454 PMCID: PMC8624402 DOI: 10.3390/jpm11111102] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Despite growing efforts for its early detection by screening populations at risk, the majority of lung cancer patients are still diagnosed in an advanced stage. The management of lung cancer has dramatically improved in the last decade and is no longer based on the "one-fits-all" paradigm or the general histological classification of non-small cell versus small cell lung cancer. Emerging options of targeted therapies and immunotherapies have shifted the management of lung cancer to a more personalized treatment approach, significantly influencing the clinical course and outcome of the disease. Molecular biomarkers have emerged as valuable tools in the prognosis and prediction of therapy response. In this review, we discuss the relevant biomarkers used in the clinical management of lung tumors, from diagnosis to prognosis. We also discuss promising new biomarkers, focusing on non-small cell lung cancer as the most abundant type of lung cancer.
Collapse
Affiliation(s)
- Maja Šutić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.Š.); (A.V.); (J.B.)
| | - Ana Vukić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.Š.); (A.V.); (J.B.)
| | - Jurica Baranašić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.Š.); (A.V.); (J.B.)
| | - Asta Försti
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany;
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Feđa Džubur
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (F.D.); (M.S.); (M.J.)
- Clinical Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Miroslav Samaržija
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (F.D.); (M.S.); (M.J.)
- Clinical Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marko Jakopović
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; (F.D.); (M.S.); (M.J.)
- Clinical Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Luka Brčić
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Jelena Knežević
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.Š.); (A.V.); (J.B.)
- Faculties for Dental Medicine and Health, University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
41
|
Hong Y, Ren X, Liu W, Sun K, Chen B, Liu B, Yu X, Chen Q, Qian Q, Xie X, Jiang C. miR-128 participates in the pathogenesis of chronic constipation by regulating the p38α/M-CSF inflammatory signaling pathway. Am J Physiol Gastrointest Liver Physiol 2021; 321:G436-G447. [PMID: 34405716 DOI: 10.1152/ajpgi.00114.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic constipation (CC) is a gastrointestinal disorder that adversely affects the quality of life. MicroRNAs are involved in the pathogenesis of functional gastrointestinal disorders. This study aims to investigate the molecular mechanism of microRNA-128 in CC. Here, we successfully constructed a murine model of CC based on morphine and rhubarb. The expression of stem cell factor (SCF) and neuron-specific enolase (NSE) was low in the models. Using miRNA array and bioinformatic analysis, we predicted and confirmed the expression of miR-128 and its downstream target genes in CC model. Compared with the control group, CC group showed a significant downregulation of miR-128 and upregulation of p38α and macrophage colony-stimulating factors (M-CSFs). Moreover, we observed elevated inflammatory cytokine and decreased anti-inflammatory cytokine levels in colonic tissues. Furthermore, coculture assays indicated that regulating expression of miR-128 in colonic epithelial cells induced the secretion of IL-6 and TNF-α by macrophages. In conclusion, our study demonstrated that miR-128 regulated the p38α/M-CSF signaling pathway to promote chronic inflammatory responses and changes in the immune microenvironment of the colon, thereby offering potential insights into the pathogenesis of CC and therapeutic targets for its treatment.NEW & NOTEWORTHY In this study, we constructed a murine model and identified a novel signaling mechanism involved in the chronic constipation progression. Our findings on the role of miR-128/p38α/M-CSF axis provide new insights into the treatment of chronic constipation.
Collapse
Affiliation(s)
- Yuntian Hong
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China.,Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Xianghai Ren
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China.,Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Colorectal and Anal Disease Research Center of Medical School, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Wuhan, People's Republic of China
| | - Weicheng Liu
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China.,Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Colorectal and Anal Disease Research Center of Medical School, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Wuhan, People's Republic of China
| | - Kongliang Sun
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China.,Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Baoxiang Chen
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China.,Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Bo Liu
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China.,Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Xueqiao Yu
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China.,Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Colorectal and Anal Disease Research Center of Medical School, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Wuhan, People's Republic of China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Qun Qian
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China.,Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Colorectal and Anal Disease Research Center of Medical School, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Wuhan, People's Republic of China
| | - Xiaoyu Xie
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China.,Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Colorectal and Anal Disease Research Center of Medical School, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Wuhan, People's Republic of China
| | - Congqing Jiang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China.,Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Colorectal and Anal Disease Research Center of Medical School, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Wuhan, People's Republic of China
| |
Collapse
|
42
|
Hu X, Chen Q, Guo H, Li K, Fu B, Chen Y, Zhao H, Wei M, Li Y, Wu H. Identification of Target PTEN-Based miR-425 and miR-576 as Potential Diagnostic and Immunotherapeutic Biomarkers of Colorectal Cancer With Liver Metastasis. Front Oncol 2021; 11:657984. [PMID: 34490081 PMCID: PMC8418231 DOI: 10.3389/fonc.2021.657984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022] Open
Abstract
A major complication of colorectal cancer (CRC), one of the most common and fatal types of cancers, is secondary liver metastasis. For patients with this fate, there are very few biomarkers available in clinical application, and the disease remains incurable. Recently, increasing studies demonstrated that tumorigenesis and development are closely related to immune escape, indicating that the roles of immune-related indicators might have been neglected in the past in colorectal cancer liver metastases (CRLM). Here, we unveil that elevated miR-425 and miR-576 promote CRLM through inhibiting PTEN-mediated cellular immune function. Specifically, miR-425 and miR-576 were identified for their significant upregulation in CRLM compared with the primary CRC tissues based on GSE81581 (n = 8) and GSE44121 (n = 18) datasets. Besides, we determined that the two microRNAs (miRNAs) coparticipated in restraining P53 and transforming growth factor beta (TGF-β) signaling pathways associated with tumor metastasis, and both shortened the overall survival of the patients with metastatic susceptibility. Notably, in situ hybridization on relatively large samples of paired CRC tissues (n = 157) not only substantiated that the expression of miR-425 and miR-576 was dramatically upregulated in CRLM but also revealed that they were closely related to tumor deterioration, especially liver metastases. Moreover, we further confirmed that the combination of miR-425 and miR-576 was an effective predictive model for liver metastases and poor clinical outcomes. Mechanically, downregulated PTEN (GSE81558, n = 6) was verified to be a shared target of miR-425 and miR-576 acting as metastasis-related oncogenes, on account of the presence of binding sites (+2928-+2934 and +4371-+4378, respectively) and the collaborative suppression of P53/TGF-β signaling in CRLM, which was further confirmed in CRC cells (HCT116 and SW480) based on systematic molecular biology experiments. Importantly, the target PTEN was strongly associated with microsatellite instability, tumor microenvironment, and immune cell infiltration. Thus, we speculate that miR-425 and miR-576 are novel biomarkers for CRLM prevention and immunotherapy and upstream inhibitors of the PTEN-P53/TGF-β function axis.
Collapse
Affiliation(s)
- Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China.,Department of Gene Detection, Liaoning Medical Diagnosis and Treatment Center, Shenyang, China
| | - Qiuchen Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China.,Department of Gene Detection, Liaoning Medical Diagnosis and Treatment Center, Shenyang, China
| | - Hao Guo
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China.,Department of Gene Detection, Liaoning Medical Diagnosis and Treatment Center, Shenyang, China
| | - Kuo Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China.,Department of Gene Detection, Liaoning Medical Diagnosis and Treatment Center, Shenyang, China
| | - Boshi Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China.,Department of Gene Detection, Liaoning Medical Diagnosis and Treatment Center, Shenyang, China
| | - Yu Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China.,Department of Gene Detection, Liaoning Medical Diagnosis and Treatment Center, Shenyang, China
| | - Haishan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China.,Department of Gene Detection, Liaoning Medical Diagnosis and Treatment Center, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China.,Department of Gene Detection, Liaoning Medical Diagnosis and Treatment Center, Shenyang, China
| | - Yalun Li
- Department of Anorectal Surgery, First Hospital of China Medical University, Shenyang, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China.,Department of Gene Detection, Liaoning Medical Diagnosis and Treatment Center, Shenyang, China
| |
Collapse
|
43
|
Song Q, Liu H, Li C, Liang H. miR-33a-5p inhibits the progression of esophageal cancer through the DKK1-mediated Wnt/β-catenin pathway. Aging (Albany NY) 2021; 13:20481-20494. [PMID: 34426559 PMCID: PMC8436944 DOI: 10.18632/aging.203430] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/19/2021] [Indexed: 01/04/2023]
Abstract
Esophageal cancer (EC) is one of the most lethal malignancies in humans, and multiple miRNAs have been identified to modulate EC progression by targeting different targets. However, the effect and related mechanism of microRNA-33a-5p (miR-33a-5p) on EC development remain elusive. In this study, we explored the clinical value, function, and possible mechanism of miR-33a-5p in EC. We uncovered that miR-33a-5p and DKK1 are involved in the progression of EC. Significantly, the expression levels of miR-33a-5p were reduced and DKK1 levels were elevated in serum and tissues of clinical EC samples and in EC cell lines. The downregulation of miR-33a-5p and DKK1 upregulation were related to high TNM staging and poor differentiation of patients. The area under the curves (AUCs) of miR-33a-5p and DKK1 for the occurrence of EC were 0.914 and 0.900, respectively. Down-regulation of miR-33a-5p or overexpression of DKK1 indicated a worse prognosis. The miR-33a-5p overexpression or DKK1 depletion induced apoptosis and repressed proliferation, migration, and invasion of EC cells. The repression of miR-33a-5p by inhibitor or DKK1 overexpression presented the conversed effects on EC cells. Mechanically, miR-33a-5p suppressed DKK1 expression, and miR-33a-5p targeted DKK1 to affect the biological behavior of EC through the Wnt/β-catenin pathway. Meanwhile, miR-33a-5p inhibited the tumor growth of EC in vivo. Thus, we concluded that miR-33a-5p inhibited the progression of EC through the DKK1-mediated Wnt/β-catenin pathway. MiR-33a-5p and DKK1 can be used as potential therapeutic targets of EC.
Collapse
Affiliation(s)
- Qingping Song
- Department of Surgery, Tumor Hospital of Liaocheng, Liaocheng 252000, Shandong, China
| | - Hui Liu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264000, Shandong, China
| | - Chengyan Li
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264000, Shandong, China
| | - Haifeng Liang
- Department of Surgery, Tumor Hospital of Liaocheng, Liaocheng 252000, Shandong, China
| |
Collapse
|
44
|
Izzotti A, Coronel Vargas G, Pulliero A, Coco S, Colarossi C, Blanco G, Agodi A, Barchitta M, Maugeri A, Oliveri Conti G, Ferrante M, Sciacca S. Identification by MicroRNA Analysis of Environmental Risk Factors Bearing Pathogenic Relevance in Non-Smoker Lung Cancer. J Pers Med 2021; 11:jpm11070666. [PMID: 34357133 PMCID: PMC8307636 DOI: 10.3390/jpm11070666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
MicroRNA and DNA adduct biomarkers may be used to identify the contribution of environmental pollution to some types of cancers. The aim of this study was to use integrated DNA adducts and microRNAs analyses to study retrospectively the contribution of exposures to environmental carcinogens to lung cancer in 64 non-smokers living in Sicily and Catania city near to the Etna volcano. MicroRNAs were extracted from cancer lung biopsies, and from the surrounding lung normal tissue. The expression of 2549 human microRNAs was analyzed by microarray. Benzo(a)Pyrene-DNA adducts levels were analyzed in the patients’ blood by HPLC−fluorescence detection. Correlations between tetrols and environmental exposures were calculated using Pearson coefficients and regression variable plots. Compared with the healthy tissue, 273 microRNAs were downregulated in lung cancer. Tetrols levels were inversely related both with the distance from Etna and years since smoking cessation, but they were not significantly correlated to environmental exposures. The analysis of the microRNA environmental signatures indicates the contribution of environmental factors to the analyzed lung cancers in the following decreasing rank: (a) car traffic, (b) passive smoke, (c) radon, and (d) volcano ashes. These results provide evidence that microRNA analysis can be used to retrospectively investigate the contribution of environmental factors in human lung cancer occurring in non-smokers.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
- UOC Mutagenesis and Cancer Prevention, IRCCS San Martino Hospital, 16132 Genova, Italy
| | | | - Alessandra Pulliero
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (G.C.V.); (A.P.)
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Cristina Colarossi
- Mediterranean Oncological Institute (IOM), 95029 Catania, Italy; (C.C.); (G.B.); (S.S.)
| | - Giuseppina Blanco
- Mediterranean Oncological Institute (IOM), 95029 Catania, Italy; (C.C.); (G.B.); (S.S.)
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.A.); (M.B.); (A.M.); (M.F.)
| | - Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.A.); (M.B.); (A.M.); (M.F.)
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.A.); (M.B.); (A.M.); (M.F.)
| | | | - Gea Oliveri Conti
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.A.); (M.B.); (A.M.); (M.F.)
- Correspondence: ; Tel.: +39-095-378-2133; Fax: +39-095-378-2177
| | - Margherita Ferrante
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.A.); (M.B.); (A.M.); (M.F.)
- Catania, Messina, Enna Cancer Registry, Via S. Sofia 87, 95123 Catania, Italy;
| | - Salvatore Sciacca
- Mediterranean Oncological Institute (IOM), 95029 Catania, Italy; (C.C.); (G.B.); (S.S.)
| |
Collapse
|
45
|
Yang G, Zeng C, Liu Y, Li D, Cui J. ZNRD1-AS1 knockdown alleviates malignant phenotype of retinoblastoma through miR-128-3p/BMI1 axis. Am J Transl Res 2021; 13:5866-5879. [PMID: 34306331 PMCID: PMC8290669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND ZNRD1-AS1 plays an important role in liver cancer, endometrial cancer and other diseases. However, the relationship between ZNRD1-AS1 and retinoblastoma has not been studied in detail. This study aimed to determine the role of ZNRD1-AS1 in retinoblastoma. METHODS Differentially expressed genes in retinoblastoma downloaded from GEO database were identified by Limma package, and the expression and cell location of ZNRD1-AS1 were detected by real-time quantitative PCR (RT-qPCR). The relationships between miR-128-3p and two genes (ZNRD1-AS1 and BMI1) were analyzed by bioinformatics and dual-luciferase assay. After manipulating the expressions of ZNRD1-AS1, miR-128-3p and BMI1, cell viability, tube length, migration, invasion and the protein expressions (PCNA, E-Cadherin, N-Cadherin) of retinoblastoma cells were determined by cell counting kit-8 (CCK-8), tube formation, transwell and Western blot assays, respectively. Subcutaneous transplantation tumor assay, immunohistochemistry, and RT-qPCR were applied to verify the functions of the target gene in vivo. RESULTS ZNRD1-AS1 was up-regulated in the cytoplasm of retinoblastoma and regulated BMI1 via sponging miR-128-3p. ZNRD1-AS1 knockdown alleviated the malignant phenotype (viability, tube length, migration and invasion) of retinoblastoma cells, reduced tumor volume and weight, and inhibited BMI1 and CD34 expressions. Different from miR-128-3p mimic, miR-128-3p inhibitor promoted malignant phenotype of retinoblastoma cells, and partially reversed the inhibitory effect of siZNRD1-AS1. MiR-128-3p mimic down-regulated BMI1, PNCA, N-Cadherin expressions, and up-regulated p16 and E-Cadherin expressions. The regulatory effect of miR-128-3p was partially reversed by BMI1. CONCLUSION ZNRD1-AS1, acting as a "sponge" of miR-128-3p, up-regulates BMI1, thereby promoting the progression of retinoblastoma.
Collapse
Affiliation(s)
- Guanghua Yang
- First Department of Oncology, Zhumadian Central HospitalZhumadian, Henan, China
| | - Chen Zeng
- First Department of Oncology, Zhumadian Central HospitalZhumadian, Henan, China
| | - Yang Liu
- Department of Pediatric Oncology, Zhumadian Central HospitalZhumadian, Henan, China
| | - Dongliang Li
- First Department of Oncology, Zhumadian Central HospitalZhumadian, Henan, China
| | - Juanjuan Cui
- First Department of Oncology, Zhumadian Central HospitalZhumadian, Henan, China
| |
Collapse
|
46
|
Sun J, Xin K, Leng C, Ge J. Down-regulation of SNHG16 alleviates the acute lung injury in sepsis rats through miR-128-3p/HMGB3 axis. BMC Pulm Med 2021; 21:191. [PMID: 34092219 PMCID: PMC8180123 DOI: 10.1186/s12890-021-01552-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/10/2021] [Indexed: 02/08/2023] Open
Abstract
Background Long noncoding RNAs contribute to various inflammatory diseases, including sepsis. We explore the role of small nucleolar RNA host gene 16 (SNHG16) in sepsis-mediated acute lung injury (ALI) and inflammation. Methods A sepsis-induced ALI rat model was constructed by the cecal ligation and perforation method. The profiles of SNHG16, miR-128-3p, and high-mobility group box 3 (HMGB3) were monitored by quantitative reverse transcription PCR and Western blot. The pathologic changes of lung tissues were evaluated by Hematoxylin–Eosin staining, immunohistochemistry, and dry and wet method. Meanwhile, the pro-inflammatory factors and proteins were determined by ELISA and Western blot. In contrast, a sepsis model in BEAS-2B was induced with lipopolysaccharide (LPS) to verify the effects of SNHG16/miR-128-3p/HMGB3 on lung epithelial cell viability and apoptosis. Results As a result, SNHG16 and HMGB3 were up-regulated, while miR-128-3p was down-regulated in sepsis-induced ALI both in vivo and in vitro. Inhibiting SNHG16 reduced the apoptosis and inflammation in the sepsis-induced ALI model. Overexpressing SNHG16 promoted LPS-mediated lung epithelial apoptosis and inhibited cell viability and inflammation, while miR-128-3p had the opposite effects. Mechanistically, SNHG16 targeted miR-128-3p and attenuated its expression, while miR-128-3p targeted the 3′ untranslated region of HMGB3. Conclusions Overall, down-regulating SNHG16 alleviated the sepsis-mediated ALI by regulating miR-128-3p/HMGB3. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01552-0.
Collapse
Affiliation(s)
- Junli Sun
- General ICU, Luoyang Central Hospital Affiliated To Zhengzhou University, 288 Zhongzhou Middle Road, Luoyang, 471009, Henan, China.
| | - Keke Xin
- General ICU, Luoyang Central Hospital Affiliated To Zhengzhou University, 288 Zhongzhou Middle Road, Luoyang, 471009, Henan, China
| | - Chenghui Leng
- General ICU, Luoyang Central Hospital Affiliated To Zhengzhou University, 288 Zhongzhou Middle Road, Luoyang, 471009, Henan, China
| | - Jianlin Ge
- General ICU, Luoyang Central Hospital Affiliated To Zhengzhou University, 288 Zhongzhou Middle Road, Luoyang, 471009, Henan, China
| |
Collapse
|
47
|
Shao L, Lu X, Zhou Y, Wang Y, Wang X, Zhuang Z, Gong J. Altered miR-93-5p/miR-18a expression in serum for diagnosing non-small cell lung cancer. Am J Transl Res 2021; 13:5073-5079. [PMID: 34150094 PMCID: PMC8205697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE This research aimed at probing into miR-93-5p and miR-18a's diagnostic and prognostic values in non-small cell lung cancer (NSCLC) patients. METHODS A total of 107 patients diagnosed with NSCLC in the Department of Oncology and Thoracic Surgery of our hospital from January 2015 to June 2016 were regarded as the research group (RG), and 42 healthy people were considered as the control group (CG). Serum samples were collected and miR-93-5p, miR-18a expression was detected via qPCR. The relationship between miR-93-5p, miR-18a and clinicopathological characteristics of NSCLC patients was assessed, and the diagnostic value of the two miRNAs was analyzed by ROC curve. RESULTS miR-93-5p and miR-18a were up-regulated in NSCLC. The higher the degree of tumor differentiation, the higher the TNM stage and the expression of the two miRNAs were. The high expression was tied to tumor differentiation degree, TNM stage, lymph node metastasis and lymph-vascular space invasion (LVSI). The survival rate of miR-93-5p and miR-18a high expression patients was worse than that of those with low expression. The AUC value of both of the mRNAs in NSCLC diagnosis was high (0.8905). CONCLUSION The expression of miR-93-5p and miR-18a is associated with NSCLC severity and prognosis, and both can be used as potential markers for diagnosis.
Collapse
Affiliation(s)
- Lili Shao
- Department of Medical Oncology, The Second Affiliated Hospital of Soochow UniversitySuzhou 215004, Jiangsu Province, China
- Department of Medical Oncology, Affiliated Tumor Hospital of Nantong UniversityNantong 226361, Jiangsu Province, China
| | - Xiaomin Lu
- Department of Oncology, Affiliated Haian Hospital of Nantong UniversityNantong 226601, Jiangsu, China
| | - Yan Zhou
- Department of Medical Oncology, Affiliated Tumor Hospital of Nantong UniversityNantong 226361, Jiangsu Province, China
| | - Yan Wang
- Department of Medical Oncology, Affiliated Tumor Hospital of Nantong UniversityNantong 226361, Jiangsu Province, China
| | - Xiaoli Wang
- Department of Medical Oncology, Affiliated Tumor Hospital of Nantong UniversityNantong 226361, Jiangsu Province, China
| | - Zhixiang Zhuang
- Department of Medical Oncology, The Second Affiliated Hospital of Soochow UniversitySuzhou 215004, Jiangsu Province, China
| | - Jun Gong
- Department of Medical Oncology, Affiliated Tumor Hospital of Nantong UniversityNantong 226361, Jiangsu Province, China
| |
Collapse
|
48
|
Le J, Le X. The clinical application value of miR-1269 as an unfavorable prognostic indicator of lung cancer. Am J Transl Res 2021; 13:3270-3277. [PMID: 34017498 PMCID: PMC8129335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Thanks to microRNAs (miR), a myriad of outstanding achievements have been made in multiple fields in recent years. miR-1269, a newly discovered miR, presents high expression profiles in lung cancer (LC), but its clinical implications in LC have not been clarified yet. METHODS The miR-1269 expressions in the peripheral blood of LC patients, benign pulmonary disease (BPD) patients, and healthy controls were measured using qRT-PCR. Receiver operating characteristic (ROC) curves were employed for the identification of the diagnostic value of miR-1269 in LC, as were Kaplan-Meier (K-M) analyses and a Cox regression model to determine miR-1269's prognostic value in LC. RESULTS qRT-PCR revealed higher miR-1269 expressions in the LC patients than in the BPD patients and the controls (P < 0.001). The LC patients with high miR-1269 expressions had advanced tumor stages (III-IV) and an increased probability of lymph node metastasis (LNM) (P < 0.01). Also, evidently elevated miR-1269 levels were observed in the peripheral blood of patients with the advanced tumor stages (III-IV) and LNM. Via ROC curves, we found that miR-1269 is of high clinical significance in the diagnosis of LC and advanced tumor stages. Our K-M survival analysis revealed a lowered 5-year survival rate in patients with high miR-1269 expressions, and our Cox regression analysis found that miR-1269 is an independent prognostic factor for LC. CONCLUSIONS miR-1269, with high expression profiles in LC, indicates unfavorable patient prognoses, so it may be a viable diagnostic and prognostic indicator of LC.
Collapse
Affiliation(s)
- Jinghong Le
- The First Department of General Thoracic Surgery, Guangrao County People's Hospital Guangrao 257300, Shandong Province, China
| | - Xiang Le
- The First Department of General Thoracic Surgery, Guangrao County People's Hospital Guangrao 257300, Shandong Province, China
| |
Collapse
|
49
|
Plasma miR-6089 as potential diagnostic biomarker for retinoblastoma. Int Ophthalmol 2021; 41:2505-2512. [PMID: 33772700 DOI: 10.1007/s10792-021-01808-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The purpose of this study was to screen target miRNA related to RB and explore the expression levels of target miRNA in RB and its potential value of diagnosis. METHODS The Affymetrix GeneChip miRNA 4.0 Array was used to screen the differential miRNAs in the plasma of 5 RB patients before and after intravenous chemotherapy, and the most significant down-regulated miRNA was selected for target miRNA. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) is used to verify the expression levels of plasma target miRNA in 30 RB patients. Then, qRT-PCR was performed to further verify the expression of target miRNA in plasma of RB patients and RB tumor tissues. Finally, receiver-operating-characteristic (ROC) curve and the area under the ROC curve (AUC) were used to evaluate the diagnostic power of plasma target miRNA. RESULTS The miRNA Array obtain 8 core miRNAs, 1 up-regulated and 7 down-regulated, of which miR-6089 was the most significantly down-regulated. Plasma miR-6089 levels were significantly up-regulated in RB patients. Besides, in RB tumor tissues, miR-6089 levels were also obviously up-regulated. After intravenous chemotherapy, the expression of plasma miR-6089 was significantly decreased. Furthermore, ROC curve analysis showed that miR-6089 in the plasma had a good sensitivity and specificity for distinguishing RB from the healthy control group. CONCLUSIONS MiR-6089 may be considered as a novel potential diagnostic biomarker for RB. TRIAL REGISTRATION NUMBER ChiCTR2000040154; date of registration: 2020/11/22; retrospectively registered.
Collapse
|
50
|
Izzotti A, Coronel Vargas G, Pulliero A, Coco S, Vanni I, Colarossi C, Blanco G, Agodi A, Barchitta M, Maugeri A, Oliveri Conti G, Ferrante M, Sciacca S. Relationship between the miRNA Profiles and Oncogene Mutations in Non-Smoker Lung Cancer. Relevance for Lung Cancer Personalized Screenings and Treatments. J Pers Med 2021; 11:jpm11030182. [PMID: 33807865 PMCID: PMC7999775 DOI: 10.3390/jpm11030182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/14/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022] Open
Abstract
Oncogene mutations may be drivers of the carcinogenesis process. MicroRNA (miRNA) alterations may be adaptive or pathogenic and can have consequences only when mutation in the controlled oncogenes occurs. The aim of this research was to analyze the interplay between miRNA expression and oncogene mutation. A total of 2549 miRNAs were analyzed in cancer tissue—in surrounding normal lung tissue collected from 64 non-smoking patients and in blood plasma. Mutations in 92 hotspots of 22 oncogenes were tested in the lung cancer tissue. MicroRNA alterations were related to the mutations occurring in cancer patients. Conversely, the frequency of mutation occurrence was variable and spanned from the k-ras and p53 mutation detected in 30% of patients to 20% of patients in which no mutation was detected. The prediction of survival at a 3-year follow up did not occur for mutation analysis but was, conversely, well evident for miRNA analysis highlighting a pattern of miRNA distinguishing between survivors and death in patients 3 years before this clinical onset. A signature of six lung cancer specific miRNAs occurring both in the lungs and blood was identified. The obtained results provide evidence that the analysis of both miRNA and oncogene mutations was more informative than the oncogene mutation analysis currently performed in clinical practice.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- UOC Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | | | - Alessandra Pulliero
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy; (G.C.V.); (A.P.)
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (S.C.); (I.V.)
| | - Irene Vanni
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (S.C.); (I.V.)
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), 95029 Catania, Italy; (C.C.); (G.B.); (M.F.); (S.S.)
| | - Giuseppina Blanco
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), 95029 Catania, Italy; (C.C.); (G.B.); (M.F.); (S.S.)
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.A.); (M.B.); (A.M.); (G.O.C.)
| | - Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.A.); (M.B.); (A.M.); (G.O.C.)
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.A.); (M.B.); (A.M.); (G.O.C.)
| | | | - Gea Oliveri Conti
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.A.); (M.B.); (A.M.); (G.O.C.)
| | - Margherita Ferrante
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), 95029 Catania, Italy; (C.C.); (G.B.); (M.F.); (S.S.)
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.A.); (M.B.); (A.M.); (G.O.C.)
| | - Salvatore Sciacca
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), 95029 Catania, Italy; (C.C.); (G.B.); (M.F.); (S.S.)
| |
Collapse
|