1
|
Kalemba EM, Gevaert K, Impens F, Dufour S, Czerwoniec A. The association of protein-bound methionine sulfoxide with proteomic basis for aging in beech seeds. BMC PLANT BIOLOGY 2024; 24:377. [PMID: 38714916 PMCID: PMC11077735 DOI: 10.1186/s12870-024-05085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND European beech (Fagus sylvatica L.) trees produce seeds irregularly; therefore, it is necessary to store beech seeds for forestation. Despite the acquisition of desiccation tolerance during development, beech seeds are classified as intermediate because they lose viability during long-term storage faster than typical orthodox seeds. In this study, beech seeds stored for short (3 years) or long (20 years) periods under optimal conditions and displaying 92 and 30% germination capacity, respectively, were compared. RESULTS Aged seeds displayed increased membrane damage, manifested as electrolyte leakage and lipid peroxidation levels. Analyses have been based on embryonic axes, which contained higher levels of reactive oxygen species (ROS) and higher levels of protein-bound methionine sulfoxide (MetO) in aged seeds. Using label-free quantitative proteomics, 3,949 proteins were identified, of which 2,442 were reliably quantified pointing to 24 more abundant proteins and 35 less abundant proteins in beech seeds under long-term storage conditions. Functional analyses based on gene ontology annotations revealed that nucleic acid binding activity (molecular function), ribosome organization or biogenesis and transmembrane transport (cellular processes), translational proteins (protein class) and membranous anatomical entities (cellular compartment) were affected in aged seeds. To verify whether MetO, the oxidative posttranslational modification of proteins that can be reversed via the action of methionine sulfoxide reductase (Msr) enzymes, is involved in the aging of beech seeds, we identified and quantified 226 MetO-containing proteins, among which 9 and 19 exhibited significantly up- and downregulated MetO levels, respectively, in beech seeds under long-term storage conditions. Several Msr isoforms were identified and recognized as MsrA1-like, MsrA4, MsrB5 and MsrB5-like in beech seeds. Only MsrA1-like displayed decreased abundance in aged seeds. CONCLUSIONS We demonstrated that the loss of membrane integrity reflected in the elevated abundance of membrane proteins had a higher impact on seed aging progress than the MetO/Msr system. Proteome analyses enabled us to propose protein Sec61 and glyceraldehyde-3-phosphate dehydrogenase as potential longevity modulators in beech seeds.
Collapse
Affiliation(s)
- Ewa Marzena Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, Kórnik, 62-035, Poland.
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, B-9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, B-9052, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, B-9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, B-9052, Belgium
- VIB Proteomics Core, VIB, Ghent, B-9052, Belgium
| | - Sara Dufour
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, B-9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, B-9052, Belgium
- VIB Proteomics Core, VIB, Ghent, B-9052, Belgium
| | | |
Collapse
|
2
|
Kamaei R, Kafi M, Afshari RT, Shafaroudi SM, Nabati J. Physiological and molecular changes of onion (Allium cepa L.) seeds under different aging conditions. BMC PLANT BIOLOGY 2024; 24:85. [PMID: 38308226 PMCID: PMC10837900 DOI: 10.1186/s12870-024-04773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/28/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Onion seeds have limited storage capacity compared to other vegetable seeds. It is crucial to identify the mechanisms that induce tolerance to storage conditions and reduce seed deterioration. To address this goal, an experiment was conducted to evaluate changes in germination, biochemical, physiological, and molecular characteristics of onion seed landraces (Horand, Kazerun landraces and Zargan cultivar) at different aging levels (control, three-days and six-days accelerated aging, and natural aging for one year). RESULTS The findings suggest that there was an increase in glucose, fructose, total sugar, and electrolyte leakage in the Horand (HOR), Kazerun (KAZ) landraces, and Zarghan (ZAR) cultivar, with Kazerun exhibiting the greatest increase. The percentage and rate of germination of Kazerun decreased by 54% and 33%, respectively, in six-day accelerated aging compared to the control, while it decreased by 12% and 14%, respectively, in Horand. Protein content decreased with increasing levels of aging, with a decrease of 26% in Kazerun landrace at six days of aging, while it was 16% in Horand landrace. The antioxidant activities of catalase, superoxide dismutase, and glutathione peroxidase decreased more intensively in Kazerun. The expression of AMY1, BMY1, CTR1, and NPR1 genes were lower in Kazerun landraces than in Horand and Zargan at different aging levels. CONCLUSIONS The AMY1, BMY1, CTR1, and NPR1 genes play a pivotal role in onion seed germination, and their downregulation under stressful conditions has been shown to decrease germination rates. In addition, the activity of CAT, SOD, and GPx enzymes decreased by seed aging, and the amount of glucose, fructose, total sugar and electrolyte leakage increased, which ultimately led to seed deterioration. Based on the results of this experiment, it is recommended to conduct further studies into the molecular aspects involved in onion seed deterioration. More research on the genes related to this process is suggested, as well as investigating the impact of different priming treatments on the genes expression involved in the onion seed aging process.
Collapse
Affiliation(s)
- Reza Kamaei
- Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Kafi
- Department of Agrotechnonogy, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | | | - Jafar Nabati
- Department of Agrotechnonogy, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
3
|
Redda ZT, Laß-Seyoum A, Yimam A, Barz M, Jabasingh SA. Solvent extraction and characterization of Brassica carinata oils as promising alternative feedstock for bio-jet fuel production. BIOMASS CONVERSION AND BIOREFINERY 2022:1-20. [PMID: 36406949 PMCID: PMC9648429 DOI: 10.1007/s13399-022-03343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
As a fossil fuel substitute, bio-jet fuel derived from inedible oilseed crops has the potential to improve energy security, decrease carbon footprint, and promote agricultural economy and social development. The efficient production of bio-jet fuels depends on the identification and characterization of eco-friendly and sustainable feedstocks. Brassica carinata (Arun Braun) cultivars are among the most significant industrial oilseeds that can be utilized as alternative feedstocks in the aviation industry. The study thoroughly evaluated four non-food Brassica carinata cultivars that are indigenous to Ethiopia to determine their suitability as substitute feedstocks for the production of bio-jet fuel. The effects of solvent extraction parameters were studied using response surface methodology with Box-Behnken design in an isothermal batch reactor. Physicochemical characterization, fatty acids profiling, ultimate analysis, analysis of metals and phosphorus concentration, Fourier-transform infrared spectroscopy characterization, and calorific value analyses were performed to characterize the properties of oils. Accordingly, oil yields ranged from 35.93 to 45.25%. Erucic acid (EA) was the most predominant fatty acid in all oils, accounting for 42-50%, of Derash and Yellow Dodolla oils, respectively, making Yellow Dodolla oil a super-high erucic acid oil. In comparison to the other oils, Yellow Dodolla was observed to be the least oxygenated oil, with a 7.80% oxygen content and oxygen to carbon ratio of 0.07, which may enable it to consume a very limited amount of hydrogen gas during hydrodeoxygenation in bio-jet fuel production. It was determined that, except for calcium and phosphorous levels in Tesfa, the concentrations of the metals and phosphorous were very small. Alkanes, alkenes, carboxylic acids, esters, alcohols, aromatics, and olefins were among the most significant and main functional groups identified. Our extraction and characterization results revealed that the Brassica carinata cultivars have very high oil contents, better physicochemical properties, excellent fatty acid profiles, and very low concentrations of heteroatoms (nitrogen, sulfur), metals and phosphorous concentrations, and very low level of oxygen to carbon ratios, making the oils, notably Yellow Dodolla oil, very high quality and promising alternative feedstocks for upgrading of the oils into bio-jet fuels through hydroprocessing pathway.
Collapse
Affiliation(s)
- Zinnabu Tassew Redda
- School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, King George VI St., P.O. Box 385, Addis Ababa, Ethiopia
- Faculty I, University of Applied Sciences (HTW) Berlin, Wilhelminenhofstraße 75A, 12459 Berlin, Germany
| | - Asnakech Laß-Seyoum
- Faculty I, University of Applied Sciences (HTW) Berlin, Wilhelminenhofstraße 75A, 12459 Berlin, Germany
| | - Abubeker Yimam
- School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, King George VI St., P.O. Box 385, Addis Ababa, Ethiopia
| | - Mirko Barz
- Faculty I, University of Applied Sciences (HTW) Berlin, Wilhelminenhofstraße 75A, 12459 Berlin, Germany
| | - S. Anuradha Jabasingh
- School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, King George VI St., P.O. Box 385, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Gianella M, Doria E, Dondi D, Milanese C, Gallotti L, Börner A, Zannino L, Macovei A, Pagano A, Guzzon F, Biggiogera M, Balestrazzi A. Physiological and molecular aspects of seed longevity: exploring intra-species variation in eight Pisum sativum L. accessions. PHYSIOLOGIA PLANTARUM 2022; 174:e13698. [PMID: 35526223 PMCID: PMC9321030 DOI: 10.1111/ppl.13698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 05/12/2023]
Abstract
Conservation of plant genetic diversity is fundamental for crop improvement, increasing agricultural production and sustainability, especially in the face of climatic changes. Although seed longevity is essential for the management of seed banks, few studies have, so far, addressed differences in this trait among the accessions of a single species. Eight Pisum sativum L. (pea) accessions were investigated to study the impact of long-term (approximately 20 years) storage, aiming to reveal contrasting seed longevity and clarify the causes for these differences. The outstanding seed longevity observed in the G4 accession provided a unique experimental system. To characterize the biochemical and physical status of stored seeds, reactive oxygen species, lipid peroxidation, tocopherols, free proline and reducing sugars were measured. Thermoanalytical measurements (thermogravimetry and differential scanning calorimetry) and transmission electron microscopy combined with immunohistochemical analysis were performed. The long-lived G4 seeds neither consumed tocopherols during storage nor showed free proline accumulation, as a deterioration hallmark, whereas reducing sugars were not affected. Thermal decomposition suggested a biomass composition compatible with the presence of low molecular weight molecules. Expansion of heterochromatic areas and reduced occurrence of γH2AX foci were highlighted in the nucleus of G4 seeds. The longevity of G4 seeds correlates with the occurrence of a reducing cellular environment and a nuclear ultrastructure favourable to genome stability. This work brings novelty to the study of within-species variations in seed longevity, underlining the relevance of multidisciplinary approaches in seed longevity research.
Collapse
Affiliation(s)
- Maraeva Gianella
- Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
- Royal Botanic Gardens, Kew, Wakehurst, ArdinglyHaywards HeathWest SussexUK
| | - Enrico Doria
- Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
| | - Daniele Dondi
- C.S.G.I. & Department of ChemistryUniversity of PaviaPaviaItaly
| | - Chiara Milanese
- C.S.G.I. & Department of ChemistryUniversity of PaviaPaviaItaly
| | - Lucia Gallotti
- C.S.G.I. & Department of ChemistryUniversity of PaviaPaviaItaly
| | - Andreas Börner
- Genebank DepartmentLeibniz Institute of Plant Genetics and Crop Plant Research (IPK) CorrensstrSeelandGermany
| | - Lorena Zannino
- Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
| | - Anca Macovei
- Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
| | - Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
| | - Filippo Guzzon
- International Maize and Wheat Improvement Center (CIMMYT)Carretera México‐VeracruzTexcocoMexico StateMexico
- Centre for Pacific Crops and Trees (CePaCT), Land Resource Division (LRD)Pacific Community (SPC)SuvaFiji
| | - Marco Biggiogera
- Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
| | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani’University of PaviaPaviaItaly
| |
Collapse
|
5
|
Jiang L, She C, Tian C, Tanveer M, Wang L. Storage Period and Different Abiotic Factors Regulate Seed Germination of Two Apocynum Species - Cash Crops in Arid Saline Regions in the Northwestern China. FRONTIERS IN PLANT SCIENCE 2021; 12:671157. [PMID: 34220893 PMCID: PMC8248540 DOI: 10.3389/fpls.2021.671157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
On degraded land in arid regions, cultivation of Apocynum species can provide significant environmental benefits by preventing soil erosion and desertification. Furthermore, Apocynum venetum and Apocynum pictum, which are mainly distributed in salt-barren lands in the northwestern region of China, are traditionally used to produce natural fiber and herbal tea. Direct sowing of both species may encounter various abiotic stresses such as drought and salinity. However, these effects on germination remain largely unknown, especially for seeds with different storage periods. The aim of this study was to evaluate the effects of storage period, light condition, temperature regime, drought, and salinity on germination performances of both species. Germination experiment was carried out in November 2017. There were four replicates for each treatment, and each petri dish contained 25 seeds. The results indicated that prolongation of storage period significantly decreased the germination percentage and velocity, especially under abiotic stresses. Light did not affect seed germination of A. venetum and A. pictum under any conditions. Seeds had better germination performance at 10/25 and 15/30°C than those of seeds incubated at any other temperatures. With the increase of polyethylene glycol (PEG) and salinity concentrations, seed germination for both species gradually decreased, especially for seeds stored for 2 years. Low PEG (0-20%) and salinity concentration (0-200 mM) did not significantly affect germination percentage of freshly matured seeds. However, long-time storage significantly decreased drought and salinity tolerance in A. venetum and A. pictum during germination stage. For saline soils in arid and semi-arid regions, freshly matured seeds or 1-year-stored seeds of both Apocynum species are recommended to be sown by using drip-irrigation in spring.
Collapse
Affiliation(s)
- Li Jiang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua, China
- Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Huaihua University, Huaihua, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
| | - Chaowen She
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua, China
- Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Huaihua University, Huaihua, China
| | - Changyan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Zhang K, Zhang Y, Sun J, Meng J, Tao J. Deterioration of orthodox seeds during ageing: Influencing factors, physiological alterations and the role of reactive oxygen species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:475-485. [PMID: 33250322 DOI: 10.1016/j.plaphy.2020.11.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Seed viability is an important trait in agriculture which directly influences seedling emergence and crop yield. However, even when stored under optimal conditions, all seeds will eventually lose their viability. Our primary aims were to describe factors influencing seed deterioration, determine the morphological, physiological, and biochemical changes that occur during the process of seed ageing, and explore the mechanisms involved in seed deterioration. High relative humidity and high temperature are two factors that accelerate seed deterioration. As seeds age, frequently observed changes include membrane damage and the destruction of organelle structure, an increase in the loss of seed leachate, decreases of respiratory rates and ATP production, and a loss of enzymatic activity. These phenomena could be inter-related and reflect the general breakdown in cellular organization. Many processes can result in seed ageing; it is likely that oxidative damage caused by free radicals and reactive oxygen species (ROS) is primarily responsible. ROS can have vital interactions with any macromolecule of biological interest that result in damage to various cellular components caused by protein damage, lipid peroxidation, chromosomal abnormalities, and DNA lesions. Further, ROS may also cause programmed cell death by inducing the opening of mitochondrial permeability transition pores and the release of cytochrome C. Some repairs can occur in the early stages of imbibition, but repair processes fail if sufficient damage has been caused to critical functional components. As a result, a given seed will lose its viability and eventually fail to germinate in a relatively short time period.
Collapse
Affiliation(s)
- Keliang Zhang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China
| | - Yin Zhang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China
| | - Jing Sun
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China
| | - Jiasong Meng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China
| | - Jun Tao
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
7
|
Wawrzyniak MK, Kalemba EM, Ratajczak E, Chmielarz P. Oxidation processes related to seed storage and seedling growth of Malus sylvestris, Prunus avium and Prunus padus. PLoS One 2020; 15:e0234510. [PMID: 32555619 PMCID: PMC7302524 DOI: 10.1371/journal.pone.0234510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/26/2020] [Indexed: 01/22/2023] Open
Abstract
Seeds stored in controlled conditions in gene banks, faster or slower lose their viability. The effects of seed moisture content levels (ca. 5, 8, 11%) combined with storage temperatures (-3°, -18°, -196°C) were investigated in terms of the description of seeds defined as orthodox under oxidative stress after seed storage, during germination, and initial seedling growth. Hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS) and ascorbate (Asc) were analyzed in relation to seed germinability and seedlings emergence in three species: Malus sylvestris L., Prunus avium L. and Prunus padus L. The effect of seed storage conditions on H2O2 levels appeared in germinated seeds after the third year of storage in each species. The H2O2 levels were negatively correlated with the germination and seedling emergence of P. avium seeds after three years of storage under all examined combinations. The emergence of P. padus seedlings was not linked to any of the stress markers tested. The P. padus seed biochemical traits were least altered by storage conditions, and the seeds produced tolerant seedlings of relatively high levels of H2O2 and TBARS. To cope with different H2O2 levels, TBARS levels, and Asc levels in seeds of three species varying storage conditions different molecular responses, i.e. repairing mechanisms, were applied during stratification to compensate for the storage conditions and, as a result, seeds remained viable and seedlings were successfully established.
Collapse
Affiliation(s)
| | | | | | - Paweł Chmielarz
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| |
Collapse
|
8
|
Mandim F, Dias MI, Pinela J, Barracosa P, Ivanov M, Stojković D, Soković M, Santos-Buelga C, Barros L, Ferreira ICFR. Chemical composition and in vitro biological activities of cardoon (Cynara cardunculus L. var. altilis DC.) seeds as influenced by viability. Food Chem 2020; 323:126838. [PMID: 32334313 DOI: 10.1016/j.foodchem.2020.126838] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/22/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Cardoon is a multi-purpose crop for several industries. In this study, cardoon seeds were separated according to the viability and characterized for their chemical composition and bioactivities. Viable seeds contained higher levels of α-tocopherol (6.7 mg/100 g), lipids (23.11 g/100 g, manly oleic and linoleic acids), and free sugars (5.4 g/100 g) than the unviable ones. The hydroethanolic extract of viable seeds presented a higher concentration of phenolic compounds, namely 5-O-caffeoylquinic (8.0 mg/g) and 3,5-O-dicaffeoylquinic (43.9 mg/g) acids, and greater in vitro antioxidant activity. Both extracts showed antibacterial properties, but the best results were achieved with unviable seeds. The extracts had similar antifungal activity but did not reveal anti-inflammatory capacity or cytotoxicity to the tested cell lines. Therefore, while viable seeds contained antioxidant phytochemicals and an energy and carbon source for germination, unavailable seeds stood out for their potential to be used in the development of bio-based antibacterial ingredients.
Collapse
Affiliation(s)
- Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Paulo Barracosa
- Escola Superior Agrária de Viseu, Instituto Politécnico de Viseu, Quinta da Alagoa, 3500-606 Viseu, Portugal
| | - Marija Ivanov
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Dejan Stojković
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Marina Soković
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
9
|
Moyano L, Lopéz-Fernández MP, Carrau A, Nannini JM, Petrocelli S, Orellano EG, Maldonado S. Red light delays programmed cell death in non-host interaction between Pseudomonas syringae pv tomato DC3000 and tobacco plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110361. [PMID: 31928670 DOI: 10.1016/j.plantsci.2019.110361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 05/29/2023]
Abstract
Light modulates almost every aspect of plant physiology, including plant-pathogen interactions. Among these, the hypersensitive response (HR) of plants to pathogens is characterized by a rapid and localized programmed cell death (PCD), which is critical to restrict the spread of pathogens from the infection site. The aim of this work was to study the role of light in the interaction between Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) and non-host tobacco plants. To this end, we examined the HR under different light treatments (white and red light) by using a range of well-established markers of PCD. The alterations found at the cellular level included: i) loss of membrane integrity and nuclei, ii) RuBisCo and DNA degradation, and iii) changes in nuclease profiles and accumulation of cysteine proteinases. Our results suggest that red light plays a role during the HR of tobacco plants to Pto DC3000 infection, delaying the PCD process.
Collapse
Affiliation(s)
- Laura Moyano
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas, Instituto de Biodiversidad y Biología Experimental y Aplicada, Buenos Aires, Argentina
| | - María P Lopéz-Fernández
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas, Instituto de Biodiversidad y Biología Experimental y Aplicada, Buenos Aires, Argentina.
| | - Analía Carrau
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina
| | - Julián M Nannini
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina
| | - Silvana Petrocelli
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Elena G Orellano
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Molecular y Celular de Rosario, Rosario, Argentina; Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Sara Maldonado
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas, Instituto de Biodiversidad y Biología Experimental y Aplicada, Buenos Aires, Argentina
| |
Collapse
|