1
|
Olotu T, Ferrell JM. Lactobacillus sp. for the Attenuation of Metabolic Dysfunction-Associated Steatotic Liver Disease in Mice. Microorganisms 2024; 12:2488. [PMID: 39770690 PMCID: PMC11728176 DOI: 10.3390/microorganisms12122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 01/05/2025] Open
Abstract
Probiotics are studied for their therapeutic potential in the treatment of several diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD). Part of the significant progress made in understanding the pathogenesis of steatosis has come from identifying the complex interplay between the gut microbiome and liver function. Recently, probiotics have shown beneficial effects for the treatment and prevention of steatosis and MASLD in rodent models and in clinical trials. Numerous studies have demonstrated the promising potential of lactic acid bacteria, especially the genus Lactobacillus. Lactobacillus is a prominent bile acid hydrolase bacterium that is involved in the biotransformation of bile acids. This genus' modulation of the gut microbiota also contributes to overall gut health; it controls gut microbial overgrowth, shapes the intestinal bile acid pool, and alleviates inflammation. This narrative review offers a comprehensive summary of the potential of Lactobacillus in the gut-liver axis to attenuate steatosis and MASLD. It also highlights the roles of Lactobacillus in hepatic lipid metabolism, insulin resistance, inflammation and fibrosis, and bile acid synthesis in attenuating MASLD.
Collapse
Affiliation(s)
- Titilayo Olotu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Jessica M. Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA;
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
2
|
Zwierzchowski G, Haxhiaj K, Wójcik R, Wishart DS, Ametaj BN. Identifying Predictive Biomarkers of Subclinical Mastitis in Dairy Cows through Urinary Metabotyping. Metabolites 2024; 14:205. [PMID: 38668333 PMCID: PMC11051925 DOI: 10.3390/metabo14040205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Mastitis is a significant infectious disease in dairy cows, resulting in milk yield loss and culling. Early detection of mastitis-prone cows is crucial for implementing effective preventive measures before disease onset. Current diagnosis of subclinical mastitis (SCM) relies on somatic cell count assessment post-calving, lacking predictive capabilities. This study aimed to identify metabolic changes in pre-SCM cows through targeted metabolomic analysis of urine samples collected 8 wks and 4 wks before calving, using mass spectrometry. A nested case-control design was employed, involving a total of 145 multiparous dairy cows, with disease occurrence monitored pre- and postpartum. Among them, 15 disease-free cows served as healthy controls (CON), while 10 cows exclusively had SCM, excluding those with additional diseases. Urinary metabolite profiling revealed multiple alterations in acylcarnitines, amino acids, and organic acids in pre-SCM cows. Metabotyping identified 27 metabolites that distinguished pre-SCM cows from healthy CON cows at both 8 and 4 wks before parturition. However, only four metabolites per week showed significant alterations (p < 0.005). Notably, a panel of four serum metabolites (asymmetric dimethylarginine, proline, leucine, and homovanillate) at 8 wks prepartum, and another panel (asymmetric dimethylarginine, methylmalonate, citrate, and spermidine) at 4 wks prepartum, demonstrated predictive ability as urinary biomarkers for SCM risk (AUC = 0.88; p = 0.02 and AUC = 0.88; p = 0.03, respectively). In conclusion, our findings indicate that metabolite testing can identify cows at risk of SCM as early as 8 and 4 wks before parturition. Validation of the two identified metabolite panels is warranted to implement these predictive biomarkers, facilitate early intervention strategies, and improve dairy cow management to mitigate the impact of SCM. Further research is needed to confirm the efficacy and applicability of these biomarkers in practical farm settings.
Collapse
Affiliation(s)
- Grzegorz Zwierzchowski
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (G.Z.); (K.H.)
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 1a Oczapowskiego Str., 10-719 Olsztyn, Poland
| | - Klevis Haxhiaj
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (G.Z.); (K.H.)
| | - Roman Wójcik
- Faculty of Veterinary Medicine, University of Warmia and Mazury, 1a Oczapowskiego Str., 10-719 Olsztyn, Poland;
| | - David S. Wishart
- Department of Biological and Computer Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Burim N. Ametaj
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (G.Z.); (K.H.)
| |
Collapse
|
3
|
Thimmappa PY, Vasishta S, Ganesh K, Nair AS, Joshi MB. Neutrophil (dys)function due to altered immuno-metabolic axis in type 2 diabetes: implications in combating infections. Hum Cell 2023:10.1007/s13577-023-00905-7. [PMID: 37115481 DOI: 10.1007/s13577-023-00905-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Metabolic and inflammatory pathways are highly interdependent, and both systems are dysregulated in Type 2 diabetes (T2D). T2D is associated with pre-activated inflammatory signaling networks, aberrant cytokine production and increased acute phase reactants which leads to a pro-inflammatory 'feed forward loop'. Nutrient 'excess' conditions in T2D with hyperglycemia, elevated lipids and branched-chain amino acids significantly alter the functions of immune cells including neutrophils. Neutrophils are metabolically active cells and utilizes energy from glycolysis, stored glycogen and β-oxidation while depending on the pentose phosphate pathway for NADPH for performing effector functions such as chemotaxis, phagocytosis and forming extracellular traps. Metabolic changes in T2D result in constitutive activation and impeded acquisition of effector or regulatory activities of neutrophils and render T2D subjects for recurrent infections. Increased flux through the polyol and hexosamine pathways, elevated production of advanced glycation end products (AGEs), and activation of protein kinase C isoforms lead to (a) an enhancement in superoxide generation; (b) the stimulation of inflammatory pathways and subsequently to (c) abnormal host responses. Neutrophil dysfunction diminishes the effectiveness of wound healing, successful tissue regeneration and immune surveillance against offending pathogens. Hence, Metabolic reprogramming in neutrophils determines frequency, severity and duration of infections in T2D. The present review discusses the influence of the altered immuno-metabolic axis on neutrophil dysfunction along with challenges and therapeutic opportunities for clinical management of T2D-associated infections.
Collapse
Affiliation(s)
- Pooja Yedehalli Thimmappa
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka, 576104, India
| | - Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka, 576104, India
| | - Kailash Ganesh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka, 576104, India
| | - Aswathy S Nair
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka, 576104, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka, 576104, India.
| |
Collapse
|
4
|
Zenobia C, Darveau RP. Does Oral Endotoxin Contribute to Systemic Inflammation? FRONTIERS IN ORAL HEALTH 2022; 3:911420. [PMID: 35677024 PMCID: PMC9169450 DOI: 10.3389/froh.2022.911420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/29/2022] [Indexed: 12/27/2022] Open
Abstract
The oral microbiome, with a unique emphasis on Porphyromonas gingivalis has been associated with a constellation of inflammatory diseases such as cardiovascular disease, rheumatoid arthritis, Alzheimer's disease, type II diabetes, and non-alcoholic associated fatty liver disease. Periodontal disease has also been shown to induce "leaky gut" leading to metabolic endotoxemia. Several recent studies investigating the habitants of the blood microbiome have found the majority of species appear to be derived from oral and skin bacterial communities in otherwise healthy individuals. Many of the same pathologies associated with perturbations of oral health, such as cardiovascular disease, show alterations to the composition of the blood microbiome as well as circulating neutrophil phenotypes. Gingival inflammation is associated with activated blood neutrophil phenotypes that can exacerbate a distal inflammatory insult which may explain the connection between oral and systemic inflammatory conditions. While in the oral cavity, neutrophils encounter oral microbes that are adept in manipulating neutrophil activity which can re-enter the vasculature thereafter. Endotoxin from oral microbes can differ significantly depending on bacterial community and state of oral health to alter cellular LPS tolerance mechanisms which may contribute to the primed neutrophil phenotype seen in periodontitis and provide a mechanism by which the oral-microbes can affect systemic health outcomes. This review synthesizes the studies between inflammatory diseases and oral health with emphasis on microbiome and corresponding lipopolysaccharides in immune tolerance and activation.
Collapse
Affiliation(s)
| | - Richard P. Darveau
- Departments of Periodontology and Microbiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Paudel S, John PP, Poorbaghi SL, Randis TM, Kulkarni R. Systematic Review of Literature Examining Bacterial Urinary Tract Infections in Diabetes. J Diabetes Res 2022; 2022:3588297. [PMID: 35620571 PMCID: PMC9130015 DOI: 10.1155/2022/3588297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
This systematic review addresses the central research question, "what is known from the published, peer-reviewed literature about the impact of diabetes on the risk of bacterial urinary tract infections (UTI)?" We examine the results from laboratory studies where researchers have successfully adapted mouse models of diabetes to study the pathophysiology of ascending UTI. These studies have identified molecular and cellular effectors shaping immune defenses against infection of the diabetic urinary tract. In addition, we present evidence from clinical studies that in addition to diabetes, female gender, increased age, and diabetes-associated hyperglycemia, glycosuria, and immune impairment are important risk factors which further increase the risk of UTI in diabetic individuals. Clinical studies also show that the uropathogenic genera causing UTI are largely similar between diabetic and nondiabetic individuals, although diabetes significantly increases risk of UTI by drug-resistant uropathogenic bacteria.
Collapse
Affiliation(s)
- Santosh Paudel
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, USA 70504
| | - Preeti P. John
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, USA 70504
| | | | - Tara M. Randis
- Department of Pediatrics, University of South Florida, Tampa, FL, USA 33620
| | - Ritwij Kulkarni
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, USA 70504
| |
Collapse
|
6
|
Bui TI, Gill AL, Mooney RA, Gill SR. Modulation of Gut Microbiota Metabolism in Obesity-Related Type 2 Diabetes Reduces Osteomyelitis Severity. Microbiol Spectr 2022; 10:e0017022. [PMID: 35315698 PMCID: PMC9045376 DOI: 10.1128/spectrum.00170-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/03/2022] [Indexed: 12/01/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen causing osteomyelitis through hematogenous seeding or contamination of implants and open wounds following orthopedic surgeries. The severity of S. aureus-mediated osteomyelitis is enhanced in obesity-related type 2 diabetes (obesity/T2D) due to chronic inflammation impairing both adaptive and innate immunity. Obesity-induced inflammation is linked to gut dysbiosis, with modification of the gut microbiota by high-fiber diets leading to a reduction in the symptoms and complications of obesity/T2D. However, our understanding of the mechanisms by which modifications of the gut microbiota alter host infection responses is limited. To address this gap, we monitored tibial S. aureus infections in obese/T2D mice treated with the inulin-like fructan fiber oligofructose. Treatment with oligofructose significantly decreased S. aureus colonization and lowered proinflammatory signaling postinfection in obese/T2D mice, as observed by decreased circulating inflammatory cytokines (tumor necrosis factor-α [TNF-α]) and chemokines (interferon-γ-induced protein 10 kDa [IP-10], keratinocyte-derived chemokine [KC], monokine induced by interferon-γ [MIG], monocyte chemoattractant protein-1 [MCP-1], and regulated upon activation, normal T cell expressed and presumably secreted [RANTES]), indicating partial reduction in inflammation. Oligofructose markedly shifted diversity in the gut microbiota of obese/T2D mice, with notable increases in the anti-inflammatory bacterium Bifidobacterium pseudolongum. Analysis of the cecum and plasma metabolome suggested that polyamine production was increased, specifically spermine and spermidine. Oral administration of these polyamines to obese/T2D mice resulted in reduced infection severity similar to oligofructose supplementation, suggesting that polyamines can mediate the beneficial effects of fiber on osteomyelitis severity. These results demonstrate the contribution of gut microbiota metabolites to the control of bacterial infections distal to the gut and polyamines as an adjunct therapeutic for osteomyelitis in obesity/T2D. IMPORTANCE Individuals with obesity-related type 2 diabetes (obesity/T2D) are at a five times increased risk for invasive Staphylococcus aureus osteomyelitis (bone infection) following orthopedic surgeries. With increasing antibiotic resistance and limited discoveries of novel antibiotics, it is imperative that we explore other avenues for therapeutics. In this study, we demonstrated that the dietary fiber oligofructose markedly reduced osteomyelitis severity and hyperinflammation following acute prosthetic joint infections in obese/T2D mice. Reduced infection severity was associated with changes in gut microbiota composition and metabolism, as indicated by increased production of natural polyamines in the gut and circulating plasma. This work identifies a novel role for the gut microbiome in mediating control of bacterial infections and polyamines as beneficial metabolites involved in improving the obesity/T2D host response to osteomyelitis. Understanding the impact of polyamines on host immunity and mechanisms behind decreasing susceptibility to severe implant-associated osteomyelitis is crucial to improving treatment strategies for this patient population.
Collapse
Affiliation(s)
- Tina I. Bui
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Ann Lindley Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Robert A. Mooney
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Steven R. Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
7
|
Negrini TDC, Carlos IZ, Duque C, Caiaffa KS, Arthur RA. Interplay Among the Oral Microbiome, Oral Cavity Conditions, the Host Immune Response, Diabetes Mellitus, and Its Associated-Risk Factors-An Overview. FRONTIERS IN ORAL HEALTH 2022; 2:697428. [PMID: 35048037 PMCID: PMC8757730 DOI: 10.3389/froh.2021.697428] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
This comprehensive review of the literature aimed to investigate the interplay between the oral microbiome, oral cavity conditions, and host immune response in Diabetes mellitus (DM). Moreover, this review also aimed to investigate how DM related risk factors, such as advanced age, hyperglycemia, hyperlipidemia, obesity, hypertension and polycystic ovary syndrome (PCOS), act in promoting or modifying specific mechanisms that could potentially perpetuate both altered systemic and oral conditions. We found that poorly controlled glycemic index may exert a negative effect on the immune system of affected individuals, leading to a deficient immune response or to an exacerbation of the inflammatory response exacerbating DM-related complications. Hyperglycemia induces alterations in the oral microbiome since poor glycemic control is associated with increased levels and frequencies of periodontal pathogens in the subgingival biofilm of individuals with DM. A bidirectional relationship between periodontal diseases and DM has been suggested: DM patients may have an exaggerated inflammatory response, poor repair and bone resorption that aggravates periodontal disease whereas the increased levels of systemic pro-inflammatory mediators found in individuals affected with periodontal disease exacerbates insulin resistance. SARS-CoV-2 infection may represent an aggravating factor for individuals with DM. Individuals with DM tend to have low salivary flow and a high prevalence of xerostomia, but the association between prevalence/experience of dental caries and DM is still unclear. DM has also been associated to the development of lesions in the oral mucosa, especially potentially malignant ones and those associated with fungal infections. Obesity plays an important role in the induction and progression of DM. Co-affected obese and DM individuals tend to present worse oral health conditions. A decrease in HDL and, an increase in triglycerides bloodstream levels seem to be associated with an increase on the load of periodontopathogens on oral cavity. Moreover, DM may increase the likelihood of halitosis. Prevalence of impaired taste perception and impaired smell recognition tend to be greater in DM patients. An important interplay among oral cavity microbiome, DM, obesity and hypertension has been proposed as the reduction of nitrate into nitrite, in addition to contribute to lowering of blood pressure, reduces oxidative stress and increases insulin secretion, being these effects desirable for the control of obesity and DM. Women with PCOS tend to present a distinct oral microbial composition and an elevated systemic response to selective members of this microbial community, but the association between oral microbiome, PCOS are DM is still unknown. The results of the studies presented in this review suggest the interplay among the oral microbiome, oral cavity conditions, host immune response and DM and some of the DM associated risk factors exist. DM individuals need to be encouraged and motivated for an adequate oral health care. In addition, these results show the importance of adopting multidisciplinary management of DM and of strengthening physicians-dentists relationship focusing on both systemic and on oral cavity conditions of DM patients.
Collapse
Affiliation(s)
- Thais de Cássia Negrini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | - Iracilda Zeppone Carlos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | - Cristiane Duque
- Department of Restorative and Preventive Dentistry, Araçatuba Dental School, São Paulo State University, Araçatuba, Brazil
| | - Karina Sampaio Caiaffa
- Department of Restorative and Preventive Dentistry, Araçatuba Dental School, São Paulo State University, Araçatuba, Brazil
| | - Rodrigo Alex Arthur
- Department of Preventive and Community Dentistry, Dental School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
8
|
Galán B, Serdan T, Rodrigues L, Manoel R, Gorjão R, Masi L, Pithon-Curi T, Curi R, Hirabara S. Reviewing physical exercise in non-obese diabetic Goto-Kakizaki rats. Braz J Med Biol Res 2022; 55:e11795. [PMID: 35648976 PMCID: PMC9150428 DOI: 10.1590/1414-431x2022e11795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/09/2022] [Indexed: 11/26/2022] Open
Abstract
There is a high incidence of non-obese type 2 diabetes mellitus (non-obese-T2DM) cases, particularly in Asian countries, for which the pathogenesis remains mainly unclear. Interestingly, Goto-Kakizaki (GK) rats spontaneously develop insulin resistance (IR) and non-obese-T2DM, making them a lean diabetes model. Physical exercise is a non-pharmacological therapeutic approach to reduce adipose tissue mass, improving peripheral IR, glycemic control, and quality of life in obese animals or humans with T2DM. In this narrative review, we selected and analyzed the published literature on the effects of physical exercise on the metabolic features associated with non-obese-T2DM. Only randomized controlled trials with regular physical exercise training, freely executed physical activity, or skeletal muscle stimulation protocols in GK rats published after 2008 were included. The results indicated that exercise reduces plasma insulin levels, increases skeletal muscle glycogen content, improves exercise tolerance, protects renal and myocardial function, and enhances blood oxygen flow in GK rats.
Collapse
Affiliation(s)
- B.S.M. Galán
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil
| | - T.D.A. Serdan
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil; New York University, USA
| | - L.E. Rodrigues
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil
| | - R. Manoel
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil
| | - R. Gorjão
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil
| | - L.N. Masi
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil
| | - T.C. Pithon-Curi
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil
| | - R. Curi
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil; Instituto Butantan, Brasil
| | - S.M. Hirabara
- Instituto de Atividade Física e Esportes, Universidade Cruzeiro do Sul, Brasil
| |
Collapse
|
9
|
Giovenzana A, Carnovale D, Phillips B, Petrelli A, Giannoukakis N. Neutrophils and their role in the aetiopathogenesis of type 1 and type 2 diabetes. Diabetes Metab Res Rev 2022; 38:e3483. [PMID: 34245096 DOI: 10.1002/dmrr.3483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/12/2021] [Accepted: 06/19/2021] [Indexed: 12/25/2022]
Abstract
Multiple and complex aetiological processes underlie diabetes mellitus, which invariably result in the development of hyperglycaemia. Although there are two prevalent distinct forms of the disease, that is, type 1 and type 2 diabetes, accumulating evidence indicates that these syndromes share more aetiopathological mechanisms than originally thought. This compels a rethinking of the approaches to prevent and treat the different manifestations of what eventually becomes a hyperglycaemic state. This review aims to address the involvement of neutrophils, the most abundant type of granulocytes involved in the initiation of the acute phase of inflammation, in the aetiopathogenesis of diabetes mellitus, with a focus on type 1 and type 2 diabetes. We review the evidence that neutrophils are the first leucocytes to react to and accumulate inside target tissues of diabetes, such as the pancreas and insulin-sensitive tissues. We then review available data on the role of neutrophils and their functional alteration, with a focus on NETosis, in the progression towards clinical disease. Finally, we review potential approaches as secondary and adjunctive treatments to limit neutrophil-mediated damage in the prevention of the progression of subclinical disease to clinical hyperglycaemia.
Collapse
Affiliation(s)
- Anna Giovenzana
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Lombardia, Italy
| | - Debora Carnovale
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Lombardia, Italy
| | - Brett Phillips
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Alessandra Petrelli
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Lombardia, Italy
| | - Nick Giannoukakis
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Jiao J, Yu H, Yao L, Li L, Yang X, Liu L. Recent Insights into the Role of Gut Microbiota in Diabetic Retinopathy. J Inflamm Res 2021; 14:6929-6938. [PMID: 34938095 PMCID: PMC8687677 DOI: 10.2147/jir.s336148] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023] Open
Abstract
The microbiome has become a hot issue in recent years. The composition, modification, alteration, and disturbance of gut microbiota were found to influence important physiological processes, including energy metabolism and microenvironmental homeostasis, and lead to various diseases, including obesity, type 2 diabetes mellitus and chronic kidney disease. Diabetic retinopathy (DR) is a major microvascular complication of diabetes mellitus and one of the leading causes of blindness and vision impairment. The underlying mechanisms in DR pathogenesis remain limited. Recently, important insights have been made regarding possible connections between gut microbiome dysbiosis and ocular disease including DR, uveitis, glaucoma, and age-related macular degeneration, and the concept of a "microbiota-gut-retina axis" has been put forward. Hence, we reviewed current understanding of the relationship between DR and gut microbiota. We summarized potential pathophysiological mechanisms that contribute to the role of the gut microbiota on DR, including hyperglycemia, anti-diabetes drugs, microbial metabolites, and inflammatory properties. We aimed to find novel effective therapeutic options to prevent the onset and development of DR.
Collapse
Affiliation(s)
- Jinghua Jiao
- Department of Anesthesiology, Central Hospital, Shenyang Medical College, Shenyang, Liaoning, 110024, People's Republic of China
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Litong Yao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Lihua Li
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261031, People's Republic of China
| | - Xiaohong Yang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Lei Liu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510120, People's Republic of China
| |
Collapse
|
11
|
Zhen Y, Shu W, Hou X, Wang Y. Innate Immune System Orchestrates Metabolic Homeostasis and Dysfunction in Visceral Adipose Tissue During Obesity. Front Immunol 2021; 12:702835. [PMID: 34421909 PMCID: PMC8377368 DOI: 10.3389/fimmu.2021.702835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023] Open
Abstract
Arising incidence of metabolic disorders and related diseases caused by obesity is a global health concern. Elucidating the role of the immune system in this process will help to understand the related mechanisms and develop treatment strategies. Here, we have focused on innate immune cells in visceral adipose tissue (VAT) and summarized the roles of these cells in maintaining the homeostasis of VAT. Furthermore, this review reveals the importance of quantitative and functional changes of innate immune cells when the metabolic microenvironment changes due to obesity or excess lipids, and confirms that these changes eventually lead to the occurrence of chronic inflammation and metabolic diseases of VAT. Two perspectives are reviewed, which include sequential changes in various innate immune cells in the steady state of VAT and its imbalance during obesity. Cross-sectional interactions between various innate immune cells at the same time point are also reviewed. Through delineation of a comprehensive perspective of VAT homeostasis in obesity-induced chronic inflammation, and ultimately metabolic dysfunction and disease, we expect to clarify the complex interactive networks among distinct cell populations and propose that these interactions should be taken into account in the development of biotherapeutic strategies.
Collapse
Affiliation(s)
- Yu Zhen
- Department of Dermatology, The First Hospital of Jilin University, Changchun, China
| | - Wentao Shu
- Department of Biobank, Division of Clinical Research, The First Hospital of Jilin University, Changchun, China
| | - Xintong Hou
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China.,Institute of Immunology, Jilin University, Changchun, China
| | - Yinan Wang
- Department of Biobank, Division of Clinical Research, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Serdan TDA, Masi LN, Pereira JNB, Rodrigues LE, Alecrim AL, Scervino MVM, Diniz VLS, Dos Santos AAC, Filho CPBS, Alba-Loureiro TC, Marzuca-Nassr GN, Bazotte RB, Gorjão R, Pithon-Curi TC, Curi R, Hirabara SM. Impaired brown adipose tissue is differentially modulated in insulin-resistant obese wistar and type 2 diabetic Goto-Kakizaki rats. Biomed Pharmacother 2021; 142:112019. [PMID: 34403962 DOI: 10.1016/j.biopha.2021.112019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Brown adipose tissue (BAT) is a potential target to treat obesity and diabetes, dissipating energy as heat. Type 2 diabetes (T2D) has been associated with obesogenic diets; however, T2D was also reported in lean individuals to be associated with genetic factors. We aimed to investigate the differences between obese and lean models of insulin resistance (IR) and elucidate the mechanism associated with BAT metabolism and dysfunction in different IR animal models: a genetic model (lean GK rats) and obese models (diet-induced obese Wistar rats) at 8 weeks of age fed a high-carbohydrate (HC), high-fat (HF) diet, or high-fat and high-sugar (HFHS) diet for 8 weeks. At 15 weeks of age, BAT glucose uptake was evaluated by 18F-FDG PET under basal (saline administration) or stimulated condition (CL316,243, a selective β3-AR agonist). After CL316, 243 administrations, GK animals showed decreased glucose uptake compared to HC animals. At 16 weeks of age, the animals were euthanized, and the interscapular BAT was dissected for analysis. Histological analyses showed lower cell density in GK rats and higher adipocyte area compared to all groups, followed by HFHS and HF compared to HC. HFHS showed a decreased batokine FGF21 protein level compared to all groups. However, GK animals showed increased expression of genes involved in fatty acid oxidation (CPT1 and CPT2), BAT metabolism (Sirt1 and Pgc1-α), and obesogenic genes (leptin and PAI-1) but decreased gene expression of glucose transporter 1 (GLUT-1) compared to other groups. Our data suggest impaired BAT function in obese Wistar and GK rats, with evidence of a whitening process in these animals.
Collapse
Affiliation(s)
| | - Laureane Nunes Masi
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | | | - Luiz Eduardo Rodrigues
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Amanda Lins Alecrim
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | | | | | | | | | | | | | | | - Renata Gorjão
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Tania Cristina Pithon-Curi
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Rui Curi
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Sandro Massao Hirabara
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| |
Collapse
|
13
|
Dowey R, Iqbal A, Heller SR, Sabroe I, Prince LR. A Bittersweet Response to Infection in Diabetes; Targeting Neutrophils to Modify Inflammation and Improve Host Immunity. Front Immunol 2021; 12:678771. [PMID: 34149714 PMCID: PMC8209466 DOI: 10.3389/fimmu.2021.678771] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic and recurrent infections occur commonly in both type 1 and type 2 diabetes (T1D, T2D) and increase patient morbidity and mortality. Neutrophils are professional phagocytes of the innate immune system that are critical in pathogen handling. Neutrophil responses to infection are dysregulated in diabetes, predominantly mediated by persistent hyperglycaemia; the chief biochemical abnormality in T1D and T2D. Therapeutically enhancing host immunity in diabetes to improve infection resolution is an expanding area of research. Individuals with diabetes are also at an increased risk of severe coronavirus disease 2019 (COVID-19), highlighting the need for re-invigorated and urgent focus on this field. The aim of this review is to explore the breadth of previous literature investigating neutrophil function in both T1D and T2D, in order to understand the complex neutrophil phenotype present in this disease and also to focus on the development of new therapies to improve aberrant neutrophil function in diabetes. Existing literature illustrates a dual neutrophil dysfunction in diabetes. Key pathogen handling mechanisms of neutrophil recruitment, chemotaxis, phagocytosis and intracellular reactive oxygen species (ROS) production are decreased in diabetes, weakening the immune response to infection. However, pro-inflammatory neutrophil pathways, mainly neutrophil extracellular trap (NET) formation, extracellular ROS generation and pro-inflammatory cytokine generation, are significantly upregulated, causing damage to the host and perpetuating inflammation. Reducing these proinflammatory outputs therapeutically is emerging as a credible strategy to improve infection resolution in diabetes, and also more recently COVID-19. Future research needs to drive forward the exploration of novel treatments to improve infection resolution in T1D and T2D to improve patient morbidity and mortality.
Collapse
Affiliation(s)
- Rebecca Dowey
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ahmed Iqbal
- Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Simon R. Heller
- Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Ian Sabroe
- Sheffield Teaching Hospitals National Health Service (NHS) Foundation Trust, Sheffield, United Kingdom
| | - Lynne R. Prince
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
14
|
Muscogiuri G, Pugliese G, Laudisio D, Castellucci B, Barrea L, Savastano S, Colao A. The impact of obesity on immune response to infection: Plausible mechanisms and outcomes. Obes Rev 2021; 22:e13216. [PMID: 33719175 DOI: 10.1111/obr.13216] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022]
Abstract
Emerging data suggest an association between obesity and infectious diseases. Although the mechanisms underlying this link are not well established, a number of potential factors may be involved. Indeed, the obesity-related vulnerability to infectious diseases could be due to chronic low-grade inflammation, hyperglycemia, hyperinsulinemia, and hyperleptinemia, which lead to a weakening of both the innate and adaptive immune responses. In addition, obesity results in anatomical-functional changes by the mechanical obstacle of excessive adipose tissue that blunt the respiratory mechanisms and predisposing to respiratory infections. Subjects with obesity are also at risk of skin folds and sweat more profusely due to the thick layers of subcutaneous fat, favoring the proliferation of microorganisms and slowing the repair of wounds down. All these factors make subjects with obesity more prone to develop nosocomial infections, surgical site, skin and soft tissue infections, bacteremia, urinary tract infections, and mycosis. Furthermore, infections in subjects with obesity have a worse prognosis, frequently prolonging hospitalization time as demonstrated for several flu viruses and recently for COVID-19. Thus, the aim of this manuscript is to provide an overview of the current clinical evidence on the associations between obesity and infectious diseases highlighting physio pathological insights involved in this link.
Collapse
Affiliation(s)
- Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Università Federico II di Napoli, Napoli, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Università Federico II di Napoli, Napoli, Italy
| | - Gabriella Pugliese
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Università Federico II di Napoli, Napoli, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Università Federico II di Napoli, Napoli, Italy
| | - Daniela Laudisio
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Università Federico II di Napoli, Napoli, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Università Federico II di Napoli, Napoli, Italy
| | - Bianca Castellucci
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Università Federico II di Napoli, Napoli, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Università Federico II di Napoli, Napoli, Italy
| | - Luigi Barrea
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Università Federico II di Napoli, Napoli, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Università Federico II di Napoli, Napoli, Italy
| | - Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Università Federico II di Napoli, Napoli, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Università Federico II di Napoli, Napoli, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Università Federico II di Napoli, Napoli, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Dipartimento di Medicina Clinica e Chirurgia, Unità di Endocrinologia, Università Federico II di Napoli, Napoli, Italy.,Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile", Università Federico II di Napoli, Napoli, Italy
| |
Collapse
|
15
|
Batabyal R, Freishtat N, Hill E, Rehman M, Freishtat R, Koutroulis I. Metabolic dysfunction and immunometabolism in COVID-19 pathophysiology and therapeutics. Int J Obes (Lond) 2021; 45:1163-1169. [PMID: 33727631 PMCID: PMC7961323 DOI: 10.1038/s41366-021-00804-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 12/23/2022]
Abstract
The COVID-19 pandemic has emerged as a public health crisis and has placed a significant burden on healthcare systems. Patients with underlying metabolic dysfunction, such as type 2 diabetes mellitus and obesity, are at a higher risk for COVID-19 complications, including multi-organ dysfunction, secondary to a deranged immune response, and cellular energy deprivation. These patients are at a baseline state of chronic inflammation associated with increased susceptibility to the severe immune manifestations of COVID-19, which are triggered by the cellular hypoxic environment and cytokine storm. The altered metabolic profile and energy generation of immune cells affect their activation, exacerbating the imbalanced immune response. Key immunometabolic interactions may inform the development of an efficacious treatment for COVID-19. Novel therapeutic approaches with repurposed drugs, such as PPAR agonists, or newly developed molecules such as the antagomirs, which block microRNA function, have shown promising results. Those treatments, alone or in combination, target both immune and metabolic pathways and are ideal for septic COVID-19 patients with an underlying metabolic condition.
Collapse
Affiliation(s)
- Rachael Batabyal
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Nathaniel Freishtat
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
| | - Elaise Hill
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Muhammad Rehman
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Robert Freishtat
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Ioannis Koutroulis
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA.
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
16
|
Tian J, Zhao Y, Wang L, Li L. Role of TLR4/MyD88/NF-κB signaling in heart and liver-related complications in a rat model of type 2 diabetes mellitus. J Int Med Res 2021; 49:300060521997590. [PMID: 33787393 PMCID: PMC8020098 DOI: 10.1177/0300060521997590] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aims To analyze expression of members of the Toll-like receptor (TLR)4/myeloid
differentiation primary response 88 (MyD88)/nuclear factor (NF)-κB signaling
pathway in the heart and liver in a rat model of type 2 diabetes mellitus
(T2DM). Our overall goal was to understand the underlying pathophysiological
mechanisms. Methods We measured fasting blood glucose (FBG) and insulin (FINS) in a rat model of
T2DM. Expression of members of the TLR4/MyD88/NF-κB signaling pathway as
well as downstream cytokines was investigated. Levels of mRNA and protein
were assessed using quantitative real-time polymerase chain reaction and
western blotting, respectively. Protein content of tissue homogenates was
assessed using enzyme-linked immunosorbent assays. Results Diabetic rats had lower body weights, higher FBG, higher FINS, and higher
intraperitoneal glucose tolerance than normal rats. In addition, biochemical
indicators related to heart and liver function were elevated in diabetic
rats compared with normal rats. TLR4 and MyD88 were involved in the
occurrence of T2DM as well as T2DM-related heart and liver complications.
TLR4 caused T2DM-related heart and liver complications through activation of
NF-κB. Conclusions TLR4/MyD88/NF-κB signaling induces production of tumor necrosis factor-α,
interleukin-6, and monocyte chemoattractant protein-1, leading to the heart-
and liver-related complications of T2DM.
Collapse
Affiliation(s)
- Jiajia Tian
- Department of Endocrinology, Weifang Yidu Central Hospital, Weifang, P.R. China
| | - Yanyan Zhao
- Department of Endocrinology, Weifang Yidu Central Hospital, Weifang, P.R. China
| | - Lingling Wang
- Department of Endocrinology, Weifang Yidu Central Hospital, Weifang, P.R. China
| | - Lin Li
- The PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| |
Collapse
|
17
|
Azar WS, Njeim R, Fares AH, Azar NS, Azar ST, El Sayed M, Eid AA. COVID-19 and diabetes mellitus: how one pandemic worsens the other. Rev Endocr Metab Disord 2020; 21:451-463. [PMID: 32743793 PMCID: PMC7395898 DOI: 10.1007/s11154-020-09573-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In light of the most challenging public health crisis of modern history, COVID-19 mortality continues to rise at an alarming rate. Patients with co-morbidities such as hypertension, cardiovascular disease, and diabetes mellitus (DM) seem to be more prone to severe symptoms and appear to have a higher mortality rate. In this review, we elucidate suggested mechanisms underlying the increased susceptibility of patients with diabetes to infection with SARS-CoV-2 with a more severe COVID-19 disease. The worsened prognosis of COVID-19 patients with DM can be attributed to a facilitated viral uptake assisted by the host's receptor angiotensin-converting enzyme 2 (ACE2). It can also be associated with a higher basal level of pro-inflammatory cytokines present in patients with diabetes, which enables a hyperinflammatory "cytokine storm" in response to the virus. This review also suggests a link between elevated levels of IL-6 and AMPK/mTOR signaling pathway and their role in exacerbating diabetes-induced complications and insulin resistance. If further studied, these findings could help identify novel therapeutic intervention strategies for patients with diabetes comorbid with COVID-19.
Collapse
Affiliation(s)
- William S Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut, 1107-2020, Lebanon
- AUB Diabetes, American University of Beirut, Beirut, Lebanon
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, USA
| | - Rachel Njeim
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut, 1107-2020, Lebanon
- AUB Diabetes, American University of Beirut, Beirut, Lebanon
| | - Angie H Fares
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut, 1107-2020, Lebanon
- AUB Diabetes, American University of Beirut, Beirut, Lebanon
| | - Nadim S Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut, 1107-2020, Lebanon
- AUB Diabetes, American University of Beirut, Beirut, Lebanon
| | - Sami T Azar
- AUB Diabetes, American University of Beirut, Beirut, Lebanon
- Department of Internal Medicine, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Mazen El Sayed
- Department of Emergency Medicine, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh, Beirut, 1107-2020, Lebanon.
- AUB Diabetes, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
18
|
Lisco G, De Tullio A, Giagulli VA, Guastamacchia E, De Pergola G, Triggiani V. Hypothesized mechanisms explaining poor prognosis in type 2 diabetes patients with COVID-19: a review. Endocrine 2020; 70:441-453. [PMID: 32779091 PMCID: PMC7417102 DOI: 10.1007/s12020-020-02444-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Epidemiological data suggest that comorbid patients, mostly those with type 2 diabetes (T2D), are predisposed to poor prognosis in Coronavirus disease 2019 (COVID-19), leading to serious healthcare concerns. The aim of the present manuscript is to review the main relevant mechanisms possibly contributing to worsen the clinical course of COVID-19 in T2D. RESULTS Poor glucose control, high glycaemic variability and diabetes-related comorbidities at baseline, particularly cardiovascular diseases and obesity, contribute in worsening the prognosis in the above-mentioned cluster of patients. Moreover, both a lower efficient innate immune system response and cytokine dysregulation predispose patients with T2D to impaired viral clearance and more serious pulmonary and systemic inflammation once the SARS-CoV-2 infection occurred. Inconclusive data are currently available for specifically indicate or contraindicate concurrent medications for managing T2D and its comorbidities in infected patients. CONCLUSIONS T2D individuals should be considered as more vulnerable to COVID-19 than general population, and thus require adequate advices about hygienic tips to protect themselves during the pandemic. A careful management of glucose levels and diabetes-related comorbidities remains essential for avoiding further complications, and patient monitoring during the pandemic should be performed also at distance by means of telemedicine. Further studies are needed to clarify whether medications normally used for managing T2D and its associated comorbidities could have a protective or detrimental effect on COVID-19 clinical course.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Unit of Endocrinology, Metabolic Disease & Clinical Nutrition, Hospital "A. Perrino", Strada 7 per Mesagne, 72100, Brindisi, Puglia, Italy.
| | - Anna De Tullio
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Puglia, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Puglia, Italy
- Outpatients Clinic of Endocrinology and Metabolic Disease, Hospital "F. Jaja", Via Edmondo de Amicis 36, 70014 Conversano, Bari, Puglia, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Puglia, Italy
| | - Giovanni De Pergola
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124, Bari, Puglia, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Puglia, Italy
| |
Collapse
|
19
|
Daryabor G, Atashzar MR, Kabelitz D, Meri S, Kalantar K. The Effects of Type 2 Diabetes Mellitus on Organ Metabolism and the Immune System. Front Immunol 2020; 11:1582. [PMID: 32793223 PMCID: PMC7387426 DOI: 10.3389/fimmu.2020.01582] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic abnormalities such as dyslipidemia, hyperinsulinemia, or insulin resistance and obesity play key roles in the induction and progression of type 2 diabetes mellitus (T2DM). The field of immunometabolism implies a bidirectional link between the immune system and metabolism, in which inflammation plays an essential role in the promotion of metabolic abnormalities (e.g., obesity and T2DM), and metabolic factors, in turn, regulate immune cell functions. Obesity as the main inducer of a systemic low-level inflammation is a main susceptibility factor for T2DM. Obesity-related immune cell infiltration, inflammation, and increased oxidative stress promote metabolic impairments in the insulin-sensitive tissues and finally, insulin resistance, organ failure, and premature aging occur. Hyperglycemia and the subsequent inflammation are the main causes of micro- and macroangiopathies in the circulatory system. They also promote the gut microbiota dysbiosis, increased intestinal permeability, and fatty liver disease. The impaired immune system together with metabolic imbalance also increases the susceptibility of patients to several pathogenic agents such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Thus, the need for a proper immunization protocol among such patients is granted. The focus of the current review is to explore metabolic and immunological abnormalities affecting several organs of T2DM patients and explain the mechanisms, whereby diabetic patients become more susceptible to infectious diseases.
Collapse
Affiliation(s)
- Gholamreza Daryabor
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Reza Atashzar
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Seppo Meri
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Charles-Messance H, Sheedy FJ. Train to Lose: Innate Immune Memory in Metaflammation. Mol Nutr Food Res 2020; 65:e1900480. [PMID: 32529783 DOI: 10.1002/mnfr.201900480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/02/2020] [Indexed: 01/21/2023]
Abstract
Westernized diets and lifestyle are linked to the development of metabolic syndrome, characterized by obesity, type 2 diabetes, and increased cardiovascular disease risk. Systemic low-grade inflammation is a common feature of chronic metabolic disorders and is believed to promote disease progression. Therefore, modulating inflammation is a commonly explored strategy to prevent obesity-associated co-morbidities. In this review, how current knowledge on the recently described concept of innate immune memory could underline metaflammation in the context of metabolic syndrome is explored. It is hoped that these insights provide a new perspective to address the question of innate immune activation during disease progression.
Collapse
Affiliation(s)
- Hugo Charles-Messance
- Macrophage Homeostasis Research Group, School of Biochemistry and Immunology, Trinity College, Dublin, D02 R590, Ireland.,Trinity Biomedical Sciences Institute, Trinity College, Dublin, D02 R590, Ireland
| | - Frederick J Sheedy
- Macrophage Homeostasis Research Group, School of Biochemistry and Immunology, Trinity College, Dublin, D02 R590, Ireland.,Trinity Biomedical Sciences Institute, Trinity College, Dublin, D02 R590, Ireland
| |
Collapse
|
21
|
Hypomethylation of IL1RN and NFKB1 genes is linked to the dysbalance in IL1β/IL-1Ra axis in female patients with type 2 diabetes mellitus. PLoS One 2020; 15:e0233737. [PMID: 32470060 PMCID: PMC7259508 DOI: 10.1371/journal.pone.0233737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation has received considerable attention in the pathogenesis of type 2 diabetes mellitus (T2DM). Supporting this concept, enhanced expression of interleukin (IL)-1β and increased infiltration of macrophages are observed in pancreatic islets of patients with T2DM. Although IL-1 receptor antagonist (IL-1Ra) plays a major role in controlling of IL-1β-mediated inflammation, its counteraction effects and epigenetic alterations in T2DM are less studied. Thus, we aimed to analyze the DNA methylation status in IL1RN, RELA (p65) and NFKB1 (p50) genes in peripheral blood mononuclear cells (PBMCs) from treated T2DM patients (n = 35) and age-/sex- matched healthy controls (n = 31). Production of IL-1β and IL-1Ra was analyzed in plasma and supernatants from LPS-induced PBMCs. Immunomodulatory effects of IL-1β and IL-1Ra were studied on THP-1 cells. Average DNA methylation level of IL1RN and NFKB1 gene promoters was significantly decreased in T2DM patients in comparison with healthy controls (P< 0.05), which was associated with the increased IL-1Ra (P< 0.001) and IL-1β (P = 0.039) plasma levels in T2DM patients. Negative association between average methylation of IL1RN gene and IL-1Ra plasma levels were observed in female T2DM patients. Methylation of NFKB1 gene was negatively correlated with IL-1Ra levels in the patients and positively with IL-1β levels in female patients. LPS-stimulated PBMCs from female patients failed to raise IL-1β production, while the cells from healthy females increased IL-1β production in comparison with unstimulated cells (P< 0.001). Taken together, the findings suggest that hypomethylation of IL1RN and NFKB1 gene promoters may promote the increased IL-1β/IL-1Ra production and regulate chronic inflammation in T2DM. Further studies are necessary to elucidate the causal direction of these associations and potential role of IL-1Ra in anti-inflammatory processes in treated patients with T2DM.
Collapse
|
22
|
Mu D, Miao C, Cheng Y, Li P, Gong J, Zhang W. The on-off action of Forkhead protein O3a in endotoxin tolerance of Kupffer cells depends on the PI3K/AKT pathway. Int Immunopharmacol 2020; 82:106342. [PMID: 32143003 DOI: 10.1016/j.intimp.2020.106342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND The endotoxin tolerance (ET) of Kupffer cells (KCs) is an important protective mechanism for limiting endotoxin shock. As a key anti-inflammatory molecule, the roles and mechanism of Forkhead protein O3a (Foxo3a) in ET of KCs are not yet well understood. METHODS ET and nonendotoxin tolerance (NET) KCs models were established in vitro and in vivo. The levels of cytokines were detected by enzyme-linked immunosorbent assay (ELISA). The protein expression and phosphorylation levels were detected by western blotting (WB). Changes in the localization of nuclear factor kappa B (NF-κB) and Foxo3a in KCs were detected by immunofluorescence assays. KCs apoptosis and survival rates were detected by flow cytometry and an automatic cell counter, respectively. RESULTS The activity of NF-κB and the levels of p-Foxo3a and tumor necrosis factor (TNF-α) in the ET group were significantly lower than those in the NET group, while the levels of Foxo3a and interleukin 10 (IL-10) in the ET group were significantly higher than those in the NET group. Overexpression of Foxo3a or the use of a phosphatidylinositol-3-hydroxykinase (PI3K) inhibitor suppressed the activation of NF-κB by decreasing the levels of p-Foxo3a by inhibiting the activity of PI3K/AKT, which improved the tolerance of KCs and mice to endotoxin. In contrast, silencing Foxo3a or the use of a PI3K agonist reduced the tolerance of KCs and mice to endotoxin. The PI3K agonist counteracted the inhibitory effects of Foxo3a overexpression on NF-κB, impairing the tolerance of KCs to endotoxin. CONCLUSIONS The on-off action of Foxo3a in the ET of KCs depends on the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Di Mu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Chunmu Miao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yao Cheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Peizhi Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Wenfeng Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
23
|
Lin Q, Zhou W, Wang Y, Huang J, Hui X, Zhou Z, Xiao Y. Abnormal Peripheral Neutrophil Transcriptome in Newly Diagnosed Type 2 Diabetes Patients. J Diabetes Res 2020; 2020:9519072. [PMID: 32377527 PMCID: PMC7195634 DOI: 10.1155/2020/9519072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/15/2020] [Accepted: 02/21/2020] [Indexed: 12/29/2022] Open
Abstract
AIM There are increasing evidence demonstrating that neutrophil-mediated inflammation plays a role in the etiology of type 2 diabetes. However, the molecular mechanisms by which neutrophils contribute to type 2 diabetes remain largely unknown. The aim of the present work was to identify possible changes in circulating neutrophils to better elucidate neutrophil involvement in human type 2 diabetes. METHODS Patients newly diagnosed with type 2 diabetes (n = 5) and age- and sex-matched healthy controls (n = 5) were recruited. Neutrophils were purified from type 2 diabetes patients and controls, and RNA sequencing (RNA-seq) was used for comprehensive transcriptome analysis. Differentially expressed genes (DEGs) were screened, and Gene Ontology (GO) and KEGG pathway enrichment analyses were performed. Real-time polymerase chain reaction (qPCR) was used for validation in external samples of type 2 diabetes patients (n = 8) and healthy controls (n = 8). RESULTS Gene expression analysis showed that, compared with neutrophils from healthy controls, there were 1990 upregulated DEGs and 1314 downregulated DEGs in neutrophils from type 2 diabetes patients. GO analysis demonstrated that the DEGs were mainly involved in myeloid leukocyte activation, T cell activation, adaptive immunity, and cytokine production. The top 20 enriched KEGG pathways included the cytokine-cytokine receptor interaction pathway, NF-κB signaling pathway, cell adhesion molecules, and chemokine signaling pathway. Furthermore, qPCR of genes related to neutrophil activation revealed that the expression of SELL, SELP, CXCR1, and S100A8 was significantly increased in neutrophils from type 2 diabetes patients compared with that in neutrophils from controls. CONCLUSIONS Our study reveals an abnormal activation of circulating neutrophils at the transcriptome level in type 2 diabetes patients. These findings suggest a potential involvement of neutrophil dysfunction in the pathologic process of type 2 diabetes and provide insight into potential therapeutic targets for type 2 diabetes.
Collapse
Affiliation(s)
- Qiuqiu Lin
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan 410011, China
| | - Wenzhi Zhou
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan 410011, China
| | - Yanfei Wang
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan 410011, China
| | - Juan Huang
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan 410011, China
| | - Xiaoyan Hui
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Zhiguang Zhou
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan 410011, China
| | - Yang Xiao
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Changsha, Hunan 410011, China
| |
Collapse
|
24
|
Horvath A, Leber B, Feldbacher N, Tripolt N, Rainer F, Blesl A, Trieb M, Marsche G, Sourij H, Stadlbauer V. Effects of a multispecies synbiotic on glucose metabolism, lipid marker, gut microbiome composition, gut permeability, and quality of life in diabesity: a randomized, double-blind, placebo-controlled pilot study. Eur J Nutr 2019; 59:2969-2983. [PMID: 31729622 PMCID: PMC7501130 DOI: 10.1007/s00394-019-02135-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/04/2019] [Indexed: 01/08/2023]
Abstract
Purpose Diabesity, the combination of obesity and type 2 diabetes, is an ever-growing global health burden. Diabesity-associated dysbiosis of the intestinal microbiome has gained attention as a potential driver of disease and, therefore, a possible therapeutic target by means of pro- or prebiotic supplementation. This study tested the effects of a multispecies synbiotic (i.e. a combination of probiotics and prebiotics) on glucose metabolism, gut microbiota, gut permeability, neutrophil function and quality of life in treatment-experienced diabesity patients. Methods A randomized, double-blind, placebo-controlled pilot study with 26 diabesity patients was conducted in which patients received a daily dose of a multispecies probiotic and a prebiotic (or a placebo) for 6 months. Results There were no changes in glucose metabolism or mixed meal tolerance test responses throughout the study. The analysis of secondary outcomes revealed beneficial effects on hip circumference [− 1 (95% CI − 4; 3) vs +3 (− 1; 8) cm, synbiotics vs. placebo, respectively, p = 0.04], serum zonulin [− 0.04 (− 0.2; 0.1) vs +0.3 (− 0.05; 0.6) ng/ml, p = 0.004)] and the physical role item of the SF36 quality of life assessment [+ 5.4 (− 1.7; 12.5) vs − 5.0 (− 10.1; 0.2) points, p = 0.02] after 3 months of intervention, and lipoprotein (a) [− 2.1 (− 5.7; 1.6) vs +3.4 (− 0.9; 7.9) mg/dl, p = 0.02] after 6 months. There were no significant differences in alpha or beta diversity of the microbiome between groups or time points. Conclusions Glucose metabolism as the primary outcome was unchanged during the intervention with a multispecies synbiotic in patients with diabesity. Nevertheless, synbiotics improved some symptoms and biomarkers of type 2 diabetes and aspects of quality of life suggesting a potential role as adjuvant tool in the management of diabesity. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s00394-019-02135-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Angela Horvath
- Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria. .,Center for Biomarker Research in Medicine (CBmed), Stiftingtalstrasse 5, 8010, Graz, Austria.
| | - Bettina Leber
- Division of Transplantation Surgery, Medical University of Graz, Auenbruggerplatz 29, 8036, Graz, Austria
| | - Nicole Feldbacher
- Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.,Center for Biomarker Research in Medicine (CBmed), Stiftingtalstrasse 5, 8010, Graz, Austria
| | - Norbert Tripolt
- Division of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Florian Rainer
- Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Andreas Blesl
- Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Markus Trieb
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010, Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010, Graz, Austria
| | - Harald Sourij
- Center for Biomarker Research in Medicine (CBmed), Stiftingtalstrasse 5, 8010, Graz, Austria.,Division of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.,Zayed Center for Health Sciences (ZCHS), UAE University, Al-Ain, UAE
| | - Vanessa Stadlbauer
- Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| |
Collapse
|
25
|
Neutrophil activation causes tumor regression in Walker 256 tumor-bearing rats. Sci Rep 2019; 9:16524. [PMID: 31712726 PMCID: PMC6848483 DOI: 10.1038/s41598-019-52956-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/21/2019] [Indexed: 12/23/2022] Open
Abstract
The role of neutrophils in cancer is still very contradictory. Several studies have demonstrated the cytotoxic capacity of neutrophils against different types of tumors, by releasing inflammatory cytokines, ROS and activating other immune cells. On the other hand, recent papers have claimed the protumorigenic action of neutrophils, mainly by changing their phenotype and producing cytokines that promote tumor growth. In this context, this study aimed to evaluate neutrophil action and function during tumor development. To do so, we used male Wistar rats inoculated with Walker 256 breast carcinoma. Tumor, circulating neutrophils and bone marrow were studied in the following time points after tumor inoculation: 12 h, 24 h, 48 h, 3 d, 5 d, 7 d, 10 d, and 14 d, in order to analyze neutrophil migration kinetics, circulating neutrophil phenotype and bone marrow response to the tumor growth. Herein, our results demonstrated that W256T was unable to trigger an intratumoral inflammatory response after 5 days of tumor development and consequently, from that point on, prevented neutrophil migration to its microenvironment. Also, the tumor changed circulating neutrophil phenotype by up-regulating inflammation-related genes. Even though circulating neutrophils were entirely able to respond to an inflammatory stimulus, they did not recognize and attack the tumor, allowing the tumor to grow without any immune interference. To promote the entry of neutrophils into the tumor microenvironment, LPS was injected intratumorally. Neutrophil migration and activation due to LPS injection resulted in complete tumor regression in all subjects. In conclusion, activating neutrophils, within the tumor, turned the carcinoma into a recognizable immune target and eliminated it.
Collapse
|
26
|
Persistent Postoperative Hyperglycemia as a Risk Factor for Operative Treatment of Deep Wound Infection After Spine Surgery. Neurosurgery 2019; 87:211-219. [DOI: 10.1093/neuros/nyz405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/26/2019] [Indexed: 12/19/2022] Open
Abstract
Abstract
BACKGROUND
Surgical site infections (SSIs) affect 1% to 9% of all spine surgeries. Though previous work has found diabetes mellitus type 2 (DM2) to increase the risk for wound infection, the influence of perioperative hyperglycemia is poorly described.
OBJECTIVE
To investigate perioperative hyperglycemia as an independent risk factor for surgical site infection.
METHODS
We retrospectively identified patients undergoing operative management of SSIs occurring after spinal surgery for degenerative pathologies. These patients were individually matched to controls based upon age, surgical invasiveness, ICD-10CM, race, and sex. Cases and controls were compared regarding medical comorbidities (including diabetes), postoperative hyperglycemia, and operative time.
RESULTS
Patients in the infection group were found to have a higher BMI (33.7 vs 28.8), higher prevalence of DM2 (48.5% vs 14.7%), and longer inpatient stay (8.8 vs 4.3 d). They also had higher average (136.6 vs 119.6 mg/dL) and peak glucose levels (191.9 vs 153.1 mg/dL), as well as greater variability in glucose levels (92.1 vs 58.1 mg/dL). Multivariable logistic regression identified BMI (odds ratio [OR] = 1.13), diabetes mellitus (OR = 2.12), average glucose on the first postoperative day (OR = 1.24), peak postoperative glucose (OR = 1.31), and maximal daily glucose variation (OR = 1.32) as being significant independent predictors of postoperative surgical site infection.
CONCLUSION
Postoperative hyperglycemia and poor postoperative glucose control are independent risk factors for surgical site infection following surgery for degenerative spine disease. These data suggest that, particularly among high-risk diabetic patients, strict perioperative glucose control may decrease the risk of SSI.
Collapse
|