1
|
Hong H, Huang Y, Yang Z, Jiang X, Liu H. Pyroptosis-related lncRNAs are potential biomarkers for predicting prognoses and immune landscapes in patients with gastric adenocarcinoma. Discov Oncol 2024; 15:684. [PMID: 39565540 PMCID: PMC11579272 DOI: 10.1007/s12672-024-01579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
OBJECTIVES The purpose of this study was to investigate the significance of pyroptosis-related lncRNAs (PRlncRNA) in predicting prognoses and immune landscapes of patients with gastric adenocarcinoma (STAD). METHODS Transcriptomic data and clinicopathological data were obtained from The Cancer Genome Atlas database. Based on correlation analysis and univariate Cox regression, prognostic PRlncRNA were identified. Subsequently, a PRlncRNA prognostic signature (PRLPS) was generated via least absolute shrinkage and selection operator (LASSO) regression, Kaplan-Meier method, receiver operating characteristic (ROC) curves, principal component analysis, and univariate and multivariate regression. Besides, the clinicopathological characteristics, tumor microenvironment (TME) scores, the immune landscapes in different risk subgroups were explored. Moreover, based on three PRlncRNA, we constructed a competing endogenous RNA (ceRNA) network. Additionally, Gene Set Enrichment Analysis (GSEA), Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) and Gene Ontology (GO) analysis were performed for biological functional analysis based on the difference between high- and low- risk groups, which also used to screen out potential STAD drugs. RESULTS 21 PRlncRNA made up the prognostic signature, which had significant value in predicting the overall survival (OS), clinicopathological features, TME, immune checkpoint genes expression, and the response to immune checkpoint inhibitors of patients with STAD. In a addition, we constructed a ceRNA network comprising 3 PRlncRNAs and 69 mRNAs. The function of PRlncRNA was related to cancer-associated pathways. Ten small molecular drugs that might improve the prognosis of patients were screened out by connectivity maps. CONCLUSIONS Using PRlncRNA as a prognostic indicator for STAD, we identified predictive biomarkers and immunotherapy targets while refreshing our understanding.
Collapse
Affiliation(s)
- Haidu Hong
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yuancheng Huang
- Department of Oncology, Dongguan People's Hospital, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, 523000, Guangdong, China
- Cancer Center, Dongguan People's Hospital, The Tenth Affiliated Hospital of Southern Medical University), Dongguan, 523000, Guangdong, China
| | - Zehong Yang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Xiaotao Jiang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Hong Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Gonghexiheng Street 1, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
2
|
Zhao G, Zhao P, Wang Y, Zhang H, Zhu Y, Zhong J, You W, Shen G, Luo C, Mei O, Wu X, Li J, Shu Y, Wang H, Wagstaff W, Luu HH, Bi Y, Shi LL, Reid RR, He TC, Jiang L, Tang W, Fan J, Tang Z. GAPDH suppresses adenovirus-induced oxidative stress and enables a superfast production of recombinant adenovirus. Genes Dis 2024; 11:101344. [PMID: 39188753 PMCID: PMC11345542 DOI: 10.1016/j.gendis.2024.101344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/15/2024] [Indexed: 08/28/2024] Open
Abstract
Recombinant adenovirus (rAdV) is a commonly used vector system for gene transfer. Efficient initial packaging and subsequent production of rAdV remains time-consuming and labor-intensive, possibly attributable to rAdV infection-associated oxidative stress and reactive oxygen species (ROS) production. Here, we show that exogenous GAPDH expression mitigates adenovirus-induced ROS-associated apoptosis in HEK293 cells, and expedites adenovirus production. By stably overexpressing GAPDH in HEK293 (293G) and 293pTP (293GP) cells, respectively, we demonstrated that rAdV-induced ROS production and cell apoptosis were significantly suppressed in 293G and 293GP cells. Transfection of 293G cells with adenoviral plasmid pAd-G2Luc yielded much higher titers of Ad-G2Luc at day 7 than that in HEK293 cells. Similarly, Ad-G2Luc was amplified more efficiently in 293G than in HEK293 cells. We further showed that transfection of 293GP cells with pAd-G2Luc produced much higher titers of Ad-G2Luc at day 5 than that of 293pTP cells. 293GP cells amplified the Ad-G2Luc much more efficiently than 293pTP cells, indicating that exogenous GAPDH can further augment pTP-enhanced adenovirus production. These results demonstrate that exogenous GAPDH can effectively suppress adenovirus-induced ROS and thus accelerate adenovirus production. Therefore, the engineered 293GP cells represent a superfast rAdV production system for adenovirus-based gene transfer and gene therapy.
Collapse
Affiliation(s)
- Guozhi Zhao
- Departments of Urology, Endocrinology, Orthopedic Surgery, and Gastroenterological Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Departments of Urology, Endocrinology, Orthopedic Surgery, and Gastroenterological Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200000, China
| | - Hui Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing 4000430, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Beijing Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wulin You
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu 214071, China
| | - Guowei Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Benq Medical Center, The Affiliated Benq Hospital of Nanjing Medical University, Nanjing, Jiangsu 210019, China
| | - Changqi Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Yibin Second People's Hospital, Affiliated with West China School of Medicine, Yibin, Sichuan 644000, China
| | - Ou Mei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedics, Jiangxi Hospital of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, China
| | - Xingye Wu
- Departments of Urology, Endocrinology, Orthopedic Surgery, and Gastroenterological Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jingjing Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Oncology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261053, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory of the Pediatric Research Institute, The National Clinical Research Center for Child Health and Disorders, and Ministry of Education Key Laboratory of Child Development and Disorders, the Children's Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Division of Research and Development, Decoding Therapeutics, Inc., Mt Prospect, IL 60056, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yang Bi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Stem Cell Biology and Therapy Laboratory of the Pediatric Research Institute, The National Clinical Research Center for Child Health and Disorders, and Ministry of Education Key Laboratory of Child Development and Disorders, the Children's Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Li Jiang
- Departments of Urology, Endocrinology, Orthopedic Surgery, and Gastroenterological Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Tang
- Departments of Urology, Endocrinology, Orthopedic Surgery, and Gastroenterological Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ziwei Tang
- Departments of Urology, Endocrinology, Orthopedic Surgery, and Gastroenterological Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
3
|
Fang T, Hu S, Song X, Wang J, Zuo R, Yun S, Jiang S, Guo D. Combination of monensin and erlotinib synergistically inhibited the growth and cancer stem cell properties of triple-negative breast cancer by simultaneously inhibiting EGFR and PI3K signaling pathways. Breast Cancer Res Treat 2024; 207:435-451. [PMID: 38958784 DOI: 10.1007/s10549-024-07374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/14/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Cancer stem cells (CSCs) in triple-negative breast cancer (TNBC) are recognized as a highly challenging subset of cells, renowned for their heightened propensity for relapse and unfavorable prognosis. Monensin, an ionophoric antibiotic, has been reported to exhibit significant therapeutic efficacy against various cancers, especially CSCs. Erlotinib is classified as one of the EGFR-TKIs and has been previously identified as a promising therapeutic target for TNBC. Our research aims to assess the effectiveness of combination of monensin and erlotinib as a potential treatment strategy for TNBC. METHODS The combination of monensin and erlotinib was assessed for its potential anticancer activity through various in vitro assays, including cytotoxicity assay, colony formation assay, wound healing assay, transwell assay, mammosphere formation assay, and proportion of CSCs assay. Additionally, an in vivo study using tumor-bearing nude mice was conducted to evaluate the inhibitory effect of the monensin and erlotinib combination on tumor growth. RESULTS The results indicated that combination of monensin with erlotinib synergistically inhibited cell proliferation, the migration rate, the invasion ability and decreased the CSCs proportion, and CSC markers SOX2 and CD133 in vivo and in vitro. Furthermore, the primary proteins involved in the signaling pathways of the EGFR/ERK and PI3K/AKT are simultaneously inhibited by the combination treatment of monensin and erlotinib in vivo and in vitro. CONCLUSIONS The simultaneous inhibition of the EGFR/ERK and PI3K/AKT/mTOR signaling pathways by the combination of monensin and erlotinib exhibited a synergistic effect on suppressing tumor proliferation and cancer cell stemness in TNBC.
Collapse
Affiliation(s)
- Tian Fang
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Department of Comparative Medicine, Affiliated Hospital of Medicine School, Nanjing Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Shiheng Hu
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xinhao Song
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Junqi Wang
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Runan Zuo
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Shifeng Yun
- Department of Comparative Medicine, Affiliated Hospital of Medicine School, Nanjing Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Shanxiang Jiang
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| | - Dawei Guo
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
4
|
Lee ZY, Lee WH, Lim JS, Ali AAA, Loo JSE, Wibowo A, Mohammat MF, Foo JB. Golgi apparatus targeted therapy in cancer: Are we there yet? Life Sci 2024; 352:122868. [PMID: 38936604 DOI: 10.1016/j.lfs.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Membrane trafficking within the Golgi apparatus plays a pivotal role in the intracellular transportation of lipids and proteins. Dysregulation of this process can give rise to various pathological manifestations, including cancer. Exploiting Golgi defects, cancer cells capitalise on aberrant membrane trafficking to facilitate signal transduction, proliferation, invasion, immune modulation, angiogenesis, and metastasis. Despite the identification of several molecular signalling pathways associated with Golgi abnormalities, there remains a lack of approved drugs specifically targeting cancer cells through the manipulation of the Golgi apparatus. In the initial section of this comprehensive review, the focus is directed towards delineating the abnormal Golgi genes and proteins implicated in carcinogenesis. Subsequently, a thorough examination is conducted on the impact of these variations on Golgi function, encompassing aspects such as vesicular trafficking, glycosylation, autophagy, oxidative mechanisms, and pH alterations. Lastly, the review provides a current update on promising Golgi apparatus-targeted inhibitors undergoing preclinical and/or clinical trials, offering insights into their potential as therapeutic interventions. Significantly more effort is required to advance these potential inhibitors to benefit patients in clinical settings.
Collapse
Affiliation(s)
- Zheng Yang Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Wen Hwei Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jing Sheng Lim
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Afiqah Ali Ajmel Ali
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Agustono Wibowo
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Pahang, Jengka Campus, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
5
|
Arachchige DL, Dwivedi SK, Olowolagba AM, Peters J, Beatty AC, Guo A, Wang C, Werner T, Luck RL, Liu H. Dynamic insights into mitochondrial function: Monitoring viscosity and SO 2 levels in living cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112986. [PMID: 39084140 PMCID: PMC11419399 DOI: 10.1016/j.jphotobiol.2024.112986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024]
Abstract
Mitochondria, central organelles pivotal for eukaryotic cell function, extend their influence beyond ATP production, encompassing roles in apoptosis, calcium signaling, and biosynthesis. Recent studies spotlight two emerging determinants of mitochondrial functionality: intramitochondrial viscosity and sulfur dioxide (SO2) levels. While optimal mitochondrial viscosity governs molecular diffusion and vital processes like oxidative phosphorylation, aberrations are linked with neurodegenerative conditions, diabetes, and cancer. Similarly, SO2, a gaseous signaling molecule, modulates energy pathways and oxidative stress responses; however, imbalances lead to cytotoxic sulfite and bisulfite accumulation, triggering disorders such as cancer and cardiovascular anomalies. Our research focused on development of a dual-channel fluorescent probe, applying electron-withdrawing acceptors within a coumarin dye matrix, facilitating monitoring of mitochondrial viscosity and SO2 in live cells. This probe distinguishes fluorescence peaks at 650 nm and 558 nm, allowing ratiometric quantification of SO2 without interference from other sulfur species. Moreover, it enables near-infrared viscosity determination, particularly within mitochondria. The investigation employed theoretical calculations utilizing Density Functional Theory (DFT) methods to ascertain molecular geometries and calculate rotational energies. Notably, the indolium segment of the probe exhibited the lowest rotational energy, quantified at 7.38 kcals/mol. The probe featured heightened mitochondrial viscosity dynamics when contained within HeLa cells subjected to agents like nystatin, monensin, and bacterial lipopolysaccharide (LPS). Overall, our innovative methodology elucidates intricate mitochondrial factors, presenting transformative insights into cellular energetics, redox homeostasis, and therapeutic avenues for mitochondrial-related disorders.
Collapse
Affiliation(s)
- Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America.
| | - Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Joseph Peters
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Ashlyn Colleen Beatty
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Alicia Guo
- Trinity School at River Ridge/Eagan, St Paul, MN 55121, United States of America
| | - Crystal Wang
- Houghton High School, 1603 Gundlach Rd, Houghton, MI 49931, United States of America
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America.
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States of America; Health Research Institute, Michigan Technological University, Houghton, MI 49931, United States of America.
| |
Collapse
|
6
|
Satou M, Wang J, Nakano-Tateno T, Teramachi M, Aoki S, Sugimoto H, Chik C, Tateno T. Autophagy inhibition suppresses hormone production and cell growth in pituitary tumor cells: A potential approach to pituitary tumors. Mol Cell Endocrinol 2024; 586:112196. [PMID: 38462123 DOI: 10.1016/j.mce.2024.112196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Pituitary tumors (PTs) represent about 10% of all intracranial tumors, and most are benign. However, some PTs exhibit continued growth despite multimodal therapies. Although temozolomide (TMZ), an alkylating chemotherapeutic agent, is a first-line medical treatment for aggressive PTs, some PTs are resistant to TMZ. Existing literature indicated the involvement of autophagy in cell growth in several types of tumors, including PTs, and autophagy inhibitors have anti-tumor effects. In this study, the expression of several autophagy-inducible genes, including Atg3, Beclin1, Map1lc3A, Map1lc3b, Ulk1, Wipi2, and Tfe3 in two PT cell lines, the mouse corticotroph AtT-20 cells and the rat mammosomatotroph GH4 cells were identified. Down regulation of Tfe3, a master switch of basal autophagy, using RNA interference, suppressed cell proliferation in AtT-20 cells, suggesting basal autophagy contributes to the maintenance of cellular functions in PT cells. Expectedly, treatment with bafilomycin A1, an autophagy inhibitor, suppressed cell proliferation, increased the cleavage of PARP1, and reduced ACTH production in AtT-20 cells. Treatment with two additional autophagy inhibitors, chloroquine (CQ) and monensin, demonstrated similar effects on cell proliferation, apoptosis, and ACTH production in AtT-20 cells. Also, treatment with CQ suppressed cell proliferation and growth hormone production in GH4 cells. Moreover, the combination of CQ and TMZ had an additive effect on the inhibition of cell proliferation in AtT-20 and GH4 cells. The additive effect of anti-cancer drugs such as CQ alone or in combination with TMZ may represent a novel therapeutic approach for PTs, in particular tumors with resistance to TMZ.
Collapse
Affiliation(s)
- Motoyasu Satou
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Jason Wang
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Tae Nakano-Tateno
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Mariko Teramachi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Constance Chik
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Toru Tateno
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
7
|
Fletcher KA, Alkurashi MH, Lindsay AJ. Endosomal recycling inhibitors downregulate estrogen receptor-alpha and synergise with endocrine therapies. Breast Cancer Res Treat 2024; 204:631-642. [PMID: 38228924 PMCID: PMC10959794 DOI: 10.1007/s10549-023-07225-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
PURPOSE Breast cancer (BC) accounts for roughly 30% of new cancers diagnosed in women each year; thus, this cancer type represents a substantial burden for people and health care systems. Despite the existence of effective therapies to treat BC, drug resistance remains a problem and is a major cause of treatment failure. Therefore, new drugs and treatment regimens are urgently required to overcome resistance. Recent research indicates that inhibition of the endosomal recycling pathway, an intracellular membrane trafficking pathway that returns endocytosed proteins back to the plasma membrane, may be a promising strategy to downregulate clinically relevant cell surface proteins such as HER2 and HER3, and to overcome drug resistance. METHODS To investigate the molecular mechanism of action of an endosomal recycling inhibitor (ERI) called primaquine, we performed a reverse-phase protein array (RPPA) assay using a HER2-positive breast cancer cell line. The RPPA findings were confirmed by Western blot and RT-qPCR in several BC cell lines. Novel drug combinations were tested by MTT cell viability and clonogenic assays. RESULTS Among the signalling molecules downregulated by ERIs were estrogen receptor-alpha (ER-α) and androgen receptor. We confirmed this finding in other breast cancer cell lines and show that downregulation occurs at the transcriptional level. We also found that ERIs synergise with tamoxifen, a standard-of-care therapy for breast cancer. DISCUSSION Our data suggest that combining ERIs with hormone receptor antagonists may enhance their efficacy and reduce the emergence of drug resistance.
Collapse
Affiliation(s)
- Kelsey A Fletcher
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - Mai H Alkurashi
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - Andrew J Lindsay
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland.
| |
Collapse
|
8
|
Ruskin J, Sachs RK, Wang M, Dekeyser R, Lew Z, Williams P, Hwang H, Majumdar A, Dudding T, Lectka T. Metal Ion-Induced Large Fragment Deactivation: A Different Strategy for Site-Selectivity in a Complex Molecule. Angew Chem Int Ed Engl 2024; 63:e202317070. [PMID: 38063469 DOI: 10.1002/anie.202317070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 12/23/2023]
Abstract
Complex natural product functionalizations generally involve the use of highly engineered reagents, catalysts, or enzymes to react exclusively at a desired site through lowering of a select transition state energy. In this communication, we report a new, complementary strategy in which all transition states representing undesirable sites in a complex ionophore substrate are simultaneously energetically increased through the chelation of a metal ion to the large fragment we wish to neutralize. In the case of an electrophilic, radical based fluorination reaction, charge repulsion (electric field effects), induced steric effects, and electron withdrawal provide the necessary deactivation and proof of principle to afford a highly desirable natural product derivative. We envisage that many other electrophilic or charge based synthetic methods may be amenable to this approach as well.
Collapse
Affiliation(s)
- Jonah Ruskin
- Department of Chemistry, Johns Hopkins University, 3400N. Charles St, Baltimore, MD 21218, USA
| | - Roseann K Sachs
- Department of Chemistry and Biochemistry, Messiah University, One University Avenue, Mechanicsburg, PA 17055, USA
| | - Muyuan Wang
- Department of Chemistry, Johns Hopkins University, 3400N. Charles St, Baltimore, MD 21218, USA
| | - Roxanne Dekeyser
- Department of Chemistry, Brock University, St. Catharines, Ontario, L2S3A1, Canada
| | - Zachary Lew
- Department of Chemistry, Johns Hopkins University, 3400N. Charles St, Baltimore, MD 21218, USA
| | - Phoebe Williams
- Department of Chemistry, Johns Hopkins University, 3400N. Charles St, Baltimore, MD 21218, USA
| | - Habin Hwang
- Department of Chemistry, Johns Hopkins University, 3400N. Charles St, Baltimore, MD 21218, USA
| | - Ananya Majumdar
- Department of Chemistry, Johns Hopkins University, 3400N. Charles St, Baltimore, MD 21218, USA
| | - Travis Dudding
- Department of Chemistry, Brock University, St. Catharines, Ontario, L2S3A1, Canada
| | - Thomas Lectka
- Department of Chemistry, Johns Hopkins University, 3400N. Charles St, Baltimore, MD 21218, USA
| |
Collapse
|
9
|
Fletcher KA, Alkurashi MH, Lindsay AJ. Endosomal recycling inhibitors downregulate the androgen receptor and synergise with enzalutamide. Invest New Drugs 2024; 42:14-23. [PMID: 37957513 DOI: 10.1007/s10637-023-01407-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Prostate cancer is the second most frequent cancer diagnosed in men, and accounts for one-fifth of cancer associated deaths worldwide. Despite the availability of effective prostate cancer therapies, if it is not cured by radical local treatment, progression to drug resistant metastatic prostate cancer is inevitable. Therefore, new drugs and treatment regimens are urgently required to overcome resistance. We have recently published research demonstrating that targeting the endosomal recycling pathway, a membrane transport pathway that recycles internalised cell surface proteins back to the plasma membrane, may be a novel means to downregulate clinically relevant cell surface proteins and potentially overcome drug resistance. A reverse phase protein array (RPPA) assay of breast cancer cells treated with an endosomal recycling inhibitor identified the androgen receptor (AR) as one of the top downregulated proteins. We confirmed that endosomal recycling inhibitors also downregulated AR in prostate cancer cells and show that this occurs at the transcriptional level. We also found that endosomal recycling inhibitors synergise with enzalutamide, a standard-of-care therapy for prostate cancer. Our data suggest that combining recycling inhibitors with hormone receptor antagonists may enhance their efficacy and reduce the emergence of drug resistance.
Collapse
Affiliation(s)
- Kelsey A Fletcher
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - Mai H Alkurashi
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - Andrew J Lindsay
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland.
| |
Collapse
|
10
|
Giurini EF, Godla A, Gupta KH. Redefining bioactive small molecules from microbial metabolites as revolutionary anticancer agents. Cancer Gene Ther 2024; 31:187-206. [PMID: 38200347 PMCID: PMC10874892 DOI: 10.1038/s41417-023-00715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
Cancer treatment remains a significant challenge due to issues such as acquired resistance to conventional therapies and the occurrence of adverse treatment-related toxicities. In recent years, researchers have turned their attention to the microbial world in search of novel and effective drugs to combat this devastating disease. Microbial derived secondary metabolites have proven to be a valuable source of biologically active compounds, which exhibit diverse functions and have demonstrated potential as treatments for various human diseases. The exploration of these compounds has provided valuable insights into their mechanisms of action against cancer cells. In-depth studies have been conducted on clinically established microbial metabolites, unraveling their anticancer properties, and shedding light on their therapeutic potential. This review aims to comprehensively examine the anticancer mechanisms of these established microbial metabolites. Additionally, it highlights the emerging therapies derived from these metabolites, offering a glimpse into the immense potential they hold for anticancer drug discovery. Furthermore, this review delves into approved treatments and major drug candidates currently undergoing clinical trials, focusing on specific molecular targets. It also addresses the challenges and issues encountered in the field of anticancer drug research and development. It also presents a comprehensive exposition of the contemporary panorama concerning microbial metabolites serving as a reservoir for anticancer agents, thereby illuminating their auspicious prospects and the prospect of forthcoming strides in the domain of cancer therapeutics.
Collapse
Affiliation(s)
- Eileena F Giurini
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Aishvarya Godla
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Kajal H Gupta
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, IL, 60612, USA.
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
11
|
Fatemi N, Karimpour M, Bahrami H, Zali MR, Chaleshi V, Riccio A, Nazemalhosseini-Mojarad E, Totonchi M. Current trends and future prospects of drug repositioning in gastrointestinal oncology. Front Pharmacol 2024; 14:1329244. [PMID: 38239190 PMCID: PMC10794567 DOI: 10.3389/fphar.2023.1329244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Gastrointestinal (GI) cancers comprise a significant number of cancer cases worldwide and contribute to a high percentage of cancer-related deaths. To improve survival rates of GI cancer patients, it is important to find and implement more effective therapeutic strategies with better prognoses and fewer side effects. The development of new drugs can be a lengthy and expensive process, often involving clinical trials that may fail in the early stages. One strategy to address these challenges is drug repurposing (DR). Drug repurposing is a developmental strategy that involves using existing drugs approved for other diseases and leveraging their safety and pharmacological data to explore their potential use in treating different diseases. In this paper, we outline the existing therapeutic strategies and challenges associated with GI cancers and explore DR as a promising alternative approach. We have presented an extensive review of different DR methodologies, research efforts and examples of repurposed drugs within various GI cancer types, such as colorectal, pancreatic and liver cancers. Our aim is to provide a comprehensive overview of employing the DR approach in GI cancers to inform future research endeavors and clinical trials in this field.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Karimpour
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoda Bahrami
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Chaleshi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Totonchi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
12
|
Fu B, Fang L, Wang R, Zhang X. Inhibition of Wnt/β-catenin signaling by monensin in cervical cancer. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:21-30. [PMID: 38154961 PMCID: PMC10762490 DOI: 10.4196/kjpp.2024.28.1.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/19/2023] [Accepted: 10/15/2023] [Indexed: 12/30/2023]
Abstract
The challenging clinical outcomes associated with advanced cervical cancer underscore the need for a novel therapeutic approach. Monensin, a polyether antibiotic, has recently emerged as a promising candidate with anti-cancer properties. In line with these ongoing efforts, our study presents compelling evidence of monensin's potent efficacy in cervical cancer. Monensin exerts a pronounced inhibitory impact on proliferation and anchorage-independent growth. Additionally, monensin significantly inhibited cervical cancer growth in vivo without causing any discernible toxicity in mice. Mechanism studies show that monensin's anti-cervical cancer activity can be attributed to its capacity to inhibit the Wnt/β-catenin pathway, rather than inducing oxidative stress. Monensin effectively reduces both the levels and activity of β-catenin, and we identify Akt, rather than CK1, as the key player involved in monensin-mediated Wnt/β-catenin inhibition. Rescue studies using Wnt activator and β-catenin-overexpressing cells confirmed that β-catenin inhibition is the mechanism of monensin's action. As expected, cervical cancer cells exhibiting heightened Wnt/β-catenin activity display increased sensitivity to monensin treatment. In conclusion, our findings provide pre-clinical evidence that supports further exploration of monensin's potential for repurposing in cervical cancer therapy, particularly for patients exhibiting aberrant Wnt/β-catenin activation.
Collapse
Affiliation(s)
- Bingbing Fu
- Department of Obstetrics and Gynaecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China
| | - Lixia Fang
- Department of Obstetrics and Gynaecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China
| | - Ranran Wang
- Department of Obstetrics and Gynaecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China
| | - Xueling Zhang
- Department of Obstetrics and Gynaecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China
| |
Collapse
|
13
|
Outman A, Bouhrim M, Hountondji C, Noman OM, Alqahtani AS, Gressier B, Nedjar N, Eto B. Obtaining New Candidate Peptides for Biological Anticancer Drugs from Enzymatic Hydrolysis of Human and Bovine Hemoglobin. Int J Mol Sci 2023; 24:15383. [PMID: 37895063 PMCID: PMC10607105 DOI: 10.3390/ijms242015383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Enzymatic hydrolysis of bovine and human hemoglobin generates a diversity of bioactive peptides, mainly recognized for their antimicrobial properties. However, antimicrobial peptides stand out for their ability to specifically target cancer cells while preserving rapidly proliferating healthy cells. This study focuses on the production of bioactive peptides from hemoglobin and evaluates their anticancer potential using two distinct approaches. The first approach is based on the use of a rapid screening method aimed at blocking host cell protein synthesis to evaluate candidate anticancer peptides, using Lepidium sativum seed germination as an indicator. The results show that: (1) The degree of hydrolysis (DH) significantly influences the production of bioactive peptides. DH levels of 3 to 10% produce a considerably stronger inhibition of radicle growth than DH 0 (the native form of hemoglobin), with an intensity three to four times greater. (2) Certain peptide fractions of bovine hemoglobin have a higher activity than those of human hemoglobin. (3) The structural characteristics of peptides (random coil or alpha helix) play a crucial role in the biological effects observed. (4) The α137-141 peptide, the target of the study, was the most active of the fractions obtained from bovine hemoglobin (IC50 = 29 ± 1 µg/mL) and human hemoglobin (IC50 = 48 ± 2 µg/mL), proving to be 10 to 15 times more potent than the other hemoglobin fractions, attributed to its strong antimicrobial potential. The second approach to assessing anticancer activity is based on the preliminary in vitro analysis of hydrolysates and their peptide fractions, with a focus on the eL42 protein. This protein is of major interest due to its overexpression in all cancer cells, making it an attractive potential target for the development of anticancer molecules. With this in mind, astudy was undertaken using a method for labeling formylase (formyl-methionyl-tRNA transformylase (FMTS)) with oxidized tRNA. This approach was chosen because of the similarities in the interaction between formylase and the eL42 protein with oxidized tRNA. The results obtained not only confirmed the previous conclusions but also reinforced the hypothesis that the inhibition of protein synthesis plays a key role in the anticancer mechanism of these peptides. Indeed, the data suggest that samples containing α137-141 peptide (NKT) and total hydrolysates may have modulatory effects on the interaction between FMTS and oxidized tRNA. This observation highlights the possibility that the latter could influence molecular binding mechanisms, potentially resulting in a competitive situation where the ability of substrate tRNA to bind efficiently to ribosomal protein is compromised in their presence. Ultimately, these results suggest the feasibility of obtaining candidate peptides for biological anticancer drugs from both human and bovine hemoglobin sources. These scientific advances show new hope in the fight against cancer, which affects a large number of people around the world.
Collapse
Affiliation(s)
- Ahlam Outman
- Laboratories TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, 3, rue du Professeur Laguesse, B.P. 83, 59000 Lille, France; (A.O.); (M.B.)
- UMR Transfrontalière BioEcoAgro N_1158, Institut Charles Viollette, National Research Institute for Agriculture, Food and the Environment-Université Liège, UPJV, YNCREA, Université Artois, Université Littoral Côte d’Opale, Université Lille, 59000 Lille, France
| | - Mohamed Bouhrim
- Laboratories TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, 3, rue du Professeur Laguesse, B.P. 83, 59000 Lille, France; (A.O.); (M.B.)
| | - Codjo Hountondji
- Laboratoire Enzymologie de l’ARN (UR6-UPMC), Université Paris Sorbonne, 75252 Paris, France;
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saudi University, P.O. Box 2457, Riyadh 11451, Saudi Arabia (A.S.A.)
| | - Ali S. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saudi University, P.O. Box 2457, Riyadh 11451, Saudi Arabia (A.S.A.)
| | - Bernard Gressier
- Laboratory of Pharmacology, Pharmacokinetics, and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, University of Lille, 3, rue du Professeur Laguesse, B.P. 83, 59000 Lille, France;
| | - Naïma Nedjar
- UMR Transfrontalière BioEcoAgro N_1158, Institut Charles Viollette, National Research Institute for Agriculture, Food and the Environment-Université Liège, UPJV, YNCREA, Université Artois, Université Littoral Côte d’Opale, Université Lille, 59000 Lille, France
| | - Bruno Eto
- Laboratories TBC, Laboratory of Pharmacology, Pharmacokinetics and Clinical Pharmacy, Faculty of Pharmacy, University of Lille, 3, rue du Professeur Laguesse, B.P. 83, 59000 Lille, France; (A.O.); (M.B.)
| |
Collapse
|
14
|
Zhang X, Chen J, Xi B, Liu Y, Wang S, Gu L, Zhao H, Tao L, Hua Y, Wang Y, Chen M. Agrimoniin is a dual inhibitor of AKT and ERK pathways that inhibit pancreatic cancer cell proliferation. Phytother Res 2023; 37:4076-4091. [PMID: 37156642 DOI: 10.1002/ptr.7867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/08/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Molecular-targeted therapy has shown its effectiveness in pancreatic cancer, while single-targeted drug often cannot provide long-term benefit because of drug resistance. Fortunately, multitarget combination therapy can reverse drug resistance and achieve better efficacy. The typical treatment characteristics of traditional Chinese medicine monomer on tumor are multiple targets, with small side effects, low toxicity, and so forth. Agrimoniin has been reported to be effective on some cancers, while the mechanism still needs to be clarified. In this study, we used 5-ethynyl-2'-deoxyuridine, cell counting kit-8, flow cytometry, and western blot experiments to confirm that agrimoniin can significantly inhibit the proliferation of pancreatic cancer cell PANC-1 by inducing apoptosis and cell cycle arrest. In addition, by using SC79, LY294002 (the agonist or inhibitor of AKT pathway), and U0126 (the inhibitor of ERK pathway), we found that agrimoniin inhibited cell proliferation by simultaneously inhibiting AKT and ERK pathways. Moreover, agrimoniin could significantly increase the inhibitory effect of LY294002 and U0126 on pancreatic cancer cells. Meanwhile, in vivo experiments also supported the above results. In general, agrimoniin is a double-target inhibitor of AKT and ERK pathways in pancreatic cancer cells; it is expected to be used as a resistance reversal agent of targeted drugs or a synergistic drug of the inhibitor of AKT pathway or ERK pathway.
Collapse
Affiliation(s)
- Xiongfei Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianping Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Beili Xi
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yutong Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shaojun Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Gu
- College of Traditional Chinese Medicine & Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huanhuan Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Tao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Hua
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Wang
- Endoscopy Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meijuan Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
15
|
Yadav S, Shah D, Dalai P, Agrawal-Rajput R. The tale of antibiotics beyond antimicrobials: Expanding horizons. Cytokine 2023; 169:156285. [PMID: 37393846 DOI: 10.1016/j.cyto.2023.156285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/02/2023] [Accepted: 06/24/2023] [Indexed: 07/04/2023]
Abstract
Antibiotics had proved to be a godsend for mankind since their discovery. They were once the magical solution to the vexing problem of infection-related deaths. German scientist Paul Ehrlich had termed salvarsan as the silver bullet to treatsyphilis.As time passed, the magic of newly discovered silver bullets got tarnished with raging antibiotic resistance among bacteria and associated side-effects. Still, antibiotics remain the primary line of treatment for bacterial infections. Our understanding of their chemical and biological activities has increased immensely with advancement in the research field. Non-antibacterial effects of antibiotics are studied extensively to optimise their safer, broad-range use. These non-antibacterial effects could be both useful and harmful to us. Various researchers across the globe including our lab are studying the direct/indirect effects and molecular mechanisms behind these non-antibacterial effects of antibiotics. So, it is interesting for us to sum up the available literature. In this review, we have briefed the possible reason behind the non-antibacterial effects of antibiotics, owing to the endosymbiotic origin of host mitochondria. We further discuss the physiological and immunomodulatory effects of antibiotics. We then extend the review to discuss molecular mechanisms behind the plausible use of antibiotics as anticancer agents.
Collapse
Affiliation(s)
- Shivani Yadav
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India
| | - Dhruvi Shah
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India
| | - Parmeswar Dalai
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India.
| |
Collapse
|
16
|
Serter Kocoglu S, Oy C, Secme M, Sunay FB. Investigation of the anticancer mechanism of monensin via apoptosis-related factors in SH-SY5Y neuroblastoma cells. Clin Transl Sci 2023; 16:1725-1735. [PMID: 37477356 PMCID: PMC10499413 DOI: 10.1111/cts.13593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023] Open
Abstract
Monensin is an ionophore antibiotic that inhibits the growth of cancer cells. The aim of this study was to investigate the apoptosis-mediated anticarcinogenic effects of monensin in SH-SY5Y neuroblastoma cells. The effects of monensin on cell viability, invasion, migration, and colony formation were determined by XTT, matrigel-chamber, wound healing, and colony formation tests, respectively. The effects of monensin on apoptosis were determined by real-time polymerase chain reaction, TUNEL, Western blot, and Annexin V assay. We have shown that monensin suppresses neuroblastoma cell viability, invasion, migration, and colony formation. Moreover, we reported that monensin inhibits cell viability by triggering apoptosis of neuroblastoma cells. Monensin caused apoptosis by increasing caspase-3, 7, 8, and 9 expressions and decreasing Bax and Bcl-2 expressions in neuroblastoma cells. In Annexin V results, the rates of apoptotic cells were found to be 9.66 ± 0.01% (p < 0.001), 29.28 ± 0.88% (p < 0.01), and 62.55 ± 2.36% (p < 0.01) in the 8, 16, and 32 μM monensin groups, respectively. In TUNEL results, these values were, respectively; 35 ± 2% (p < 0.001), 34 ± 0.57% (p < 0.001), and 75 ± 2.51% (p < 0.001). Our results suggest that monensin may be a safe and effective therapeutic candidate for treating pediatric neuroblastoma.
Collapse
Affiliation(s)
- Sema Serter Kocoglu
- Department of Histology and EmbryologySchool of Medicine, Balikesir UniversityBalikesirTurkey
| | - Ceren Oy
- Department of Histology and EmbryologySchool of Medicine, Bursa Uludag UniversityBursaTurkey
| | - Mücahit Secme
- Department of Medical BiologySchool of Medicine, Ordu UniversityDenizliTurkey
| | - F. Bahar Sunay
- Department of Histology and EmbryologySchool of Medicine, Balikesir UniversityBalikesirTurkey
| |
Collapse
|
17
|
Guo F, Kan K, Rückert F, Rückert W, Li L, Eberhard J, May T, Sticht C, Dirks WG, Reißfelder C, Pallavi P, Keese M. Comparison of Tumour-Specific Phenotypes in Human Primary and Expandable Pancreatic Cancer Cell Lines. Int J Mol Sci 2023; 24:13530. [PMID: 37686338 PMCID: PMC10488093 DOI: 10.3390/ijms241713530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
There is an ongoing need for patient-specific chemotherapy for pancreatic cancer. Tumour cells isolated from human tissues can be used to predict patients' response to chemotherapy. However, the isolation and maintenance of pancreatic cancer cells is challenging because these cells become highly vulnerable after losing the tumour microenvironment. Therefore, we investigated whether the cells retained their original characteristics after lentiviral transfection and expansion. Three human primary pancreatic cancer cell lines were lentivirally transduced to create expandable (Ex) cells which were then compared with primary (Pri) cells. No obvious differences in the morphology or epithelial-mesenchymal transition (EMT) were observed between the primary and expandable cell lines. The two expandable cell lines showed higher proliferation rates in the 2D and 3D models. All three expandable cell lines showed attenuated migratory ability. Differences in gene expression between primary and expandable cell lines were then compared using RNA-Seq data. Potential target drugs were predicted by differentially expressed genes (DEGs), and differentially expressed pathways (DEPs) related to tumour-specific characteristics such as proliferation, migration, EMT, drug resistance, and reactive oxygen species (ROS) were investigated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We found that the two expandable cell lines expressed similar chemosensitivity and redox-regulatory capability to gemcitabine and oxaliplatin in the 2D model as compared to their counterparts. In conclusion, we successfully generated expandable primary pancreatic cancer cell lines using lentiviral transduction. These expandable cells not only retain some tumour-specific biological traits of primary cells but also show an ongoing proliferative capacity, thereby yielding sufficient material for drug response assays, which may provide a patient-specific platform for chemotherapy drug screening.
Collapse
Affiliation(s)
- Feng Guo
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
| | - Kejia Kan
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
- European Center of Angioscience ECAS, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Felix Rückert
- Surgical Department, Diakonissen Krankenhaus Speyer, 67346 Speyer, Germany;
| | - Wolfgang Rückert
- Ingenieurbüro Dr. Ing. Rückert Data Analysis, Kirchweg 4, 57647 Nistertal, Germany;
| | - Lin Li
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
- European Center of Angioscience ECAS, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Johannes Eberhard
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
| | - Tobias May
- InSCREENeX GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany;
| | - Carsten Sticht
- Next Generation Sequencing Core Facility, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Wilhelm G. Dirks
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, 38124 Braunschweig, Germany;
| | - Christoph Reißfelder
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
| | - Prama Pallavi
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (F.G.); (K.K.); (L.L.); (J.E.); (C.R.)
- European Center of Angioscience ECAS, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Michael Keese
- European Center of Angioscience ECAS, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Department of Vascular Surgery, Theresienkrankenhaus, 68165 Mannheim, Germany
| |
Collapse
|
18
|
Chiem K, Nogales A, Lorenzo M, Morales Vasquez D, Xiang Y, Gupta YK, Blasco R, de la Torre JC, Martínez-Sobrido L. Identification of In Vitro Inhibitors of Monkeypox Replication. Microbiol Spectr 2023; 11:e0474522. [PMID: 37278625 PMCID: PMC10434227 DOI: 10.1128/spectrum.04745-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/16/2023] [Indexed: 06/07/2023] Open
Abstract
Monkeypox virus (MPXV) infections in humans have historically been restricted to regions of endemicity in Africa. However, in 2022, an alarming number of MPXV cases were reported globally, with evidence of person-to-person transmission. Because of this, the World Health Organization (WHO) declared the MPXV outbreak a public health emergency of international concern. The supply of MPXV vaccines is limited, and only two antivirals, tecovirimat and brincidofovir, approved by the U.S. Food and Drug Administration (FDA) for the treatment of smallpox, are currently available for the treatment of MPXV infection. Here, we evaluated 19 compounds previously shown to inhibit different RNA viruses for their ability to inhibit orthopoxvirus infections. We first used recombinant vaccinia virus (rVACV) expressing fluorescence (mScarlet or green fluorescent protein [GFP]) and luciferase (Nluc) reporter genes to identify compounds with antiorthopoxvirus activity. Seven compounds from the ReFRAME library (antimycin A, mycophenolic acid, AVN-944, pyrazofurin, mycophenolate mofetil, azaribine, and brequinar) and six compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) showed inhibitory activity against rVACV. Notably, the anti-VACV activity of some of the compounds in the ReFRAME library (antimycin A, mycophenolic acid, AVN-944, mycophenolate mofetil, and brequinar) and all the compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) were confirmed with MPXV, demonstrating their inhibitory activity in vitro against two orthopoxviruses. IMPORTANCE Despite the eradication of smallpox, some orthopoxviruses remain important human pathogens, as exemplified by the recent 2022 monkeypox virus (MPXV) outbreak. Although smallpox vaccines are effective against MPXV, access to those vaccines is limited. In addition, current antiviral treatment against MPXV infections is limited to the use of the FDA-approved drugs tecovirimat and brincidofovir. Thus, there is an urgent need to identify novel antivirals for the treatment of MPXV infection and other potentially zoonotic orthopoxvirus infections. Here, we show that 13 compounds, derived from two different libraries, previously found to inhibit several RNA viruses, also inhibit VACV. Notably, 11 compounds also displayed inhibitory activity against MPXV.
Collapse
Affiliation(s)
- Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Aitor Nogales
- Animal Health Research Centre, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Maria Lorenzo
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | | | - Yan Xiang
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yogesh K. Gupta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Rafael Blasco
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
19
|
Huang L, Zhang J, Deng Y, Wang H, Zhao P, Zhao G, Zeng W, Wang Y, Chen C, Wagstaff W, Haydon RC, Reid RR, He TC, Shen L, Luu HH, Zhao L. Niclosamide (NA) overcomes cisplatin resistance in human ovarian cancer. Genes Dis 2023; 10:1687-1701. [PMID: 37397523 PMCID: PMC10311098 DOI: 10.1016/j.gendis.2022.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/08/2022] [Accepted: 12/04/2022] [Indexed: 01/03/2023] Open
Abstract
Ovarian cancer (OC) is one of the most lethal malignancies of the female reproductive system. OC patients are usually diagnosed at advanced stages due to the lack of early diagnosis. The standard treatment for OC includes a combination of debulking surgery and platinum-taxane chemotherapy, while several targeted therapies have recently been approved for maintenance treatment. The vast majority of OC patients relapse with chemoresistant tumors after an initial response. Thus, there is an unmet clinical need to develop new therapeutic agents to overcome the chemoresistance of OC. The anti-parasite agent niclosamide (NA) has been repurposed as an anti-cancer agent and exerts potent anti-cancer activities in human cancers including OC. Here, we investigated whether NA could be repurposed as a therapeutic agent to overcome cisplatin-resistant (CR) in human OC cells. To this end, we first established two CR lines SKOV3CR and OVCAR8CR that exhibit the essential biological characteristics of cisplatin resistance in human cancer. We showed that NA inhibited cell proliferation, suppressed cell migration, and induced cell apoptosis in both CR lines at a low micromole range. Mechanistically, NA inhibited multiple cancer-related pathways including AP1, ELK/SRF, HIF1, and TCF/LEF, in SKOV3CR and OVCAR8CR cells. NA was further shown to effectively inhibit xenograft tumor growth of SKOV3CR cells. Collectively, our findings strongly suggest that NA may be repurposed as an efficacious agent to combat cisplatin resistance in chemoresistant human OC, and further clinical trials are highly warranted.
Collapse
Affiliation(s)
- Linjuan Huang
- Departments of Obstetrics and Gynecology, Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400046, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jing Zhang
- Departments of Obstetrics and Gynecology, Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400046, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Youling Deng
- Departments of Obstetrics and Gynecology, Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400046, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Departments of Obstetrics and Gynecology, Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400046, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Guozhi Zhao
- Departments of Obstetrics and Gynecology, Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400046, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The Second Affiliated Hospital of Jianghan University, Wuhan, Hubei 430050, China
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ling Zhao
- Departments of Obstetrics and Gynecology, Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400046, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
20
|
Petkov N, Pantcheva I, Ivanova A, Stoyanova R, Kukeva R, Alexandrova R, Abudalleh A, Dorkov P. Novel Cerium(IV) Coordination Compounds of Monensin and Salinomycin. Molecules 2023; 28:4676. [PMID: 37375231 DOI: 10.3390/molecules28124676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The largely uncharted complexation chemistry of the veterinary polyether ionophores, monensic and salinomycinic acids (HL) with metal ions of type M4+ and the known antiproliferative potential of antibiotics has provoked our interest in exploring the coordination processes between MonH/SalH and ions of Ce4+. (1) Methods: Novel monensinate and salinomycinate cerium(IV)-based complexes were synthesized and structurally characterized by elemental analysis, a plethora of physicochemical methods, density functional theory, molecular dynamics, and biological assays. (2) Results: The formation of coordination species of a general composition [CeL2(OH)2] and [CeL(NO3)2(OH)], depending on reaction conditions, was proven both experimentally and theoretically. The metal(IV) complexes [CeL(NO3)2(OH)] possess promising cytotoxic activity against the human tumor uterine cervix (HeLa) cell line, being highly selective (non-tumor embryo Lep-3 vs. HeLa) compared to cisplatin, oxaliplatin, and epirubicin.
Collapse
Affiliation(s)
- Nikolay Petkov
- Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1164 Sofia, Bulgaria
| | - Ivayla Pantcheva
- Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1164 Sofia, Bulgaria
| | - Anela Ivanova
- Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1164 Sofia, Bulgaria
| | - Radostina Stoyanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Rositsa Kukeva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Radostina Alexandrova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Abedullkader Abudalleh
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Petar Dorkov
- Research and Development Department, Biovet Ltd., 4550 Peshtera, Bulgaria
| |
Collapse
|
21
|
Serter Kocoglu S, Sunay FB, Akkaya PN. Effects of Monensin and Rapamycin Combination Therapy on Tumor Growth and Apoptosis in a Xenograft Mouse Model of Neuroblastoma. Antibiotics (Basel) 2023; 12:995. [PMID: 37370314 DOI: 10.3390/antibiotics12060995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Neuroblastoma is the most common pediatric solid tumor originating from the neural crest. New treatment options are needed to improve treatment outcomes and the survival of patients with neuroblastoma. Monensin is an ionophore antibiotic with antiparasitic, antibacterial, and anticancer properties isolated from Streptomyces cinnamonensis. The aim of this study was to investigate the therapeutic effects of single and combined monensin and rapamycin treatments on mTOR (mammalian target of rapamycin) signaling pathway-mediated apoptosis and tumor growth in an SH-SY5Y neuroblastoma cell xenograft model. Control, monensin, rapamycin, and monensin + rapamycin groups were formed in the xenograft neuroblastoma model obtained from CD1 nude mice, and tumor volumes and animal weights were recorded throughout the treatment. In xenograft neuroblastoma tumor tissues, apoptosis was determined by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling) and cleaved-caspase 3 immunohistochemistry, and PI3K (phosphoinositide-3-kinase)/AKT/mTOR expression was determined by the immunohistochemistry and immunofluorescence methods. The combination of monensin and rapamycin was to reduce the growth of xenograft neuroblastoma tumor tissues, trigger apoptosis, and suppress the expression of PI3K/AKT/mTOR. A significant increase in apoptotic cell rate was demonstrated in the combination group, supported by cleaved-caspase 3 immunohistochemistry results. In addition, it was reported that the combination treatment regime triggered apoptosis by reducing the expression of phosphorylated PI3K/AKT/mTOR. Our preclinical results may be a precursor to develop new therapeutic approaches to treat neuroblastoma.
Collapse
Affiliation(s)
- Sema Serter Kocoglu
- Department of Histology and Embryology, Faculty of Medicine, Balikesir University, 10145 Balikesir, Türkiye
| | - Fatma Bahar Sunay
- Department of Histology and Embryology, Faculty of Medicine, Balikesir University, 10145 Balikesir, Türkiye
| | - Pakize Nur Akkaya
- Department of Histology and Embryology, Faculty of Medicine, Balikesir University, 10145 Balikesir, Türkiye
| |
Collapse
|
22
|
Clemente N, Baroni S, Fiorilla S, Tasso F, Reano S, Borsotti C, Ruggiero MR, Alchera E, Corrazzari M, Walker G, Follenzi A, Crich SG, Carini R. Boosting intracellular sodium selectively kills hepatocarcinoma cells and induces hepatocellular carcinoma tumor shrinkage in mice. Commun Biol 2023; 6:574. [PMID: 37248274 DOI: 10.1038/s42003-023-04946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
Pharmacological treatments for advanced hepatocellular carcinoma (HCC) have a partial efficacy. Augmented Na+ content and water retention are observed in human cancers and offer unexplored targets for anticancer therapies. Na+ levels are evaluated upon treatments with the antibiotic cation ionophore Monensin by fluorimetry, ICP-MS, 23Na-MRI, NMR relaxometry, confocal or time-lapse analysis related to energy production, water fluxes and cell death, employing both murine and human HCC cell lines, primary murine hepatocytes, or HCC allografts in NSG mice. Na+ levels of HCC cells and tissue are 8-10 times higher than that of healthy hepatocytes and livers. Monensin further increases Na+ levels in HCC cells and in HCC allografts but not in primary hepatocytes and in normal hepatic and extrahepatic tissue. The Na+ increase is associated with energy depletion, mitochondrial Na+ load and inhibition of O2 consumption. The Na+ increase causes an enhancement of the intracellular water lifetime and death of HCC cells, and a regression and necrosis of allograft tumors, without affecting the proliferating activity of either HCCs or healthy tissues. These observations indicate that HCC cells are, unlike healthy cells, energetically incapable of compensating and surviving a pharmacologically induced Na+ load, highlighting Na+ homeostasis as druggable target for HCC therapy.
Collapse
Affiliation(s)
- Nausicaa Clemente
- Department of Health Science Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy
| | - Simona Baroni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Torino, Italy
| | - Simone Fiorilla
- Department of Health Science Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy
| | - Francesco Tasso
- Department of Health Science Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy
| | - Simone Reano
- Department of Department of Translational Medicine, Unit of Muscle Biology, Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy
| | - Chiara Borsotti
- Department of Health Science Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy
| | - Maria Rosaria Ruggiero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Torino, Italy
| | - Elisa Alchera
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS, Ospedale San Raffaele, Milan, Italy
| | - Marco Corrazzari
- Department of Health Science and Interdisciplinary Research Center of Autoimmune Disease (IRCAD), Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy
| | - Gillian Walker
- Department of Health Science Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy
| | - Antonia Follenzi
- Department of Health Science Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Torino, Italy.
| | - Rita Carini
- Department of Health Science Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy.
| |
Collapse
|
23
|
Seçme M, Kocoglu SS. Investigation of the TLR4 and IRF3 signaling pathway-mediated effects of monensin in colorectal cancer cells. Med Oncol 2023; 40:187. [PMID: 37219624 DOI: 10.1007/s12032-023-02055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
Monensin is an ionophore antibiotic isolated from Streptomyces cinnamonensis with very strong antibacterial and antiparasitic effects. Although monensin is known to exhibit anticancer activity in different cancer types, there are a very limited number of studies on its anti-inflammatory effects in colorectal cancer (CRC) cells. The aim of this study was to investigate the TLR4/IRF3-mediated antiproliferative and anti-inflammatory effects of monensin in colorectal cancer cells. The dose- and time-dependent antiproliferative activity of monensin in colorectal cancer cells was determined by XTT method and its effects on mRNA expression changes of Toll-like receptors and IRF3 genes were determined by RT-PCR. TLR4 and Interferon Regulatory Factor 3 (IRF3) protein expression was evaluated by immunofluorescence method. TLR4 and type 1 interferon (IRF) levels were also evaluated by ELISA. IC50 value of monensin in HT29 cells was determined as 10.7082 µM at 48 h and 12.6288 µM at 48th for HCT116 cells. Monensin treatment decreased TLR4 and TLR7 and IRF3 mRNA expression in CRC cells. Monensin treatment decreased the expression level of IRF3 induced by LPS. Our study demonstrates for the first time the TLR4/IRF3-mediated anti-inflammatory effects of monensin in colorectal cancer cells. Further studies on the effects of monensin on TLR receptors in colorectal cancer cells are needed.
Collapse
Affiliation(s)
- Mücahit Seçme
- School of Medicine, Department of Medical Biology, Ordu University, Ordu, Turkey.
| | - Sema Serter Kocoglu
- School of Medicine, Department of Histology and Embryology, Balikesir University, Balikesir, Turkey
| |
Collapse
|
24
|
Chiem K, Nogales A, Lorenzo M, Vasquez DM, Xiang Y, Gupta YK, Blasco R, de la Torre JC, Mart Nez-Sobrido L. Antivirals against monkeypox infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537483. [PMID: 37131608 PMCID: PMC10153157 DOI: 10.1101/2023.04.19.537483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Monkeypox virus (MPXV) infection in humans are historically restricted to endemic regions in Africa. However, in 2022, an alarming number of MPXV cases have been reported globally with evidence of person-to-person transmission. Because of this, the World Health Organization (WHO) declared the MPXV outbreak a public health emergency of international concern. MPXV vaccines are limited and only two antivirals, tecovirimat and brincidofovir, approved by the United States (US) Food and Drug Administration (FDA) for the treatment of smallpox, are currently available for the treatment of MPXV infection. Here, we evaluated 19 compounds previously shown to inhibit different RNA viruses for their ability to inhibit Orthopoxvirus infections. We first used recombinant vaccinia virus (rVACV) expressing fluorescence (Scarlet or GFP) and luciferase (Nluc) reporter genes to identify compounds with anti-Orthopoxvirus activity. Seven compounds from the ReFRAME library (antimycin A, mycophenolic acid, AVN- 944, pyrazofurin, mycophenolate mofetil, azaribine, and brequinar) and six compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) showed antiviral activity against rVACV. Notably, the anti-VACV activity of some of the compounds in the ReFRAME library (antimycin A, mycophenolic acid, AVN- 944, mycophenolate mofetil, and brequinar) and all the compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) were confirmed with MPXV, demonstrating the broad-spectrum antiviral activity against Orthopoxviruses and their potential to be used for the antiviral treatment of MPXV, or other Orthopoxvirus, infections. IMPORTANCE Despite the eradication of smallpox, some Orthopoxviruses remain important human pathogens, as exemplified by the recent 2022 monkeypox virus (MPXV) outbreak. Although smallpox vaccines are effective against MPXV, there is presently limited access to those vaccines. In addition, current antiviral treatment against MPXV infections is limited to the use of the FDA-approved drugs tecovirimat and brincidofovir. Thus, there is an urgent need to identify novel antivirals for the treatment of MPXV, and other potentially zoonotic Orthopoxvirus infections. Here, we show that thirteen compounds, derived from two different libraries, previously found to inhibit several RNA viruses, exhibit also antiviral activity against VACV. Notably, eleven compounds also displayed antiviral activity against MPXV, demonstrating their potential to be incorporated into the therapeutic armamentarium to combat Orthopoxvirus infections.
Collapse
|
25
|
Khine MN, Sakurai K. Golgi-Targeting Anticancer Natural Products. Cancers (Basel) 2023; 15:cancers15072086. [PMID: 37046746 PMCID: PMC10093635 DOI: 10.3390/cancers15072086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 04/03/2023] Open
Abstract
The Golgi apparatus plays an important role in maintaining cell homeostasis by serving as a biosynthetic center for glycans, lipids and post-translationally modified proteins and as a sorting center for vesicular transport of proteins to specific destinations. Moreover, it provides a signaling hub that facilitates not only membrane trafficking processes but also cellular response pathways to various types of stresses. Altered signaling at the Golgi apparatus has emerged as a key regulator of tumor growth and survival. Among the small molecules that can specifically perturb or modulate Golgi proteins and organization, natural products with anticancer property have been identified as powerful chemical probes in deciphering Golgi-related pathways and, in particular, recently described Golgi stress response pathways. In this review, we highlight a set of Golgi-targeting natural products that enabled the characterization of the Golgi-mediated signaling events leading to cancer cell death and discuss the potential for selectively exploiting these pathways for the development of novel chemotherapeutic agents.
Collapse
|
26
|
Placidi G, Mattu C, Ciardelli G, Campa CC. Small molecules targeting endocytic uptake and recycling pathways. Front Cell Dev Biol 2023; 11:1125801. [PMID: 36968200 PMCID: PMC10036367 DOI: 10.3389/fcell.2023.1125801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Over the past years a growing number of studies highlighted the pivotal role of intracellular trafficking in cell physiology. Among the distinct transport itineraries connecting the endocytic system, both internalization (endocytosis) and recycling (endocytic recycling) pathways were found fundamental to ensure cellular sensing, cell-to-cell communication, cellular division, and collective cell migration in tissue specific-contexts. Consistently, the dysregulation of endocytic trafficking pathways is correlated with several human diseases including both cancers and neurodegeneration. Aimed at suppress specific intracellular trafficking routes involved in disease onset and progression, huge efforts have been made to identify small molecule inhibitors with suitable pharmacological properties for in vivo administration. Here, we review most used drugs and recently discovered small molecules able to block endocytosis and endocytic recycling pathways. We characterize such pharmacological inhibitors by emphasizing their target specificity, molecular affinity, biological activity and efficacy in both in vitro and in vivo experimental models.
Collapse
Affiliation(s)
- Giampaolo Placidi
- Italian Institute for Genomic Medicine, Candiolo, Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Clara Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Chemical-Physical Processes, National Research Council (CNR-IPCF), Pisa, Italy
| | - Carlo C. Campa
- Italian Institute for Genomic Medicine, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
27
|
Zeng C, Long M, Lu Y. Monensin synergizes with chemotherapy in uveal melanoma through suppressing RhoA. Immunopharmacol Immunotoxicol 2023; 45:35-42. [PMID: 36043455 DOI: 10.1080/08923973.2022.2112219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Uveal melanoma (UM) is the common primary cancer of the eye and new treatments are needed. Substantial evidence has shown that an antibiotic monensin is an attractive candidate for the development of anti-cancer drug. In this study, we investigated the potential of repositioning monensin for the treatment of UM in the pre-clinical setting. MATERIALS AND METHODS Cellular activity assays were performed using multiple cell lines representing UM models with different cellular origins and genetic profiling and normal cells as control. Combination studies were performed using Chou-Talalay method. Mechanism studies were performed using immunoblotting and ELISA. RESULTS Monensin was effective against all tested UM cell lines and less effective against normal fibroblast cells. Monensin induced G0/G1 arrest and thus decreased S phase, leading to UM cell growth inhibition. It also inhibited migration and induced apoptosis in UM cells. In addition, the combination of monensin and dacarbazine was synergistic in targeting UM cells. Our mechanistic studies showed that monensin specifically decreased activity of RhoA without affecting other small GTPases, such as Ras and Rac1. Consistently, monensin decreased phosphorylation of downstream effectors of RhoA signaling, including ROCK, MYPT1 and MLC. Rescue studies using RhoA activator calpeptin showed that calpeptin significantly abolished the inhibitory effects of monensin on RhoA activity, proliferation, migration and survival, confirming that RhoA is the target of monensin in UM cells. CONCLUSIONS Our study demonstrates that monensin is a potent inhibitor of UM and synergizes with chemotherapy, via suppressing RhoA activity and RhoA-mediated signaling. Our findings suggest that monensin may be a potential lead compound for further development into a drug for UM treatment.
Collapse
Affiliation(s)
- Chaoxia Zeng
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Haikou, PR China
| | - Mingxia Long
- Department of Nursing, Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan, PR China
| | - Ying Lu
- Department of Integrated Traditional Chinese and Western Medicine, Wuhan Third Hospital -Tongren Hospital of Wuhan University, Wuhan, PR China
| |
Collapse
|
28
|
Rawangkan A, Wongsirisin P, Pook-In G, Siriphap A, Yosboonruang A, Kiddee A, Chuerduangphui J, Reukngam N, Duangjai A, Saokaew S, Praphasawat R. Dinactin: A New Antitumor Antibiotic with Cell Cycle Progression and Cancer Stemness Inhibiting Activities in Lung Cancer. Antibiotics (Basel) 2022; 11:antibiotics11121845. [PMID: 36551502 PMCID: PMC9774622 DOI: 10.3390/antibiotics11121845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Lung cancer, especially non-small cell lung cancer (NSCLC), is one of the most complex diseases, despite the existence of effective treatments such as chemotherapy and immunotherapy. Since cancer stem cells (CSCs) are responsible for chemo- and radio-resistance, metastasis, and cancer recurrence, finding new therapeutic targets for CSCs is critical. Dinactin is a natural secondary metabolite produced by microorganisms. Recently, dinactin has been revealed as a promising antitumor antibiotic via various mechanisms. However, the evidence relating to cell cycle progression regulation is constrained, and effects on cancer stemness have not been elucidated. Therefore, the aim of this study is to evaluate the new function of dinactin in anti-NSCLC proliferation, focusing on cell cycle progression and cancer stemness properties in Lu99 and A549 cells. Flow cytometry and immunoblotting analyses revealed that 0.1-1 µM of dinactin suppresses cell growth through induction of the G0/G1 phase associated with down-regulation of cyclins A, B, and D3, and cdk2 protein expression. The tumor-sphere forming capacity was used to assess the effect of dinactin on the cancer stemness potential in NSCLC cells. At a concentration of 1 nM, dinactin reduced both the number and size of the tumor-spheres. The quantitative RT-PCR analyses indicated that dinactin suppressed sphere formation by significantly reducing expression of CSC markers (i.e., ALDH1A1, Nanog, Oct4, and Sox2) in Lu99 cells. Consequently, dinactin could be a promising strategy for NSCLC therapy targeting CSCs.
Collapse
Affiliation(s)
- Anchalee Rawangkan
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
- UNIt of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Pattama Wongsirisin
- Department of Medical Services, National Cancer Institute, Bangkok 10400, Thailand
| | - Grissana Pook-In
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Achiraya Siriphap
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Atchariya Yosboonruang
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Anong Kiddee
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | | | - Nanthawan Reukngam
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Acharaporn Duangjai
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Surasak Saokaew
- UNIt of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
- Division of Social and Administrative Pharmacy, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Ratsada Praphasawat
- Department of Pathology, School of Medicine, University of Phayao, Phayao 56000, Thailand
- Correspondence: ; Tel.: +66-54466666 (ext. 3824) or +66-86-926-2448
| |
Collapse
|
29
|
Gou Y, Weng Y, Chen Q, Wu J, Wang H, Zhong J, Bi Y, Cao D, Zhao P, Dong X, Guo M, Wagstaff W, Hendren-Santiago B, Chen C, Youssef A, Haydon RC, Luu HH, Reid RR, Shen L, He TC, Fan J. Carboxymethyl chitosan prolongs adenovirus-mediated expression of IL-10 and ameliorates hepatic fibrosis in a mouse model. Bioeng Transl Med 2022; 7:e10306. [PMID: 36176604 PMCID: PMC9472002 DOI: 10.1002/btm2.10306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/09/2022] Open
Abstract
Effective and safe liver-directed gene therapy has great promise in treating a broad range of liver diseases. While adenoviral (Ad) vectors have been widely used for efficacious in vivo gene delivery, their translational utilities are severely limited due to the short duration of transgene expression and solicitation of host immune response. Used as a promising polymeric vehicle for drug release and nucleic acid delivery, carboxymethyl chitosan (CMC) is biocompatible, biodegradable, anti-microbial, inexpensive, and easy accessible. Here, by exploiting its biocompatibility, controlled release capability and anti-inflammatory activity, we investigated whether CMC can overcome the shortcomings of Ad-mediated gene delivery, hence improving the prospect of Ad applications in gene therapy. We demonstrated that in the presence of optimal concentrations of CMC, Ad-mediated transgene expression lasted up to 50 days after subcutaneous injection, and at least 7 days after intrahepatic injection. Histologic evaluation and immunohistochemical analysis revealed that CMC effectively alleviated Ad-induced host immune response. In our proof-of-principle experiment using the CCl4-induced experimental mouse model of chronic liver damage, we demonstrated that repeated intrahepatic administrations of Ad-IL10 mixed with CMC effectively mitigated the development of hepatic fibrosis. Collectively, these results indicate that CMC can improve the prospect of Ad-mediated gene therapy by diminishing the host immune response while allowing readministration and sustained transgene expression.
Collapse
Affiliation(s)
- Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Yaguang Weng
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Qian Chen
- Health Management Center, Deyang People's Hospital Deyang China
| | - Jinghong Wu
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Hao Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Yang Bi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Stem Cell Biology and Therapy Laboratory of the Pediatric Research Institute, the National Clinical Research Center for Child Health and Disorders, and Ministry of Education Key Laboratory of Child Development and Disorders The Children's Hospital of Chongqing Medical University Chongqing China
| | - Daigui Cao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Department of Orthopaedic Surgery The Affiliated Hospital of the University of Chinese Academy of Sciences, and Chongqing General Hospital Chongqing China
| | - Piao Zhao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Department of Orthopaedic Surgery The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Xiangyu Dong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Meichun Guo
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Bryce Hendren-Santiago
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Andrew Youssef
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery The University of Chicago Medical Center Chicago Illinois USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Department of Surgery The University of Chicago Medical Center Chicago Illinois USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery The University of Chicago Medical Center Chicago Illinois USA
- Department of Surgery The University of Chicago Medical Center Chicago Illinois USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine Chongqing Medical University Chongqing China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine The University of Chicago Medical Center Chicago Illinois USA
| |
Collapse
|
30
|
Becker T, Wiest A, Telek A, Bejko D, Hoffmann-Röder A, Kielkowski P. Transforming Chemical Proteomics Enrichment into a High-Throughput Method Using an SP2E Workflow. JACS AU 2022; 2:1712-1723. [PMID: 35911458 PMCID: PMC9326820 DOI: 10.1021/jacsau.2c00284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Protein post-translational modifications (PTMs) play a critical role in the regulation of protein catalytic activity, localization, and protein-protein interactions. Attachment of PTMs onto proteins significantly diversifies their structure and function, resulting in proteoforms. However, the sole identification of post-translationally modified proteins, which are often cell type and disease-specific, is still a highly challenging task. Substoichiometric amounts and modifications of low abundant proteins necessitate the purification or enrichment of the modified proteins. Although the introduction of mass spectrometry-based chemical proteomic strategies has enabled the screening of protein PTMs with increased throughput, sample preparation remains highly time-consuming and tedious. Here, we report an optimized workflow for the enrichment of PTM proteins in a 96-well plate format, which could be extended to robotic automation. This platform allows us to significantly lower the input of total protein, which opens up the opportunity to screen specialized and difficult-to-culture cell lines in a high-throughput manner. The presented SP2E protocol is robust and time- and cost-effective, as well as suitable for large-scale screening of proteoforms. The application of the SP2E protocol will thus enable the characterization of proteoforms in various processes such as neurodevelopment, neurodegeneration, and cancer. This may contribute to an overall acceleration of the recently launched Human Proteoform Project.
Collapse
Affiliation(s)
- Tobias Becker
- Institute
for Chemical Epigenetics Munich, LMU Munich, 81375 Munich, Germany
| | - Andreas Wiest
- Institute
for Chemical Epigenetics Munich, LMU Munich, 81375 Munich, Germany
| | - András Telek
- Institute
for Chemical Epigenetics Munich, LMU Munich, 81375 Munich, Germany
| | - Daniel Bejko
- Institute
for Chemical Epigenetics Munich, LMU Munich, 81375 Munich, Germany
| | | | - Pavel Kielkowski
- Institute
for Chemical Epigenetics Munich, LMU Munich, 81375 Munich, Germany
| |
Collapse
|
31
|
Singhal S, Maheshwari P, Krishnamurthy PT, Patil VM. Drug Repurposing Strategies for Non-Cancer to Cancer Therapeutics. Anticancer Agents Med Chem 2022; 22:2726-2756. [PMID: 35301945 DOI: 10.2174/1871520622666220317140557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/15/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
Global efforts invested for the prevention and treatment of cancer need to be repositioned to develop safe, effective, and economic anticancer therapeutics by adopting rational approaches of drug discovery. Drug repurposing is one of the established approaches to reposition old, clinically approved off patent noncancer drugs with known targets into newer indications. The literature review suggests key role of drug repurposing in the development of drugs intended for cancer as well as noncancer therapeutics. A wide category of noncancer drugs namely, drugs acting on CNS, anthelmintics, cardiovascular drugs, antimalarial drugs, anti-inflammatory drugs have come out with interesting outcomes during preclinical and clinical phases. In the present article a comprehensive overview of the current scenario of drug repurposing for the treatment of cancer has been focused. The details of some successful studies along with examples have been included followed by associated challenges.
Collapse
Affiliation(s)
- Shipra Singhal
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Priyal Maheshwari
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | | | - Vaishali M Patil
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| |
Collapse
|
32
|
Zhong J, Wang H, Yang K, Wang H, Duan C, Ni N, An L, Luo Y, Zhao P, Gou Y, Sheng S, Shi D, Chen C, Wagstaff W, Hendren-Santiago B, Haydon RC, Luu HH, Reid RR, Ho SH, Ameer GA, Shen L, He TC, Fan J. Reversibly immortalized keratinocytes (iKera) facilitate re-epithelization and skin wound healing: Potential applications in cell-based skin tissue engineering. Bioact Mater 2022; 9:523-540. [PMID: 34820586 PMCID: PMC8581279 DOI: 10.1016/j.bioactmat.2021.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Skin injury is repaired through a multi-phase wound healing process of tissue granulation and re-epithelialization. Any failure in the healing process may lead to chronic non-healing wounds or abnormal scar formation. Although significant progress has been made in developing novel scaffolds and/or cell-based therapeutic strategies to promote wound healing, effective management of large chronic skin wounds remains a clinical challenge. Keratinocytes are critical to re-epithelialization and wound healing. Here, we investigated whether exogenous keratinocytes, in combination with a citrate-based scaffold, enhanced skin wound healing. We first established reversibly immortalized mouse keratinocytes (iKera), and confirmed that the iKera cells expressed keratinocyte markers, and were responsive to UVB treatment, and were non-tumorigenic. In a proof-of-principle experiment, we demonstrated that iKera cells embedded in citrate-based scaffold PPCN provided more effective re-epithelialization and cutaneous wound healing than that of either PPCN or iKera cells alone, in a mouse skin wound model. Thus, these results demonstrate that iKera cells may serve as a valuable skin epithelial source when, combining with appropriate biocompatible scaffolds, to investigate cutaneous wound healing and skin regeneration.
Collapse
Affiliation(s)
- Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hao Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Ke Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Pediatric Research Institute, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Huifeng Wang
- Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| | - Chongwen Duan
- Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
| | - Na Ni
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Liqin An
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yetao Luo
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Piao Zhao
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shiyan Sheng
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopaedics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Bryce Hendren-Santiago
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Center for Advanced Regenerative Engineering (CARE), Evanston, IL, 60208, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Guillermo A. Ameer
- Biomedical Engineering Department, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering (CARE), Evanston, IL, 60208, USA
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60616, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Center for Advanced Regenerative Engineering (CARE), Evanston, IL, 60208, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, And Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| |
Collapse
|
33
|
Li Y, Sun Q, Chen S, Yu X, Jing H. Monensin inhibits anaplastic thyroid cancer via disrupting mitochondrial respiration and AMPK/mTOR signaling. Anticancer Agents Med Chem 2022; 22:2539-2547. [PMID: 35168524 DOI: 10.2174/1871520622666220215123620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The clinical management of anaplastic thyroid cancer (ATC) remains challenging and novel treatment methods are needed. Monensin is a carboxyl polyether ionophore that potently inhibits the growth of various cancer types. Our current work investigates whether monensin has selective anti-ATC activity and systematically explores its underlying mechanisms. METHODS Proliferation and apoptosis assays were performed using a panel of thyroid cancer cell lines. Mitochondrial biogenesis profiles, ATP levels, oxidative stress, AMPK and mTOR were examined in these cells after monensin treatment. RESULTS Monensin is effective to inhibit proliferation and induce apoptosis in a number of thyroid cancer cell lines. The results are consistent across cell lines of varying cellular origins and genetic mutations. Compared to other thyroid cancer cell types, ATC cell lines are the most sensitive to monensin. Of note, monensin used at our experimental concentration affects less of normal cells. Mechanistic studies reveal that monensin acts on ATC cells through disrupting mitochondrial function, inducing oxidative stress and damage, and AMPK activation-induced mTOR inhibition. We further show mitochondrial respiration is a critical target for monensin in ATC cells. CONCLUSIONS Our pre-clinical findings demonstrate the selective anti-ATC activities of monensin. This is supported by increasing evidence monensin can to be repurposed as a potential anti-cancer drug.
Collapse
Affiliation(s)
- Yanli Li
- Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Qianshu Sun
- Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Sisi Chen
- Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Xiongjie Yu
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Hongxia Jing
- Department of Ultrasound, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| |
Collapse
|
34
|
Opportunities and challenges in targeted therapy and immunotherapy for pancreatic cancer. Expert Rev Mol Med 2021; 23:e21. [PMID: 34906271 DOI: 10.1017/erm.2021.26] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer is one of the most malignant tumours with a poor prognosis. In recent years, the incidence of pancreatic cancer is on the rise. Traditional chemotherapy and radiotherapy for pancreatic cancer have been improved, first-line and second-line palliative treatments have been developed, and adjuvant treatments have also been used in clinical. However, the 5-year survival rate is still less than 10% and new treatment methods such as targeted therapy and immunotherapy need to be investigated. In the past decades, many clinical trials of targeted therapies and immunotherapies for pancreatic cancer were launched and some of them showed an ideal prospect in a subgroup of pancreatic cancer patients. The experience of both success and failure of these clinical trials will be helpful to improve these therapies in the future. Therefore, the current research progress and challenges of selected targeted therapies and immunotherapies for pancreatic cancer are reviewed.
Collapse
|
35
|
Screening of sunflower associated bacteria as biocontrol agents for plant growth promotion. Arch Microbiol 2021; 203:4901-4912. [PMID: 34250573 DOI: 10.1007/s00203-021-02463-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/04/2023]
Abstract
Deleterious effects of artificially applied chemicals have highlighted the significance of biocontrol agents as suitable substitute for sustainable agriculture. In present study, three endophytic bacterial strains SV7, SV10 and LV19 showed extensive range of antifungal as well as plant growth promoting activities signifying potential to accomplish the requirement. Phylogenetic analysis revealed 100% similarity of three strains with taxon Firmicute. However, there was division among these isolates on basis of subgroups as SV7 belonged to Exiguobacterium auranticum, SV10 belonged to Paenibacillus sp. and LV19 was best fit in subgroup Priestia koreensis. All strains showed antifungal activity against Fusarium oxysporum on three different media (PDA, NA, LA) with maximum activity (53%) of LV19 strain on NA and least activity (13%) on PDA medium as recorded by zones of inhibition. In growth promotion experiments, combination of LV19 with Fusarium significantly suppressed chances of Fusarium wilt which is commonly caused by Fusarium oxysporum in sunflower plants. Diverse growth parameters (seed germination percentage, lengths and fresh weights of root and shoot) were significantly increased from 34 to 909% over pathogen infected plants only which was further proved by their root colonization analysis. Based on most efficient growth promotion by LV19 strain, expression of five plant defense related genes (SOD, PAL, NPR1, PR5, Chitinase) was evaluated revealing enhanced expression by 1.7-270-folds in consortium of LV19 and Fusarium. Thus, current study provided a scientific justification that bacterial strains in specific LV19 (Priestia koreensis) could be further developed as biocontrol agent with potential of plant growth promotion.
Collapse
|
36
|
Huang L, Zhao L, Zhang J, He F, Wang H, Liu Q, Shi D, Ni N, Wagstaff W, Chen C, Reid RR, Haydon RC, Luu HH, Shen L, He TC, Tang L. Antiparasitic mebendazole (MBZ) effectively overcomes cisplatin resistance in human ovarian cancer cells by inhibiting multiple cancer-associated signaling pathways. Aging (Albany NY) 2021; 13:17407-17427. [PMID: 34232919 PMCID: PMC8312413 DOI: 10.18632/aging.203232] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/12/2021] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is the third most common cancer and the second most common cause of gynecologic cancer death in women. Its routine clinical management includes surgical resection and systemic therapy with chemotherapeutics. While the first-line systemic therapy requires the combined use of platinum-based agents and paclitaxel, many ovarian cancer patients have recurrence and eventually succumb to chemoresistance. Thus, it is imperative to develop new strategies to overcome recurrence and chemoresistance of ovarian cancer. Repurposing previously-approved drugs is a cost-effective strategy for cancer drug discovery. The antiparasitic drug mebendazole (MBZ) is one of the most promising drugs with repurposing potential. Here, we investigate whether MBZ can overcome cisplatin resistance and sensitize chemoresistant ovarian cancer cells to cisplatin. We first established and characterized two stable and robust cisplatin-resistant (CR) human ovarian cancer lines and demonstrated that MBZ markedly inhibited cell proliferation, suppressed cell wounding healing/migration, and induced apoptosis in both parental and CR cells at low micromole range. Mechanistically, MBZ was revealed to inhibit multiple cancer-related signal pathways including ELK/SRF, NFKB, MYC/MAX, and E2F/DP1 in cisplatin-resistant ovarian cancer cells. We further showed that MBZ synergized with cisplatin to suppress cell proliferation, induce cell apoptosis, and blunt tumor growth in xenograft tumor model of human cisplatin-resistant ovarian cancer cells. Collectively, our findings suggest that MBZ may be repurposed as a synergistic sensitizer of cisplatin in treating chemoresistant human ovarian cancer, which warrants further clinical studies.
Collapse
Affiliation(s)
- Linjuan Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ling Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jing Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Medicine/Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the School of Laboratory Diagnostic Medicine, Chongqing Medical University, Chongqing, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Liangdan Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
37
|
Xie J, Zhou X, Wang R, Zhao J, Tang J, Zhang Q, Du Y, Pang Y. Identification of potential diagnostic biomarkers in MMPs for pancreatic carcinoma. Medicine (Baltimore) 2021; 100:e26135. [PMID: 34114996 PMCID: PMC8202616 DOI: 10.1097/md.0000000000026135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/05/2021] [Indexed: 02/02/2023] Open
Abstract
Pancreatic cancer (PC) is a malignant tumor which ranks fourth in cancer-related death. However, the specificity and sensitivity of traditional biomarkers such as carbohydrate antigen 19-9 no longer meet the clinical requirements.Tools as ONCOMINE and Gene Expression Profiling Interactive Analysis (GEPIA) were used to analyze the differential expression of matrix metalloproteinases (MMPs) in PC and adjacent tissues. For further analysis, we adopted database for annotation, visualization and integrated discovery (DAVID 6.8), transcriptional regulatory relationships unraveled by sentence-based text (TRRUST) and other tools. We also identified drugs targeted the selected MMPs.Eight MMPs (MMP1, MMP2, MMP7, MMP9, MMP11, MMP12, MMP14, and MMP28) were differentially expressed in PC and adjacent tissue. MMP1 (P = .0189), MMP7 (P = .000216), MMP11 (P = .0209), MMP14 (P = .00611) were correlated with the pathological stages of PC. Patients with higher expression of MMP1 (P = .0011), MMP2 (P = .011), MMP7 (P = .0081), MMP9 (P = .046), MMP11 (P = .0019), MMP12 (P = .0011), MMP14 (P = .0011), and MMP28 (P = 6.3e-06) showed poor prognosis. Ten transcription factors were associated with the up-regulation of selected MMPs. Marimastat (DB00786) was found to target selected MMPs.Our research revealed that selected MMPs played an important role in the early diagnosis and prognosis of PC.
Collapse
Affiliation(s)
- Junhao Xie
- Department of Gastroenterology, Changhai Hospital, Navy Medical University
| | - Xianzhu Zhou
- Department of Gastroenterology, Changhai Hospital, Navy Medical University
| | - Rui Wang
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Navy Medical University
| | - Jian Tang
- Department of Gastroenterology, Changhai Hospital, Navy Medical University
| | - Qichen Zhang
- Department of Gastroenterology, Changhai Hospital, Navy Medical University
| | - Yiqi Du
- Department of Gastroenterology, Changhai Hospital, Navy Medical University
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Yanan Pang
- Department of Gastroenterology, Changhai Hospital, Navy Medical University
- Shanghai Institute of Pancreatic Diseases, Shanghai, China
| |
Collapse
|
38
|
Chaeichi-Tehrani N, Ferns GA, Hassanian SM, Khazaei M, Avan A. The Therapeutic Potential of Targeting Autophagy in The Treatment of Cancer. Curr Cancer Drug Targets 2021; 21:725-736. [PMID: 34077348 DOI: 10.2174/1568009621666210601113144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/02/2021] [Accepted: 03/12/2021] [Indexed: 11/22/2022]
Abstract
Autophagy is a mechanism by which unwanted cellular components are degraded through a pathway that involves the lysosomes and contributes to several pathological conditions such as cancer. Gastrointestinal cancers affect the digestive organs from the esophagus to the anus and are among the most commonly diagnosed cancers globally. The modulation of autophagy using pharmacologic agents potentially offers a great potential for cancer therapy. In this review, some commonly used compounds, together with their molecular target and the mechanism through which they stimulate or block the autophagy pathway as well as their therapeutic benefit in treating patients with gastrointestinal cancers, are summarized.
Collapse
Affiliation(s)
- Negin Chaeichi-Tehrani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Seyed Mahdi Hassanian
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic syndrome Research centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Ruzi Z, Nie L, Bozorov K, Zhao J, Aisa HA. Synthesis and anticancer activity of ethyl 5-amino-1-N-substituted-imidazole-4-carboxylate building blocks. Arch Pharm (Weinheim) 2021; 354:e2000470. [PMID: 34032312 DOI: 10.1002/ardp.202000470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
A series of 5-amino-1-N-substituted-imidazole-4-carboxylate building blocks was synthesized and assayed for their antiproliferative potential against human cancer cell lines, including HeLa (cervical), HT-29, HCT-15 (colon), A549 (lung), and MDA-MB-231 (breast) cells. The preliminary screening results revealed that several derivatives containing alkyl chains at the N-1 position of the imidazole core demonstrate a certain inhibitory effect on growth and proliferation. A significant effect was observed following ethyl 5-amino-1-dodecyl-1H-imidazole-4-carboxylate (5e) treatment for 72 h. The IC50 value for HeLa cells was 0.737 ± 0.05 μM, whereas that for HT-29 cells was 1.194 ± 0.02 μM. Further investigations revealed that 5e significantly inhibited tumor cell colony formation and migration, and it exhibited antiadhesive effects on HeLa cells as well as antitubulin activity along with the induction of early apoptosis of HeLa and HT-29 cells. In addition, derivative 5e significantly reduced the cell mitochondrial membrane potential in a dose-dependent manner and induced early apoptosis of HeLa and HT-29 cells, indicating that 5e may serve as a lead compound for further drug discovery and development.
Collapse
Affiliation(s)
- Zukela Ruzi
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lifei Nie
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Khurshed Bozorov
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China.,Faculty of Chemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Jiangyu Zhao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| | - Haji A Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
40
|
Zhao X, Huang B, Wang H, Ni N, He F, Liu Q, Shi D, Chen C, Zhao P, Wang X, Wagstaff W, Pakvasa M, Tucker AB, Lee MJ, Wolf JM, Reid RR, Hynes K, Strelzow J, Ho SH, Yu T, Yang J, Shen L, He TC, Zhang Y. A functional autophagy pathway is essential for BMP9-induced osteogenic differentiation of mesenchymal stem cells (MSCs). Am J Transl Res 2021; 13:4233-4250. [PMID: 34150011 PMCID: PMC8205769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Mesenchymal stem cells (MSCs) are capable of differentiating into bone, cartilage and adipose tissues. We identified BMP9 as the most potent osteoinductive BMP although detailed mechanism underlying BMP9-regulated osteogenesis of MSCs is indeterminate. Emerging evidence indicates that autophagy plays a critical role in regulating bone homeostasis. We investigated the possible role of autophagy in osteogenic differentiation induced by BMP9. We showed that BMP9 upregulated the expression of multiple autophagy-related genes in MSCs. Autophagy inhibitor chloroquine (CQ) inhibited the osteogenic activity induced by BMP9 in MSCs. While overexpression of ATG5 or ATG7 did not enhance osteogenic activity induced by BMP9, silencing Atg5 expression in MSCs effectively diminished BMP9 osteogenic signaling activity and blocked the expression of the osteogenic regulator Runx2 and the late marker osteopontin induced by BMP9. Stem cell implantation study revealed that silencing Atg5 in MSCs profoundly inhibited ectopic bone regeneration and bone matrix mineralization induced by BMP9. Collectively, our results strongly suggest a functional autophagy pathway may play an essential role in regulating osteogenic differentiation induced by BMP9 in MSCs. Thus, restoration of dysregulated autophagic activity in MSCs may be exploited to treat fracture healing, bone defects or osteoporosis.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266061, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Bo Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330031, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory and Diagnostic Medicine, Chongqing Medical UniversityChongqing 400016, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory and Diagnostic Medicine, Chongqing Medical UniversityChongqing 400016, China
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Departments of Medicine/Gastroenterology, Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Spine Surgery, Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Department of Orthopaedics, Union Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Departments of Medicine/Gastroenterology, Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| | - Xi Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and School of Laboratory and Diagnostic Medicine, Chongqing Medical UniversityChongqing 400016, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Andrew Blake Tucker
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Section of Plastic Surgery and Laboratory of Craniofacial Biology and Development, and Section of Surgical Research, Department of Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Kelly Hynes
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Sherwin H Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Tengbo Yu
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266061, China
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State UniversityUniversity Park, PA 16802, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Section of Surgical Research, Department of Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
- Section of Surgical Research, Department of Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Yongtao Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266061, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| |
Collapse
|
41
|
Mohan CD, Rangappa S, Nayak SC, Jadimurthy R, Wang L, Sethi G, Garg M, Rangappa KS. Bacteria as a treasure house of secondary metabolites with anticancer potential. Semin Cancer Biol 2021; 86:998-1013. [PMID: 33979675 DOI: 10.1016/j.semcancer.2021.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022]
Abstract
Cancer stands in the frontline among leading killers worldwide and the annual mortality rate is expected to reach 16.4 million by 2040. Humans suffer from about 200 different types of cancers and many of them have a small number of approved therapeutic agents. Moreover, several types of major cancers are diagnosed at advanced stages as a result of which the existing therapies have limited efficacy against them and contribute to a dismal prognosis. Therefore, it is essential to develop novel potent anticancer agents to counteract cancer-driven lethality. Natural sources such as bacteria, plants, fungi, and marine microorganisms have been serving as an inexhaustible source of anticancer agents. Notably, over 13,000 natural compounds endowed with different pharmacological properties have been isolated from different bacterial sources. In the present article, we have discussed about the importance of natural products, with special emphasis on bacterial metabolites for cancer therapy. Subsequently, we have comprehensively discussed the various sources, mechanisms of action, toxicity issues, and off-target effects of clinically used anticancer drugs (such as actinomycin D, bleomycin, carfilzomib, doxorubicin, ixabepilone, mitomycin C, pentostatin, rapalogs, and romidepsin) that have been derived from different bacteria. Furthermore, we have also discussed some of the major secondary metabolites (antimycins, chartreusin, elsamicins, geldanamycin, monensin, plicamycin, prodigiosin, rebeccamycin, salinomycin, and salinosporamide) that are currently in the clinical trials or which have demonstrated potent anticancer activity in preclinical models. Besides, we have elaborated on the application of metagenomics in drug discovery and briefly described about anticancer agents (bryostatin 1 and ET-743) identified through the metagenomics approach.
Collapse
Affiliation(s)
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri University, BG Nagara, 571448, Nagamangala Taluk, India
| | - S Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Ragi Jadimurthy
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Uttar Pradesh, Noida, 201313, India
| | | |
Collapse
|
42
|
Rebelo R, Polónia B, Santos LL, Vasconcelos MH, Xavier CPR. Drug Repurposing Opportunities in Pancreatic Ductal Adenocarcinoma. Pharmaceuticals (Basel) 2021; 14:280. [PMID: 33804613 PMCID: PMC8003696 DOI: 10.3390/ph14030280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered one of the deadliest tumors worldwide. The diagnosis is often possible only in the latter stages of the disease, with patients already presenting an advanced or metastatic tumor. It is also one of the cancers with poorest prognosis, presenting a five-year survival rate of around 5%. Treatment of PDAC is still a major challenge, with cytotoxic chemotherapy remaining the basis of systemic therapy. However, no major advances have been made recently, and therapeutic options are limited and highly toxic. Thus, novel therapeutic options are urgently needed. Drug repurposing is a strategy for the development of novel treatments using approved or investigational drugs outside the scope of the original clinical indication. Since repurposed drugs have already completed several stages of the drug development process, a broad range of data is already available. Thus, when compared with de novo drug development, drug repurposing is time-efficient, inexpensive and has less risk of failure in future clinical trials. Several repurposing candidates have been investigated in the past years for the treatment of PDAC, as single agents or in combination with conventional chemotherapy. This review gives an overview of the main drugs that have been investigated as repurposing candidates, for the potential treatment of PDAC, in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Rita Rebelo
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Bárbara Polónia
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, IPO—Instituto Português de Oncologia, 4200-072 Porto, Portugal;
- ICBAS—Biomedical Sciences Institute Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - M. Helena Vasconcelos
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4200-135 Porto, Portugal
| | - Cristina P. R. Xavier
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
43
|
Crosstalk between miRNAs and signaling pathways involved in pancreatic cancer and pancreatic ductal adenocarcinoma. Eur J Pharmacol 2021; 901:174006. [PMID: 33711308 DOI: 10.1016/j.ejphar.2021.174006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/19/2021] [Accepted: 03/02/2021] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer (PC) is the seventh leading cause of cancer-related deaths worldwide with 5-year survival rates below 8%. Most patients with PC and pancreatic ductal adenocarcinoma (PDAC) die after relapse and cancer progression as well as resistance to treatment. Pancreatic tumors contain a high desmoplastic stroma that forms a rigid mass and has a potential role in tumor growth and metastasis. PC initiates from intraepithelial neoplasia lesions leading to invasive cancer through various pathways. These lesions harbor particular changes in signaling pathways involved in the tumorigenesis process. These events affect both the epithelial cells, including the tumor and the surrounding stroma, and eventually lead to the formation of complex signaling networks. Genetic studies of PC have revealed common molecular features such as the presence of mutations in KRAS gene in more than 90% of patients, as well as the inactivation or deletion mutations of some tumor suppressor genes including TP53, CDKN2A, and SMAD4. In recent years, studies have also identified different roles of microRNAs in PC pathogenesis as well as their importance in PC diagnosis and treatment, and their involvement in various signaling pathways. In this study, we discussed the most common pathways involved in PC and PDAC as well as their role in tumorigenesis and progression. Furthermore, the miRNAs participating in the regulation of these signaling pathways in PC progression are summarized in this study. Therefore, understanding more about pathways involved in PC can help with the development of new and effective therapies in the future.
Collapse
|
44
|
Zhao L, Huang L, Zhang J, Fan J, He F, Zhao X, Wang H, Liu Q, Shi D, Ni N, Wagstaff W, Pakvasa M, Fu K, Tucker AB, Chen C, Reid RR, Haydon RC, Luu HH, Shen L, Qi H, He TC. The inhibition of BRAF activity sensitizes chemoresistant human ovarian cancer cells to paclitaxel-induced cytotoxicity and tumor growth inhibition. Am J Transl Res 2020; 12:8084-8098. [PMID: 33437383 PMCID: PMC7791515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023]
Abstract
Ovarian cancer is one of the most common cancers in women and the second most common cause of gynecologic cancer death in women worldwide. While ovarian cancer is highly heterogeneous in histological subtypes and molecular genetic makeup, epithelial ovarian cancer is the most common subtype. The clinical outcomes of ovarian cancer largely depend on early detection and access to appropriate surgery and systemic therapy. While combination therapy with platinum-based drugs and paclitaxel (PTX) remains the first-line systemic therapy for ovarian cancer, many patients experience recurrence and die of progressive chemoresistance. Thus, there is an unmet clinical need to overcome recurrent disease due to resistance to chemotherapies of ovarian cancer. Here, we investigated whether BRAF inhibitors (BRAFi) could sensitize PTX-resistant ovarian cancer cells to PTX, and thus would overcome the resistance to chemotherapies. We found that BRAF and several members of the RAS/MAPK pathways were upregulated upon PTX treatment in ovarian cancer cells, and that BRAF expression was significantly elevated in the PTX-resistant ovarian cancer cells. While the BRAFi vemurafenib (VEM) alone did not cause any significant cytotoxicity in PTX-resistant ovarian cancer cells, VEM significantly enhanced PTX-induced growth inhibition and apoptosis in a dose-dependent manner. Furthermore, VEM and PTX were shown to synergistically inhibit tumor growth and cell proliferation of PTX-resistant human ovarian cancer cells in vivo. Collectively, these findings strongly suggest that BRAFi may be exploited as synergistic sensitizers of paclitaxel in treating chemoresistant ovarian cancer.
Collapse
Affiliation(s)
- Ling Zhao
- Departments of Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Linjuan Huang
- Departments of Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Jing Zhang
- Departments of Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The School of Laboratory Diagnostic Medicine, Chongqing Medical UniversityChongqing, China
| | - Fang He
- Departments of Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The School of Laboratory Diagnostic Medicine, Chongqing Medical UniversityChongqing, China
| | - Xia Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao UniversityQingdao 266061, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The School of Laboratory Diagnostic Medicine, Chongqing Medical UniversityChongqing, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Spine Surgery, Second Xiangya Hospital, Central South UniversityChangsha 410011, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The School of Laboratory Diagnostic Medicine, Chongqing Medical UniversityChongqing, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Kai Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan UniversityWuhan 430072, China
| | - Andrew B Tucker
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Surgery Section of Plastic Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Le Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Hongbo Qi
- Departments of Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Surgery, The University of Chicago Medical CenterChicago, IL 60637, USA
| |
Collapse
|
45
|
He F, Ni N, Zeng Z, Wu D, Feng Y, Li AJ, Luu B, Li AF, Qin K, Wang E, Wang X, Wu X, Luo H, Zhang J, Zhang M, Mao Y, Pakvasa M, Wagstaff W, Zhang Y, Niu C, Wang H, Huang L, Shi D, Liu Q, Zhao X, Fu K, Reid RR, Wolf JM, Lee MJ, Hynes K, Strelzow J, El Dafrawy M, Gan H, He TC, Fan J. FAMSi: A Synthetic Biology Approach to the Fast Assembly of Multiplex siRNAs for Silencing Gene Expression in Mammalian Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:885-899. [PMID: 33230483 PMCID: PMC7658575 DOI: 10.1016/j.omtn.2020.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
RNA interference (RNAi) is mediated by an ∼21-nt double-stranded small interfering RNA (siRNA) and shows great promise in delineating gene functions and in developing therapeutics for human diseases. However, effective gene silencing usually requires the delivery of multiple siRNAs for a given gene, which is often technically challenging and time-consuming. In this study, by exploiting the type IIS restriction endonuclease-based synthetic biology methodology, we developed the fast assembly of multiplex siRNAs (FAMSi) system. In our proof-of-concept experiments, we demonstrated that multiple fragments containing three, four, or five siRNA sites targeting common Smad4 and/or BMPR-specific Smad1, Smad5, and Smad8 required for BMP9 signaling could be assembled efficiently. The constructed multiplex siRNAs effectively knocked down the expression of Smad4 and/or Smad1, Smad5, and Smad8 in mesenchymal stem cells (MSCs), and they inhibited all aspects of BMP9-induced osteogenic differentiation in bone marrow MSCs (BMSCs), including decreased expression of osteogenic regulators/markers, reduced osteogenic marker alkaline phosphatase (ALP) activity, and diminished in vitro matrix mineralization and in vivo ectopic bone formation. Collectively, we demonstrate that the engineered FAMSi system provides a fast-track platform for assembling multiplexed siRNAs in a single vector, and thus it may be a valuable tool to study gene functions or to develop novel siRNA-based therapeutics.
Collapse
Affiliation(s)
- Fang He
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Nephrology, Breast Surgery, Gastrointestinal Surgery, and Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Nephrology, Breast Surgery, Gastrointestinal Surgery, and Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zongyue Zeng
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Di Wu
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yixiao Feng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Nephrology, Breast Surgery, Gastrointestinal Surgery, and Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Alexander J. Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Benjamin Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Alissa F. Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Eric Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Xi Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Xiaoxing Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Nephrology, Breast Surgery, Gastrointestinal Surgery, and Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Huaxiu Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jing Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Nephrology, Breast Surgery, Gastrointestinal Surgery, and Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Meng Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yukun Mao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yongtao Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266061, China
| | - Changchun Niu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Laboratory Diagnostic Medicine, The Affiliated Hospital of the University of Chinese Academy of Sciences, and Chongqing General Hospital, Chongqing 400021, China
| | - Hao Wang
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Linjuan Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Nephrology, Breast Surgery, Gastrointestinal Surgery, and Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xia Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266061, China
| | - Kai Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kelly Hynes
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mostafa El Dafrawy
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hua Gan
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
46
|
Cao D, Lei Y, Ye Z, Zhao L, Wang H, Zhang J, He F, Huang L, Shi D, Liu Q, Ni N, Pakvasa M, Wagstaff W, Zhao X, Fu K, Tucker AB, Chen C, Reid RR, Haydon RC, Luu HH, He TC, Liao Z. Blockade of IGF/IGF-1R signaling axis with soluble IGF-1R mutants suppresses the cell proliferation and tumor growth of human osteosarcoma. Am J Cancer Res 2020; 10:3248-3266. [PMID: 33163268 PMCID: PMC7642656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023] Open
Abstract
Primary bone tumor, also known as osteosarcoma (OS), is the most common primary malignancy of bone in children and young adults. Current treatment protocols yield a 5-year survival rate of near 70% although approximately 80% of patients have metastatic disease at the time of diagnosis. However, long-term survival rates have remained virtually unchanged for nearly four decades, largely due to our limited understanding of the disease process. One major signaling pathway that has been implicated in human OS tumorigenesis is the insulin-like growth factor (IGF)/insulin-like growth factor-1 receptor (IGF1R) signaling axis. IGF1R is a heterotetrameric α2β2 receptor, in which the α subunits comprise the ligand binding site, whereas the β subunits are transmembrane proteins containing intracellular tyrosine kinase domains. Although numerous strategies have been devised to target IGF/IGF1R axis, most of them have failed in clinical trials due to the lack of specificity and/or limited efficacy. Here, we investigated whether a more effective and specific blockade of IGF1R activity in human OS cells can be accomplished by employing dominant-negative IGF1R (dnIGF1R) mutants. We engineered the recombinant adenoviruses expressing two IGF1R mutants derived from the α (aa 1-524) and β (aa 741-936) subunits, and found that either dnIGF1Rα and/or dnIGF1Rβ effectively inhibited cell migration, colony formation, and cell cycle progression of human OS cells, which could be reversed by exogenous IGF1. Furthermore, dnIGF1Rα and/or dnIGF1Rβ inhibited OS xenograft tumor growth in vivo, with the greatest inhibition of tumor growth shown by dnIGF1Rα. Mechanistically, the dnIGF1R mutants down-regulated the expression of PI3K/AKT and RAS/RAF/MAPK, BCL2, Cyclin D1 and most EMT regulators, while up-regulating pro-apoptotic genes in human OS cells. Collectively, these findings strongly suggest that the dnIGF1R mutants, especially dnIGF1Rα, may be further developed as novel anticancer agents that target IGF signaling axis with high specificity and efficacy.
Collapse
Affiliation(s)
- Daigui Cao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical UniversityChongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Orthopaedic Surgery, Chongqing General Hospital Affiliated with The University of Chinese Academy of SciencesChongqing, China
| | - Yan Lei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Otolaryngology, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Zhenyu Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of General Surgery, The Second Affiliated Hospital of Soochow UniversitySuzhou, China
| | - Ling Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Otolaryngology, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The School of Laboratory and Diagnostic Medicine, Chongqing Medical UniversityChongqing, China
| | - Jing Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Otolaryngology, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Otolaryngology, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Linjuan Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Otolaryngology, Obstetrics and Gynecology, and Nephrology, The First Affiliated Hospital of Chongqing Medical UniversityChongqing, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Orthopaedics, Union Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Spine Surgery, Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and The School of Laboratory and Diagnostic Medicine, Chongqing Medical UniversityChongqing, China
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Xia Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao UniversityQingdao, China
| | - Kai Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan UniversityWuhan, China
| | - Andrew B Tucker
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Surgery Section of Plastic and Reconstructive Surgery, The University of Chicago Medical CenterChicago, IL, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
| | - Zhan Liao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL, USA
- Department of Orthopaedic Surgery, Xiangya Hospital of Central South UniversityChangsha, China
| |
Collapse
|
47
|
Dinić J, Efferth T, García-Sosa AT, Grahovac J, Padrón JM, Pajeva I, Rizzolio F, Saponara S, Spengler G, Tsakovska I. Repurposing old drugs to fight multidrug resistant cancers. Drug Resist Updat 2020; 52:100713. [PMID: 32615525 DOI: 10.1016/j.drup.2020.100713] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023]
Abstract
Overcoming multidrug resistance represents a major challenge for cancer treatment. In the search for new chemotherapeutics to treat malignant diseases, drug repurposing gained a tremendous interest during the past years. Repositioning candidates have often emerged through several stages of clinical drug development, and may even be marketed, thus attracting the attention and interest of pharmaceutical companies as well as regulatory agencies. Typically, drug repositioning has been serendipitous, using undesired side effects of small molecule drugs to exploit new disease indications. As bioinformatics gain increasing popularity as an integral component of drug discovery, more rational approaches are needed. Herein, we show some practical examples of in silico approaches such as pharmacophore modelling, as well as pharmacophore- and docking-based virtual screening for a fast and cost-effective repurposing of small molecule drugs against multidrug resistant cancers. We provide a timely and comprehensive overview of compounds with considerable potential to be repositioned for cancer therapeutics. These drugs are from diverse chemotherapeutic classes. We emphasize the scope and limitations of anthelmintics, antibiotics, antifungals, antivirals, antimalarials, antihypertensives, psychopharmaceuticals and antidiabetics that have shown extensive immunomodulatory, antiproliferative, pro-apoptotic, and antimetastatic potential. These drugs, either used alone or in combination with existing anticancer chemotherapeutics, represent strong candidates to prevent or overcome drug resistance. We particularly focus on outcomes and future perspectives of drug repositioning for the treatment of multidrug resistant tumors and discuss current possibilities and limitations of preclinical and clinical investigations.
Collapse
Affiliation(s)
- Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | | | - Jelena Grahovac
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, E-38071 La Laguna, Spain.
| | - Ilza Pajeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 301724 Venezia-Mestre, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Simona Saponara
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Dóm tér 10, Hungary
| | - Ivanka Tsakovska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 105, 1113 Sofia, Bulgaria
| |
Collapse
|
48
|
Ochi K, Suzawa K, Tomida S, Shien K, Takano J, Miyauchi S, Takeda T, Miura A, Araki K, Nakata K, Yamamoto H, Okazaki M, Sugimoto S, Shien T, Yamane M, Azuma K, Okamoto Y, Toyooka S. Overcoming epithelial-mesenchymal transition-mediated drug resistance with monensin-based combined therapy in non-small cell lung cancer. Biochem Biophys Res Commun 2020; 529:760-765. [PMID: 32736704 DOI: 10.1016/j.bbrc.2020.06.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) is a key process in tumor progression and metastasis and is also associated with drug resistance. Thus, controlling EMT status is a research of interest to conquer the malignant tumors. MATERIALS AND METHODS A drug repositioning analysis of transcriptomic data from a public cell line database identified monensin, a widely used in veterinary medicine, as a candidate EMT inhibitor that suppresses the conversion of the EMT phenotype. Using TGF-β-induced EMT cell line models, the effects of monensin on the EMT status and EMT-mediated drug resistance were assessed. RESULTS TGF-β treatment induced EMT in non-small cell lung cancer (NSCLC) cell lines and the EGFR-mutant NSCLC cell lines with TGF-β-induced EMT acquired resistance to EGFR-tyrosine kinase inhibitor. The addition of monensin effectively suppressed the TGF-β-induced-EMT conversion, and restored the growth inhibition and the induction of apoptosis by the EGFR-tyrosine kinase inhibitor. CONCLUSION Our data suggested that combined therapy with monensin might be a useful strategy for preventing EMT-mediated acquired drug resistance.
Collapse
Affiliation(s)
- Kosuke Ochi
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Veterinary Clinical Medicine, Joint School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Ken Suzawa
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Kazuhiko Shien
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jui Takano
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shunsaku Miyauchi
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tatsuaki Takeda
- Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Miura
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kota Araki
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kentaro Nakata
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mikio Okazaki
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seiichiro Sugimoto
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tadahiko Shien
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masaomi Yamane
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuo Azuma
- Department of Veterinary Clinical Medicine, Joint School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Yoshiharu Okamoto
- Department of Veterinary Clinical Medicine, Joint School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Shinichi Toyooka
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
49
|
Sulik M, Maj E, Wietrzyk J, Huczyński A, Antoszczak M. Synthesis and Anticancer Activity of Dimeric Polyether Ionophores. Biomolecules 2020; 10:biom10071039. [PMID: 32664671 PMCID: PMC7408349 DOI: 10.3390/biom10071039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Polyether ionophores represent a group of natural lipid-soluble biomolecules with a broad spectrum of bioactivity, ranging from antibacterial to anticancer activity. Three seem to be particularly interesting in this context, namely lasalocid acid, monensin, and salinomycin, as they are able to selectively target cancer cells of various origin including cancer stem cells. Due to their potent biological activity and abundant availability, some research groups around the world have successfully followed semi-synthetic approaches to generate original derivatives of ionophores. However, a definitely less explored avenue is the synthesis and functional evaluation of their multivalent structures. Thus, in this paper, we describe the synthetic access to a series of original homo- and heterodimers of polyether ionophores, in which (i) two salinomycin molecules are joined through triazole linkers, or (ii) salinomycin is combined with lasalocid acid, monensin, or betulinic acid partners to form 'mixed' dimeric structures. Of note, all 11 products were tested in vitro for their antiproliferative activity against a panel of six cancer cell lines including the doxorubicin resistant colon adenocarcinoma LoVo/DX cell line; five dimers (14-15, 17-18 and 22) were identified to be more potent than the reference agents (i.e., both parent compound(s) and commonly used cytostatic drugs) in selective targeting of various types of cancer. Dimers 16 and 21 were also found to effectively overcome the resistance of the LoVo/DX cancer cell line.
Collapse
Affiliation(s)
- Michał Sulik
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61–614 Poznań, Poland; (M.S.); (A.H.)
| | - Ewa Maj
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53–114 Wrocław, Poland; (E.M.); (J.W.)
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53–114 Wrocław, Poland; (E.M.); (J.W.)
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61–614 Poznań, Poland; (M.S.); (A.H.)
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61–614 Poznań, Poland; (M.S.); (A.H.)
- Correspondence: ; Tel.: +48-61-829-1786
| |
Collapse
|
50
|
Monensin inhibits glioblastoma angiogenesis via targeting multiple growth factor receptor signaling. Biochem Biophys Res Commun 2020; 530:479-484. [PMID: 32595038 DOI: 10.1016/j.bbrc.2020.05.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/10/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma is characterized by the extensive vascularization with poor prognosis. Targeting both tumor cell and angiogenesis may present an effective therapeutic strategy for glioblastoma. Monensin, a polyether ionophore antibiotic, has been recently recognized as promising anticancer drug candidate due to its potent and selective anti-tumor activities. However, little is known on the effects of monensin on tumor angiogenesis. In this work, we investigated the effects and underlying mechanisms of monensin on glioblastoma angiogenesis and growth. We show that monensin at nanomolar concentrations inhibits early stages of capillary network formation of glioblastoma endothelial cell. Monensin inhibited multiple endothelial cellular events, including migration, growth and survival, without affecting adhesion to Matrigel. We further demonstrate that monensin acts on endothelial cells via suppressing VEGFR- and EGFR-mediated signaling pathways. Monensin also inhibits proliferation and induces apoptosis in a panel of glioblastoma cells. However, monensin is more effective in targeting endothelial cells than tumor cells. Using glioblastoma growth xenograft mice model, we show that monensin at tolerable dose effectively inhibits glioblastoma growth. Of note, there is a significant decreased tumor vascularization from monensin-treated mice. Our work clearly demonstrates the anti-angiogenic activity of monensin and its ability in suppressing multiple tyrosine kinase receptor-mediated pathways. Our findings suggest that is a useful addition to the treatment armamentarium for glioblastoma.
Collapse
|