1
|
Westhoff M, Vogelbacher C, Schuster V, Hofmann SG. Individual differences in functional connectivity during suppression of imagined threat. Cereb Cortex 2025; 35:65-76. [PMID: 39578982 DOI: 10.1093/cercor/bhae458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/10/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024] Open
Abstract
Functional magnetic resonance imaging studies typically rely on between-person analyses. To examine individual differences in functional connectivity, we used Group Iterative Multiple Model Estimation and its subgrouping function to analyze functional magnetic resonance imaging data of 54 participants who were suppressing imagined future threat. A two-stage random-effects meta-analytic approach was employed to examine individual differences. In addition to generalizable connections between brain regions, we identified individual differences in personalized models suggesting different pathways through which individuals suppress future threat. Two subgroups with distinct connectivity patterns emerged: One subgroup (n = 29; 53.70%), characterized by an additional lagged connection from the right to the left posterior cingulate cortex, exhibited comparatively higher anxiety and less brain connectivity, whereas the other subgroup (n = 25; 46.30%), showing an additional connection from the left posterior cingulate cortex to the ventromedial prefrontal cortex, was associated with lower anxiety levels and greater connectivity. This study points to individual differences in functional connectivity during emotion regulation.
Collapse
Affiliation(s)
- Marlon Westhoff
- Department of Psychology, Philipps-University Marburg, Schulstraße 12, 35037 Marburg, Germany
| | - Christoph Vogelbacher
- Department of Psychology, Philipps-University Marburg, Schulstraße 12, 35037 Marburg, Germany
| | - Verena Schuster
- Department of Psychology, Philipps-University Marburg, Schulstraße 12, 35037 Marburg, Germany
| | - Stefan G Hofmann
- Department of Psychology, Philipps-University Marburg, Schulstraße 12, 35037 Marburg, Germany
| |
Collapse
|
2
|
He J, Kurita K, Yoshida T, Matsumoto K, Shimizu E, Hirano Y. Comparisons of the amplitude of low-frequency fluctuation and functional connectivity in major depressive disorder and social anxiety disorder: A resting-state fMRI study. J Affect Disord 2024; 362:425-436. [PMID: 39004312 DOI: 10.1016/j.jad.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Studies comparing the brain functions of major depressive disorder (MDD) and social anxiety disorder (SAD) at the regional and network levels remain scarce. This study aimed to elucidate their pathogenesis using neuroimaging techniques and explore biomarkers that can differentiate these disorders. METHODS Resting-state fMRI data were collected from 48 patients with MDD, 41 patients with SAD, and 82 healthy controls. Differences in the amplitude of low-frequency fluctuations (ALFF) among the three groups were examined to identify regions showing abnormal regional spontaneous activity. A seed-based functional connectivity (FC) analysis was conducted using ALFF results as seeds and different connections were identified between regions showing abnormal local spontaneous activity and other regions. The correlation between abnormal brain function and clinical symptoms was analyzed. RESULTS Patients with MDD and SAD exhibited similar abnormal ALFF and FC in several brain regions; notably, FC between the right superior frontal gyrus (SFG) and the right posterior supramarginal gyrus (pSMG) in patients with SAD was negatively correlated with depressive symptoms. Furthermore, patients with MDD showed higher ALFF in the right SFG than HCs and those with SAD. LIMITATION Potential effects of medications, comorbidities, and data type could not be ignored. CONCLUSION MDD and SAD showed common and distinct aberrant brain function patterns at the regional and network levels. At the regional level, we found that the ALFF in the right SFG was different between patients with MDD and those with SAD. At the network level, we did not find any differences between these disorders.
Collapse
Affiliation(s)
- Junbing He
- Research Center for Child Mental Development, Chiba University, Chiba, Japan; Department of Cognitive Behavioral Physiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kohei Kurita
- Research Center for Child Mental Development, Chiba University, Chiba, Japan; United Graduate School of Child Development, Osaka University, Suita, Japan
| | - Tokiko Yoshida
- Research Center for Child Mental Development, Chiba University, Chiba, Japan; United Graduate School of Child Development, Osaka University, Suita, Japan
| | - Koji Matsumoto
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Eiji Shimizu
- Research Center for Child Mental Development, Chiba University, Chiba, Japan; Department of Cognitive Behavioral Physiology, Graduate School of Medicine, Chiba University, Chiba, Japan; United Graduate School of Child Development, Osaka University, Suita, Japan
| | - Yoshiyuki Hirano
- Research Center for Child Mental Development, Chiba University, Chiba, Japan; United Graduate School of Child Development, Osaka University, Suita, Japan.
| |
Collapse
|
3
|
Jang KI, Kim E, Lee HS, Lee HA, Han JH, Kim S, Kim JS. Electroencephalography-based endogenous phenotype of diagnostic transition from major depressive disorder to bipolar disorder. Sci Rep 2024; 14:21045. [PMID: 39251633 PMCID: PMC11383931 DOI: 10.1038/s41598-024-71287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
The neuropathology of mood disorders, including the diagnostic transition from major depressive disorder (MDD) to bipolar disorder (BD), is poorly understood. This study investigated resting-state electroencephalography (EEG) activity in patients with MDD and those whose diagnosis changed from MDD to BD. Among sixty-eight enrolled patients with MDD, the diagnosis of 17 patients converted to BD during the study period. We applied machine learning techniques to differentiate the two groups using sensor- and source-level EEG features. At the sensor level, patients with BD showed higher theta band power at the AF3 channel and low-alpha band power at the FC5 channel compared to patients with MDD. At the source level, patients with BD showed higher theta band activity in the right anterior cingulate and low-alpha band activity in the left parahippocampal gyrus. These four EEG features were selected for discriminating between BD and MDD with the best classification performance showing an accuracy of 80.88%, a sensitivity of 76.47%, and a specificity of 82.35%. Our findings revealed distinct theta and low-alpha band activities in patients with BD and MDD. These differences could potentially serve as candidate neuromarkers for the diagnosis and diagnostic transition between the two distinct mood disorders.
Collapse
Affiliation(s)
- Kuk-In Jang
- Department of Cognitive Science Research, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Euijin Kim
- Department of Human-Computer Interaction, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Ho Sung Lee
- Department of Pulmonology and Allergy, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Hyeon-Ah Lee
- Department of Psychiatry, College of Medicine, Soonchunhyang University Cheonan Hospital, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan, 31151, Republic of Korea
| | - Jae Hyun Han
- Department of Psychiatry, College of Medicine, Soonchunhyang University Cheonan Hospital, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan, 31151, Republic of Korea
| | - Sungkean Kim
- Department of Human-Computer Interaction, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| | - Ji Sun Kim
- Department of Psychiatry, College of Medicine, Soonchunhyang University Cheonan Hospital, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan, 31151, Republic of Korea.
| |
Collapse
|
4
|
Wang M, Deng Y, Liu Y, Suo T, Guo B, Eickhoff SB, Xu J, Rao H. The common and distinct brain basis associated with adult and adolescent risk-taking behavior: Evidence from the neuroimaging meta-analysis. Neurosci Biobehav Rev 2024; 160:105607. [PMID: 38428473 DOI: 10.1016/j.neubiorev.2024.105607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Risk-taking is a common, complex, and multidimensional behavior construct that has significant implications for human health and well-being. Previous research has identified the neural mechanisms underlying risk-taking behavior in both adolescents and adults, yet the differences between adolescents' and adults' risk-taking in the brain remain elusive. This study firstly employs a comprehensive meta-analysis approach that includes 73 adult and 20 adolescent whole-brain experiments, incorporating observations from 1986 adults and 789 adolescents obtained from online databases, including Web of Science, PubMed, ScienceDirect, Google Scholar and Neurosynth. It then combines functional decoding methods to identify common and distinct brain regions and corresponding psychological processes associated with risk-taking behavior in these two cohorts. The results indicated that the neural bases underlying risk-taking behavior in both age groups are situated within the cognitive control, reward, and sensory networks. Subsequent contrast analysis revealed that adolescents and adults risk-taking engaged frontal pole within the fronto-parietal control network (FPN), but the former recruited more ventrolateral area and the latter recruited more dorsolateral area. Moreover, adolescents' risk-taking evoked brain area activity within the ventral attention network (VAN) and the default mode network (DMN) compared with adults, consistent with the functional decoding analyses. These findings provide new insights into the similarities and disparities of risk-taking neural substrates underlying different age cohorts, supporting future neuroimaging research on the dynamic changes of risk-taking.
Collapse
Affiliation(s)
- Mengmeng Wang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China; Business School, NingboTech University, Ningbo, China
| | - Yao Deng
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China; State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yingying Liu
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | | | - Bowen Guo
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jing Xu
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China.
| | - Hengyi Rao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Stout DM, Harlé KM, Norman SB, Simmons AN, Spadoni AD. Resting-state connectivity subtype of comorbid PTSD and alcohol use disorder moderates improvement from integrated prolonged exposure therapy in Veterans. Psychol Med 2023; 53:332-341. [PMID: 33926595 PMCID: PMC10880798 DOI: 10.1017/s0033291721001513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) and alcohol use disorder (AUD) are highly comorbid and are associated with significant functional impairment and inconsistent treatment outcomes. Data-driven subtyping of this clinically heterogeneous patient population and the associated underlying neural mechanisms are highly needed to identify who will benefit from psychotherapy. METHODS In 53 comorbid PTSD/AUD patients, resting-state functional magnetic resonance imaging was collected prior to undergoing individual psychotherapy. We used a data-driven approach to subgroup patients based on directed connectivity profiles. Connectivity subgroups were compared on clinical measures of PTSD severity and heavy alcohol use collected at pre- and post-treatment. RESULTS We identified a subgroup of patients associated with improvement in PTSD symptoms from integrated-prolonged exposure therapy. This subgroup was characterized by lower insula to inferior parietal cortex (IPC) connectivity, higher pregenual anterior cingulate cortex (pgACC) to posterior midcingulate cortex connectivity and a unique pgACC to IPC path. We did not observe any connectivity subgroup that uniquely benefited from integrated-coping skills or subgroups associated with change in alcohol consumption. CONCLUSIONS Data-driven approaches to characterize PTSD/AUD subtypes have the potential to identify brain network profiles that are implicated in the benefit from psychological interventions - setting the stage for future research that targets these brain circuit communication patterns to boost treatment efficacy.
Collapse
Affiliation(s)
- Daniel M. Stout
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Katia M. Harlé
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Sonya B. Norman
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- National Center for PTSD, White River Junction, Vermont, USA
| | - Alan N. Simmons
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Andrea D. Spadoni
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
6
|
Zhang Z. Functionally similar yet distinct neural mechanisms underlie different choice behaviors: ALE meta-analyses of decision-making under risk in adolescents and adults. DEVELOPMENTAL REVIEW 2022. [DOI: 10.1016/j.dr.2022.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Taylor AJ, Kim JH, Ress D. Temporal stability of the hemodynamic response function across the majority of human cerebral cortex. Hum Brain Mapp 2022; 43:4924-4942. [PMID: 35965416 PMCID: PMC9582369 DOI: 10.1002/hbm.26047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 12/23/2022] Open
Abstract
The hemodynamic response function (HRF) measured with functional magnetic resonance imaging is generated by vascular and metabolic responses evoked by brief (<4 s) stimuli. It is known that the human HRF varies across cortex, between subjects, with stimulus paradigms, and even between different measurements in the same cortical location. However, our results demonstrate that strong HRFs are remarkably repeatable across sessions separated by time intervals up to 3 months. In this study, a multisensory stimulus was used to activate and measure the HRF across the majority of cortex (>70%, with lesser reliability observed in some areas of prefrontal cortex). HRFs were measured with high spatial resolution (2‐mm voxels) in central gray matter to minimize variations caused by partial‐volume effects. HRF amplitudes and temporal dynamics were highly repeatable across four sessions in 20 subjects. Positive and negative HRFs were consistently observed across sessions and subjects. Negative HRFs were generally weaker and, thus, more variable than positive HRFs. Statistical measurements showed that across‐session variability is highly correlated to the variability across events within a session; these measurements also indicated a normal distribution of variability across cortex. The overall repeatability of the HRFs over long time scales generally supports the long‐term use of event‐related functional magnetic resonance imaging protocols.
Collapse
Affiliation(s)
- Amanda J Taylor
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Jung Hwan Kim
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - David Ress
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
Doyle CM, Lane ST, Brooks JA, Wilkins RW, Gates KM, Lindquist KA. Unsupervised classification reveals consistency and degeneracy in neural network patterns of emotion. Soc Cogn Affect Neurosci 2022; 17:995-1006. [PMID: 35445241 PMCID: PMC9629478 DOI: 10.1093/scan/nsac028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2022] [Accepted: 04/19/2022] [Indexed: 01/12/2023] Open
Abstract
In the present study, we used an unsupervised classification algorithm to reveal both consistency and degeneracy in neural network connectivity during anger and anxiety. Degeneracy refers to the ability of different biological pathways to produce the same outcomes. Previous research is suggestive of degeneracy in emotion, but little research has explicitly examined whether degenerate functional connectivity patterns exist for emotion categories such as anger and anxiety. Twenty-four subjects underwent functional magnetic resonance imaging (fMRI) while listening to unpleasant music and self-generating experiences of anger and anxiety. A data-driven model building algorithm with unsupervised classification (subgrouping Group Iterative Multiple Model Estimation) identified patterns of connectivity among 11 intrinsic networks that were associated with anger vs anxiety. As predicted, degenerate functional connectivity patterns existed within these overarching consistent patterns. Degenerate patterns were not attributable to differences in emotional experience or other individual-level factors. These findings are consistent with the constructionist account that emotions emerge from flexible functional neuronal assemblies and that emotion categories such as anger and anxiety each describe populations of highly variable instances.
Collapse
Affiliation(s)
- Cameron M Doyle
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stephanie T Lane
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jeffrey A Brooks
- Department of Psychology, University of California, Berkeley, CA 84720, USA,Hume AI, New York, NY 10010, USA
| | - Robin W Wilkins
- Gateway University of North Carolina Greensboro MRI Center, Greensboro, NC 27412, USA
| | - Kathleen M Gates
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kristen A Lindquist
- Correspondence should be addressed to Kristen A. Lindquist, Department of Psychology and Neuroscience, University of North Carolina, CB #3270, 230 E. Cameron Avenue, Chapel Hill, NC 27599, USA. E-mail:
| |
Collapse
|
9
|
Tripathi V, Garg R. Weak Task Synchronization of Default Mode Network in Task Based Paradigms. Neuroimage 2022; 251:118940. [PMID: 35121184 DOI: 10.1016/j.neuroimage.2022.118940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/15/2022] Open
Abstract
The brains Default mode network (DMN) is generally characterized by brain areas that gets deactivated upon the presentation of a wide variety of externally focused, attention demanding tasks. These areas also exhibit significant intra-DMN functional connectivity and significant negative functional connectivity with other brain areas, especially with attention networks, in both resting state and task conditions. Therefore, the DMN has been hypothesized to be involved in internally directed cognitive activities such as autobiographical recall of the past, future planning and mind wandering. Recent research has discovered the role of bottom-up attention in modulating the behaviour of DMN. We hypothesize that the de-engagement of the DMN regions upon the presentation of an externally-focused attention-demanding stimulus may not be strictly stimulus locked and may exhibit significant trial-to-trial as well as subject-to-subject variability. Due to the involvement of frontoparietal control network in modulating the anticorrelations between DMN and dorsal attention network (DAN), we expect the DMN regions to have lower inter-trial and inter-subject synchronization in their fMRI BOLD responses as compared to the bottom-up early-sensory task-positive regions. To test this hypothesis, we designed new statistical methods called Inter Trial Temporal Synchronization Analysis (IT-TSA) and Inter Subject TSA (IS-TSA) to analyse variability across trials and subjects respectively. We analysed four publicly available datasets (total 223 subjects) across seven tasks related to different cognitive modalities and found out that there is significantly low stimulus-locked synchronization across trials and subjects in the DMN regions as compared to early sensory task positive regions. Our study challenges the understanding of DMN as a strictly task-negative region and supports the recent findings that DMN acts as an active component associated with intrinsic processing which deactivates differentially and non-linearly across trials and subjects in the presence of extrinsic processes.
Collapse
Affiliation(s)
- Vaibhav Tripathi
- Department of Psychological and Brain Sciences, Boston University, MA, 02215, USA.
| | - Rahul Garg
- Department of Computer Science and Engineering, Indian Institute of Technology, Delhi, 110052, India; Amar Nath and Shashi Khosla School of Information Technology, Indian Institute of Technology, Delhi, 110052, India; National Resource Centre for Value Education in Engineering, Indian Institute of Technology, Delhi, 110052, India
| |
Collapse
|
10
|
Brooks SJ, Katz ES, Stamoulis C. Shorter Duration and Lower Quality Sleep Have Widespread Detrimental Effects on Developing Functional Brain Networks in Early Adolescence. Cereb Cortex Commun 2021; 3:tgab062. [PMID: 35047823 PMCID: PMC8759437 DOI: 10.1093/texcom/tgab062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 08/26/2021] [Accepted: 10/15/2021] [Indexed: 11/12/2022] Open
Abstract
Sleep is critical for cognitive health, especially during complex developmental periods such as adolescence. However, its effects on maturating brain networks that support cognitive function are only partially understood. We investigated the impact of shorter duration and reduced quality sleep, common stressors during development, on functional network properties in early adolescence-a period of significant neural maturation, using resting-state functional magnetic resonance imaging from 5566 children (median age = 120.0 months; 52.1% females) in the Adolescent Brain Cognitive Development cohort. Decreased sleep duration, increased sleep latency, frequent waking up at night, and sleep-disordered breathing symptoms were associated with lower topological efficiency, flexibility, and robustness of visual, sensorimotor, attention, fronto-parietal control, default-mode and/or limbic networks, and with aberrant changes in the thalamus, basal ganglia, hippocampus, and cerebellum (P < 0.05). These widespread effects, many of which were body mass index-independent, suggest that unhealthy sleep in early adolescence may impair neural information processing and integration across incompletely developed networks, potentially leading to deficits in their cognitive correlates, including attention, reward, emotion processing and regulation, memory, and executive control. Shorter sleep duration, frequent snoring, difficulty waking up, and daytime sleepiness had additional detrimental network effects in nonwhite participants, indicating racial disparities in the influence of sleep metrics.
Collapse
|
11
|
Suttkus S, Schumann A, de la Cruz F, Bär KJ. Working memory in schizophrenia: The role of the locus coeruleus and its relation to functional brain networks. Brain Behav 2021; 11:e02130. [PMID: 33784023 PMCID: PMC8119871 DOI: 10.1002/brb3.2130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/14/2021] [Accepted: 03/17/2021] [Indexed: 01/15/2023] Open
Abstract
Evidence suggests functional brain networks, especially the executive control network (ECN) and default mode network (DMN), to be abnormal in schizophrenia. Dysfunctions within the locus coeruleus (LC)-noradrenaline (NE) system, which is supposed to be pivotal to modulate neuronal network activation during executive control (e.g., working memory function), are also considered to play a vital role in the occurrence of positive (e.g., hallucinatory) or negative (e.g., inattentive) symptoms in these patients. In the present study, we sought to shed further light on the role of the LC-NE system in patients with schizophrenia. More specifically, we wanted to improve our understanding of the relationship and possible disturbances of the ECN and DMN during a working memory task in patients. A total of 58 healthy control subjects and 40 medicated patients with schizophrenia were investigated using a working memory 3-back task during functional magnetic resonance imaging. Main findings of our present study were differential dynamics of ECN and DMN blood oxygenation level-dependent (BOLD) activations with increasing task demands in both patients and controls. Moreover, we found increased BOLD activation in the LC in patients compared to controls in the interaction contrast between groups and conditions. LC BOLD activation significantly correlated with both, the main hub of the ECN, that is, the dorsolateral prefrontal cortex, and of the DMN, that is, the posterior cingulate cortex. Thus, the LC-NE system seems to be crucial in modulating neuronal network activity in a 3-back working memory task and might significantly contribute to cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Stefanie Suttkus
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, University Hospital Jena, Germany
| | - Andy Schumann
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, University Hospital Jena, Germany
| | - Feliberto de la Cruz
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, University Hospital Jena, Germany
| | - Karl-Jürgen Bär
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, University Hospital Jena, Germany
| |
Collapse
|
12
|
Nakamura T, Tomita M, Horikawa N, Ishibashi M, Uematsu K, Hiraki T, Abe T, Uchimura N. Functional connectivity between the amygdala and subgenual cingulate gyrus predicts the antidepressant effects of ketamine in patients with treatment-resistant depression. Neuropsychopharmacol Rep 2021; 41:168-178. [PMID: 33615749 PMCID: PMC8340826 DOI: 10.1002/npr2.12165] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/28/2022] Open
Abstract
Aim Approximately one‐third of patients with major depressive disorder develop treatment‐resistant depression. One‐third of patients with treatment‐resistant depression demonstrate resistance to ketamine, which is a novel antidepressant effective for this disorder. The objective of this study was to examine the utility of resting‐state functional magnetic resonance imaging for the prediction of treatment response to ketamine in treatment‐resistant depression. Methods An exploratory seed‐based resting‐state functional magnetic resonance imaging analysis was performed to examine baseline resting‐state functional connectivity differences between ketamine responders and nonresponders before treatment with multiple intravenous ketamine infusions. Results Fifteen patients with treatment‐resistant depression received multiple intravenous subanesthetic (0.5 mg/kg/40 minutes) ketamine infusions, and nine were identified as responders. The exploratory resting‐state functional magnetic resonance imaging analysis identified a cluster of significant baseline resting‐state functional connectivity differences associating ketamine response between the amygdala and subgenual anterior cingulate gyrus in the right hemisphere. Using anatomical region of interest analysis of the resting‐state functional connectivity, ketamine response was predicted with 88.9% sensitivity and 100% specificity. The resting‐state functional connectivity of significant group differences between responders and nonresponders retained throughout the treatment were considered a trait‐like feature of heterogeneity in treatment‐resistant depression. Conclusion This study suggests the possible clinical utility of resting‐state functional magnetic resonance imaging for predicting the antidepressant effects of ketamine in treatment‐resistant depression patients and implicated resting‐state functional connectivity alterations to determine the trait‐like pathophysiology underlying treatment response heterogeneity in treatment‐resistant depression. This study illustrates that the alteration in the RSFC within the right AN in TRD patients reflects the antidepressant response to ketamine at baseline. The alteration remained throughout the 2‐week treatment with multiple ketamine infusions and seemed to reflect the trait‐like features underlying treatment heterogeneity in TRD. By employing an anatomical ROI of the sc/sgACC, the present study also suggests the possible clinical utility of the rsfMRI to predict the treatment response to ketamine in TRD patients.
![]()
Collapse
Affiliation(s)
- Tomoyuki Nakamura
- Department of Neuropsychiatry, Kurume University School of Medicine, Kurume City, Japan
| | - Masaru Tomita
- Department of Neuropsychiatry, Kurume University School of Medicine, Kurume City, Japan.,Elm-tree Mental Clinic, Ogori City, Japan
| | - Naoki Horikawa
- Department of Neuropsychiatry, Kurume University School of Medicine, Kurume City, Japan.,Nozoe Hills Hospital, Kurume City, Japan
| | - Masatoshi Ishibashi
- Department of Neuropsychiatry, Kurume University School of Medicine, Kurume City, Japan
| | - Ken Uematsu
- Uematsu Mental Clinic, Chikugo City, Japan.,Department of Pharmacology, Kurume University School of Medicine, Kurume City, Japan
| | - Teruyuki Hiraki
- Department of Anaesthesiology, Kurume University School of Medicine, Kurume City, Japan
| | - Toshi Abe
- Department of Radiology, Kurume University School of Medicine, Kurume City, Japan
| | - Naohisa Uchimura
- Department of Neuropsychiatry, Kurume University School of Medicine, Kurume City, Japan
| |
Collapse
|
13
|
Watabe T, Hatazawa J. Evaluation of Functional Connectivity in the Brain Using Positron Emission Tomography: A Mini-Review. Front Neurosci 2019; 13:775. [PMID: 31402852 PMCID: PMC6676772 DOI: 10.3389/fnins.2019.00775] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/10/2019] [Indexed: 11/13/2022] Open
Abstract
Resting-state networks (RSNs) exhibit spontaneous functional connectivity in the resting state. Previous studies have evaluated RSNs mainly based on spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signals during functional magnetic resonance imaging (fMRI). However, separation between regional increases in cerebral blood flow (CBF) and oxygen consumption is theoretically difficult using BOLD-fMRI. Such separation can be achieved using quantitative 15O-gas and water positron emission tomography (PET). In addition, 18F-FDG PET can be used to investigate functional connectivity based on changes in glucose metabolism, which reflects local brain activity. Previous studies have highlighted the feasibility and clinical usefulness of 18F-FDG-PET for the analysis of RSNs, and recent studies have utilized simultaneous PET/fMRI for such analyses. While PET provides seed information regarding the focus of the abnormalities (e.g., hypometabolism and reduced target binding), fMRI is used for the analysis of functional connectivity. Thus, as PET and fMRI provide different types of information, integrating these modalities may aid in elucidating the pathological mechanisms underlying certain diseases, and in characterizing individual patients.
Collapse
Affiliation(s)
- Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University, Osaka, Japan.,Institute for Radiation Sciences, Osaka University, Osaka, Japan
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University, Osaka, Japan.,Institute for Radiation Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
14
|
McCormick EM, McElwain NL, Telzer EH. Alterations in adolescent dopaminergic systems as a function of early mother-toddler attachment: A prospective longitudinal examination. Int J Dev Neurosci 2019; 78:122-129. [PMID: 31254598 DOI: 10.1016/j.ijdevneu.2019.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/22/2019] [Accepted: 06/25/2019] [Indexed: 11/30/2022] Open
Abstract
Early experiences have the potential for outsized influence on neural development across a wide number of domains. In humans, many of the most important such experiences take place in the context of the mother-child attachment relationship. Work from animal models has highlighted neural changes in dopaminergic systems as a function of early care experiences, but translational research in humans has been limited. Our goal was to fill this gap by examining the longitudinal associations between early attachment experiences (assessed at 2.5 years) and neural responses to risk and rewards during adolescence (assessed at 13 years). Adolescence is a developmental period where sensitivity to rewards has important implications for behavior and long-term outcomes, providing an important window to study potential influences of early attachment experiences on reward processing. In order to address this question, 50 adolescents completed a risk and reward task during an fMRI scan, allowing us to assess differences in neural sensitivity to changes in risk level and reward amount as a function of early attachment experiences. Adolescents with insecure attachment histories showed blunted sensitivity to increasing risk levels in regions of the dorsal striatum, while also showing heightened sensitivity to increasing reward levels in the same region. These results highlight the importance of early attachment experiences for long-term neural development. Specifically, early exposure to more maladaptive relationships with caregivers may confer dual risks prospectively for adolescents, sensitizing them to rewarding outcomes while de-sensitizing them to potential risks associated with those behaviors, perhaps due to stress-related dopaminergic changes early in development.
Collapse
Affiliation(s)
- Ethan M McCormick
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Nancy L McElwain
- Department of Human Development and Family Studies, University of Illinois, Urbana-Champaign, IL, 61801, United States.,The Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, IL, 61801, United States
| | - Eva H Telzer
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, 27599, United States
| |
Collapse
|
15
|
Hinz R, Peeters LM, Shah D, Missault S, Belloy M, Vanreusel V, Malekzadeh M, Verhoye M, Van der Linden A, Keliris GA. Bottom-up sensory processing can induce negative BOLD responses and reduce functional connectivity in nodes of the default mode-like network in rats. Neuroimage 2019; 197:167-176. [PMID: 31029872 DOI: 10.1016/j.neuroimage.2019.04.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/26/2022] Open
Abstract
The default mode network is a large-scale brain network that is active during rest and internally focused states and deactivates as well as desynchronizes during externally oriented (top-down) attention demanding cognitive tasks. However, it is not sufficiently understood if salient stimuli, able to trigger bottom-up attentional processes, could also result in similar reduction of activity and functional connectivity in the DMN. In this study, we investigated whether bottom-up sensory processing could influence the default mode-like network (DMLN) in rats. DMLN activity was examined using block-design visual functional magnetic resonance imaging (fMRI) while its synchronization was investigated by comparing functional connectivity during a resting versus a continuously stimulated brain state by unpredicted light flashes. We demonstrated that the BOLD response in DMLN regions was decreased during visual stimulus blocks and increased during blanks. Furthermore, decreased inter-network functional connectivity between the DMLN and visual networks as well as decreased intra-network functional connectivity within the DMLN was observed during the continuous visual stimulation. These results suggest that triggering of bottom-up attention mechanisms in sedated rats can lead to a cascade similar to top-down orienting of attention in humans and is able to deactivate and desynchronize the DMLN.
Collapse
Affiliation(s)
- Rukun Hinz
- Bio-Imaging Lab, University of Antwerp, Belgium.
| | | | - Disha Shah
- Bio-Imaging Lab, University of Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Li X, Wang A, Xu J, Sun Z, Xia J, Wang P, Wang B, Zhang M, Tian J. Reduced Dynamic Interactions Within Intrinsic Functional Brain Networks in Early Blind Patients. Front Neurosci 2019; 13:268. [PMID: 30983956 PMCID: PMC6448007 DOI: 10.3389/fnins.2019.00268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/07/2019] [Indexed: 11/16/2022] Open
Abstract
Neuroimaging studies in early blind (EB) patients have shown altered connections or brain networks. However, it remains unclear how the causal relationships are disrupted within intrinsic brain networks. In our study, we used spectral dynamic causal modeling (DCM) to estimate the causal interactions using resting-state data in a group of 20 EB patients and 20 healthy controls (HC). Coupling parameters in specific regions were estimated, including the medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), and inferior parietal lobule (IPC) in the default mode network (DMN); dorsal anterior cingulate cortex (dACC) and bilateral anterior insulae (AI) in the salience network (SN), and bilateral frontal eye fields (FEF) and superior parietal lobes (SPL) within the dorsal attention network (DAN). Statistical analyses found that all endogenous connections and the connections from the mPFC to bilateral IPCs in EB patients were significantly reduced within the DMN, and the effective connectivity from the PCC and lIPC to the mPFC, and from the mPFC to the PCC were enhanced. For the SN, all significant connections in EB patients were significantly decreased, except the intrinsic right AI connections. Within the DAN, more significant effective connections were observed to be reduced between the EB and HC groups, while only the connections from the right SPL to the left SPL and the intrinsic connection in the left SPL were significantly enhanced. Furthermore, discovery of more decreased effective connections in the EB subjects suggested that the disrupted causal interactions between specific regions are responsive to the compensatory brain plasticity in early deprivation.
Collapse
Affiliation(s)
- Xianglin Li
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Medical Imaging Research Institute, Binzhou Medical University, Yantai, China
| | - Ailing Wang
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Junhai Xu
- Tianjin Key Laboratory of Cognitive Computing and Application, School of Artificial Intelligence, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Zhenbo Sun
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, China
| | - Jikai Xia
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Peiyuan Wang
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Bin Wang
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Tian
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,School of Life Sciences and Technology, Xidian University, Xi'an, China
| |
Collapse
|
17
|
Effects of age, sex, and puberty on neural efficiency of cognitive and motor control in adolescents. Brain Imaging Behav 2019; 14:1089-1107. [PMID: 30903550 DOI: 10.1007/s11682-019-00075-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Critical changes in adolescence involve brain cognitive maturation of inhibitory control processes that are essential for a myriad of adult functions. Cognitive control advances into adulthood as there is more flexible integration of component processes, including inhibitory control of conflicting information, overwriting inappropriate response tendencies, and amplifying relevant responses for accurate execution. Using a modified Stroop task with fMRI, we investigated the effects of age, sex, and puberty on brain functional correlates of cognitive and motor control in 87 boys and 91 girls across the adolescent age range. Results revealed dissociable brain systems for cognitive and motor control processes, whereby adolescents flexibly adapted neural responses to control demands. Specifically, when response repetitions facilitated planning-based action selection, frontoparietal-insular regions associated with cognitive control operations were less activated, whereas cortical-pallidal-cerebellar motor regions associated with motor skill acquisition, were more activated. Attenuated middle cingulate cortex activation occurred with older adolescent age for both motor control and cognitive control with automaticity from repetition learning. Sexual dimorphism for control operations occurred in extrastriate cortices involved in visuo-attentional selection: While boys enhanced extrastriate selection processes for motor control, girls activated these regions more for cognitive control. These sex differences were attenuated with more advanced pubertal stage. Together, our findings show that brain cognitive and motor control processes are segregated, demand-specific, more efficient in older adolescents, and differ between sexes relative to pubertal development. Our findings advance our understanding of how distributed brain activity and the neurodevelopment of automaticity enhances cognitive and motor control ability in adolescence.
Collapse
|