1
|
Bassi L, Hennecke J, Albracht C, Solbach MD, Rai A, Pinheiro Alves de Souza Y, Fox A, Zeng M, Döll S, Doan VC, Richter R, Kahl A, Von Sivers L, Winkler L, Eisenhauer N, Meyer ST, van Dam NM, Weigelt A. Plant species richness promotes the decoupling of leaf and root defence traits while species-specific responses in physical and chemical defences are rare. THE NEW PHYTOLOGIST 2025; 246:729-746. [PMID: 40013369 PMCID: PMC11923407 DOI: 10.1111/nph.20434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/13/2025] [Indexed: 02/28/2025]
Abstract
The increased positive impact of plant diversity on ecosystem functioning is often attributed to the accumulation of mutualists and dilution of antagonists in diverse plant communities. While increased plant diversity alters traits related to resource acquisition, it remains unclear whether it reduces defence allocation, whether this reduction differs between roots and leaves, or varies among species. To answer these questions, we assessed the effect of plant species richness, plant species identity and their interaction on the expression of 23 physical and chemical leaf and fine root defence traits of 16 plant species in a 19-yr-old biodiversity experiment. Only leaf mass per area, leaf and root dry matter content and root nitrogen, traits associated with both, resource acquisition and defence, responded consistently to species richness. However, species richness promoted a decoupling of these defences in leaves and fine roots, possibly in response to resource limitations in diverse communities. Species-specific responses were rare and related to chemical defence and mutualist collaboration, likely responding to species-specific antagonists' dilution and mutualists' accumulation. Overall, our study suggests that resource limitation in diverse communities might mediate the relationship between plant defence traits and antagonist dilution.
Collapse
Affiliation(s)
- Leonardo Bassi
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| | - Justus Hennecke
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| | - Cynthia Albracht
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle, 06120, Germany
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1098XH, The Netherlands
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institute, Quedlinburg, 06484, Germany
| | - Marcel Dominik Solbach
- Terrestrial Ecology Group, Institute of Zoology, University of Cologne, Cologne, 50674, Germany
| | - Akanksha Rai
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, 0774526, Germany
| | - Yuri Pinheiro Alves de Souza
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, 85764, Germany
- TUM School of Life Science, Chair of Environmental Microbiology, Technische Universität München, Freising, 85354, Germany
| | - Aaron Fox
- TUM School of Life Science, Chair of Environmental Microbiology, Technische Universität München, Freising, 85354, Germany
- Environment, Soils and Land Use, Teagasc, Johnstown Castle, Co, Wexford, Y35HK54, Ireland
| | - Ming Zeng
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biodiversity, University Jena, Jena, 07743, Germany
- Université de Bordeaux, INRAE, BFP, UMR 1332, Villenave d'Ornon, 33140, France
| | - Stefanie Döll
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biodiversity, University Jena, Jena, 07743, Germany
| | - Van Cong Doan
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biodiversity, University Jena, Jena, 07743, Germany
- Plant Physiology Unit, Life Sciences and Systems Biology Department, University of Turin, Torino, 10123, Italy
| | - Ronny Richter
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| | - Anja Kahl
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Lea Von Sivers
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Luise Winkler
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Experimental Interaction Ecology, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Sebastian T Meyer
- Terrestrial Ecology Research Group, School of Life Sciences, Technical University Munich, Freising, D-85354, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biodiversity, University Jena, Jena, 07743, Germany
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, 14979, Germany
| | - Alexandra Weigelt
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, 04103, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
| |
Collapse
|
2
|
Ghosh SK, Ishangulyyeva G, Erbilgin N, Bonello P. Terpenoids are involved in the expression of systemic-induced resistance in Austrian pine. PLANT, CELL & ENVIRONMENT 2024; 47:2206-2227. [PMID: 38481105 DOI: 10.1111/pce.14875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/03/2024] [Accepted: 02/26/2024] [Indexed: 04/30/2024]
Abstract
Terpenoids are defense metabolites that are induced upon infection or wounding. However, their role in systemic-induced resistance (SIR) is not known. Here, we explored the role of terpenoids in this phenomenon at a very early stage in the interaction between Austrian pine and the tip blight and canker pathogen Diplodia pinea. We induced Austrian pine saplings by either wounding or inoculating the lower stems with D. pinea. The seedlings were then challenged after 12 h, 72 h, or 10 days with D. pinea on the stem 15 cm above the induction. Lesion lengths and terpenoids were quantified at both induction and challenge locations. Key terpenoids were assayed for antifungal activity in in vitro bioassays. SIR increased with time and was correlated with the inducibility of several compounds. α-Pinene and a cluster of β-pinene, limonene, benzaldehyde, dodecanol, and n-dodecyl acrylate were positively correlated with SIR and were fungistatic in vitro, while other compounds were negatively correlated with SIR and appeared to serve as a carbon source for D. pinea. This study shows that, overall, terpenoids are involved in SIR in this system, but their role is nuanced, depending on the type of induction and time of incubation. We hypothesize that some, such as α-pinene, could serve in SIR signaling.
Collapse
Affiliation(s)
- Soumya K Ghosh
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Guncha Ishangulyyeva
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Pierluigi Bonello
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Marqués-Gálvez JE, Pandharikar G, Basso V, Kohler A, Lackus ND, Barry K, Keymanesh K, Johnson J, Singan V, Grigoriev IV, Vilgalys R, Martin F, Veneault-Fourrey C. Populus MYC2 orchestrates root transcriptional reprogramming of defence pathway to impair Laccaria bicolor ectomycorrhizal development. THE NEW PHYTOLOGIST 2024; 242:658-674. [PMID: 38375883 DOI: 10.1111/nph.19609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
The jasmonic acid (JA) signalling pathway plays an important role in the establishment of the ectomycorrhizal symbiosis. The Laccaria bicolor effector MiSSP7 stabilizes JA corepressor JAZ6, thereby inhibiting the activity of Populus MYC2 transcription factors. Although the role of MYC2 in orchestrating plant defences against pathogens is well established, its exact contribution to ECM symbiosis remains unclear. This information is crucial for understanding the balance between plant immunity and symbiotic relationships. Transgenic poplars overexpressing or silencing for the two paralogues of MYC2 transcription factor (MYC2s) were produced, and their ability to establish ectomycorrhiza was assessed. Transcriptomics and DNA affinity purification sequencing were performed. MYC2s overexpression led to a decrease in fungal colonization, whereas its silencing increased it. The enrichment of terpene synthase genes in the MYC2-regulated gene set suggests a complex interplay between the host monoterpenes and fungal growth. Several root monoterpenes have been identified as inhibitors of fungal growth and ECM symbiosis. Our results highlight the significance of poplar MYC2s and terpenes in mutualistic symbiosis by controlling root fungal colonization. We identified poplar genes which direct or indirect control by MYC2 is required for ECM establishment. These findings deepen our understanding of the molecular mechanisms underlying ECM symbiosis.
Collapse
Affiliation(s)
- José Eduardo Marqués-Gálvez
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Gaurav Pandharikar
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Veronica Basso
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Nathalie D Lackus
- Lehrstuhl für Pharmazeutische Biologie, Julius-von-Sachs-Institut für Biowissenschaften, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, Würzburg, 97082, Deutschland
| | - Kerrie Barry
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Keykhosrow Keymanesh
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vasanth Singan
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Francis Martin
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| | - Claire Veneault-Fourrey
- Université de Lorraine, INRAE, UMR 1136 Interactions Arbres-Microorganismes, Centre INRAE Grand Est-Nancy, Champenoux, 54280, France
| |
Collapse
|
4
|
Ceballos R, Palma-Millanao R, Navarro PD, Urzúa J, Alveal J. Positive Chemotaxis of the Entomopathogenic Nematode Steinernema australe (Panagrolaimorpha: Steinenematidae) towards High-Bush Blueberry ( Vaccinium corymbosum) Root Volatiles. Int J Mol Sci 2023; 24:10536. [PMID: 37445712 DOI: 10.3390/ijms241310536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/03/2023] [Accepted: 05/04/2023] [Indexed: 07/15/2023] Open
Abstract
The foraging behavior of the infective juveniles (IJs) of entomopathogenic nematodes (EPNs) relies on host-derived compounds, but in a tri-trophic context, herbivore-induced root volatiles act as signals enhancing the biological control of insect pests by recruiting EPNs. In southern Chile, the EPN Steinernema australe exhibits the potential to control the raspberry weevil, Aegorhinus superciliosus, a key pest of blueberry Vaccinium corymbosum. However, there is no information on the quality of the blueberry root volatile plume or the S. australe response to these chemicals as putative attractants. Here, we describe the root volatile profile of blueberries and the chemotaxis behavior of S. australe towards the volatiles identified from Vaccinium corymbosum roots, infested or uninfested with A. superciliosus larvae. Among others, we found linalool, α-terpineol, limonene, eucalyptol, 2-carene, 1-nonine, 10-undecyn-1-ol, and methyl salicylate in root volatiles and, depending on the level of the emissions, they were selected for bioassays. In the dose-response tests, S. australe was attracted to all five tested concentrations of methyl salicylate, 1-nonine, α-terpineol, and 2-carene, as well as to 100 µg mL-1 of 10-undecyn-1-ol, 0.1 and 100 µg mL-1 of linalool, and 100 µg mL-1 of limonene, whereas eucalyptol elicited no attraction or repellency. These results suggest that some volatiles released from damaged roots attract S. australe and may have implications for the biocontrol of subterranean pests.
Collapse
Affiliation(s)
- Ricardo Ceballos
- Laboratory of Insects Chemical Ecology, Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Av. Vicente Méndez 515, Chillán 3800062, Chile
| | - Rubén Palma-Millanao
- Laboratory of Insects Science, Instituto de Investigaciones Agropecuarias, INIA Carillanca, Km 10, Camino Cajón-Vilcún, Temuco 4800000, Chile
- Vicerrectoría de Investigación y Postgrado, Universidad de La Frontera, Temuco 4811230, Chile
| | - Patricia D Navarro
- Laboratory of Insects Science, Instituto de Investigaciones Agropecuarias, INIA Carillanca, Km 10, Camino Cajón-Vilcún, Temuco 4800000, Chile
| | - Julio Urzúa
- Laboratory of Insects Chemical Ecology, Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Av. Vicente Méndez 515, Chillán 3800062, Chile
| | - Juan Alveal
- Laboratory of Insects Chemical Ecology, Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Av. Vicente Méndez 515, Chillán 3800062, Chile
| |
Collapse
|
5
|
Yang T, Li Z, Shu J, Fang L, He X, Li Q, Jiang G, Chen S, Yang B. Rapid Detection of Potential Natural Food Preservatives and Identification of Artemisia Species via High-Sensitivity Photoionization Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37022303 DOI: 10.1021/acs.jafc.3c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Natural food preservatives are being sought extensively as a safe alternative to chemical food preservatives. This study aimed to identify potential natural preservatives from herbs using single-photon ionization time-of-flight mass spectrometry (SPI-TOF-MS). Five Artemisia species and four other herbs were analyzed, and the random forest (RF) algorithm was used to simulate olfaction and distinguish the Artemisia species by identifying the characteristic peaks of volatile terpenoids (VTPs). Results showed that the terpenoid synthase (TPS) gene family was expanded in Artemisia species, potentially contributing to the increased production of VTPs, which have potential as natural preservatives and specifically identify these species. The limits of detections (LODs) for principle VTPs in Artemisia species were as low as 22-39 parts-per-trillion-by-volume (pptv) using SPI-TOF-MS. This study highlights the potential for headspace mass spectrometry to be used in the development of natural preservatives and the identification of plant species.
Collapse
Affiliation(s)
- Teng Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinian Shu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longfa Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems. Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xiaojuan He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems. Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Qirun Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxia Jiang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siwei Chen
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Theodoridis S, Drakou EG, Hickler T, Thines M, Nogues-Bravo D. Evaluating natural medicinal resources and their exposure to global change. Lancet Planet Health 2023; 7:e155-e163. [PMID: 36754471 DOI: 10.1016/s2542-5196(22)00317-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 06/18/2023]
Abstract
Medicinal plants and their bioactive molecules are integral components of nature and have supported the health of human societies for millennia. However, the prevailing view of medicinal biodiversity solely as an ecosystem-decoupled natural resource of commercial value prevents people from fully benefiting from the capacity of nature to provide medicines and from assessing the vulnerability of this capacity to the global environmental crisis. Emerging scientific and technological developments and traditional knowledge allow for appreciating medicinal plant resources from a planetary health perspective. In this Personal View, we highlight and integrate current knowledge that includes medicinal, biodiversity, and environmental change research in a transdisciplinary framework to evaluate natural medicinal resources and their vulnerability in the anthropocene. With Europe as an application case, we propose proxy spatial indicators for establishing the capacity, potential societal benefits, and economic values of native medicinal plant resources and the exposure of these resources to global environmental change. The proposed framework and indicators aim to be a basis for transdisciplinary research on medicinal biodiversity and could guide decisions in addressing crucial multiple Sustainable Development Goals, from accessible global health care to natural habitat protection and restoration.
Collapse
Affiliation(s)
- Spyros Theodoridis
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany.
| | | | - Thomas Hickler
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany; Department of Physical Geography, Geosciences, Johann Wolfgang Goethe University of Frankfurt, Frankfurt, Germany
| | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany; Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Johann Wolfgang Goethe University of Frankfurt, Frankfurt, Germany
| | - David Nogues-Bravo
- Center for Macroecology, Evolution and Climate, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Duc NH, Vo HTN, van Doan C, Hamow KÁ, Le KH, Posta K. Volatile organic compounds shape belowground plant-fungi interactions. FRONTIERS IN PLANT SCIENCE 2022; 13:1046685. [PMID: 36561453 PMCID: PMC9763900 DOI: 10.3389/fpls.2022.1046685] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Volatile organic compounds (VOCs), a bouquet of chemical compounds released by all life forms, play essential roles in trophic interactions. VOCs can facilitate a large number of interactions with different organisms belowground. VOCs-regulated plant-plant or plant-insect interaction both below and aboveground has been reported extensively. Nevertheless, there is little information about the role of VOCs derived from soilborne pathogenic fungi and beneficial fungi, particularly mycorrhizae, in influencing plant performance. In this review, we show how plant VOCs regulate plant-soilborne pathogenic fungi and beneficial fungi (mycorrhizae) interactions. How fungal VOCs mediate plant-soilborne pathogenic and beneficial fungi interactions are presented and the most common methods to collect and analyze belowground volatiles are evaluated. Furthermore, we suggest a promising method for future research on belowground VOCs.
Collapse
Affiliation(s)
- Nguyen Hong Duc
- Institute of Genetics and Biotechnology, Department of Microbiology and Applied Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Godollo, Hungary
| | - Ha T. N. Vo
- Plant Disease Laboratory, Department of Plant Protection, Faculty of Agronomy, Nong Lam University, Ho Chi Minh, Vietnam
| | - Cong van Doan
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDIV), Leipzig, Germany
| | - Kamirán Áron Hamow
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Khac Hoang Le
- Plant Disease Laboratory, Department of Plant Protection, Faculty of Agronomy, Nong Lam University, Ho Chi Minh, Vietnam
| | - Katalin Posta
- Institute of Genetics and Biotechnology, Department of Microbiology and Applied Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Godollo, Hungary
| |
Collapse
|
8
|
De-la-Cruz IM, Kariñho-Betancourt E, Núñez-Farfán J, Oyama K. Gene family evolution and natural selection signatures in Datura spp. (Solanaceae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.916762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Elucidating the diversification process of congeneric species makes it necessary to identify the factors promoting species variation and diversification. Comparative gene family analysis allows us to elucidate the evolutionary history of species by identifying common genetic/genomic mechanisms underlying species responses to biotic and abiotic environments at the genomic level. In this study, we analyzed the high-quality transcriptomes of four Datura species, D. inoxia, D. pruinosa, D. stramonium, and D. wrightii. We performed a thorough comparative gene family analysis to infer the role of selection in molecular variation, changes in protein physicochemical properties, and gain/loss of genes during their diversification processes. The results revealed common and species-specific signals of positive selection, physicochemical divergence and/or expansion of metabolic genes (e.g., transferases and oxidoreductases) associated with terpene and tropane metabolism and some resistance genes (R genes). The gene family analysis presented here is a valuable tool for understanding the genome evolution of economically and ecologically significant taxa such as the Solanaceae family.
Collapse
|
9
|
Miano RN, Mohamed SA, Cheseto X, Ndlela S, Biasazin TD, Yusuf AA, Rohwer E, Dekker T. Differential responses of Bactrocera dorsalis and its parasitoids to headspaces of different varieties of tree-attached mango fruits and the associated chemical profiles. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1021795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bactrocera dorsalis (Hendel) is a major pest of fruits and vegetables worldwide with documented losses of up to 100%. Various management techniques including the use of parasitoids, such as Fopius arisanus (Sonan) and Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae) within the context of the Integrated Pest Management (IPM) approach have been deployed for its control. The effectiveness of parasitoids is well understood, but knowledge of the semiochemicals that mediate their behavior, as well as that of the host fruit fly to tree-attached mangoes, is lacking. Here, we first compared the attractiveness of the above-mentioned fruit fly and its parasitoids to volatiles of different treatments (non-infested physiologically mature unripe and ripe mangoes, mangoes newly exposed to ovipositing B. dorsalis, and mangoes on day 7 and day 9 post-oviposition) of tree-attached Kent, Apple, and Haden mango varieties relative to control (clean air). The fruit fly was significantly more attracted to the mango volatiles (up to 93% of responsive insects) compared to the control (clean air). Fopius arisanus was significantly more attracted to mangoes with ovipositing fruit flies (68–76%) while D. longicaudata was significantly more attracted to day 9 post-oviposited mangoes (64–72%) compared to the control. Secondly, we elucidated the headspace volatile profiles of the non-infested and infested tree-attached mangoes using gas chromatography linked to mass spectrometry (GC-MS). The volatiles revealed various types of organic compounds with qualitative and quantitative differences. The majority of the compounds were esters making 33.8% of the total number, followed by sesquiterpenes-16.4%, and monoterpenes-15.4% among others. Most compounds had higher release rates in headspace volatiles of fruit fly-infested mangoes. Lastly, we harvested the infested mangoes and incubated them for puparia recovery. The number of puparia recovered varied according to the mango variety with Apple mango registering 81.7% of the total, while none was recovered from Kent. These results represent the first report of the changes in the headspace components of non-infested and infested tree-attached mangoes and the associated differential responses of the mentioned insects. A follow-up study can reveal whether there is a convergence in olfactomes which is significant when developing baits that selectively attract the fruit fly and not its natural enemies and fill the knowledge gap from an evolutionary ecological perspective.
Collapse
|
10
|
Chandrasekaran U, Byeon S, Kim K, Kim SH, Park CO, Han AR, Lee YS, Kim HS. Short-term severe drought influences root volatile biosynthesis in eastern white pine (Pinus strobus L). FRONTIERS IN PLANT SCIENCE 2022; 13:1030140. [PMID: 36388508 PMCID: PMC9644029 DOI: 10.3389/fpls.2022.1030140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Climate change-related drought stress is expected to shift carbon partitioning toward volatile organic compound (VOC) biosynthesis. The effect of drought stress on VOC synthesis remains unknown in several tree species. Therefore, we exposed eastern white pine (Pinus strobus) plants to severe drought for 32 days and performed physiological analysis (chlorophyll content, leaf water content, and root/shoot index), biochemical analysis (non-structural carbohydrates, proline, lipid peroxidation, and antioxidant assay), and total root VOC analysis. Drought stress decreased the relative water and soil moisture contents. Root proline accumulation and antioxidant activity increased significantly, whereas leaf chlorophyll synthesis and fresh weight decreased significantly in drought-treated plants. A non-significant increase in sugar accumulation (leaves and roots), proline accumulation (leaves), antioxidant activity (leaves), and lipid peroxidation (leaves and roots) was observed in drought-treated plants. Drought stress caused a non-significant decline in root/shoot ratio and starch accumulation (leaves and roots) and caused a significant increase in root abscisic acid content. Drought-treated plants showed an increase in overall monoterpene synthesis (16%) and decline in total sesquiterpene synthesis (3%). Our findings provide an overall assessment of the different responses of VOC synthesis to severe water deficit that may help unravel the molecular mechanisms underlying drought tolerance in P. strobus.
Collapse
Affiliation(s)
- Umashankar Chandrasekaran
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Siyeon Byeon
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Kunhyo Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seo Hyun Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Chan Oh Park
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ah reum Han
- Division of Basic Research, National Institute of Ecology, Seocheon-gun, South Korea
| | - Young-Sang Lee
- Division of Basic Research, National Institute of Ecology, Seocheon-gun, South Korea
| | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural and Forest Meteorology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- National Center for Agro Meteorology, Seoul, South Korea
| |
Collapse
|
11
|
Sontowski R, Guyomar C, Poeschl Y, Weinhold A, van Dam NM, Vassão DG. Mechanisms of Isothiocyanate Detoxification in Larvae of Two Belowground Herbivores, Delia radicum and D. floralis (Diptera: Anthomyiidae). Front Physiol 2022; 13:874527. [PMID: 35574438 PMCID: PMC9098826 DOI: 10.3389/fphys.2022.874527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
Like aboveground herbivores, belowground herbivores are confronted with multiple plant defense mechanisms including complex chemical cocktails in plant tissue. Roots and shoots of Brassicaceae plants contain the two-component glucosinolate (GSL)-myrosinase defense system. Upon cell damage, for example by herbivore feeding, toxic and pungent isothiocyanates (ITCs) can be formed. Several aboveground-feeding herbivores have developed biochemical adaptation strategies to overcome the GSL-ITC defenses of their host plant. Whether belowground herbivores feeding on Brassica roots possess similar mechanisms has received little attention. Here, we analyze how two related belowground specialist herbivores detoxify the GSL-ITC defenses of their host plants. The larvae of the fly species Delia radicum and D. floralis are common pests and specialized herbivores on the roots of Brassicaceae. We used chemical analyses (HPLC-MS/MS and HPLC-UV) to examine how the GSL-ITC defense system is metabolized by these congeneric larvae. In addition, we screened for candidate genes involved in the detoxification process using RNAseq and qPCR. The chemical analyses yielded glutathione conjugates and amines. This indicates that both species detoxify ITCs using potentially the general mercapturic acid pathway, which is also found in aboveground herbivores, and an ITC-specific hydrolytic pathway previously characterized in microbes. Performance assays confirmed that ITCs negatively affect the survival of both species, in spite of their known specialization to ITC-producing plants and tissues, whereas ITC breakdown products are less toxic. Interestingly, the RNAseq analyses showed that the two congeneric species activate different sets of genes upon ITC exposure, which was supported by qPCR data. Based on our findings, we conclude that these specialist larvae use combinations of general and compound-specific detoxification mechanisms with differing efficacies and substrate preferences. This indicates that combining detoxification mechanisms can be an evolutionarily successful strategy to handle plant defenses in herbivores.
Collapse
Affiliation(s)
- Rebekka Sontowski
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- *Correspondence: Rebekka Sontowski, ; Daniel G. Vassão,
| | - Cervin Guyomar
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
- Bioinformatics Unit, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Yvonne Poeschl
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- Bioinformatics Unit, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Alexander Weinhold
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Nicole M. van Dam
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Daniel G. Vassão
- Max Planck Institute for Chemical Ecology, Jena, Germany
- *Correspondence: Rebekka Sontowski, ; Daniel G. Vassão,
| |
Collapse
|
12
|
Autor E, Cornejo A, Bimbela F, Maisterra M, Gandía LM, Martínez-Merino V. Extraction of Phenolic Compounds from Populus Salicaceae Bark. Biomolecules 2022; 12:539. [PMID: 35454128 PMCID: PMC9025220 DOI: 10.3390/biom12040539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/15/2022] Open
Abstract
Lignocellulosic residues have the potential for obtaining high value-added products that could be better valorized if biorefinery strategies are adopted. The debarking of short-rotation crops yields important amounts of residues that are currently underexploited as low-grade fuel and could be a renewable source of phenolic compounds and other important phytochemicals. The isolation of these compounds can be carried out by different methods, but for attaining an integral valorization of barks, a preliminary extraction step for phytochemicals should be included. Using optimized extraction methods based on Soxhlet extraction can be effective for the isolation of phenolic compounds with antioxidant properties. In this study, poplar bark (Populus Salicaceae) was used to obtain a series of extracts using five different solvents in a sequential extraction of 24 h each in a Soxhlet extractor. Selected solvents were put in contact with the bark sample raffinate following an increasing order of polarity: n-hexane, dichloromethane, ethyl acetate, methanol, and water. The oily residues of the extracts obtained after each extraction were further subjected to flash chromatography, and the fractions obtained were characterized by gas chromatography coupled with mass spectrometry (GC-MS). The total phenolic content (TPC) was determined using the Folin-Ciocalteu method, and the antioxidant activity (AOA) of the samples was evaluated in their reaction with the free radical 2,2-Diphenyl-picrylhydrazyl (DPPH method). Polar solvents allowed for higher individual extraction yields, with overall extraction yields at around 23% (dry, ash-free basis). Different compounds were identified, including hydrolyzable tannins, phenolic monomers such as catechol and vanillin, pentoses and hexoses, and other organic compounds such as long-chain alkanes, alcohols, and carboxylic acids, among others. An excellent correlation was found between TPC and antioxidant activity for the samples analyzed. The fractions obtained using methanol showed the highest phenolic content (608 μg of gallic acid equivalent (GAE)/mg) and the greatest antioxidant activity.
Collapse
Affiliation(s)
- Elsa Autor
- Department of Sciences, Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain; (E.A.); (M.M.); (L.M.G.); (V.M.-M.)
- Institute for Advanced Materials and Mathematics (InaMat2), Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain
| | - Alfonso Cornejo
- Department of Sciences, Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain; (E.A.); (M.M.); (L.M.G.); (V.M.-M.)
- Institute for Advanced Materials and Mathematics (InaMat2), Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain
| | - Fernando Bimbela
- Department of Sciences, Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain; (E.A.); (M.M.); (L.M.G.); (V.M.-M.)
- Institute for Advanced Materials and Mathematics (InaMat2), Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain
| | - Maitane Maisterra
- Department of Sciences, Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain; (E.A.); (M.M.); (L.M.G.); (V.M.-M.)
- Institute for Advanced Materials and Mathematics (InaMat2), Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain
| | - Luis M. Gandía
- Department of Sciences, Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain; (E.A.); (M.M.); (L.M.G.); (V.M.-M.)
- Institute for Advanced Materials and Mathematics (InaMat2), Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain
| | - Víctor Martínez-Merino
- Department of Sciences, Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain; (E.A.); (M.M.); (L.M.G.); (V.M.-M.)
- Institute for Advanced Materials and Mathematics (InaMat2), Universidad Pública de Navarra (UPNA), 31006 Pamplona, Spain
| |
Collapse
|
13
|
Chuberre C, Chan P, Walet-Balieu ML, Thiébert F, Burel C, Hardouin J, Gügi B, Bardor M. Comparative Proteomic Analysis of the Diatom Phaeodactylum tricornutum Reveals New Insights Into Intra- and Extra-Cellular Protein Contents of Its Oval, Fusiform, and Triradiate Morphotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:673113. [PMID: 35386671 PMCID: PMC8977783 DOI: 10.3389/fpls.2022.673113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Phaeodactylum tricornutum is an atypical diatom since it can display three main morphotypes: fusiform, triradiate, and oval. Such pleomorphism is possible thanks to an original metabolism, which is tightly regulated in order to acclimate to environmental conditions. Currently, studies dedicated to the comparison of each morphotype issued from one specific strain are scarce and little information is available regarding the physiological significance of this morphogenesis. In this study, we performed a comparative proteomic analysis of the three morphotypes from P. tricornutum. Cultures highly enriched in one dominant morphotype (fusiform, triradiate, or oval) of P. tricornutum Pt3 strain were used. Pairwise comparisons highlighted biological processes, which are up- and down-regulated in the oval (e.g., purine and cellular amino acid metabolism) and triradiate morphotypes (e.g., oxido-reduction and glycolytic processes) compared to the fusiform one used as a reference. Intersection analysis allowed us to identify the specific features of the oval morphotype. Results from this study confirmed previous transcriptomic RNA sequencing observation showing that the oval cells present a distinct metabolism with specific protein enrichment compared to fusiform and triradiate cells. Finally, the analysis of the secretome of each morphotype was also performed.
Collapse
Affiliation(s)
- Coralie Chuberre
- UNIROUEN, Laboratoire Glyco-MEV EA4358, Normandie Université, Rouen, France
| | - Philippe Chan
- UNIROUEN, PISSARO Proteomic Facility, Institute for Research and Innovation in Biomedicine, Normandie Université, Mont-Saint-Aignan, France
- Normandie University, UNIROUEN, INSERM US 51, CNRS UAR 2026, HeRacLeS-PISSARO, Rouen, France
- UNIROUEN, Institute for Research and Innovation in Biomedicine, Normandie Université, Rouen, France
| | | | - François Thiébert
- UNIROUEN, Laboratoire Glyco-MEV EA4358, Normandie Université, Rouen, France
| | - Carole Burel
- UNIROUEN, Laboratoire Glyco-MEV EA4358, Normandie Université, Rouen, France
| | - Julie Hardouin
- UNIROUEN, PISSARO Proteomic Facility, Institute for Research and Innovation in Biomedicine, Normandie Université, Mont-Saint-Aignan, France
- Normandie University, UNIROUEN, INSERM US 51, CNRS UAR 2026, HeRacLeS-PISSARO, Rouen, France
- Polymers, Biopolymers, Surface Laboratory, UMR 6270 CNRS, University of Rouen, Mont-Saint-Aignan, France
| | - Bruno Gügi
- UNIROUEN, Laboratoire Glyco-MEV EA4358, Normandie Université, Rouen, France
| | - Muriel Bardor
- UNIROUEN, Laboratoire Glyco-MEV EA4358, Normandie Université, Rouen, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
14
|
Hafeez M, Li X, Chen L, Ullah F, Huang J, Zhang Z, Zhang J, Siddiqui JA, Zhou SX, Ren XY, Imran M, Assiri MA, Lou Y, Lu Y. Molecular characterization and functional analysis of cytochrome P450-mediated detoxification CYP302A1 gene involved in host plant adaptation in Spodoptera frugieprda. FRONTIERS IN PLANT SCIENCE 2022; 13:1079442. [PMID: 36762173 PMCID: PMC9906809 DOI: 10.3389/fpls.2022.1079442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/30/2022] [Indexed: 05/13/2023]
Abstract
The fall armyworm (FAW) Spodoptera frugiperda is a destructive and polyphagous pest of many essential food crops including maize and rice. The FAW is hard to manage, control, or eradicate, due to its polyphagous nature and voracity of feeding. Here, we report the characterization and functional analysis of the detoxification gene CYP302A1 and how S. frugieprda larvae use a detoxification mechanism to adapt host plants. Results demonstrated that CYP302A1 expression levels were much higher in midgut tissue and the older S. frugiperda larvae. Our current studies revealed the enhanced P450 activity in the midguts of S. frugiperda larvae after exposure to rice plants as compared to corn plants and an artificial diet. Furthermore, higher mortality was observed in PBO treated larvae followed by the exposure of rice plants as compared to the corn plant. The dsRNA-fed larvae showed downregulation of CYP302A1 gene in the midgut. At the same time, higher mortality, reduced larval weight and shorter developmental time was observed in the dsRNA-fed larvae followed by the exposure of rice plant as compared to the corn plant and DEPC-water treated plants as a control. These results concluded that the inducible P450 enzyme system and related genes could provide herbivores with an ecological opportunity to adapt to diverse host plants by utilizing secondary compounds present in their host plants.
Collapse
Affiliation(s)
- Muhammad Hafeez
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Limin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Integrated Plant Protection Center, Lishui Academy of Agricultural and Forestry Sciences, Lishui, China
| | - Farman Ullah
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jun Huang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Junaid Ali Siddiqui
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
| | - Shu-xing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiao-yun Ren
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Yonggen Lou, ; Yaobin Lu,
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Yonggen Lou, ; Yaobin Lu,
| |
Collapse
|
15
|
Desmet S, Morreel K, Dauwe R. Origin and Function of Structural Diversity in the Plant Specialized Metabolome. PLANTS (BASEL, SWITZERLAND) 2021; 10:2393. [PMID: 34834756 PMCID: PMC8621143 DOI: 10.3390/plants10112393] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 05/07/2023]
Abstract
The plant specialized metabolome consists of a multitude of structurally and functionally diverse metabolites, variable from species to species. The specialized metabolites play roles in the response to environmental changes and abiotic or biotic stresses, as well as in plant growth and development. At its basis, the specialized metabolism is built of four major pathways, each starting from a few distinct primary metabolism precursors, and leading to distinct basic carbon skeleton core structures: polyketides and fatty acid derivatives, terpenoids, alkaloids, and phenolics. Structural diversity in specialized metabolism, however, expands exponentially with each subsequent modification. We review here the major sources of structural variety and question if a specific role can be attributed to each distinct structure. We focus on the influences that various core structures and modifications have on flavonoid antioxidant activity and on the diversity generated by oxidative coupling reactions. We suggest that many oxidative coupling products, triggered by initial radical scavenging, may not have a function in se, but could potentially be enzymatically recycled to effective antioxidants. We further discuss the wide structural variety created by multiple decorations (glycosylations, acylations, prenylations), the formation of high-molecular weight conjugates and polyesters, and the plasticity of the specialized metabolism. We draw attention to the need for untargeted methods to identify the complex, multiply decorated and conjugated compounds, in order to study the functioning of the plant specialized metabolome.
Collapse
Affiliation(s)
- Sandrien Desmet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; (S.D.); (K.M.)
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; (S.D.); (K.M.)
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Rebecca Dauwe
- Unité de Recherche Biologie des Plantes et Innovation (BIOPI), UMR Transfrontalière BioEcoAgro, Université de Picardie Jules Verne, 80000 Amiens, France
| |
Collapse
|
16
|
Yang N, Jiang W, Jiang B, Liu J, Liu Y, Wang H, Guo X, Tang Z. Cotyledon loss of Astragalus membranaceus hindered seedling establishment through mineral element reallocation and carbohydrate depletion. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:481-491. [PMID: 34425393 DOI: 10.1016/j.plaphy.2021.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Tissue loss of plants caused by herbivores is very common in nature. As the storage and first photosynthetic organ, the loss of cotyledon severely impacts dicot seedling establishment and the subsequent growth. However, it is still not clear how plants adjust their metabolic strategy in response to cotyledon loss. In this study, we employed ICP-OES, GC and LC-MS to examine the effects of cotyledon removal (RC1: remove one cotyledon, RC2: remove two cotyledon) on mineral element distribution and metabolite changes in a traditional Chinese herbal plant, Astragalus membranaceus. The results showed that cotyledon removal had a greater effect on shoot than root growth. Specifically, RC2 revealed a more serious impact on shoot growth than RC1. Microelement Mn and Na in shoot increased more in RC2 than RC1. Macroelement K and microelement B in root increased in RC2. The metabolite results in shoot showed that sugars related to galactose metabolism reduced while amino acids significantly increased in RC2. In root, sugars related to fructose and mannose metabolism decreased in both RC1 and RC2 while most flavonoids increased in RC2. It can be concluded that cotyledon removal triggered different metabolic strategies in both root and shoot. In shoot, more Mn was absorbed to improve the lowered photosynthetic efficiency. Meanwhile, increased Na may have promoted carbohydrate consumption and amino acid synthesis, thereby maintaining shoot growth. In root, K and B participation in cell division and expansion increased, as well as the delivery and metabolism of carbohydrates, to maintain root system growth.
Collapse
Affiliation(s)
- Nan Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Wanting Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Bing Jiang
- Harbin Customs Technology Center, Harbin, 150040, China
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Yang Liu
- School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Hongzheng Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Xiaorui Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
17
|
Contreras-Cornejo HA, Macías-Rodríguez L, Real-Santillán RO, López-Carmona D, García-Gómez G, Galicia-Gallardo AP, Alfaro-Cuevas R, González-Esquivel CE, Najera-Rincón MB, Adame-Garnica SG, Rebollar-Alviter A, Álvarez-Navarrete M, Larsen J. In a belowground multitrophic interaction, Trichoderma harzianum induces maize root herbivore tolerance against Phyllophaga vetula. PEST MANAGEMENT SCIENCE 2021; 77:3952-3963. [PMID: 33851514 DOI: 10.1002/ps.6415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/24/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Trichoderma spp. are soil fungi that interact with plant roots and associated biota such as other microorganisms and soil fauna. However, information about their interactions with root-feeding insects is limited. Here, interactions between Trichoderma harzianum and the root-feeding insect Phyllophaga vetula, a common insect pest in maize agroecosystems, were examined. RESULTS Applications of T. harzianum and P. vetula to the root system increased and decreased maize growth, respectively. Induced tolerance against herbivore attack was provided by T. harzianum maintaining a robust and functional root system as evidenced by the increased uptake of Cu, Ca, Mg, Na and K. Herbivore tolerance also coincided with changes in the emission of root volatile terpenes known to induce indirect defense responses and attract natural enemies of the herbivore. More importantly, T. harzianum induced de novo emission of several sesquiterpenes such as β-caryophyllene and δ-cadinene. In addition, single and combined applications of T. harzianum and P. vetula altered the sucrose content of the roots. Finally, T. harzianum produced 6-pentyl-2H-pyran-2-one (6-PP) a volatile compound that may act as an antifeedant-signaling compound mitigating root herbivory by P. vetula. CONCLUSION Our results provide novel information about belowground multitrophic plant-microbe-arthropod interactions between T. harzianum and P. vetula in the maize rhizosphere resulting in alterations in maize phenotypic plant responses, inducing root herbivore tolerance.
Collapse
Affiliation(s)
- Hexon Angel Contreras-Cornejo
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Lourdes Macías-Rodríguez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - Raúl Omar Real-Santillán
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Dante López-Carmona
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Griselda García-Gómez
- Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Ana Paola Galicia-Gallardo
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Ruth Alfaro-Cuevas
- Instituto de Investigaciones en Ciencias de la Tierra, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - Carlos E González-Esquivel
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Miguel Bernardo Najera-Rincón
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarías, Campo Experimental Uruapan, Uruapan, Mexico
| | - Sandra Goretti Adame-Garnica
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Mexico
| | - Angel Rebollar-Alviter
- Universidad Autónoma Chapingo, Centro Regional Universitario Centro Occidente, Morelia, Mexico
| | | | - John Larsen
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| |
Collapse
|
18
|
Wang P, Moore BM, Uygun S, Lehti-Shiu MD, Barry CS, Shiu SH. Optimising the use of gene expression data to predict plant metabolic pathway memberships. THE NEW PHYTOLOGIST 2021; 231:475-489. [PMID: 33749860 DOI: 10.1111/nph.17355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Plant metabolites from diverse pathways are important for plant survival, human nutrition and medicine. The pathway memberships of most plant enzyme genes are unknown. While co-expression is useful for assigning genes to pathways, expression correlation may exist only under specific spatiotemporal and conditional contexts. Utilising > 600 tomato (Solanum lycopersicum) expression data combinations, three strategies for predicting memberships in 85 pathways were explored. Optimal predictions for different pathways require distinct data combinations indicative of pathway functions. Naive prediction (i.e. identifying pathways with the most similarly expressed genes) is error prone. In 52 pathways, unsupervised learning performed better than supervised approaches, possibly due to limited training data availability. Using gene-to-pathway expression similarities led to prediction models that outperformed those based simply on expression levels. Using 36 experimental validated genes, the pathway-best model prediction accuracy is 58.3%, significantly better compared with that for predicting annotated genes without experimental evidence (37.0%) or random guess (1.2%), demonstrating the importance of data quality. Our study highlights the need to extensively explore expression-based features and prediction strategies to maximise the accuracy of metabolic pathway membership assignment. The prediction framework outlined here can be applied to other species and serves as a baseline model for future comparisons.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Bethany M Moore
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Melissa D Lehti-Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Cornelius S Barry
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
19
|
Camarena-Pozos DA, Flores-Núñez VM, López MG, Partida-Martínez LP. Fungal volatiles emitted by members of the microbiome of desert plants are diverse and capable of promoting plant growth. Environ Microbiol 2021; 23:2215-2229. [PMID: 33432727 DOI: 10.1111/1462-2920.15395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Fungi represent a group of eukaryotic microorganisms that are an important part of the plant microbiome. They produce a vast array of metabolites, including fungal volatile organic compounds (fVOCs). However, the diversity and biological activities of fVOCs emitted by the mycobiota of plants native to arid and semi-arid environments remain under-explored. We characterized the chemical diversity of fVOCs produced by 22 representative members of the microbiome of agaves and cacti using SPME-GC-MS. We further tested the effects of pure compounds on the growth and development of Arabidopsis thaliana and host plants. Members of the Sordariomycetes (nine strains), Eurotiomycetes (three), Dothideomycetes (eight), Saccharomycetes (one) and Mucoromycetes (one) were included in our study. We identified 94 fungal organic volatiles classified into nine chemical classes. Terpenes showed the greatest chemical diversity, followed by alcohols and aliphatic compounds. We discovered that camphene and benzyl benzoate, together with the widely distributed and already tested benzyl alcohol, 2-phenylethyl alcohol and 3-methyl-1-butanol, improved plant growth and development of A. thaliana, Agave tequilana and Agave salmiana. Our studies on the fungal VOCs from desert plants underscore an untapped chemical diversity with promising biotechnological applications.
Collapse
Affiliation(s)
- D A Camarena-Pozos
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - V M Flores-Núñez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - M G López
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - L P Partida-Martínez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| |
Collapse
|
20
|
Lackus ND, Morawetz J, Xu H, Gershenzon J, Dickschat JS, Köllner TG. The Sesquiterpene Synthase PtTPS5 Produces (1 S,5 S,7 R,10 R)-Guaia-4(15)-en-11-ol and (1 S,7 R,10 R)-Guaia-4-en-11-ol in Oomycete-Infected Poplar Roots. Molecules 2021; 26:555. [PMID: 33494506 PMCID: PMC7866031 DOI: 10.3390/molecules26030555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 01/15/2023] Open
Abstract
Pathogen infection often leads to the enhanced formation of specialized plant metabolites that act as defensive barriers against microbial attackers. In this study, we investigated the formation of potential defense compounds in roots of the Western balsam poplar (Populus trichocarpa) upon infection with the generalist root pathogen Phytophthora cactorum (Oomycetes). P. cactorum infection led to an induced accumulation of terpenes, aromatic compounds, and fatty acids in poplar roots. Transcriptome analysis of uninfected and P. cactorum-infected roots revealed a terpene synthase gene PtTPS5 that was significantly induced upon pathogen infection. PtTPS5 had been previously reported as a sesquiterpene synthase producing two unidentified sesquiterpene alcohols as major products and hedycaryol as a minor product. Using heterologous expression in Escherichia coli, enzyme assays with deuterium-labeled substrates, and NMR analysis of reaction products, we could identify the major PtTPS5 products as (1S,5S,7R,10R)-guaia-4(15)-en-11-ol and (1S,7R,10R)-guaia-4-en-11-ol, with the former being a novel compound. The transcript accumulation of PtTPS5 in uninfected and P. cactorum-infected poplar roots matched the accumulation of (1S,5S,7R,10R)-guaia-4(15)-en-11-ol, (1S,7R,10R)-guaia-4-en-11-ol, and hedycaryol in this tissue, suggesting that PtTPS5 likely contributes to the pathogen-induced formation of these compounds in planta.
Collapse
Affiliation(s)
- Nathalie D. Lackus
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany; (N.D.L.); (J.M.); (J.G.)
| | - Jennifer Morawetz
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany; (N.D.L.); (J.M.); (J.G.)
| | - Houchao Xu
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany; (H.X.); (J.S.D.)
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany; (N.D.L.); (J.M.); (J.G.)
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany; (H.X.); (J.S.D.)
| | - Tobias G. Köllner
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany; (N.D.L.); (J.M.); (J.G.)
| |
Collapse
|
21
|
Orlovskis Z, Reymond P. Pieris brassicae eggs trigger interplant systemic acquired resistance against a foliar pathogen in Arabidopsis. THE NEW PHYTOLOGIST 2020; 228:1652-1661. [PMID: 32619278 DOI: 10.1111/nph.16788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/26/2020] [Indexed: 05/11/2023]
Abstract
Recognition of plant pathogens or herbivores activate a broad-spectrum plant defense priming in distal leaves against potential future attacks, leading to systemic acquired resistance (SAR). Additionally, attacked plants can release aerial or below-ground signals that trigger defense responses, such as SAR, in neighboring plants lacking initial exposure to pathogen or pest elicitors. However, the molecular mechanisms involved in interplant defense signal generation in sender plants and decoding in neighboring plants are not fully understood. We previously reported that Pieris brassicae eggs induce intraplant SAR against the foliar pathogen Pseudomonas syringae in Arabidopsis thaliana. Here we extend this effect to neighboring plants by discovering an egg-induced interplant SAR via mobile root-derived signal(s). The generation of an egg-induced interplant SAR signal requires pipecolic acid (Pip) pathway genes ALD1 and FMO1 but occurs independently of salicylic acid (SA) accumulation in sender plants. Furthermore, reception of the signal leads to accumulation of SA in the recipient plants. In response to insect eggs, plants may induce interplant SAR to prepare for potential pathogen invasion following feeding-induced wounding or to keep neighboring plants healthy for hatching larvae. Our results highlight a previously uncharacterized below-ground plant-to-plant signaling mechanism and reveals genetic components required for its generation.
Collapse
Affiliation(s)
- Zigmunds Orlovskis
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, 1015, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
22
|
Grunseich JM, Thompson MN, Hay AA, Gorman Z, Kolomiets MV, Eubanks MD, Helms AM. Risky roots and careful herbivores: Sustained herbivory by a root‐feeding herbivore attenuates indirect plant defences. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- John M. Grunseich
- Department of Entomology Texas A&M University College Station TX USA
| | | | - Allison A. Hay
- Department of Entomology Texas A&M University College Station TX USA
| | - Zachary Gorman
- Department of Plant Pathology and Microbiology Texas A&M University College Station TX USA
| | - Michael V. Kolomiets
- Department of Plant Pathology and Microbiology Texas A&M University College Station TX USA
| | - Micky D. Eubanks
- Department of Entomology Texas A&M University College Station TX USA
| | - Anjel M. Helms
- Department of Entomology Texas A&M University College Station TX USA
| |
Collapse
|
23
|
Basso V, Kohler A, Miyauchi S, Singan V, Guinet F, Šimura J, Novák O, Barry KW, Amirebrahimi M, Block J, Daguerre Y, Na H, Grigoriev IV, Martin F, Veneault-Fourrey C. An ectomycorrhizal fungus alters sensitivity to jasmonate, salicylate, gibberellin, and ethylene in host roots. PLANT, CELL & ENVIRONMENT 2020; 43:1047-1068. [PMID: 31834634 DOI: 10.1111/pce.13702] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
The phytohormones jasmonate, gibberellin, salicylate, and ethylene regulate an interconnected reprogramming network integrating root development with plant responses against microbes. The establishment of mutualistic ectomycorrhizal symbiosis requires the suppression of plant defense responses against fungi as well as the modification of root architecture and cortical cell wall properties. Here, we investigated the contribution of phytohormones and their crosstalk to the ontogenesis of ectomycorrhizae (ECM) between grey poplar (Populus tremula x alba) roots and the fungus Laccaria bicolor. To obtain the hormonal blueprint of developing ECM, we quantified the concentrations of jasmonates, gibberellins, and salicylate via liquid chromatography-tandem mass spectrometry. Subsequently, we assessed root architecture, mycorrhizal morphology, and gene expression levels (RNA sequencing) in phytohormone-treated poplar lateral roots in the presence or absence of L. bicolor. Salicylic acid accumulated in mid-stage ECM. Exogenous phytohormone treatment affected the fungal colonization rate and/or frequency of Hartig net formation. Colonized lateral roots displayed diminished responsiveness to jasmonate but regulated some genes, implicated in defense and cell wall remodelling, that were specifically differentially expressed after jasmonate treatment. Responses to salicylate, gibberellin, and ethylene were enhanced in ECM. The dynamics of phytohormone accumulation and response suggest that jasmonate, gibberellin, salicylate, and ethylene signalling play multifaceted roles in poplar L. bicolor ectomycorrhizal development.
Collapse
Affiliation(s)
- Veronica Basso
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Annegret Kohler
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Shingo Miyauchi
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Vasanth Singan
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
| | - Frédéric Guinet
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Jan Šimura
- Laboratory of Growth, Palacký University, Faculty of Science & The Czech Academy of Sciences, Institute of Experimental Botany, Olomouc, The Czech Republic
| | - Ondřej Novák
- Laboratory of Growth, Palacký University, Faculty of Science & The Czech Academy of Sciences, Institute of Experimental Botany, Olomouc, The Czech Republic
| | - Kerrie W Barry
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
| | - Mojgan Amirebrahimi
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
| | - Jonathan Block
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Yohann Daguerre
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
- Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Umeå, Sweden
| | - Hyunsoo Na
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
| | - Igor V Grigoriev
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California
| | - Francis Martin
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | | |
Collapse
|
24
|
Lackner S, Lackus ND, Paetz C, Köllner TG, Unsicker SB. Aboveground phytochemical responses to belowground herbivory in poplar trees and the consequence for leaf herbivore preference. PLANT, CELL & ENVIRONMENT 2019; 42:3293-3307. [PMID: 31350910 DOI: 10.1111/pce.13628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Belowground (BG) herbivory can influence aboveground (AG) herbivore performance and food preference via changes in plant chemistry. Most evidence for this phenomenon derives from studies in herbaceous plants but studies in woody plants are scarce. Here we investigated whether and how BG herbivory on black poplar (Populus nigra) trees by Melolontha melolontha larvae influences the feeding preference of Lymantria dispar (gypsy moth) caterpillars. In a food choice assay, caterpillars preferred to feed on leaves from trees that had experienced attack by BG herbivores. Therefore, we investigated the effect of BG herbivory on the phytochemical composition of P. nigra trees alone and in combination with AG feeding by L. dispar caterpillars. BG herbivory did not increase systemic AG tree defences like volatile organic compounds, protease inhibitors and salicinoids. Jasmonates and salicylic acid were also not induced by BG herbivory in leaves but abscisic acid concentrations drastically increased together with proline and few other amino acids. Leaf coating experiments with amino acids suggest that proline might be responsible for the caterpillar feeding preference via presumptive phagostimulatory properties. This study shows that BG herbivory in poplar can modify the feeding preference of AG herbivores via phytochemical changes as a consequence of root-to-shoot signaling.
Collapse
Affiliation(s)
- Sandra Lackner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Nathalie D Lackus
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Christian Paetz
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Sybille B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| |
Collapse
|
25
|
Bouwmeester H, Schuurink RC, Bleeker PM, Schiestl F. The role of volatiles in plant communication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:892-907. [PMID: 31410886 PMCID: PMC6899487 DOI: 10.1111/tpj.14496] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 05/08/2023]
Abstract
Volatiles mediate the interaction of plants with pollinators, herbivores and their natural enemies, other plants and micro-organisms. With increasing knowledge about these interactions the underlying mechanisms turn out to be increasingly complex. The mechanisms of biosynthesis and perception of volatiles are slowly being uncovered. The increasing scientific knowledge can be used to design and apply volatile-based agricultural strategies.
Collapse
Affiliation(s)
- Harro Bouwmeester
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Robert C. Schuurink
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Petra M. Bleeker
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Florian Schiestl
- Department of Systematic and Evolutionary BotanyUniversity of ZürichZollikerstrasse 107CH‐8008ZürichSwitzerland
| |
Collapse
|
26
|
Identification and Characterization of trans-Isopentenyl Diphosphate Synthases Involved in Herbivory-Induced Volatile Terpene Formation in Populus trichocarpa. Molecules 2019; 24:molecules24132408. [PMID: 31261889 PMCID: PMC6651613 DOI: 10.3390/molecules24132408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 11/17/2022] Open
Abstract
In response to insect herbivory, poplar releases a blend of volatiles that plays important roles in plant defense. Although the volatile bouquet is highly complex and comprises several classes of compounds, it is dominated by mono- and sesquiterpenes. The most common precursors for mono- and sesquiterpenes, geranyl diphosphate (GPP) and (E,E)-farnesyl diphosphate (FPP), respectively, are in general produced by homodimeric or heterodimeric trans-isopentenyl diphosphate synthases (trans-IDSs) that belong to the family of prenyltransferases. To understand the molecular basis of herbivory-induced terpene formation in poplar, we investigated the trans-IDS gene family in the western balsam poplar Populus trichocarpa. Sequence comparisons suggested that this species possesses a single FPP synthase gene (PtFPPS1) and four genes encoding two large subunits (PtGPPS1.LSU and PtGPPS2.LSU) and two small subunits (PtGPPS.SSU1 and PtGPPS.SSU2) of GPP synthases. Transcript accumulation of PtGPPS1.LSU and PtGPPS.SSU1 was significantly upregulated upon leaf herbivory, while the expression of PtFPPS1, PtGPPS2.LSU, and PtGPPS.SSU2 was not influenced by the herbivore treatment. Heterologous expression and biochemical characterization of recombinant PtFPPS1, PtGPPS1.LSU, and PtGPPS2.LSU confirmed their respective IDS activities. Recombinant PtGPPS.SSU1 and PtGPPS.SSU2, however, had no enzymatic activity on their own, but PtGPPS.SSU1 enhanced the GPP synthase activities of PtGPPS1.LSU and PtGPPS2.LSU in vitro. Altogether, our data suggest that PtGPPS1.LSU and PtGPPS2.LSU in combination with PtGPPS.SSU1 may provide the substrate for herbivory-induced monoterpene formation in P. trichocarpa. The sole FPP synthase PtFPPS1 likely produces FPP for both primary and specialized metabolism in this plant species.
Collapse
|