1
|
Witten J, Raji I, Manan RS, Beyer E, Bartlett S, Tang Y, Ebadi M, Lei J, Nguyen D, Oladimeji F, Jiang AY, MacDonald E, Hu Y, Mughal H, Self A, Collins E, Yan Z, Engelhardt JF, Langer R, Anderson DG. Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy. Nat Biotechnol 2024:10.1038/s41587-024-02490-y. [PMID: 39658727 DOI: 10.1038/s41587-024-02490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024]
Abstract
Ionizable lipids are a key component of lipid nanoparticles, the leading nonviral messenger RNA delivery technology. Here, to advance the identification of ionizable lipids beyond current methods, which rely on experimental screening and/or rational design, we introduce lipid optimization using neural networks, a deep-learning strategy for ionizable lipid design. We created a dataset of >9,000 lipid nanoparticle activity measurements and used it to train a directed message-passing neural network for prediction of nucleic acid delivery with diverse lipid structures. Lipid optimization using neural networks predicted RNA delivery in vitro and in vivo and extrapolated to structures divergent from the training set. We evaluated 1.6 million lipids in silico and identified two structures, FO-32 and FO-35, with local mRNA delivery to the mouse muscle and nasal mucosa. FO-32 matched the state of the art for nebulized mRNA delivery to the mouse lung, and both FO-32 and FO-35 efficiently delivered mRNA to ferret lungs. Overall, this work shows the utility of deep learning for improving nanoparticle delivery.
Collapse
Affiliation(s)
- Jacob Witten
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Idris Raji
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
| | - Rajith S Manan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily Beyer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sandra Bartlett
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yinghua Tang
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Mehrnoosh Ebadi
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Junying Lei
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Dien Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Favour Oladimeji
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Allen Yujie Jiang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elise MacDonald
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yizong Hu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Haseeb Mughal
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ava Self
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Evan Collins
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel G Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Imamura M, Yoshino M, Kawasaki H. Investigation of the development and evolution of the mammalian cerebrum using gyrencephalic ferrets. Eur J Cell Biol 2024; 103:151466. [PMID: 39546916 DOI: 10.1016/j.ejcb.2024.151466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Mammalian brains have evolved a neocortex, which has diverged in size and morphology in different species over the course of evolution. In some mammals, a substantial increase in the number of neurons and glial cells resulted in the expansion and folding of the cerebrum, and it is believed that these evolutionary changes contributed to the acquisition of higher cognitive abilities in mammals. However, their underlying molecular and cellular mechanisms remain insufficiently elucidated. A major difficulty in addressing these mechanisms stemmed from the lack of appropriate animal models, as conventional experimental animals such as mice and rats have small brains without structurally obvious folds. Therefore, researchers including us have focused on using ferrets instead of mice and rats. Ferrets are domesticated carnivorous mammals with a gyrencephalic cerebrum, and, notably, they are amenable to genetic manipulations including in utero electroporation to knock out genes in the cerebrum. In this review, we highlight recent research into the mechanisms underlying the development and evolution of cortical folds using ferrets.
Collapse
Affiliation(s)
- Masanori Imamura
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Mayuko Yoshino
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan.
| |
Collapse
|
3
|
Meliopoulos V, Honce R, Livingston B, Hargest V, Freiden P, Lazure L, Brigleb PH, Karlsson E, Sheppard H, Allen EK, Boyd D, Thomas PG, Schultz-Cherry S. Diet-induced obesity affects influenza disease severity and transmission dynamics in ferrets. SCIENCE ADVANCES 2024; 10:eadk9137. [PMID: 38728395 PMCID: PMC11086619 DOI: 10.1126/sciadv.adk9137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024]
Abstract
Obesity, and the associated metabolic syndrome, is a risk factor for increased disease severity with a variety of infectious agents, including influenza virus. Yet, the mechanisms are only partially understood. As the number of people, particularly children, living with obesity continues to rise, it is critical to understand the role of host status on disease pathogenesis. In these studies, we use a diet-induced obese ferret model and tools to demonstrate that, like humans, obesity resulted in notable changes to the lung microenvironment, leading to increased clinical disease and viral spread to the lower respiratory tract. The decreased antiviral responses also resulted in obese animals shedding higher infectious virus for a longer period, making them more likely to transmit to contacts. These data suggest that the obese ferret model may be crucial to understanding obesity's impact on influenza disease severity and community transmission and a key tool for therapeutic and intervention development for this high-risk population.
Collapse
Affiliation(s)
- Victoria Meliopoulos
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Rebekah Honce
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Brandi Livingston
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Virginia Hargest
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Pamela Freiden
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Lauren Lazure
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Pamela H. Brigleb
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Erik Karlsson
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Heather Sheppard
- Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - E. Kaity Allen
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - David Boyd
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
4
|
Meliopoulos V, Honce R, Livingston B, Hargest V, Freiden P, Lazure L, Brigleb PH, Karlsson E, Tillman H, Allen EK, Boyd D, Thomas PG, Schultz-Cherry S. Diet-induced obesity impacts influenza disease severity and transmission dynamics in ferrets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.558609. [PMID: 37808835 PMCID: PMC10557597 DOI: 10.1101/2023.09.26.558609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Obesity, and the associated metabolic syndrome, is a risk factor for increased disease severity with a variety of infectious agents, including influenza virus. Yet the mechanisms are only partially understood. As the number of people, particularly children, living with obesity continues to rise, it is critical to understand the role of host status on disease pathogenesis. In these studies, we use a novel diet-induced obese ferret model and new tools to demonstrate that like humans, obesity resulted in significant changes to the lung microenvironment leading to increased clinical disease and viral spread to the lower respiratory tract. The decreased antiviral responses also resulted in obese animals shedding higher infectious virus for longer making them more likely to transmit to contacts. These data suggest the obese ferret model may be crucial to understanding obesity's impact on influenza disease severity and community transmission, and a key tool for therapeutic and intervention development for this high-risk population. Teaser A new ferret model and tools to explore obesity's impact on respiratory virus infection, susceptibility, and community transmission.
Collapse
|
5
|
Cai Q, Luo M, Tang Y, Yu M, Yuan F, Gasser GN, Liu X, Engelhardt JF. Sonic Hedgehog Signaling Is Essential for Pulmonary Ionocyte Specification in Human and Ferret Airway Epithelia. Am J Respir Cell Mol Biol 2023; 69:295-309. [PMID: 37141531 PMCID: PMC10503308 DOI: 10.1165/rcmb.2022-0280oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 05/03/2023] [Indexed: 05/06/2023] Open
Abstract
Pulmonary ionocytes express high levels of cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel that is critical for hydration of the airways and mucociliary clearance. However, the cellular mechanisms that govern ionocyte specification and function remain unclear. We observed that increased abundance of ionocytes in cystic fibrosis (CF) airway epithelium was associated with enhanced expression of Sonic Hedgehog (SHH) effectors. In this study, we evaluated whether the SHH pathway directly impacts ionocyte differentiation and CFTR function in airway epithelia. Pharmacological HPI1-mediated inhibition of SHH signaling component GLI1 significantly impaired human basal cell specification of ionocytes and ciliated cells but significantly enhanced specification of secretory cells. By contrast, activation of the SHH pathway effector smoothened (SMO) with the chemical agonist SAG significantly enhanced ionocyte specification. The abundance of CFTR+ BSND+ ionocytes under these conditions had a direct relationship with CFTR-mediated currents in differentiated air-liquid interface (ALI) airway cultures. These findings were corroborated in ferret ALI airway cultures generated from basal cells in which the genes encoding the SHH receptor PTCH1 or its intracellular effector SMO were genetically ablated using CRISPR-Cas9, causing aberrant activation or suppression of SHH signaling, respectively. These findings demonstrate that SHH signaling is directly involved in airway basal cell specification of CFTR-expressing pulmonary ionocytes and is likely responsible for enhanced ionocyte abundance in the CF proximal airways. Pharmacologic approaches to enhance ionocyte and reduce secretory cell specification after CFTR gene editing of basal cells may have utility in the treatment of CF.
Collapse
Affiliation(s)
- Qian Cai
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China; and
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Meihui Luo
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Yinghua Tang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Miao Yu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China; and
| | - Feng Yuan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Grace N. Gasser
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Xiaoming Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
6
|
Yuan F, Gasser GN, Lemire E, Montoro DT, Jagadeesh K, Zhang Y, Duan Y, Ievlev V, Wells KL, Rotti PG, Shahin W, Winter M, Rosen BH, Evans I, Cai Q, Yu M, Walsh SA, Acevedo MR, Pandya DN, Akurathi V, Dick DW, Wadas TJ, Joo NS, Wine JJ, Birket S, Fernandez CM, Leung HM, Tearney GJ, Verkman AS, Haggie PM, Scott K, Bartels D, Meyerholz DK, Rowe SM, Liu X, Yan Z, Haber AL, Sun X, Engelhardt JF. Transgenic ferret models define pulmonary ionocyte diversity and function. Nature 2023; 621:857-867. [PMID: 37730992 PMCID: PMC10533402 DOI: 10.1038/s41586-023-06549-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 08/17/2023] [Indexed: 09/22/2023]
Abstract
Speciation leads to adaptive changes in organ cellular physiology and creates challenges for studying rare cell-type functions that diverge between humans and mice. Rare cystic fibrosis transmembrane conductance regulator (CFTR)-rich pulmonary ionocytes exist throughout the cartilaginous airways of humans1,2, but limited presence and divergent biology in the proximal trachea of mice has prevented the use of traditional transgenic models to elucidate ionocyte functions in the airway. Here we describe the creation and use of conditional genetic ferret models to dissect pulmonary ionocyte biology and function by enabling ionocyte lineage tracing (FOXI1-CreERT2::ROSA-TG), ionocyte ablation (FOXI1-KO) and ionocyte-specific deletion of CFTR (FOXI1-CreERT2::CFTRL/L). By comparing these models with cystic fibrosis ferrets3,4, we demonstrate that ionocytes control airway surface liquid absorption, secretion, pH and mucus viscosity-leading to reduced airway surface liquid volume and impaired mucociliary clearance in cystic fibrosis, FOXI1-KO and FOXI1-CreERT2::CFTRL/L ferrets. These processes are regulated by CFTR-dependent ionocyte transport of Cl- and HCO3-. Single-cell transcriptomics and in vivo lineage tracing revealed three subtypes of pulmonary ionocytes and a FOXI1-lineage common rare cell progenitor for ionocytes, tuft cells and neuroendocrine cells during airway development. Thus, rare pulmonary ionocytes perform critical CFTR-dependent functions in the proximal airway that are hallmark features of cystic fibrosis airway disease. These studies provide a road map for using conditional genetics in the first non-rodent mammal to address gene function, cell biology and disease processes that have greater evolutionary conservation between humans and ferrets.
Collapse
Affiliation(s)
- Feng Yuan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Grace N Gasser
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Evan Lemire
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Yan Zhang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Yifan Duan
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Vitaly Ievlev
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kristen L Wells
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Pavana G Rotti
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Weam Shahin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael Winter
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Bradley H Rosen
- Division of Pulmonary, Critical Care, Occupational, and Sleep Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Idil Evans
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Qian Cai
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Miao Yu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Susan A Walsh
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael R Acevedo
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Darpan N Pandya
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Vamsidhar Akurathi
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - David W Dick
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Thaddeus J Wadas
- Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nam Soo Joo
- Cystic Fibrosis Research Laboratory, Department of Psychology, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey J Wine
- Cystic Fibrosis Research Laboratory, Department of Psychology, Stanford University, Stanford, CA, USA
| | - Susan Birket
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Courtney M Fernandez
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alan S Verkman
- Department of Medicine, UCSF, San Francisco, CA, USA
- Department of Physiology, UCSF, San Francisco, CA, USA
| | - Peter M Haggie
- Department of Medicine, UCSF, San Francisco, CA, USA
- Department of Physiology, UCSF, San Francisco, CA, USA
| | - Kathleen Scott
- Office of Animal Resources, University of Iowa, Iowa City, IA, USA
| | - Douglas Bartels
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xiaoming Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Adam L Haber
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
7
|
Luo M, Ma J, Cheng X, Wu S, Bartels DJ, Guay D, Engelhardt JF, Liu X. Genome Editing in Ferret Airway Epithelia Mediated by CRISPR/Nucleases Delivered with Amphiphilic Shuttle Peptides. Hum Gene Ther 2023; 34:705-718. [PMID: 37335046 PMCID: PMC10457657 DOI: 10.1089/hum.2023.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
Gene editing strategies are attractive for treating genetic pulmonary diseases such as cystic fibrosis (CF). However, challenges have included the development of safe and effective vector systems for gene editing of airway epithelia and model systems to report their efficiency and durability. The domestic ferret (Mustela putorius furo) has a high degree of conservation in lung cellular anatomy with humans, and has served as an excellent model for many types of lung diseases, including CF. In this study, we evaluated the efficiency of amphiphilic shuttle peptide S10 for protein delivery and gene editing using SpCas9, and AsCas12a (Cpf1) ribonucleoproteins (RNPs). These approaches were evaluated in proliferating ferret airway basal cells, polarized airway epithelia in vitro, and lungs in vivo, by accessing the editing efficiency using reporter ferrets and measuring indels at the ferret CFTR locus. Our results demonstrate that shuttle peptides efficiently enable delivery of reporter proteins/peptides and gene editing SpCas9 or Cpf1 RNP complexes to ferret airway epithelial cells in vitro and in vivo. We measured S10 delivery efficiency of green fluorescent protein (GFP)-nuclear localization signal (NLS) protein or SpCas9 RNP into ferret airway basal cells and fully differentiated ciliated and nonciliated epithelial cells in vitro. In vitro and in vivo gene editing efficiencies were determined by Cas/LoxP-gRNA RNP-mediated conversion of a ROSA-TG Cre recombinase reporter using transgenic primary cells and ferrets. S10/Cas9 RNP was more effective, relative to S10/Cpf1 RNP at gene editing of the ROSA-TG locus. Intratracheal lung delivery of the S10 shuttle combined with GFP-NLS protein or D-Retro-Inverso (DRI)-NLS peptide demonstrated efficiencies of protein delivery that were ∼3-fold or 14-fold greater, respectively, than the efficiency of gene editing at the ROSA-TG locus using S10/Cas9/LoxP-gRNA. Cpf1 RNPs was less effective than SpCas9 at gene editing of LoxP locus. These data demonstrate the feasibility of shuttle peptide delivery of Cas RNPs to the ferret airways and the potential utility for developing ex vivo stem cell-based and in vivo gene editing therapies for genetic pulmonary diseases such as CF.
Collapse
Affiliation(s)
- Meihui Luo
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | - Jia Ma
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
- College of Life Science, Ningxia University, Yinchuan, China
| | | | - Shuang Wu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
- College of Life Science, Ningxia University, Yinchuan, China
| | - Douglas J. Bartels
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | | | - John F. Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | - Xiaoming Liu
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Tang Y, Gutmann DH. Neurofibromatosis Type 1-Associated Optic Pathway Gliomas: Current Challenges and Future Prospects. Cancer Manag Res 2023; 15:667-681. [PMID: 37465080 PMCID: PMC10351533 DOI: 10.2147/cmar.s362678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023] Open
Abstract
Optic pathway glioma (OPG) occurs in as many as one-fifth of individuals with the neurofibromatosis type 1 (NF1) cancer predisposition syndrome. Generally considered low-grade and slow growing, many children with NF1-OPGs remain asymptomatic. However, due to their location within the optic pathway, ~20-30% of those harboring NF1-OPGs will experience symptoms, including progressive vision loss, proptosis, diplopia, and precocious puberty. While treatment with conventional chemotherapy is largely effective at attenuating tumor growth, it is not clear whether there is much long-term recovery of visual function. Additionally, because these tumors predominantly affect young children, there are unique challenges to NF1-OPG diagnosis, monitoring, and longitudinal management. Over the past two decades, the employment of authenticated genetically engineered Nf1-OPG mouse models have provided key insights into the function of the NF1 protein, neurofibromin, as well as the molecular and cellular pathways that contribute to optic gliomagenesis. Findings from these studies have resulted in the identification of new molecular targets whose inhibition blocks murine Nf1-OPG growth in preclinical studies. Some of these promising compounds have now entered into early clinical trials. Future research focused on defining the determinants that underlie optic glioma initiation, expansion, and tumor-induced optic nerve injury will pave the way to personalized risk assessment strategies, improved tumor monitoring, and optimized treatment plans for children with NF1-OPG.
Collapse
Affiliation(s)
- Yunshuo Tang
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
9
|
Pai AC, Swatek AM, Lynch TJ, Ahlers BA, Ievlev V, Engelhardt JF, Parekh KR. Orthotopic Ferret Tracheal Transplantation Using a Recellularized Bioengineered Graft Produces Functional Epithelia. Bioengineering (Basel) 2023; 10:777. [PMID: 37508804 PMCID: PMC10376427 DOI: 10.3390/bioengineering10070777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Tracheal grafts may be necessary to bridge long-segment defects after curative resection for airway obstructions. Bioengineered grafts have emerged as an appealing option, given the possibilities of altering the histologic and cellular profile of the conduit. We previously designed a bioreactor capable of luminally decellularizing and recellularizing a ferret trachea with surface airway epithelia (SAE) basal cells (BCs), and we sought to assess the fate of these grafts when transplanted in an orthotopic fashion. As adjuncts to the procedure, we investigated the use of a vascular endothelial growth factor (VEGF)-laden hydrogel and of immunosuppression (IS) in graft revascularization and viability. IS was shown to limit early graft revascularization, but this effect could be counteracted with VEGF supplementation. Submucosal gland (SMG) loss was shown to be inevitable regardless of the revascularization strategy. Lastly, the bioengineered tracheas survived one month after transplant with differentiation of our implanted BCs that then transitioned into a recipient-derived functional epithelium. The work presented in this manuscript has important implications for future cellular and regenerative therapies.
Collapse
Affiliation(s)
- Albert C. Pai
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (A.C.P.); (A.M.S.)
| | - Anthony M. Swatek
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (A.C.P.); (A.M.S.)
| | - Thomas J. Lynch
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA; (T.J.L.); (B.A.A.); (V.I.); (J.F.E.)
| | - Bethany A. Ahlers
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA; (T.J.L.); (B.A.A.); (V.I.); (J.F.E.)
| | - Vitaly Ievlev
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA; (T.J.L.); (B.A.A.); (V.I.); (J.F.E.)
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA; (T.J.L.); (B.A.A.); (V.I.); (J.F.E.)
| | - Kalpaj R. Parekh
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (A.C.P.); (A.M.S.)
| |
Collapse
|
10
|
Putman MS, Norris AW, Hull RL, Rickels MR, Sussel L, Blackman SM, Chan CL, Ode KL, Daley T, Stecenko AA, Moran A, Helmick MJ, Cray S, Alvarez JA, Stallings VA, Tuggle KL, Clancy JP, Eggerman TL, Engelhardt JF, Kelly A. Cystic Fibrosis-Related Diabetes Workshop: Research Priorities Spanning Disease Pathophysiology, Diagnosis, and Outcomes. Diabetes Care 2023; 46:1112-1123. [PMID: 37125948 PMCID: PMC10234745 DOI: 10.2337/dc23-0380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/27/2023] [Indexed: 05/02/2023]
Abstract
Cystic fibrosis (CF) is a recessive disorder arising from mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein. CFTR is expressed in numerous tissues, with high expression in the airways, small and large intestine, pancreatic and hepatobiliary ducts, and male reproductive tract. CFTR loss in these tissues disrupts regulation of salt, bicarbonate, and water balance across their epithelia, resulting in a systemic disorder with progressive organ dysfunction and damage. Pancreatic exocrine damage ultimately manifests as pancreatic exocrine insufficiency that begins as early as infancy. Pancreatic remodeling accompanies this early damage, during which abnormal glucose tolerance can be observed in toddlers. With increasing age, however, insulin secretion defects progress such that CF-related diabetes (CFRD) occurs in 20% of teens and up to half of adults with CF. The relevance of CFRD is highlighted by its association with increased morbidity, mortality, and patient burden. While clinical research on CFRD has greatly assisted in the care of individuals with CFRD, key knowledge gaps on CFRD pathogenesis remain. Furthermore, the wide use of CFTR modulators to restore CFTR activity is changing the CFRD clinical landscape and the field's understanding of CFRD pathogenesis. For these reasons, the National Institute of Diabetes and Digestive and Kidney Diseases and the Cystic Fibrosis Foundation sponsored a CFRD Scientific Workshop, 23-25 June 2021, to define knowledge gaps and needed research areas. This article describes the findings from this workshop and plots a path for CFRD research that is needed over the next decade.
Collapse
Affiliation(s)
- Melissa S. Putman
- Division of Pediatric Endocrinology, Boston Children’s Hospital, Boston, MA
- Diabetes Research Center, Massachusetts General Hospital, Boston, MA
| | - Andrew W. Norris
- Department of Pediatrics, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| | - Rebecca L. Hull
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA
- Research Service, VA Puget Sound Health Care System, Seattle
| | - Michael R. Rickels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Lori Sussel
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Scott M. Blackman
- Division of Pediatric Endocrinology and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christine L. Chan
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Katie Larson Ode
- Department of Pediatrics, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| | - Tanicia Daley
- Division of Endocrinology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| | - Arlene A. Stecenko
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University, Atlanta, GA
| | - Antoinette Moran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | | | | | - Jessica A. Alvarez
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory School of Medicine, Atlanta, GA
| | - Virginia A. Stallings
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, The University of Pennsylvania, Philadelphia, PA
| | | | | | - Thomas L. Eggerman
- Division of Diabetes, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - John F. Engelhardt
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Andrea Kelly
- Department of Pediatrics, The University of Pennsylvania, Philadelphia, PA
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
11
|
Putman MS, Norris AW, Hull RL, Rickels MR, Sussel L, Blackman SM, Chan CL, Ode KL, Daley T, Stecenko AA, Moran A, Helmick MJ, Cray S, Alvarez JA, Stallings VA, Tuggle KL, Clancy JP, Eggerman TL, Engelhardt JF, Kelly A. Cystic Fibrosis-Related Diabetes Workshop: Research Priorities Spanning Disease Pathophysiology, Diagnosis, and Outcomes. Diabetes 2023; 72:677-689. [PMID: 37125945 PMCID: PMC10202770 DOI: 10.2337/db22-0949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/27/2023] [Indexed: 05/02/2023]
Abstract
Cystic fibrosis (CF) is a recessive disorder arising from mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein. CFTR is expressed in numerous tissues, with high expression in the airways, small and large intestine, pancreatic and hepatobiliary ducts, and male reproductive tract. CFTR loss in these tissues disrupts regulation of salt, bicarbonate, and water balance across their epithelia, resulting in a systemic disorder with progressive organ dysfunction and damage. Pancreatic exocrine damage ultimately manifests as pancreatic exocrine insufficiency that begins as early as infancy. Pancreatic remodeling accompanies this early damage, during which abnormal glucose tolerance can be observed in toddlers. With increasing age, however, insulin secretion defects progress such that CF-related diabetes (CFRD) occurs in 20% of teens and up to half of adults with CF. The relevance of CFRD is highlighted by its association with increased morbidity, mortality, and patient burden. While clinical research on CFRD has greatly assisted in the care of individuals with CFRD, key knowledge gaps on CFRD pathogenesis remain. Furthermore, the wide use of CFTR modulators to restore CFTR activity is changing the CFRD clinical landscape and the field's understanding of CFRD pathogenesis. For these reasons, the National Institute of Diabetes and Digestive and Kidney Diseases and the Cystic Fibrosis Foundation sponsored a CFRD Scientific Workshop, 23-25 June 2021, to define knowledge gaps and needed research areas. This article describes the findings from this workshop and plots a path for CFRD research that is needed over the next decade.
Collapse
Affiliation(s)
- Melissa S. Putman
- Division of Pediatric Endocrinology, Boston Children’s Hospital, Boston, MA
- Diabetes Research Center, Massachusetts General Hospital, Boston, MA
| | - Andrew W. Norris
- Department of Pediatrics, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| | - Rebecca L. Hull
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA
- Research Service, VA Puget Sound Health Care System, Seattle, WA
| | - Michael R. Rickels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Lori Sussel
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Scott M. Blackman
- Division of Pediatric Endocrinology and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christine L. Chan
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Katie Larson Ode
- Department of Pediatrics, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| | - Tanicia Daley
- Division of Endocrinology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| | - Arlene A. Stecenko
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University, Atlanta, GA
| | - Antoinette Moran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | | | | | - Jessica A. Alvarez
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory School of Medicine, Atlanta, GA
| | - Virginia A. Stallings
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, The University of Pennsylvania, Philadelphia, PA
| | | | | | - Thomas L. Eggerman
- Division of Diabetes, Endocrinology, and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - John F. Engelhardt
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Andrea Kelly
- Department of Pediatrics, The University of Pennsylvania, Philadelphia, PA
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
12
|
Monteiro CJ, Heery DM, Whitchurch JB. Modern Approaches to Mouse Genome Editing Using the CRISPR-Cas Toolbox and Their Applications in Functional Genomics and Translational Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:13-40. [PMID: 37486514 DOI: 10.1007/978-3-031-33325-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Mice have been used in biological research for over a century, and their immense contribution to scientific breakthroughs can be seen across all research disciplines, with some of the main beneficiaries being the fields of medicine and life sciences. Genetically engineered mouse models (GEMMs), along with other model organisms, are fundamentally important research tools frequently utilised to enhance our understanding of pathophysiology and biological mechanisms behind disease. In the 1980s, it became possible to precisely edit the mouse genome to create gene knockout and knock-in mice, although with low efficacy. Recent advances utilising CRISPR-Cas technologies have considerably improved our ability to do this with ease and precision, while also allowing the generation of desired genetic variants from single nucleotide substitutions to large insertions/deletions. It is now quick and relatively easy to genetically edit somatic cells which were previously more recalcitrant to traditional approaches. Further refinements have created a 'CRISPR toolkit' that has expanded the use of CRISPR-Cas beyond gene knock-ins and knockouts. In this chapter, we review some of the latest applications of CRISPR-Cas technologies in GEMMs, including nuclease-dead Cas9 systems for activation or repression of gene expression, base editing and prime editing. We also discuss improvements in Cas9 specificity, targeting efficacy and delivery methods in mice. Throughout, we provide examples wherein CRISPR-Cas technologies have been applied to target clinically relevant genes in preclinical GEMMs, both to generate humanised models and for experimental gene therapy research.
Collapse
Affiliation(s)
- Cintia J Monteiro
- Department of Genetics, Molecular Immunogenetics Group, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
13
|
Abstract
Lung epithelium, the lining that covers the inner surface of the respiratory tract, is directly exposed to the environment and thus susceptible to airborne toxins, irritants, and pathogen-induced damages. In adult mammalian lungs, epithelial cells are generally quiescent but can respond rapidly to repair of damaged tissues. Evidence from experimental injury models in rodents and human clinical samples has led to the identification of these regenerative cells, as well as pathological metaplastic states specifically associated with different forms of damages. Here, we provide a compendium of cells and cell states that exist during homeostasis in normal lungs and the lineage relationships between them. Additionally, we discuss various experimental injury models currently being used to probe the cellular sources-both resident and recruited-that contribute to repair, regeneration, and remodeling following acute and chronic injuries. Finally, we discuss certain maladaptive regeneration-associated cell states and their role in disease pathogenesis.
Collapse
Affiliation(s)
- Arvind Konkimalla
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Medical Scientist Training Program, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, North Carolina 27710, USA
- Duke Regeneration Center, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
14
|
Yan Z, Vorhies K, Feng Z, Park SY, Choi SH, Zhang Y, Winter M, Sun X, Engelhardt JF. Recombinant Adeno-Associated Virus-Mediated Editing of the G551D Cystic Fibrosis Transmembrane Conductance Regulator Mutation in Ferret Airway Basal Cells. Hum Gene Ther 2022; 33:1023-1036. [PMID: 35686451 PMCID: PMC9595624 DOI: 10.1089/hum.2022.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/03/2022] [Indexed: 12/30/2022] Open
Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF), a chronic disease that affects multiple organs, including the lung. We developed a CF ferret model of a scarless G551→D substitution in CFTR (CFTRG551D-KI), enabling approaches to correct this gating mutation in CF airways via gene editing. Homology-directed repair (HDR) was tested in Cas9-expressing CF airway basal cells (Cas9-GKI) from this model, as well as reporter basal cells (Y66S-Cas9-GKI) that express an integrated nonfluorescent Y66S-EGFP (enhanced green fluorescent protein) mutant gene to facilitate rapid assessment of HDR by the restoration of fluorescence. Recombinant adeno-associated virus (rAAV) vectors were used to deliver two DNA templates and sgRNAs for dual-gene editing at the EGFP and CFTR genes, followed by fluorescence-activated cell sorting of EGFPY66S-corrected cells. When gene-edited airway basal cells were polarized at an air-liquid interface, unsorted and EGFPY66S-corrected sorted populations gave rise to 26.0% and 70.4% CFTR-mediated Cl- transport of that observed in non-CF cultures, respectively. The consequences of gene editing at the CFTRG551D locus by HDR and nonhomologous end joining (NHEJ) were assessed by targeted gene next-generation sequencing (NGS) against a specific amplicon. NGS revealed HDR corrections of 3.1% of G551 sequences in the unsorted population of rAAV-infected cells, and 18.4% in the EGFPY66S-corrected cells. However, the largest proportion of sequences had indels surrounding the CRISPR (clustered regularly interspaced short palindromic repeats) cut site, demonstrating that NHEJ was the dominant repair pathway. This approach to simultaneously coedit at two genomic loci using rAAV may have utility as a model system for optimizing gene-editing efficiencies in proliferating airway basal cells through the modulation of DNA repair pathways in favor of HDR.
Collapse
Affiliation(s)
- Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Kai Vorhies
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Zehua Feng
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Soo Yeun Park
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Soon H. Choi
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Yulong Zhang
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Michael Winter
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
15
|
Lynch TJ, Ahlers BA, Swatek AM, Ievlev V, Pai AC, Brooks L, Tang Y, Evans IA, Meyerholz DK, Engelhardt JF, Parekh KR. Ferret Lung Transplantation Models Differential Lymphoid Aggregate Morphology Between Restrictive and Obstructive Forms of Chronic Lung Allograft Dysfunction. Transplantation 2022; 106:1974-1989. [PMID: 35442232 PMCID: PMC9529760 DOI: 10.1097/tp.0000000000004148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Long-term survival after lung transplantation remains limited by chronic lung allograft dysfunction (CLAD). CLAD has 2 histologic phenotypes, namely obliterative bronchiolitis (OB) and restrictive alveolar fibroelastosis (AFE), which have distinct clinical presentations, pathologies, and outcomes. Understanding of OB versus AFE pathogenesis would improve with better animal models. METHODS We utilized a ferret orthotopic single-lung transplantation model to characterize allograft fibrosis as a histologic measure of CLAD. Native lobes and "No CLAD" allografts lacking aberrant histology were used as controls. We used morphometric analysis to evaluate the size and abundance of B-cell aggregates and tertiary lymphoid organs (TLOs) and their cell composition. Quantitative RNA expression of 47 target genes was performed simultaneously using a custom QuantiGene Plex Assay. RESULTS Ferret lung allografts develop the full spectrum of human CLAD histology including OB and AFE subtypes. While both OB and AFE allografts developed TLOs, TLO size and number were greater with AFE histology. More activated germinal center cells marked by B-cell lymphoma 6 Transcription Repressor, (B-cell lymphoma 6) expression and fewer cells expressing forkhead box P3 correlated with AFE, congruent with greater diffuse immunoglobulin, plasma cell abundance, and complement 4d staining. Furthermore, forkhead box P3 RNA induction was significant in OB allografts specifically. RNA expression changes were seen in native lobes of animals with AFE but not OB when compared with No CLAD native lobes. CONCLUSIONS The orthotopic ferret single-lung transplant model provides unique opportunities to better understand factors that dispose allografts to OB versus AFE. This will help develop potential immunomodulatory therapies and antifibrotic approaches for lung transplant patients.
Collapse
Affiliation(s)
- Thomas J. Lynch
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Bethany A. Ahlers
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Anthony M. Swatek
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Vitaly Ievlev
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Albert C. Pai
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Leonard Brooks
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Yinghua Tang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Idil A. Evans
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - David K. Meyerholz
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Kalpaj R. Parekh
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
16
|
Lossi L. Anatomical features for an adequate choice of the experimental animal model in biomedicine: III. Ferret, goat, sheep, and horse. Ann Anat 2022; 244:151978. [PMID: 35787443 DOI: 10.1016/j.aanat.2022.151978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
The anatomical characteristics of each of the many species today employed in biomedical research are very important when selecting the correct animal model(s), especially for conducting translational research. In previous papers, these features have been considered for fish (D'Angelo et al. Ann. Anat, 2016, 205:75), the most common laboratory rodents, rabbits, and pigs (Lossi et al. 2016). I here follow this line of discussion by dealing with the importance of proper knowledge of ferrets, goats, sheep, and horses' main anatomical features in translational research.
Collapse
Affiliation(s)
- Laura Lossi
- University of Turin, Department of Veterinary Sciences, Turin, Italy; INN, Istituto Nazionale di Neuroscienze, Turin, Italy.
| |
Collapse
|
17
|
The Ferret Era of Experimental Lung Transplantation Is Upon Us. Transplantation 2022; 106:1914-1915. [PMID: 35442243 DOI: 10.1097/tp.0000000000004149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Shinmyo Y, Hamabe-Horiike T, Saito K, Kawasaki H. Investigation of the Mechanisms Underlying the Development and Evolution of the Cerebral Cortex Using Gyrencephalic Ferrets. Front Cell Dev Biol 2022; 10:847159. [PMID: 35386196 PMCID: PMC8977464 DOI: 10.3389/fcell.2022.847159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian cerebral cortex has changed significantly during evolution. As a result of the increase in the number of neurons and glial cells in the cerebral cortex, its size has markedly expanded. Moreover, folds, called gyri and sulci, appeared on its surface, and its neuronal circuits have become much more complicated. Although these changes during evolution are considered to have been crucial for the acquisition of higher brain functions, the mechanisms underlying the development and evolution of the cerebral cortex of mammals are still unclear. This is, at least partially, because it is difficult to investigate these mechanisms using mice only. Therefore, genetic manipulation techniques for the cerebral cortex of gyrencephalic carnivore ferrets were developed recently. Furthermore, gene knockout was achieved in the ferret cerebral cortex using the CRISPR/Cas9 system. These techniques enabled molecular investigations using the ferret cerebral cortex. In this review, we will summarize recent findings regarding the mechanisms underlying the development and evolution of the mammalian cerebral cortex, mainly focusing on research using ferrets.
Collapse
Affiliation(s)
- Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Toshihide Hamabe-Horiike
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kengo Saito
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
19
|
Pai AC, Lynch TJ, Ahlers BA, Ievlev V, Engelhardt JF, Parekh KR. A Novel Bioreactor for Reconstitution of the Epithelium and Submucosal Glands in Decellularized Ferret Tracheas. Cells 2022; 11:1027. [PMID: 35326478 PMCID: PMC8947657 DOI: 10.3390/cells11061027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Tracheal grafts introduce the possibility to treat airway pathologies that require resection. While there has been success with engraftment of the surface airway epithelium (SAE) onto decellularized tracheas, there has been minimal advancement in regenerating the submucosal glands (SMGs). We designed a cost-effective open-system perfusion bioreactor to investigate the engraftment potential of ferret SAEs and murine myoepithelial cells (MECs) on a partly decellularized ferret trachea with the goal of creating a fully functional tracheal replacement. An air-liquid interface was also arranged by perfusing humidified air through the lumen of a recellularized conduit to induce differentiation. Our versatile bioreactor design was shown to support the successful partial decellularization and recellularization of ferret tracheas. The decellularized grafts maintained biomechanical integrity and chondrocyte viability, consistent with other publications. The scaffolds supported SAE basal cell engraftment, and early differentiation was observed once an air-liquid interface had been established. Lastly, MEC engraftment was sustained, with evidence of diffuse SMG reconstitution. This model will help shed light on SMG regeneration and basal cell differentiation in vitro for the development of fully functional tracheal grafts before transplantation.
Collapse
Affiliation(s)
- Albert C. Pai
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Thomas J. Lynch
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA; (T.J.L.); (B.A.A.); (V.I.); (J.F.E.)
| | - Bethany A. Ahlers
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA; (T.J.L.); (B.A.A.); (V.I.); (J.F.E.)
| | - Vitaly Ievlev
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA; (T.J.L.); (B.A.A.); (V.I.); (J.F.E.)
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA; (T.J.L.); (B.A.A.); (V.I.); (J.F.E.)
| | - Kalpaj R. Parekh
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| |
Collapse
|
20
|
He N, Liu X, Vegter AR, Evans TIA, Gray JS, Guo J, Moll SR, Guo LJ, Luo M, Ma N, Sun X, Liang B, Yan Z, Feng Z, Qi L, Joshi AS, Shahin W, Yi Y, Gibson-Corley KN, Hoffman EA, Wang K, Mueller C, Engelhardt JF, Rosen BH. Ferret models of alpha-1 antitrypsin deficiency develop lung and liver disease. JCI Insight 2022; 7:e143004. [PMID: 35104244 PMCID: PMC8983124 DOI: 10.1172/jci.insight.143004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/28/2022] [Indexed: 11/19/2022] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is the most common genetic cause and risk factor for chronic obstructive pulmonary disease, but the field lacks a large-animal model that allows for longitudinal assessment of pulmonary function. We hypothesized that ferrets would model human AATD-related lung and hepatic disease. AAT-knockout (AAT-KO) and PiZZ (E342K, the most common mutation in humans) ferrets were generated and compared with matched controls using custom-designed flexiVent modules to perform pulmonary function tests, quantitative computed tomography (QCT), bronchoalveolar lavage (BAL) proteomics, and alveolar morphometry. Complete loss of AAT (AAT-KO) led to increased pulmonary compliance and expiratory airflow limitation, consistent with obstructive lung disease. QCT and morphometry confirmed emphysema and airspace enlargement, respectively. Pathway analysis of BAL proteomics data revealed inflammatory lung disease and impaired cellular migration. The PiZ mutation resulted in altered AAT protein folding in the liver, hepatic injury, and reduced plasma concentrations of AAT, and PiZZ ferrets developed obstructive lung disease. In summary, AAT-KO and PiZZ ferrets model the progressive obstructive pulmonary disease seen in AAT-deficient patients and may serve as a platform for preclinical testing of therapeutics including gene therapy.
Collapse
Affiliation(s)
- Nan He
- Department of Anatomy and Cell Biology
| | | | | | | | | | | | | | | | | | | | | | - Bo Liang
- Department of Anatomy and Cell Biology
| | | | | | - Lisi Qi
- Department of Anatomy and Cell Biology
| | | | | | - Yaling Yi
- Department of Anatomy and Cell Biology
| | | | | | - Kai Wang
- Department of Biostatistics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Christian Mueller
- Department of Pediatrics, University of Massachusetts Medical Center, Worcester, Massachusetts, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Bradley H. Rosen
- Department of Anatomy and Cell Biology
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
21
|
Abstract
For four decades, genetically altered laboratory animals have provided invaluable information. Originally, genetic modifications were performed on only a few animal species, often chosen because of the ready accessibility of embryonic materials and short generation times. The methods were often slow, inefficient and expensive. In 2013, a new, extremely efficient technology, namely CRISPR/Cas9, not only made the production of genetically altered organisms faster and cheaper, but also opened it up to non-conventional laboratory animal species. CRISPR/Cas9 relies on a guide RNA as a 'location finder' to target DNA double strand breaks induced by the Cas9 enzyme. This is a prerequisite for non-homologous end joining repair to occur, an error prone mechanism often generating insertion or deletion of genetic material. If a DNA template is also provided, this can lead to homology directed repair, allowing precise insertions, deletions or substitutions. Due to its high efficiency in targeting DNA, CRISPR/Cas9-mediated genetic modification is now possible in virtually all animal species for which we have genome sequence data. Furthermore, modifications of Cas9 have led to more refined genetic alterations from targeted single base-pair mutations to epigenetic modifications. The latter offer altered gene expression without genome alteration. With this ever growing genetic toolbox, the number and range of genetically altered conventional and non-conventional laboratory animals with simple or complex genetic modifications is growing exponentially.
Collapse
|
22
|
Gilardi C, Kalebic N. The Ferret as a Model System for Neocortex Development and Evolution. Front Cell Dev Biol 2021; 9:661759. [PMID: 33996819 PMCID: PMC8118648 DOI: 10.3389/fcell.2021.661759] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
The neocortex is the largest part of the cerebral cortex and a key structure involved in human behavior and cognition. Comparison of neocortex development across mammals reveals that the proliferative capacity of neural stem and progenitor cells and the length of the neurogenic period are essential for regulating neocortex size and complexity, which in turn are thought to be instrumental for the increased cognitive abilities in humans. The domesticated ferret, Mustela putorius furo, is an important animal model in neurodevelopment for its complex postnatal cortical folding, its long period of forebrain development and its accessibility to genetic manipulation in vivo. Here, we discuss the molecular, cellular, and histological features that make this small gyrencephalic carnivore a suitable animal model to study the physiological and pathological mechanisms for the development of an expanded neocortex. We particularly focus on the mechanisms of neural stem cell proliferation, neuronal differentiation, cortical folding, visual system development, and neurodevelopmental pathologies. We further discuss the technological advances that have enabled the genetic manipulation of the ferret in vivo. Finally, we compare the features of neocortex development in the ferret with those of other model organisms.
Collapse
|
23
|
Pai AC, Parekh KR, Engelhardt JF, Lynch TJ. Ferret respiratory disease models for the study of lung stem cells. LUNG STEM CELLS IN DEVELOPMENT, HEALTH AND DISEASE 2021:273-289. [DOI: 10.1183/2312508x.10010320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
24
|
Gibson-Corley KN, Engelhardt JF. Animal Models and Their Role in Understanding the Pathophysiology of Cystic Fibrosis-Associated Gastrointestinal Lesions. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 16:51-67. [PMID: 33497264 DOI: 10.1146/annurev-pathol-022420-105133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The life expectancy of cystic fibrosis (CF) patients has greatly increased over the past decade, and researchers and clinicians must now navigate complex disease manifestations that were not a concern prior to the development of modern therapies. Explosive growth in the number of CF animal models has also occurred over this time span, clarifying CF disease pathophysiology and creating opportunities to understand more complex disease processes associated with an aging CF population. This review focuses on the CF-associated pathologies of the gastrointestinal system and how animal models have increased our understanding of this complex multisystemic disease. Although CF is primarily recognized as a pulmonary disease, gastrointestinal pathology occurs very commonly and can affect the quality of life for these patients. Furthermore, we discuss how next-generation genetic engineering of larger animal models will impact the field's understanding of CF disease pathophysiology and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Katherine N Gibson-Corley
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA.,Current affiliation: Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee 37232, USA;
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA;
| |
Collapse
|
25
|
|
26
|
Perisse IV, Fan Z, Singina GN, White KL, Polejaeva IA. Improvements in Gene Editing Technology Boost Its Applications in Livestock. Front Genet 2021; 11:614688. [PMID: 33603767 PMCID: PMC7885404 DOI: 10.3389/fgene.2020.614688] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Accelerated development of novel CRISPR/Cas9-based genome editing techniques provides a feasible approach to introduce a variety of precise modifications in the mammalian genome, including introduction of multiple edits simultaneously, efficient insertion of long DNA sequences into specific targeted loci as well as performing nucleotide transitions and transversions. Thus, the CRISPR/Cas9 tool has become the method of choice for introducing genome alterations in livestock species. The list of new CRISPR/Cas9-based genome editing tools is constantly expanding. Here, we discuss the methods developed to improve efficiency and specificity of gene editing tools as well as approaches that can be employed for gene regulation, base editing, and epigenetic modifications. Additionally, advantages and disadvantages of two primary methods used for the production of gene-edited farm animals: somatic cell nuclear transfer (SCNT or cloning) and zygote manipulations will be discussed. Furthermore, we will review agricultural and biomedical applications of gene editing technology.
Collapse
Affiliation(s)
- Iuri Viotti Perisse
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Galina N. Singina
- L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, Russia
| | - Kenneth L. White
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Irina A. Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| |
Collapse
|
27
|
Nishizono H, Yasuda R, Laviv T. Methodologies and Challenges for CRISPR/Cas9 Mediated Genome Editing of the Mammalian Brain. Front Genome Ed 2020; 2:602970. [PMID: 34713226 PMCID: PMC8525404 DOI: 10.3389/fgeed.2020.602970] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/06/2020] [Indexed: 01/22/2023] Open
Abstract
Neurons and glia are highly polarized cells with extensive subcellular structures extending over large distances from their cell bodies. Previous research has revealed elaborate protein signaling complexes localized within intracellular compartments. Thus, exploring the function and the localization of endogenous proteins is vital to understanding the precise molecular mechanisms underlying the synapse, cellular, and circuit function. Recent advances in CRISPR/Cas9-based genome editing techniques have allowed researchers to rapidly develop transgenic animal models and perform single-cell level genome editing in the mammalian brain. Here, we introduce and comprehensively review the latest techniques for genome-editing in whole animals using fertilized eggs and methods for gene editing in specific neuronal populations in the adult or developing mammalian brain. Finally, we describe the advantages and disadvantages of each technique, as well as the challenges that lie ahead to advance the generation of methodologies for genome editing in the brain using the current CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Hirofumi Nishizono
- Department of Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, FL, United States
| | - Ryohei Yasuda
- Department of Neuronal Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, FL, United States
| | | |
Collapse
|
28
|
Tang Y, Yan Z, Engelhardt JF. Viral Vectors, Animal Models, and Cellular Targets for Gene Therapy of Cystic Fibrosis Lung Disease. Hum Gene Ther 2020; 31:524-537. [PMID: 32138545 PMCID: PMC7232698 DOI: 10.1089/hum.2020.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
After more than two decades since clinical trials tested the first use of recombinant adeno-associated virus (rAAV) to treat cystic fibrosis (CF) lung disease, gene therapy for this disorder has undergone a tremendous resurgence. Fueling this enthusiasm has been an enhanced understanding of rAAV transduction biology and cellular processes that limit transduction of airway epithelia, the development of new rAAV serotypes and other vector systems with high-level tropism for airway epithelial cells, an improved understanding of CF lung pathogenesis and the cellular targets for gene therapy, and the development of new animal models that reproduce the human CF disease phenotype. These advances have created a preclinical path for both assessing the efficacy of gene therapies in the CF lung and interrogating the target cell types in the lung required for complementation of the CF disease state. Lessons learned from early gene therapy attempts with rAAV in the CF lung have guided thinking for the testing of next-generation vector systems. Although unknown questions still remain regarding the cellular targets in the lung that are required or sufficient to complement CF lung disease, the field is now well positioned to tackle these challenges. This review will highlight the role that next-generation CF animal models are playing in the preclinical development of gene therapies for CF lung disease and the knowledge gaps in disease pathophysiology that these models are attempting to fill.
Collapse
Affiliation(s)
- Yinghua Tang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
29
|
Lane MC, Gordon JL, Jiang C, Leitner WW, Pickett TE, Stemmy E, Bozick BA, Deckhut-Augustine A, Embry AC, Post DJ. Workshop report: Optimization of animal models to better predict influenza vaccine efficacy. Vaccine 2020; 38:2751-2757. [PMID: 32145879 DOI: 10.1016/j.vaccine.2020.01.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 12/11/2022]
Abstract
Animal models that can recapitulate the human immune system are essential for the preclinical development of safe and efficacious vaccines. Development and optimization of representative animal models are key components of the NIAID strategic plan for the development of a universal influenza vaccine. To gain insight into the current landscape of animal model usage in influenza vaccine development, NIAID convened a workshop in Rockville, Maryland that brought together experts from academia, industry and government. Panelists discussed the benefits and limitations of the field's most widely-used animal models, identified currently available and critically needed resources and reagents, and suggested areas for improvement based on inadequacies of existing models. Although appropriately-selected animal models can be useful for evaluating safety, mechanism-of-action, and superiority over existing vaccines, workshop participants concluded that multiple animal models will likely be required to sufficiently test all aspects of a novel vaccine candidate. Refinements are necessary for all current model systems, for example, to better represent special human populations, and will be facilitated by the development and broader availability of new reagents. NIAID continues to support progress towards increasing the predictive value of animal models.
Collapse
Affiliation(s)
- M Chelsea Lane
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| | - Jennifer L Gordon
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Chao Jiang
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Wolfgang W Leitner
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Thames E Pickett
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Erik Stemmy
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Brooke A Bozick
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Alison Deckhut-Augustine
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Alan C Embry
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Diane J Post
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| |
Collapse
|
30
|
Abstract
Epithelial stem cells reside within multiple regions of the lung where they renew various region-specific cells. In addition, there are multiple routes of regeneration after injury through built-in heterogeneity within stem cell populations and through a capacity for cellular plasticity among differentiated cells. These processes are important facets of respiratory tissue resiliency and organism survival. However, this regenerative capacity is not limitless, and repetitive or chronic injuries, environmental stresses, or underlying factors of disease may ultimately lead to or contribute to tissue remodeling and end-stage lung disease. This chapter will review stem cell heterogeneity among pulmonary epithelia in the lower respiratory system, discuss recent findings that may challenge long-held scientific paradigms, and identify several clinically relevant research opportunities for regenerative medicine.
Collapse
|