1
|
Woodham RD, Selvaraj S, Lajmi N, Hobday H, Sheehan G, Ghazi-Noori AR, Lagerberg PJ, Rizvi M, Kwon SS, Orhii P, Maislin D, Hernandez L, Machado-Vieira R, Soares JC, Young AH, Fu CHY. Home-based transcranial direct current stimulation treatment for major depressive disorder: a fully remote phase 2 randomized sham-controlled trial. Nat Med 2024:10.1038/s41591-024-03305-y. [PMID: 39433921 DOI: 10.1038/s41591-024-03305-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024]
Abstract
Transcranial direct current stimulation (tDCS) has been proposed as a new treatment in major depressive disorder (MDD). This is a fully remote, multisite, double-blind, placebo-controlled, randomized superiority trial of 10-week home-based tDCS in MDD. Participants were 18 years or older, with MDD in current depressive episode of at least moderate severity as measured using the Hamilton Depression Rating Scale (mean = 19.07 ± 2.73). A total of 174 participants (120 women, 54 men) were randomized to active (n = 87, mean age = 37.09 ± 11.14 years) or sham (n = 87, mean age = 38.32 ± 10.92 years) treatment. tDCS consisted of five sessions per week for 3 weeks then three sessions per week for 7 weeks in a 10-week trial, followed by a 10-week open-label phase. Each session lasted 30 min; the anode was placed over the left dorsolateral prefrontal cortex and the cathode over the right dorsolateral prefrontal cortex (active tDCS 2 mA and sham tDCS 0 mA, with brief ramp up and down to mimic active stimulation). As the primary outcome, depressive symptoms showed significant improvement when measured using the Hamilton Depression Rating Scale: active 9.41 ± 6.25 point improvement (10-week mean = 9.58 ± 6.02) and sham 7.14 ± 6.10 point improvement (10-week mean = 11.66 ± 5.96) (95% confidence interval = 0.51-4.01, P = 0.012). There were no differences in discontinuation rates. In summary, a 10-week home-based tDCS treatment with remote supervision in MDD showed high efficacy, acceptability and safety. ClinicalTrials.gov registration: NCT05202119.
Collapse
Affiliation(s)
| | - Sudhakar Selvaraj
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Intra-Cellular Therapies Inc, New York, NY, USA
| | - Nahed Lajmi
- School of Psychology, University of East London, London, UK
| | - Harriet Hobday
- School of Psychology, University of East London, London, UK
| | | | | | | | - Maheen Rizvi
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sarah S Kwon
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paulette Orhii
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, USA
| | - David Maislin
- Biomedical Statistical Consulting, Philadelphia, PA, USA
| | | | - Rodrigo Machado-Vieira
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jair C Soares
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Allan H Young
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Institute for Health Research, Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, UK
| | - Cynthia H Y Fu
- School of Psychology, University of East London, London, UK.
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
2
|
Kim E, Yun SJ, Oh BM, Seo HG. Impact of Electric Field Magnitude in the Left Dorsolateral Prefrontal Cortex on Changes in Intrinsic Functional Connectivity Using Transcranial Direct Current Stimulation: A Randomized Crossover Study. J Neurosci Res 2024; 102:e25378. [PMID: 39225477 DOI: 10.1002/jnr.25378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
This study investigated whether the electric field magnitude (E-field) delivered to the left dorsolateral prefrontal cortex (L-DLPFC) changes resting-state brain activity and the L-DLPFC resting-state functional connectivity (rsFC), given the variability in tDCS response and lack of understanding of how rsFC changes. Twenty-one healthy participants received either 2 mA anodal or sham tDCS targeting the L-DLPFC for 10 min. Brain imaging was conducted before and after stimulation. The fractional amplitude of low-frequency fluctuation (fALFF), reflecting resting brain activity, and the L-DLPFC rsFC were analyzed to investigate the main effect of tDCS, main effect of time, and interaction effects. The E-field was estimated by modeling tDCS-induced individual electric fields and correlated with fALFF and L-DLPFC rsFC. Anodal tDCS increased fALFF in the left rostral middle frontal area and decreased fALFF in the midline frontal area (FWE p < 0.050), whereas sham induced no changes. Overall rsFC decreased after sham (positive and negative connectivity, p = 0.001 and 0.020, respectively), with modest and nonsignificant changes after anodal tDCS (p = 0.063 and 0.069, respectively). No significant differences in local rsFC were observed among the conditions. Correlations were observed between the E-field and rsFC changes in the L-DLPFC (r = 0.385, p = 0.115), left inferior parietal area (r = 0.495, p = 0.037), and right lateral visual area (r = 0.683, p = 0.002). Single-session tDCS induced resting brain activity changes and may help maintain overall rsFC. The E-field in the L-DLPFC is associated with rsFC changes in both proximal and distally connected brain regions to the L-DLPFC.
Collapse
Affiliation(s)
- Eunkyung Kim
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seo Jung Yun
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Human Systems Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute on Aging, Seoul National University, Seoul, Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Cappon DB, Pascual-Leone A. Toward Precision Noninvasive Brain Stimulation. Am J Psychiatry 2024; 181:795-805. [PMID: 39217436 DOI: 10.1176/appi.ajp.20240643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Affiliation(s)
- Davide B Cappon
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston; Department of Neurology, Harvard Medical School, Boston
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston; Department of Neurology, Harvard Medical School, Boston
| |
Collapse
|
4
|
Kazinka R, Roediger D, Xuan L, Yu L, Mueller BA, Camchong J, Opitz A, MacDonald A, Lim KO. tDCS-enhanced cognitive training improves attention and alters connectivity in control and somatomotor networks: A triple blind study. Neuroimage 2024; 298:120792. [PMID: 39147294 PMCID: PMC11425656 DOI: 10.1016/j.neuroimage.2024.120792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Executive dysfunction such as inattention or forgetfulness can lead to disruptions in a person's daily functioning and quality of life. OBJECTIVE/HYPOTHESIS This triple-blinded randomized clinical trial assessed the efficacy of bifrontal (over the forehead) transcranial direct current stimulation (tDCS) concurrent with cognitive training to improve cognitive performance in a healthy sample. METHODS Fifty-eight participants were randomly assigned to one of three stimulation conditions (2 mA left anode-right cathode, 2 mA right anode-left cathode, or sham), which was administered with cognitive training tasks 3x/week over 12 weeks with assessments at baseline, midpoint (6 weeks), and post-training (12 weeks). We assessed cognitive performance, functional connectivity, and the influence of individual differences in training advancement. RESULTS Forty participants completed training. We found that at midpoint and post, all groups improved significantly on overall cognitive performance. The left anode group's attention & vigilance score improved significantly at post, but the other two groups did not. Greater attention training advancement predicted attention improvement by post, most notably in the left anode group. Finally, within-network connectivity decreased in the control network and increased in the somatomotor network across all groups. CONCLUSIONS These results suggest that, given cognitive training, the left anode montage is more effective at improving attention than the right anode montage and sham. Future research may focus on the application of the left anode montage during cognitive training to assess its effectiveness in improving cognition in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rebecca Kazinka
- University of Minnesota, Department of Psychiatry and Behavioral Sciences, United States; University of Minnesota, Department of Biomedical Engineering, United States
| | - Donovan Roediger
- University of Minnesota, Department of Psychiatry and Behavioral Sciences, United States
| | - Lei Xuan
- University of Minnesota, Department of Psychiatry and Behavioral Sciences, United States
| | - Lingyan Yu
- University of Minnesota, Department of Psychology, United States
| | - Bryon A Mueller
- University of Minnesota, Department of Psychiatry and Behavioral Sciences, United States
| | - Jazmin Camchong
- University of Minnesota, Department of Psychiatry and Behavioral Sciences, United States
| | - Alexander Opitz
- University of Minnesota, Department of Biomedical Engineering, United States
| | - Angus MacDonald
- University of Minnesota, Department of Psychology, United States
| | - Kelvin O Lim
- University of Minnesota, Department of Psychiatry and Behavioral Sciences, United States
| |
Collapse
|
5
|
Franco-Rosado P, Callejón MA, Reina-Tosina J, Roa LM, Martin-Rodriguez JF, Mir P. Addressing the sources of inter-subject variability in E-field parameters in anodal tDCS stimulation over motor cortical network. Phys Med Biol 2024; 69:145013. [PMID: 38917834 DOI: 10.1088/1361-6560/ad5bb9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
Objetive: .Although transcranial direct current stimulation constitutes a non-invasive neuromodulation technique with promising results in a great variety of applications, its clinical implementation is compromised by the high inter-subject variability reported. This study aims to analyze the inter-subject variability in electric fields (E-fields) over regions of the cortical motor network under two electrode montages: the classical C3Fp2 and an alternative P3F3, which confines more the E-field over this region.Approach.Computational models of the head of 98 healthy subjects were developed to simulate the E-field under both montages. E-field parameters such as magnitude, focality and orientation were calculated over three regions of interest (ROI): M1S1, supplementary motor area (SMA) and preSMA. The role of anatomical characteristics as a source of inter-subject variability on E-field parameters and individualized stimulation intensity were addressed using linear mixed-effect models.Main results.P3F3 showed a more confined E-field distribution over M1S1 than C3Fp2; the latter elicited higher E-fields over supplementary motor areas. Both montages showed high inter-subject variability, especially for the normal component over C3Fp2. Skin, bone and CSF ROI volumes showed a negative association with E-field magnitude irrespective of montage. Grey matter volume and montage were the main sources of variability for focality. The curvature of gyri was found to be significantly associated with the variability of normal E-fields.Significance.Computational modeling proves useful in the assessment of E-field variability. Our simulations predict significant differences in E-field magnitude and focality for C3Fp2 and P3F3. However, anatomical characteristics were also found to be significant sources of E-field variability irrespective of electrode montage. The normal E-field component better captured the individual variability and low rate of responder subjects observed in experimental studies.
Collapse
Affiliation(s)
- Pablo Franco-Rosado
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Grupo de Ingeniería Biomédica, Departamento de Teoría de la Señal y Comunicaciones, Universidad de Sevilla, Sevilla, Spain
- Departamento de Psicología Experimental, Universidad de Sevilla, Sevilla, Spain
| | - M Amparo Callejón
- Grupo de Ingeniería Biomédica, Departamento de Teoría de la Señal y Comunicaciones, Universidad de Sevilla, Sevilla, Spain
- Servicio de Otorrinolaringología, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Javier Reina-Tosina
- Grupo de Ingeniería Biomédica, Departamento de Teoría de la Señal y Comunicaciones, Universidad de Sevilla, Sevilla, Spain
| | - Laura M Roa
- Grupo de Ingeniería Biomédica, Departamento de Teoría de la Señal y Comunicaciones, Universidad de Sevilla, Sevilla, Spain
| | - Juan F Martin-Rodriguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Psicología Experimental, Universidad de Sevilla, Sevilla, Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
6
|
Ikarashi H, Otsuru N, Gomez-Tames J, Hirata A, Nagasaka K, Miyaguchi S, Sakurai N, Ohno K, Kodama N, Onishi H. Modulation of pain perception through transcranial alternating current stimulation and its nonlinear relationship with the simulated electric field magnitude. Eur J Pain 2024; 28:1018-1028. [PMID: 38318653 DOI: 10.1002/ejp.2249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Oscillatory activities observed in multiple regions are closely associated with the experience of pain. Specifically, oscillatory activities within the theta- and beta-frequency bands, observed in the left dorsolateral prefrontal cortex (DLPFC), have been implicated in pain perception among healthy individuals and those with chronic pain. However, their physiological significance remains unclear. METHODS We explored the modulation of pain perception in healthy individuals by theta- and beta-band transcranial alternating current stimulation (tACS) over the left DLPFC and examined the relationship between the modulation effect and magnitude of the electric field elicited by tACS in the left DLPFC using computational simulation. RESULTS Our findings revealed that both theta- and beta-tACS increased the heat pain threshold during and after stimulation. Notably, the simulated electric field magnitude in the left DLPFC exhibited an inverted U-shaped relationship with the pain modulation effect for theta-tACS. CONCLUSIONS Our study findings suggested that there would be an optimal electric field strength to produce a high analgesic effect for theta-tACS. SIGNIFICANCE The application of theta- and beta-tACS interventions targeting the left DLPFC might facilitate the treatment of chronic pain. Furthermore, the attainment of effective pain modulation via theta-tACS over the DLPFC warrants the use of optimal stimulus intensity.
Collapse
Affiliation(s)
- H Ikarashi
- Graduate School, Niigata University of Health and Welfare, Niigata, Japan
| | - N Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - J Gomez-Tames
- Department of Electromechanical Engineering, Nagoya Institute of Technology, Nagoya, Aichi, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Aichi, Japan
| | - A Hirata
- Department of Electromechanical Engineering, Nagoya Institute of Technology, Nagoya, Aichi, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Aichi, Japan
| | - K Nagasaka
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - S Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - N Sakurai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - K Ohno
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - N Kodama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - H Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
7
|
Sato T, Katagiri N, Suganuma S, Laakso I, Tanabe S, Osu R, Tanaka S, Yamaguchi T. Simulating tDCS electrode placement to stimulate both M1 and SMA enhances motor performance and modulates cortical excitability depending on current flow direction. Front Neurosci 2024; 18:1362607. [PMID: 39010941 PMCID: PMC11246916 DOI: 10.3389/fnins.2024.1362607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction The conventional method of placing transcranial direct current stimulation (tDCS) electrodes is just above the target brain area. However, this strategy for electrode placement often fails to improve motor function and modulate cortical excitability. We investigated the effects of optimized electrode placement to induce maximum electrical fields in the leg regions of both M1 and SMA, estimated by electric field simulations in the T1and T2-weighted MRI-based anatomical models, on motor performance and cortical excitability in healthy individuals. Methods A total of 36 healthy volunteers participated in this randomized, triple-blind, sham-controlled experiment. They were stratified by sex and were randomly assigned to one of three groups according to the stimulation paradigm, including tDCS with (1) anodal and cathodal electrodes positioned over FCz and POz, respectively, (A-P tDCS), (2) anodal and cathodal electrodes positioned over POz and FCz, respectively, (P-A tDCS), and (3) sham tDCS. The sit-to-stand training following tDCS (2 mA, 10 min) was conducted every 3 or 4 days over 3 weeks (5 sessions total). Results Compared to sham tDCS, A-P tDCS led to significant increases in the number of sit-to-stands after 3 weeks training, whereas P-A tDCS significantly increased knee flexor peak torques after 3 weeks training, and decreased short-interval intracortical inhibition (SICI) immediately after the first session of training and maintained it post-training. Discussion These results suggest that optimized electrode placement of the maximal EF estimated by electric field simulation enhances motor performance and modulates cortical excitability depending on the direction of current flow.
Collapse
Affiliation(s)
- Takatsugu Sato
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Narashino, Japan
| | - Natsuki Katagiri
- Department of Rehabilitation Medicine, Tokyo Bay Rehabilitation Hospital, Narashino, Japan
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Saki Suganuma
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Rieko Osu
- Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
- Department of Physical Therapy, Faculty of Health Science, Juntendo University, Tokyo, Japan
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Gomez-Tames J, Fernández-Corazza M. Perspectives on Optimized Transcranial Electrical Stimulation Based on Spatial Electric Field Modeling in Humans. J Clin Med 2024; 13:3084. [PMID: 38892794 PMCID: PMC11172989 DOI: 10.3390/jcm13113084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Background: Transcranial electrical stimulation (tES) generates an electric field (or current density) in the brain through surface electrodes attached to the scalp. Clinical significance has been demonstrated, although with moderate and heterogeneous results partly due to a lack of control of the delivered electric currents. In the last decade, computational electric field analysis has allowed the estimation and optimization of the electric field using accurate anatomical head models. This review examines recent tES computational studies, providing a comprehensive background on the technical aspects of adopting computational electric field analysis as a standardized procedure in medical applications. Methods: Specific search strategies were designed to retrieve papers from the Web of Science database. The papers were initially screened based on the soundness of the title and abstract and then on their full contents, resulting in a total of 57 studies. Results: Recent trends were identified in individual- and population-level analysis of the electric field, including head models from non-neurotypical individuals. Advanced optimization techniques that allow a high degree of control with the required focality and direction of the electric field were also summarized. There is also growing evidence of a correlation between the computationally estimated electric field and the observed responses in real experiments. Conclusions: Computational pipelines and optimization algorithms have reached a degree of maturity that provides a rationale to improve tES experimental design and a posteriori analysis of the responses for supporting clinical studies.
Collapse
Affiliation(s)
- Jose Gomez-Tames
- Department of Medical Engineering, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
- Center for Frontier Medical Engineering, Chiba University, Chiba 263-8522, Japan
| | - Mariano Fernández-Corazza
- LEICI Institute of Research in Electronics, Control and Signal Processing, National University of La Plata, La Plata 1900, Argentina
| |
Collapse
|
9
|
Yatsuda K, Yu W, Gomez-Tames J. Population-level insights into temporal interference for focused deep brain neuromodulation. Front Hum Neurosci 2024; 18:1308549. [PMID: 38708141 PMCID: PMC11066208 DOI: 10.3389/fnhum.2024.1308549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
The ability to stimulate deep brain regions in a focal manner brings new opportunities for treating brain disorders. Temporal interference (TI) stimulation has been suggested as a method to achieve focused stimulation in deep brain targets. Individual-level knowledge of the interferential currents has permitted personalizing TI montage via subject-specific digital human head models, facilitating the estimation of interferential electric currents in the brain. While this individual approach offers a high degree of personalization, the significant intra-and inter-individual variability among specific head models poses challenges when comparing electric-field doses. Furthermore, MRI acquisition to develop a personalized head model, followed by precise methods for placing the optimized electrode positions, is complex and not always available in various clinical settings. Instead, the registration of individual electric fields into brain templates has offered insights into population-level effects and enabled montage optimization using common scalp landmarks. However, population-level knowledge of the interferential currents remains scarce. This work aimed to investigate the effectiveness of targeting deep brain areas using TI in different populations. The results showed a trade-off between deep stimulation and unwanted cortical neuromodulation, which is target-dependent at the group level. A consistent modulated electric field appeared in the deep brain target when the same montage was applied in different populations. However, the performance in terms of focality and variability varied when the same montage was used among populations. Also, group-level TI exhibited greater focality than tACS, reducing unwanted neuromodulation volume in the cortical part by at least 1.5 times, albeit with higher variability. These results provide valuable population-level insights when considering TI montage selection.
Collapse
Affiliation(s)
- Kanata Yatsuda
- Department of Medical Engineering, Graduate School of Engineering, Chiba University, Chiba, Japan
| | - Wenwei Yu
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | - Jose Gomez-Tames
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| |
Collapse
|
10
|
Nishimoto H, Kodera S, Otsuru N, Hirata A. Individual and group-level optimization of electric field in deep brain region during multichannel transcranial electrical stimulation. Front Neurosci 2024; 18:1332135. [PMID: 38529268 PMCID: PMC10961445 DOI: 10.3389/fnins.2024.1332135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/19/2024] [Indexed: 03/27/2024] Open
Abstract
Electrode montage optimization for transcranial electric stimulation (tES) is a challenging topic for targeting a specific brain region. Targeting the deep brain region is difficult due to tissue inhomogeneity, resulting in complex current flow. In this study, a simplified protocol for montage optimization is proposed for multichannel tES (mc-tES). The purpose of this study was to reduce the computational cost for mc-tES optimization and to evaluate the mc-tES for deep brain regions. Optimization was performed using a simplified protocol for montages under safety constraints with 20 anatomical head models. The optimization procedure is simplified using the surface EF of the deep brain target region, considering its small volume and non-concentric distribution of the electrodes. Our proposal demonstrated that the computational cost was reduced by >90%. A total of six-ten electrodes were necessary for robust EF in the target region. The optimization with surface EF is comparable to or marginally better than using conventional volumetric EF for deep brain tissues. An electrode montage with a mean injection current amplitude derived from individual analysis was demonstrated to be useful for targeting the deep region at the group level. The optimized montage and injection current were derived at the group level. Our proposal at individual and group levels showed great potential for clinical application.
Collapse
Affiliation(s)
- Hidetaka Nishimoto
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Sachiko Kodera
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
11
|
Fernandes SR, Callejón-Leblic MA, Ferreira HA. How does the electric field induced by tDCS influence motor-related connectivity? Model-guided perspectives. Phys Med Biol 2024; 69:055007. [PMID: 38266295 DOI: 10.1088/1361-6560/ad222d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Over the last decade, transcranial direct current stimulation (tDCS) has been applied not only to modulate local cortical activation, but also to address communication between functionally-related brain areas. Stimulation protocols based on simple two-electrode placements are being replaced by multi-electrode montages to target intra- and inter-hemispheric neural networks using multichannel/high definition paradigms.Objective. This study aims to investigate the characteristics of electric field (EF) patterns originated by tDCS experiments addressing changes in functional brain connectivity.Methods. A previous selection of tDCS experimental studies aiming to modulate motor-related connectivity in health and disease was conducted. Simulations of the EF induced in the cortex were then performed for each protocol selected. The EF magnitude and orientation are determined and analysed in motor-related cortical regions for five different head models to account for inter-subject variability. Functional connectivity outcomes obtained are qualitatively analysed at the light of the simulated EF and protocol characteristics, such as electrode position, number and stimulation dosing.Main findings. The EF magnitude and orientation predicted by computational models can be related with the ability of tDCS to modulate brain functional connectivity. Regional differences in EF distributions across subjects can inform electrode placements more susceptible to inter-subject variability in terms of brain connectivity-related outcomes.Significance. Neuronal facilitation/inhibition induced by tDCS fields may indirectly influence intra and inter-hemispheric connectivity by modulating neural components of motor-related networks. Optimization of tDCS using computational models is essential for adequate dosing delivery in specific networks related to clinically relevant connectivity outcomes.
Collapse
Affiliation(s)
- Sofia Rita Fernandes
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - M Amparo Callejón-Leblic
- Oticon Medical, Madrid, Spain
- Grupo de Ingeniería Biomédica, Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Spain
- Servicio de Otorrinolaringología, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Hugo Alexandre Ferreira
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| |
Collapse
|
12
|
Laakso I, Tani K, Gomez-Tames J, Hirata A, Tanaka S. Small effects of electric field on motor cortical excitability following anodal tDCS. iScience 2024; 27:108967. [PMID: 38352229 PMCID: PMC10863330 DOI: 10.1016/j.isci.2024.108967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
The dose-response characteristics of transcranial direct current stimulation (tDCS) remain uncertain but may be related to variability in brain electric fields due to individual anatomical factors. Here, we investigated whether the electric fields influence the responses to motor cortical tDCS. In a randomized cross-over design, 21 participants underwent 10 min of anodal tDCS with 0.5, 1.0, 1.5, or 2.0 mA or sham. Compared to sham, all active conditions increased the size of motor evoked potentials (MEP) normalized to the pre-tDCS baseline, irrespective of anterior or posterior magnetic test stimuli. The electric field calculated in the motor cortex of each participant had a nonlinear effect on the normalized MEP size, but its effects were small compared to those of other participant-specific factors. The findings support the efficacy of anodal tDCS in enhancing the MEP size but do not demonstrate any benefits of personalized electric field modeling in explaining tDCS response variability.
Collapse
Affiliation(s)
- Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland
| | - Keisuke Tani
- Faculty of Psychology, Otemon Gakuin University, Ibaraki, Osaka 567-8502, Japan
| | - Jose Gomez-Tames
- Department of Medical Engineering, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3125, Japan
| |
Collapse
|
13
|
Soleimani G, Joutsa J, Moussawi K, Siddiqi SH, Kuplicki R, Bikson M, Paulus MP, Fox MD, Hanlon CA, Ekhtiari H. Converging Evidence for Frontopolar Cortex as a Target for Neuromodulation in Addiction Treatment. Am J Psychiatry 2024; 181:100-114. [PMID: 38018143 PMCID: PMC11318367 DOI: 10.1176/appi.ajp.20221022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Noninvasive brain stimulation technologies such as transcranial electrical and magnetic stimulation (tES and TMS) are emerging neuromodulation therapies that are being used to target the neural substrates of substance use disorders. By the end of 2022, 205 trials of tES or TMS in the treatment of substance use disorders had been published, with heterogeneous results, and there is still no consensus on the optimal target brain region. Recent work may help clarify where and how to apply stimulation, owing to expanding databases of neuroimaging studies, new systematic reviews, and improved methods for causal brain mapping. Whereas most previous clinical trials targeted the dorsolateral prefrontal cortex, accumulating data highlight the frontopolar cortex as a promising therapeutic target for transcranial brain stimulation in substance use disorders. This approach is supported by converging multimodal evidence, including lesion-based maps, functional MRI-based maps, tES studies, TMS studies, and dose-response relationships. This review highlights the importance of targeting the frontopolar area and tailoring the treatment according to interindividual variations in brain state and trait and electric field distribution patterns. This converging evidence supports the potential for treatment optimization through context, target, dose, and timing dimensions to improve clinical outcomes of transcranial brain stimulation in people with substance use disorders in future clinical trials.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Juho Joutsa
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Khaled Moussawi
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Shan H Siddiqi
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Rayus Kuplicki
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Marom Bikson
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Martin P Paulus
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Michael D Fox
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Colleen A Hanlon
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Hamed Ekhtiari
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| |
Collapse
|
14
|
Lee S, Park J, Lee C, Ahn J, Ryu J, Lee SH, Im CH. Determination of optimal injection current pattern for multichannel transcranial electrical stimulation without individual MRI using multiple head models. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107878. [PMID: 37890288 DOI: 10.1016/j.cmpb.2023.107878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND AND OBJECTIVE Multichannel transcranial electrical stimulation (tES) is widely used to achieve improved stimulation focality. In the multichannel tES, the injection current pattern is generally determined through an optimization process with a finite element (FE) head model extracted from individual magnetic resonance images (MRIs). Although using an individual head model ensures the best outcome, acquiring MRIs of individual subjects in many practical applications is often difficult. Alternatively, a standard head model can be used to determine the optimal injection current pattern to stimulate a specific target; however, this may result in a relatively inaccurate delivery of stimulation current owing to the difference in individual anatomical structures. To address this issue, we propose a new approach for determining the injection current pattern using multiple head models, which can improve the stimulation focality compared to that achieved with a single standard head model. METHODS Twenty FE head models were used to optimize the injection current patterns to stimulate three cortical regions that are widely considered targets for tES. The individual injection current patterns were then averaged to obtain each target's mean injection current pattern. The stimulation focality for each target was then calculated by applying different current patterns (the mean current, individual current, and current from a standard model). RESULTS Our results showed that the stimulation focality obtained using the mean injection current pattern was significantly higher than that obtained using the injection current pattern from a standard head model. Additionally, our results demonstrated that a minimum of 13 head models are required to determine mean current pattern, allowing for a higher stimulation focality than when using the current from a standard head model. CONCLUSIONS Hence, using multiple head models can provide a viable solution for improving the stimulation efficacy of multichannel tES when individual MRIs are not available.
Collapse
Affiliation(s)
- Sangjun Lee
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea; Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jimin Park
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chany Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jeongyeol Ahn
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Juhyoung Ryu
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Hun Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chang-Hwan Im
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea; Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Kim T, Salazar Fajardo JC, Jang H, Lee J, Kim Y, Kim G, Kim D. Effect of optimized transcranial direct current stimulation on motor cortex activation in patients with sub-acute or chronic stroke: a study protocol for a single-blinded cross-over randomized control trial. Front Neurosci 2023; 17:1328727. [PMID: 38192515 PMCID: PMC10773722 DOI: 10.3389/fnins.2023.1328727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction Transcranial direct current stimulation (tDCS) has shown positive but inconsistent results in stroke rehabilitation. This could be attributed to inter-individual variations in brain characteristics and stroke lesions, which limit the use of a single tDCS protocol for all post-stroke patients. Optimizing the electrode location in tDCS for each individual using magnetic resonance imaging (MRI) to generate three-dimensional computer models and calculate the electric field (E-field) induced by tDCS at a specific target point in the primary motor cortex may help reduce these inconsistencies. In stroke rehabilitation, locating the optimal position that generates a high E-field in a target area can influence motor recovery. Therefore, this study was designed to determine the effect of personalized tDCS electrode positions on hand-knob activation in post-stroke patients. Method This is a crossover study with a sample size of 50 participants, who will be randomly assigned to one of six groups and will receive one session of either optimized-active, conventional-active, or sham tDCS, with 24 h between sessions. The tDCS parameters will be 1 mA (5 × 5 cm electrodes) for 20 min. The motor-evoked potential (MEP) will be recorded before and after each session over the target area (motor cortex hand-knob) and the MEP hotspot. The MEP amplitude at the target location will be the primary outcome. Discussion We hypothesize that the optimized-active tDCS session would show a greater increase in MEP amplitude over the target area in patients with subacute and chronic stroke than conventional and sham tDCS sessions.Clinical trial registration: https://cris.nih.go.kr, identifier KCT0007536.
Collapse
Affiliation(s)
- TaeYeong Kim
- Research Institute, Neurophet Inc., Seoul, Republic of Korea
| | | | - Hanna Jang
- Research Institute, Neurophet Inc., Seoul, Republic of Korea
| | - Juwon Lee
- Department of Rehabilitation Medicine, Kangwon National University Hospital, Chuncheon-si, Republic of Korea
| | - Yeonkyung Kim
- Department of Rehabilitation Medicine, Kangwon National University Hospital, Chuncheon-si, Republic of Korea
| | - Gowun Kim
- Department of Rehabilitation Medicine, Kangwon National University Hospital, Chuncheon-si, Republic of Korea
| | - Donghyeon Kim
- Research Institute, Neurophet Inc., Seoul, Republic of Korea
| |
Collapse
|
16
|
Soleimani G, Kuplicki R, Camchong J, Opitz A, Paulus MP, Lim KO, Ekhtiari H. Are we really targeting and stimulating DLPFC by placing transcranial electrical stimulation (tES) electrodes over F3/F4? Hum Brain Mapp 2023; 44:6275-6287. [PMID: 37750607 PMCID: PMC10619406 DOI: 10.1002/hbm.26492] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/16/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023] Open
Abstract
In many clinical trials involving transcranial electrical stimulation (tES), target electrodes are typically placed over DLPFC with the assumption that this will primarily stimulate the underlying brain region. However, our study aimed to evaluate the electric fields (EF) that are actually delivered and identify prefrontal regions that may be inadvertently targeted in DLPFC tES. Head models were generated from the Human Connectome Project database's T1 + T2-weighted MRIs of 80 healthy adults. Two common DLPFC montages were simulated; symmetric-F4/F3, and asymmetric-F4/Fp1. Averaged EF was extracted from (1) the center of the target electrode (F4), and (2) the top 1% of voxels showing the strongest EF in individualized EF maps. Interindividual variabilities were quantified with the standard deviation of EF peak location/value. Similar steps were repeated with 66 participants with methamphetamine use disorder (MUDs) as an independent clinical population. In healthy adults, the group-level location of EF peaks was situated in the medial-frontopolar, and the individualized EF peaks were positioned in a cube with a volume of 29 cm3 /46 cm3 (symmetric/asymmetric montages). EFs in the frontopolar area were significantly higher than EF "under" the target electrode in both symmetric (peak: 0.41 ± 0.06, F4:0.22 ± 0.04) and asymmetric (peak: 0.38 ± 0.04, F4:0.2 ± 0.04) montages (Heges'g > 0.7). Similar results with slight between-group differences were found in MUDs. We highlighted that in common DLPFC tES montages, in addition to interindividual/intergroup variability, the frontopolar received the highest EFs rather than DLPFC as the main target. We specifically recommended considering the potential involvement of the frontopolar area as a mechanism underlying the effectiveness of DLPFC tES protocols.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Psychiatry and Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Rayus Kuplicki
- Laureate Institute for Brain Research (LIBR)TulsaOklahomaUSA
| | - Jazmin Camchong
- Department of Psychiatry and Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Alexander Opitz
- Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Kelvin O. Lim
- Department of Psychiatry and Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Hamed Ekhtiari
- Department of Psychiatry and Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
- Laureate Institute for Brain Research (LIBR)TulsaOklahomaUSA
| |
Collapse
|
17
|
De Koninck BP, Brazeau D, Guay S, Herrero Babiloni A, De Beaumont L. Transcranial Alternating Current Stimulation to Modulate Alpha Activity: A Systematic Review. Neuromodulation 2023; 26:1549-1584. [PMID: 36725385 DOI: 10.1016/j.neurom.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS) has been one of numerous investigation methods used for their potential to modulate brain oscillations; however, such investigations have given contradictory results and a lack of standardization. OBJECTIVES In this systematic review, we aimed to assess the potential of tACS to modulate alpha spectral power. The secondary outcome was the identification of tACS methodologic key parameters, adverse effects, and sensations. MATERIALS AND METHODS Studies in healthy adults who were receiving active and sham tACS intervention or any differential condition were included. The main outcome assessed was the increase/decrease of alpha spectral power through either electroencephalography or magnetoencephalography. Secondary outcomes were methodologic parameters, sensation reporting, and adverse effects. Risks of bias and the study quality were assessed with the Cochrane assessment tool. RESULTS We obtained 1429 references, and 20 met the selection criteria. A statistically significant alpha-power increase was observed in nine studies using continuous tACS stimulation and two using intermittent tACS stimulation set at a frequency within the alpha range. A statistically significant alpha-power increase was observed in three more studies using a stimulation frequency outside the alpha range. Heterogeneity among stimulation parameters was recognized. Reported adverse effects were mild. The implementation of double blind was identified as challenging using tACS, in part owing to electrical artifacts generated by stimulation on the recorded signal. CONCLUSIONS Most assessed studies reported that tACS has the potential to modulate brain alpha power. The optimization of this noninvasive brain stimulation method is of interest mostly for its potential clinical applications with neurological conditions associated with perturbations in alpha brain activity. However, more research efforts are needed to standardize optimal parameters to achieve lasting modulation effects, develop methodologic alternatives to reduce experimental bias, and improve the quality of studies using tACS to modulate brain activity.
Collapse
Affiliation(s)
- Beatrice P De Koninck
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada.
| | - Daphnée Brazeau
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada
| | - Samuel Guay
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada
| | - Alberto Herrero Babiloni
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada; McGill University, Montreal, Quebec, Canada
| | - Louis De Beaumont
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada
| |
Collapse
|
18
|
Kho SK, Keeble D, Wong HK, Estudillo AJ. Null effect of anodal and cathodal transcranial direct current stimulation (tDCS) on own- and other-race face recognition. Soc Neurosci 2023; 18:393-406. [PMID: 37840302 DOI: 10.1080/17470919.2023.2263924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Indexed: 10/17/2023]
Abstract
Successful face recognition is important for social interactions and public security. Although some preliminary evidence suggests that anodal and cathodal transcranial direct current stimulation (tDCS) might modulate own- and other-race face identification, respectively, the findings are largely inconsistent. Hence, we examined the effect of both anodal and cathodal tDCS on the recognition of own- and other-race faces. Ninety participants first completed own- and other-race Cambridge Face Memory Test (CFMT) as baseline measurements. Next, they received either anodal tDCS, cathodal tDCS or sham stimulation and finally they completed alternative versions of the own- and other-race CFMT. No difference in performance, in terms of accuracy and reaction time, for own- and other-race face recognition between anodal tDCS, cathodal tDCS and sham stimulation was found. Our findings cast doubt upon the efficacy of tDCS to modulate performance in face identification tasks.
Collapse
Affiliation(s)
- Siew Kei Kho
- Department of Psychology, Bournemouth University, Poole, United Kingdom
- School of Psychology, University of Nottingham Malaysia, Semenyih, Malaysia
| | - David Keeble
- Department of Psychology, Bournemouth University, Poole, United Kingdom
| | - Hoo Keat Wong
- Department of Psychology, Bournemouth University, Poole, United Kingdom
| | | |
Collapse
|
19
|
Rizvi A, Bell K, Yang D, Montenegro MP, Kim H, Bao S, Wright DL, Buchanan JJ, Lei Y. Effects of transcranial direct current stimulation over human motor cortex on cognitive-motor and sensory-motor functions. Sci Rep 2023; 13:20968. [PMID: 38017091 PMCID: PMC10684512 DOI: 10.1038/s41598-023-48070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
The primary motor cortex (M1) is broadly acknowledged for its crucial role in executing voluntary movements. Yet, its contributions to cognitive and sensory functions remain largely unexplored. Transcranial direct current stimulation (tDCS) is a noninvasive neurostimulation method that can modify brain activity, thereby enabling the establishment of a causal link between M1 activity and behavior. This study aimed to investigate the online effects of tDCS over M1 on cognitive-motor and sensory-motor functions. Sixty-four healthy participants underwent either anodal or sham tDCS while concurrently performing a set of standardized robotic tasks. These tasks provided sensitive and objective assessments of brain functions, including action selection, inhibitory control, cognitive control of visuomotor skills, proprioceptive sense, and bimanual coordination. Our results revealed that anodal tDCS applied to M1 enhances decision-making capacity in selecting appropriate motor actions and avoiding distractors compared to sham stimulation, suggesting improved action selection and inhibitory control capabilities. Furthermore, anodal tDCS reduces the movement time required to accomplish bimanual movements, suggesting enhanced bimanual performance. However, we found no impact of anodal tDCS on cognitive control of visuomotor skills and proprioceptive sense. This study suggests that augmenting M1 activity via anodal tDCS influences cognitive-motor and sensory-motor functions in a task-dependent manner.
Collapse
Affiliation(s)
- Aoun Rizvi
- Program of Motor Neuroscience, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77843, USA
| | - Kara Bell
- Program of Motor Neuroscience, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77843, USA
| | - Daniel Yang
- Program of Motor Neuroscience, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77843, USA
| | - Maria P Montenegro
- Program of Motor Neuroscience, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77843, USA
| | - Hakjoo Kim
- Program of Motor Neuroscience, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77843, USA
| | - Shancheng Bao
- Program of Motor Neuroscience, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77843, USA
| | - David L Wright
- Program of Motor Neuroscience, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77843, USA
| | - John J Buchanan
- Program of Motor Neuroscience, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77843, USA
| | - Yuming Lei
- Program of Motor Neuroscience, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
20
|
Evans C, Johnstone A, Zich C, Lee JSA, Ward NS, Bestmann S. The impact of brain lesions on tDCS-induced electric fields. Sci Rep 2023; 13:19430. [PMID: 37940660 PMCID: PMC10632455 DOI: 10.1038/s41598-023-45905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) can enhance motor and language rehabilitation after stroke. Though brain lesions distort tDCS-induced electric field (E-field), systematic accounts remain limited. Using electric field modelling, we investigated the effect of 630 synthetic lesions on E-field magnitude in the region of interest (ROI). Models were conducted for two tDCS montages targeting either primary motor cortex (M1) or Broca's area (BA44). Absolute E-field magnitude in the ROI differed by up to 42% compared to the non-lesioned brain depending on lesion size, lesion-ROI distance, and lesion conductivity value. Lesion location determined the sign of this difference: lesions in-line with the predominant direction of current increased E-field magnitude in the ROI, whereas lesions located in the opposite direction decreased E-field magnitude. We further explored how individualised tDCS can control lesion-induced effects on E-field. Lesions affected the individualised electrode configuration needed to maximise E-field magnitude in the ROI, but this effect was negligible when prioritising the maximisation of radial inward current. Lesions distorting tDCS-induced E-field, is likely to exacerbate inter-individual variability in E-field magnitude. Individualising electrode configuration and stimulator output can minimise lesion-induced variability but requires improved estimates of lesion conductivity. Individualised tDCS is critical to overcome E-field variability in lesioned brains.
Collapse
Affiliation(s)
- Carys Evans
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Ainslie Johnstone
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Catharina Zich
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
- Nuffield Department of Clinical Neurosciences, FMRIB, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Jenny S A Lee
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Nick S Ward
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
- The National Hospital for Neurology and Neurosurgery, London, UK
- UCLP Centre for Neurorehabilitation, London, UK
| | - Sven Bestmann
- Department for Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
21
|
Van Hoornweder S, Nuyts M, Frieske J, Verstraelen S, Meesen RLJ, Caulfield KA. Outcome measures for electric field modeling in tES and TMS: A systematic review and large-scale modeling study. Neuroimage 2023; 281:120379. [PMID: 37716590 PMCID: PMC11008458 DOI: 10.1016/j.neuroimage.2023.120379] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Electric field (E-field) modeling is a potent tool to estimate the amount of transcranial magnetic and electrical stimulation (TMS and tES, respectively) that reaches the cortex and to address the variable behavioral effects observed in the field. However, outcome measures used to quantify E-fields vary considerably and a thorough comparison is missing. OBJECTIVES This two-part study aimed to examine the different outcome measures used to report on tES and TMS induced E-fields, including volume- and surface-level gray matter, region of interest (ROI), whole brain, geometrical, structural, and percentile-based approaches. The study aimed to guide future research in informed selection of appropriate outcome measures. METHODS Three electronic databases were searched for tES and/or TMS studies quantifying E-fields. The identified outcome measures were compared across volume- and surface-level E-field data in ten tES and TMS modalities targeting two common targets in 100 healthy individuals. RESULTS In the systematic review, we extracted 308 outcome measures from 202 studies that adopted either a gray matter volume-level (n = 197) or surface-level (n = 111) approach. Volume-level results focused on E-field magnitude, while surface-level data encompassed E-field magnitude (n = 64) and normal/tangential E-field components (n = 47). E-fields were extracted in ROIs, such as brain structures and shapes (spheres, hexahedra and cylinders), or the whole brain. Percentiles or mean values were mostly used to quantify E-fields. Our modeling study, which involved 1,000 E-field models and > 1,000,000 extracted E-field values, revealed that different outcome measures yielded distinct E-field values, analyzed different brain regions, and did not always exhibit strong correlations in the same within-subject E-field model. CONCLUSIONS Outcome measure selection significantly impacts the locations and intensities of extracted E-field data in both tES and TMS E-field models. The suitability of different outcome measures depends on the target region, TMS/tES modality, individual anatomy, the analyzed E-field component and the research question. To enhance the quality, rigor, and reproducibility in the E-field modeling domain, we suggest standard reporting practices across studies and provide four recommendations.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium.
| | - Marten Nuyts
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Joana Frieske
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stefanie Verstraelen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Raf L J Meesen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
22
|
Müller D, Habel U, Brodkin ES, Clemens B, Weidler C. HD-tDCS induced changes in resting-state functional connectivity: Insights from EF modeling. Brain Stimul 2023; 16:1722-1732. [PMID: 38008154 DOI: 10.1016/j.brs.2023.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND High-definition transcranial direct current stimulation (HD-tDCS) holds promise for therapeutic use in psychiatric disorders. One obstacle for the implementation into clinical practice is response variability. One way to tackle this obstacle is the use of Individualized head models. OBJECTIVE This study investigated the variability of HD-tDCS induced electric fields (EFs) and its impact on resting-state functional connectivity (rsFC) during different time windows. METHODS In this randomized, double-blind, and sham controlled study, seventy healthy males underwent 20 min of 1.5 mA HD-tDCS on the right inferior frontal gyrus (rIFG) while undergoing resting-state functional magnetic resonance imaging (rs-fMRI). Individual head models and EF simulations were created from anatomical images. The effects of HD-tDCS on rsFC were assessed using a seed-to-voxel analysis. A subgroup analysis explored the relationship between EF magnitude and rsFC during different stimulation time windows. RESULTS Results highlighted significant variability in HD-tDCS-induced EFs. Compared to the sham group, the active group showed increased rsFC between the rIFG and the left prefrontal cortex, during and after stimulation. During active stimulation, EF magnitude correlated positively with rsFC between the rIFG and the left hippocampus initially, and negatively during the subsequent period. CONCLUSION This study indicated an HD-tDCS induced increase of rsFC between left and right prefrontal areas. Furthermore, an interaction between the magnitude and the duration of HD-tDCS on rsFC was observed. Due to the high EF variability that was apparent, these findings highlight the need for individualized HD-tDCS protocols and the creation of head models to optimize effects and reduce response heterogeneity.
Collapse
Affiliation(s)
- Dario Müller
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany; JARA-BRAIN Institute Brain Structure-Function Relationships, Research Center Jülich and RWTH Aachen, Germany; Institute of Neuroscience and Medicine 10, Research Center Jülich, 52438, Jülich, Germany
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, 3535 Market Street, Suite 3080, Philadelphia, PA, 19104-3309, USA
| | - Benjamin Clemens
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Carmen Weidler
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
23
|
Kho SK, Keeble DRT, Wong HK, Estudillo AJ. Investigating the role of the fusiform face area and occipital face area using multifocal transcranial direct current stimulation. Neuropsychologia 2023; 189:108663. [PMID: 37611740 DOI: 10.1016/j.neuropsychologia.2023.108663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
The functional role of the occipital face area (OFA) and the fusiform face area (FFA) in face recognition is inconclusive to date. While some research has shown that the OFA and FFA are involved in early (i.e., featural processing) and late (i.e., holistic processing) stages of face recognition respectively, other research suggests that both regions are involved in both early and late stages of face recognition. Thus, the current study aims to further examine the role of the OFA and the FFA using multifocal transcranial direct current stimulation (tDCS). In Experiment 1, we used computer-generated faces. Thirty-five participants completed whole face and facial features (i.e., eyes, nose, mouth) recognition tasks after OFA and FFA stimulation in a within-subject design. No difference was found in recognition performance after either OFA or FFA stimulation. In Experiment 2 with 60 participants, we used real faces, provided stimulation following a between-subjects design and included a sham control group. Results showed that FFA stimulation led to enhanced efficiency of facial features recognition. Additionally, no effect of OFA stimulation was found for either facial feature or whole face recognition. These results suggest the involvement of FFA in the recognition of facial features.
Collapse
Affiliation(s)
- Siew Kei Kho
- Department of Psychology, Bournemouth University, UK; School of Psychology, University of Nottingham, Malaysia.
| | | | - Hoo Keat Wong
- School of Psychology, University of Nottingham, Malaysia
| | - Alejandro J Estudillo
- Department of Psychology, Bournemouth University, UK; School of Psychology, University of Nottingham, Malaysia.
| |
Collapse
|
24
|
Soleimani G, Kupliki R, Paulus M, Ekhtiari H. Dose-response in modulating brain function with transcranial direct current stimulation: From local to network levels. PLoS Comput Biol 2023; 19:e1011572. [PMID: 37883583 PMCID: PMC10629666 DOI: 10.1371/journal.pcbi.1011572] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 11/07/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Understanding the dose-response relationship is crucial in studying the effects of brain stimulation techniques, such as transcranial direct current stimulation (tDCS). The dose-response relationship refers to the relationship between the received stimulation dose and the resulting response, which can be described as a function of the dose at various levels, including single/multiple neurons, clusters, regions, or networks. Here, we are focused on the received stimulation dose obtained from computational head models and brain responses which are quantified by functional magnetic resonance imaging (fMRI) data. In this randomized, triple-blind, sham-controlled clinical trial, we recruited sixty participants with methamphetamine use disorders (MUDs) as a sample clinical population who were randomly assigned to receive either sham or active tDCS. Structural and functional MRI data, including high-resolution T1 and T2-weighted MRI, resting-state functional MRI, and a methamphetamine cue-reactivity task fMRI, were acquired before and after tDCS. Individual head models were generated using the T1 and T2-weighted MRI data to simulate electric fields. In a linear approach, we investigated the associations between electric fields (received dose) and changes in brain function (response) at four different levels: voxel level, regional level (using atlas-based parcellation), cluster level (identifying active clusters), and network level (task-based functional connectivity). At the voxel level, regional level, and cluster level, no FDR-corrected significant correlation was observed between changes in functional activity and electric fields. However, at the network level, a significant positive correlation was found between frontoparietal connectivity and the electric field at the frontopolar stimulation site (r = 0.42, p corrected = 0.02; medium effect size). Our proposed pipeline offers a methodological framework for analyzing tDCS effects by exploring dose-response relationships at different levels, enabling a direct link between electric field variability and the neural response to tDCS. The results indicate that network-based analysis provides valuable insights into the dependency of tDCS neuromodulatory effects on the individual's regional current dose. Integration of dose-response relationships can inform dose optimization, customization, or the extraction of predictive/treatment-response biomarkers in future brain stimulation studies.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Rayus Kupliki
- Laureate Institute for Brain Research, Tulsa, Oklahoma, United States of America
| | - Martin Paulus
- Laureate Institute for Brain Research, Tulsa, Oklahoma, United States of America
| | - Hamed Ekhtiari
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota, United States of America
- Laureate Institute for Brain Research, Tulsa, Oklahoma, United States of America
| |
Collapse
|
25
|
Maas RPPWM, Faber J, van de Warrenburg BPC, Schutter DJLG. Interindividual differences in posterior fossa morphometry affect cerebellar tDCS-induced electric field strength. Clin Neurophysiol 2023; 153:152-165. [PMID: 37499446 DOI: 10.1016/j.clinph.2023.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/18/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVE Clinical, behavioural, and neurophysiological effects of cerebellar transcranial direct current stimulation (tDCS) are highly variable and difficult to predict. We aimed to examine associations between cerebellar tDCS-induced electric field strength, morphometric posterior fossa parameters, and skin-cerebellum distance. As a secondary objective, field characteristics were compared between cephalic and extracephalic electrode configurations. METHODS Electric field simulations of midline cerebellar tDCS (7 × 5 cm electrodes, current intensities of 2 mA) were performed on MRI-based head models from 37 healthy adults using buccinator, frontopolar, and lower neck reference electrodes. Average field strengths were determined in eight regions of interest (ROIs) covering the anterior and posterior vermis and cerebellar hemispheres. Besides skin-cerebellum distance, various angles were measured between posterior fossa structures. Multivariable linear regression models were used to identify predictors of field strength in different ROIs. RESULTS Skin-cerebellum distance and "pons angle" were independently associated with field strength in the anterior and posterior vermis. "Cerebellar angle" and skin-cerebellum distance affected field strength in anterior and posterior regions of the right cerebellar hemisphere. Field strengths in all examined cerebellar areas were highest in the frontopolar and lowest in the lower neck montage, while the opposite was found for field focality. The lower neck montage induced considerably less spreading toward anterior cerebellar regions compared with the buccinator and frontopolar montages, which resulted in a more evenly distributed field within the cerebellum. CONCLUSION In addition to skin-cerebellum distance, interindividual differences in posterior fossa morphometry, specifically pons and cerebellar angle, explain part of the variability in cerebellar tDCS-induced electric field strength. Furthermore, when targeting the midline cerebellum with tDCS, an extracephalic reference electrode is associated with lower field strengths and higher field focality than cephalic montages. SIGNIFICANCE This study identifies two novel subject-specific anatomical factors that partly determine cerebellar tDCS-induced electric field strength and reveals differences in field characteristics between electrode montages.
Collapse
Affiliation(s)
- Roderick P P W M Maas
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Jennifer Faber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dennis J L G Schutter
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
26
|
Soleimani G, Towhidkhah F, Saviz M, Ekhtiari H. Cortical Morphology in Cannabis Use Disorder: Implications for Transcranial Direct Current Stimulation Treatment. Basic Clin Neurosci 2023; 14:647-662. [PMID: 38628838 PMCID: PMC11016884 DOI: 10.32598/bcn.2021.3400.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/18/2021] [Accepted: 05/27/2023] [Indexed: 04/19/2024] Open
Abstract
Introduction Transcranial direct current stimulation (tDCS) has been studied as an adjunctive treatment option for substance use disorders (SUDs). Alterations in brain structure following SUD may change tDCS-induced electric field (EF) and subsequent responses; however, group-level differences between healthy controls (HC) and participants with SUDs in terms of EF and its association with cortical architecture have not yet been modeled quantitatively. This study provides a methodology for group-level analysis of computational head models to investigate the influence of cortical morphology metrics on EFs. Methods Whole-brain surface-based morphology was conducted, and cortical thickness, volume, and surface area were compared between participants with cannabis use disorders (CUD) (n=20) and age-matched HC (n=22). Meanwhile, EFs were simulated for bilateral tDCS over the dorsolateral prefrontal cortex. The effects of structural alterations on EF distribution were investigated based on individualized computational head models. Results Regarding EF, no significant difference was found within the prefrontal cortex; however, EFs were significantly different in left-postcentral and right-superior temporal gyrus (P<0.05) with higher levels of variance in CUD compared to HC [F(39, 43)=5.31, P<0.0001, C=0.95]. Significant differences were observed in cortical area (caudal anterior cingulate and rostral middle frontal), thickness (lateral orbitofrontal), and volume (paracentral and fusiform) between the two groups. Conclusion Brain morphology and tDCS-induced EFs may be changed following CUD; however, differences between CUD and HCs in EFs do not always overlap with brain areas that show structural alterations. To sufficiently modulate stimulation targets, whether individuals with CUD need different stimulation doses based on tDCS target location should be checked.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Biomedical Engineering, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Farzad Towhidkhah
- Department of Biomedical Engineering, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mehrdad Saviz
- Department of Biomedical Engineering, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Hamed Ekhtiari
- Laureate Institute of Brain Research, Tulsa, United States of America
| |
Collapse
|
27
|
Klees-Themens G, Théoret H. The effects of transcranial direct current stimulation on corticospinal excitability: A systematic review of nonsignificant findings. Eur J Neurosci 2023; 58:3074-3097. [PMID: 37407275 DOI: 10.1111/ejn.16073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that can modulate brain activity through the application of low-intensity electrical currents. Based on its reported effects on corticospinal excitability (CSE), tDCS has been used to study cognition in healthy individuals and reduce symptoms in a variety of clinical conditions. Despite its increasing popularity as a research and clinical tool, high interindividual variability has been reported in the response to protocols using transcranial magnetic stimulation (TMS) to assess tDCS-induced changes in CSE leading to several nonsignificant findings. In this systematic review, studies that reported no significant modulation of CSE following tDCS were identified from PubMed and Embase (Ovid) databases. Forty-three articles were identified where demographic, TMS and tDCS parameters were extracted. Overall, stimulation parameters, CSE measurements and participant characteristics were similar to those described in studies reporting positive results and were likewise heterogeneous between studies. Small sample sizes and inadequate blinding were notable features of the reviewed studies. This systematic review suggests that studies reporting nonsignificant findings do not markedly differ from those reporting significant modulation of CSE.
Collapse
Affiliation(s)
| | - Hugo Théoret
- Department of Psychology, Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
28
|
Ahn J, Ryu J, Lee S, Lee C, Im CH, Lee SH. Transcranial direct current stimulation elevates the baseline activity while sharpening the spatial tuning of the human visual cortex. Brain Stimul 2023; 16:1154-1164. [PMID: 37517465 DOI: 10.1016/j.brs.2023.07.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/04/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023] Open
Affiliation(s)
- Jeongyeol Ahn
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Juhyoung Ryu
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sangjun Lee
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Chany Lee
- Department of Structure & Function of Neural Network, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Sang-Hun Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Vitale F, de Vega M. Disturbing the activity of the primary motor cortex by means of transcranial magnetic stimulation affects long term memory of sentences referred to manipulable objects. Front Psychol 2023; 14:1175217. [PMID: 37457058 PMCID: PMC10347394 DOI: 10.3389/fpsyg.2023.1175217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Previous studies on embodied meaning suggest that simulations in the motor cortex play a crucial role in the processing of action sentences. However, there is little evidence that embodied meaning have functional impact beyond working memory. This study examines how the neuromodulation of the motor cortex (M1) could affect the processing of action-related language, measuring participants' performance in a long-term memory task. Method Participants were submitted to two sessions in separate days, one with low-frequency repetitive transcranial magnetic stimulation (rTMS) and the other with sham rTMS. The pulses were delivered for 15 minutes over M1 or over V1, used as a control area. After each stimulation or sham period, the participants were asked to memorize a list of simple sentences, with a manual action verb or an attentional verb, followed in both cases by a noun referred to a manipulable object (e.g., to hang a cane vs. to observe a cane). Finally, they received the verbs as cues with instructions to recall the nouns. Results The results showed that low frequency rTMS on M1, compared to sham stimulation, significantly improved the performance in the memory task, for both types of sentences. No change in performance was found after the rTMS stimulation of V1. Discussion These results confirm that the perturbation on the motor system, affect the memory of manipulable object names in the context of sentences, providing further evidence of the role played by the sensorimotor system in the encoding and recall of concrete sentences of action.
Collapse
|
30
|
Stefanovic F, Martinez JA, Saleem GT, Sisto SA, Miller MT, Achampong YA, Titus AH. A blended neurostimulation protocol to delineate cortico-muscular and spino-muscular dynamics following neuroplastic adaptation. Front Neurol 2023; 14:1114860. [PMID: 37396760 PMCID: PMC10311503 DOI: 10.3389/fneur.2023.1114860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
In this paper we propose a novel neurostimulation protocol that provides an intervention-based assessment to distinguish the contributions of different motor control networks in the cortico-spinal system. Specifically, we use a combination of non-invasive brain stimulation and neuromuscular stimulation to probe neuromuscular system behavior with targeted impulse-response system identification. In this protocol, we use an in-house developed human-machine interface (HMI) for an isotonic wrist movement task, where the user controls a cursor on-screen. During the task, we generate unique motor evoked potentials based on triggered cortical or spinal level perturbations. Externally applied brain-level perturbations are triggered through TMS to cause wrist flexion/extension during the volitional task. The resultant contraction output and related reflex responses are measured by the HMI. These movements also include neuromodulation in the excitability of the brain-muscle pathway via transcranial direct current stimulation. Colloquially, spinal-level perturbations are triggered through skin-surface neuromuscular stimulation of the wrist muscles. The resultant brain-muscle and spinal-muscle pathways perturbed by the TMS and NMES, respectively, demonstrate temporal and spatial differences as manifested through the human-machine interface. This then provides a template to measure the specific neural outcomes of the movement tasks, and in decoding differences in the contribution of cortical- (long-latency) and spinal-level (short-latency) motor control. This protocol is part of the development of a diagnostic tool that can be used to better understand how interaction between cortical and spinal motor centers changes with learning, or injury such as that experienced following stroke.
Collapse
Affiliation(s)
- Filip Stefanovic
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Julian A. Martinez
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Ghazala T. Saleem
- Department of Rehabilitation Science, State University of New York at Buffalo, Buffalo, NY, United States
| | - Sue Ann Sisto
- Department of Rehabilitation Science, State University of New York at Buffalo, Buffalo, NY, United States
| | - Michael T. Miller
- UB Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Yaa A. Achampong
- UB Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| | - Albert H. Titus
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
31
|
Soleimani G, Conelea CA, Kuplicki R, Opitz A, Lim KO, Paulus MP, Ekhtiari H. Optimizing Individual Targeting of Fronto-Amygdala Network with Transcranial Magnetic Stimulation (TMS): Biophysical, Physiological and Behavioral Variations in People with Methamphetamine Use Disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.02.23288047. [PMID: 37066153 PMCID: PMC10104226 DOI: 10.1101/2023.04.02.23288047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Background Previous studies in people with substance use disorders (SUDs) have implicated both the frontopolar cortex and amygdala in drug cue reactivity and craving, and amygdala-frontopolar coupling is considered a marker of early relapse risk. Accumulating data highlight that the frontopolar cortex can be considered a promising therapeutic target for transcranial magnetic stimulation (TMS) in SUDs. However, one-size-fits-all approaches to TMS targets resulted in substantial variation in both physiological and behavioral outcomes. Individualized TMS approaches to target cortico-subcortical circuits like amygdala-frontopolar have not yet been investigated in SUDs. Objective Here, we (1) defined individualized TMS target location based on functional connectivity of the amygdala-frontopolar circuit while people were exposed to drug-related cues, (2) optimized coil orientation based on maximizing electric field (EF) perpendicular to the individualized target, and (3) harmonized EF strength in targeted brain regions across a population. Method MRI data including structural, resting-state, and task-based fMRI data were collected from 60 participants with methamphetamine use disorders (MUDs). Craving scores based on a visual analog scale were collected immediately before and after the MRI session. We analyzed inter-subject variability in the location of TMS targets based on the maximum task-based connectivity between the left medial amygdala (with the highest functional activity among subcortical areas during drug cue exposure) and frontopolar cortex using psychophysiological interaction (PPI) analysis. Computational head models were generated for all participants and EF simulations were calculated for fixed vs. optimized coil location (Fp1/Fp2 vs. individualized maximal PPI location), orientation (AF7/AF8 vs. orientation optimization algorithm), and stimulation intensity (constant vs. adjusted intensity across the population). Results Left medial amygdala with the highest (mean ± SD: 0.31±0.29) functional activity during drug cue exposure was selected as the subcortical seed region. Amygdala-to-whole brain PPI analysis showed a significant cluster in the prefrontal cortex (cluster size: 2462 voxels, cluster peak in MNI space: [25 39 35]) that confirms cortico-subcortical connections. The location of the voxel with the most positive amygdala-frontopolar PPI connectivity in each participant was considered as the individualized TMS target (mean ± SD of the MNI coordinates: [12.6 64.23 -0.8] ± [13.64 3.50 11.01]). Individual amygdala-frontopolar PPI connectivity in each participant showed a significant correlation with VAS scores after cue exposure (R=0.27, p=0.03). Averaged EF strength in a sphere with r = 5mm around the individualized target location was significantly higher in the optimized (mean ± SD: 0.99 ± 0.21) compared to the fixed approach (Fp1: 0.56 ± 0.22, Fp2: 0.78 ± 0.25) with large effect sizes (Fp1: p = 1.1e-13, Hedges'g = 1.5, Fp2: p = 1.7e-5, Hedges'g = 1.26). Adjustment factor to have identical 1 V/m EF strength in a 5mm sphere around the individualized targets ranged from 0.72 to 2.3 (mean ± SD: 1.07 ± 0.29). Conclusion Our results show that optimizing coil orientation and stimulation intensity based on individualized TMS targets led to stronger electric fields in the targeted brain regions compared to a one-size-fits-all approach. These findings provide valuable insights for refining TMS therapy for SUDs by optimizing the modulation of cortico-subcortical circuits.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, MN, USA
| | - Christine A. Conelea
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, MN, USA
| | | | - Alexander Opitz
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, MN, USA
| | - Kelvin O Lim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, MN, USA
| | | | - Hamed Ekhtiari
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, MN, USA
- Laureate Institute for Brain Research (LIBR), OK, USA
| |
Collapse
|
32
|
Hunold A, Haueisen J, Nees F, Moliadze V. Review of individualized current flow modeling studies for transcranial electrical stimulation. J Neurosci Res 2023; 101:405-423. [PMID: 36537991 DOI: 10.1002/jnr.25154] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
There is substantial intersubject variability of behavioral and neurophysiological responses to transcranial electrical stimulation (tES), which represents one of the most important limitations of tES. Many tES protocols utilize a fixed experimental parameter set disregarding individual anatomical and physiological properties. This one-size-fits-all approach might be one reason for the observed interindividual response variability. Simulation of current flow applying head models based on available anatomical data can help to individualize stimulation parameters and contribute to the understanding of the causes of this response variability. Current flow modeling can be used to retrospectively investigate the characteristics of tES effectivity. Previous studies examined, for example, the impact of skull defects and lesions on the modulation of current flow and demonstrated effective stimulation intensities in different age groups. Furthermore, uncertainty analysis of electrical conductivities in current flow modeling indicated the most influential tissue compartments. Current flow modeling, when used in prospective study planning, can potentially guide stimulation configurations resulting in individually effective tES. Specifically, current flow modeling using individual or matched head models can be employed by clinicians and scientists to, for example, plan dosage in tES protocols for individuals or groups of participants. We review studies that show a relationship between the presence of behavioral/neurophysiological responses and features derived from individualized current flow models. We highlight the potential benefits of individualized current flow modeling.
Collapse
Affiliation(s)
- Alexander Hunold
- Institute of Biomedical Engineering and Informatics, TU Ilmenau, Ilmenau, Germany
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, TU Ilmenau, Ilmenau, Germany
| | - Frauke Nees
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Vera Moliadze
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
33
|
Hamajima H, Gomez-Tames J, Uehara S, Otaka Y, Tanaka S, Hirata A. Computation of group-level electric field in lower limb motor area for different tDCS montages. Clin Neurophysiol 2023; 150:69-78. [PMID: 37023635 DOI: 10.1016/j.clinph.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/31/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) injects a weak electric current into the brain via electrodes attached to the scalp to modulate cortical excitability. tDCS is used to rebalance brain activity between affected and unaffected hemispheres in rehabilitation. However, a systematic quantitative evaluation of tDCS montage is not reported for the lower limbs. In this study, we computationally investigated the generated electric field intensity, polarity, and co-stimulation of cortical areas for lower limb targeting using high-resolution head models. METHODS Volume conductor models have thus been employed to estimate the electric field in the brain. A total of 18 head models of healthy subjects were used to calculate the group-level electric fields generated from four montages of tDCS for modulation of lower limbs. RESULTS C1-C2 montage delivered higher electric field intensities while reaching deeper regions of the lower-limb motor area. It produced a uniform polarization on the same hemisphere target with comparable intensities between hemispheres but with higher variability. CONCLUSIONS Proper montage selection allows reaching deeper regions of the lower-limb motor area with uniform polarization. SIGNIFICANCE First systematic computational study providing support to tDCS experimental studies using montages for the lower limb while considering polarity factor for balancing brain activity.
Collapse
|
34
|
Mosayebi-Samani M, Agboada D, Mutanen TP, Haueisen J, Kuo MF, Nitsche MA. Transferability of cathodal tDCS effects from the primary motor to the prefrontal cortex: A multimodal TMS-EEG study. Brain Stimul 2023; 16:515-539. [PMID: 36828302 DOI: 10.1016/j.brs.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/24/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Neurophysiological effects of transcranial direct current stimulation (tDCS) have been extensively studied over the primary motor cortex (M1). Much less is however known about its effects over non-motor areas, such as the prefrontal cortex (PFC), which is the neuronal foundation for many high-level cognitive functions and involved in neuropsychiatric disorders. In this study, we, therefore, explored the transferability of cathodal tDCS effects over M1 to the PFC. Eighteen healthy human participants (11 males and 8 females) were involved in eight randomized sessions per participant, in which four cathodal tDCS dosages, low, medium, and high, as well as sham stimulation, were applied over the left M1 and left PFC. After-effects of tDCS were evaluated via transcranial magnetic stimulation (TMS)-electroencephalography (EEG), and TMS-elicited motor evoked potentials (MEP), for the outcome parameters TMS-evoked potentials (TEP), TMS-evoked oscillations, and MEP amplitude alterations. TEPs were studied both at the regional and global scalp levels. The results indicate a regional dosage-dependent nonlinear neurophysiological effect of M1 tDCS, which is not one-to-one transferable to PFC tDCS. Low and high dosages of M1 tDCS reduced early positive TEP peaks (P30, P60), and MEP amplitudes, while an enhancement was observed for medium dosage M1 tDCS (P30). In contrast, prefrontal low, medium and high dosage tDCS uniformly reduced the early positive TEP peak amplitudes. Furthermore, for both cortical areas, regional tDCS-induced modulatory effects were not observed for late TEP peaks, nor TMS-evoked oscillations. However, at the global scalp level, widespread effects of tDCS were observed for both, TMS-evoked potentials and oscillations. This study provides the first direct physiological comparison of tDCS effects applied over different brain areas and therefore delivers crucial information for future tDCS applications.
Collapse
Affiliation(s)
- Mohsen Mosayebi-Samani
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Desmond Agboada
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Institute of Psychology, Federal Armed Forces University Munich, Neubiberg, Germany
| | - Tuomas P Mutanen
- Department of Neuroscience & Biomedical Engineering, Aalto University, School of Science, 00076, Aalto, Espoo, Finland
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld, Germany.
| |
Collapse
|
35
|
Van Hoornweder S, Nuyts M, Frieske J, Verstraelen S, Meesen RLJ, Caulfield KA. A Systematic Review and Large-Scale tES and TMS Electric Field Modeling Study Reveals How Outcome Measure Selection Alters Results in a Person- and Montage-Specific Manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529540. [PMID: 36865243 PMCID: PMC9980068 DOI: 10.1101/2023.02.22.529540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Background Electric field (E-field) modeling is a potent tool to examine the cortical effects of transcranial magnetic and electrical stimulation (TMS and tES, respectively) and to address the high variability in efficacy observed in the literature. However, outcome measures used to report E-field magnitude vary considerably and have not yet been compared in detail. Objectives The goal of this two-part study, encompassing a systematic review and modeling experiment, was to provide an overview of the different outcome measures used to report the magnitude of tES and TMS E-fields, and to conduct a direct comparison of these measures across different stimulation montages. Methods Three electronic databases were searched for tES and/or TMS studies reporting E-field magnitude. We extracted and discussed outcome measures in studies meeting the inclusion criteria. Additionally, outcome measures were compared via models of four common tES and two TMS modalities in 100 healthy younger adults. Results In the systematic review, we included 118 studies using 151 outcome measures related to E-field magnitude. Structural and spherical regions of interest (ROI) analyses and percentile-based whole-brain analyses were used most often. In the modeling analyses, we found that there was an average of only 6% overlap between ROI and percentile-based whole-brain analyses in the investigated volumes within the same person. The overlap between ROI and whole-brain percentiles was montage- and person-specific, with more focal montages such as 4Ã-1 and APPS-tES, and figure-of-eight TMS showing up to 73%, 60%, and 52% overlap between ROI and percentile approaches respectively. However, even in these cases, 27% or more of the analyzed volume still differed between outcome measures in every analyses. Conclusions The choice of outcome measures meaningfully alters the interpretation of tES and TMS E-field models. Well-considered outcome measure selection is imperative for accurate interpretation of results, valid between-study comparisons, and depends on stimulation focality and study goals. We formulated four recommendations to increase the quality and rigor of E-field modeling outcome measures. With these data and recommendations, we hope to guide future studies towards informed outcome measure selection, and improve the comparability of studies.
Collapse
|
36
|
Therrien-Blanchet JM, Ferland MC, Badri M, Rousseau MA, Merabtine A, Boucher E, Hofmann LH, Lepage JF, Théoret H. The neurophysiological aftereffects of brain stimulation in human primary motor cortex: a Sham-controlled comparison of three protocols. Cereb Cortex 2023:7030623. [PMID: 36749004 DOI: 10.1093/cercor/bhad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 02/08/2023] Open
Abstract
Paired associative stimulation (PAS), transcranial direct current stimulation (tDCS), and transcranial alternating current stimulation (tACS) are non-invasive brain stimulation methods that are used to modulate cortical excitability. Whether one technique is superior to the others in achieving this outcome and whether individuals that respond to one intervention are more likely to respond to another remains largely unknown. In the present study, the neurophysiological aftereffects of three excitatory neurostimulation protocols were measured with transcranial magnetic stimulation (TMS). Twenty minutes of PAS at an ISI of 25 ms, anodal tDCS, 20-Hz tACS, and Sham stimulation were administered to 31 healthy adults in a repeated measures design. Compared with Sham, none of the stimulation protocols significantly modulated corticospinal excitability (input/ouput curve and slope, TMS stimulator intensity required to elicit MEPs of 1-mV amplitude) or intracortical excitability (short- and long-interval intracortical inhibition, intracortical facilitation, cortical silent period). Sham-corrected responder analysis estimates showed that an average of 41 (PAS), 39 (tDCS), and 39% (tACS) of participants responded to the interventions with an increase in corticospinal excitability. The present data show that three stimulation protocols believed to increase cortical excitability are associated with highly heterogenous and variable aftereffects that may explain a lack of significant group effects.
Collapse
Affiliation(s)
| | | | - Meriem Badri
- Département de psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | - Amira Merabtine
- Département de psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Emelie Boucher
- Département de psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Lydia Helena Hofmann
- Department of Psychology and Neuroscience, Maastricht University, Maastricht 6229, The Netherlands
| | - Jean-François Lepage
- Département de Pédiatrie, Faculté de Médecine et des Sciences de la Santé de l'Université de Sherbrooke, Centre de Recherche du CHU Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Hugo Théoret
- Département de psychologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
37
|
Wessel MJ, Draaisma LR, Hummel FC. Mini-review: Transcranial Alternating Current Stimulation and the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2023; 22:120-128. [PMID: 35060078 DOI: 10.1007/s12311-021-01362-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 02/01/2023]
Abstract
Oscillatory activity in the cerebellum and linked networks is an important aspect of neuronal processing and functional implementation of behavior. So far, it was challenging to quantify and study cerebellar oscillatory signatures in human neuroscience due to the constraints of non-invasive cerebellar electrophysiological recording and interventional techniques. The emerging cerebellar transcranial alternating current stimulation technique (CB-tACS) is a promising tool, which may partially overcome this challenge and provides an exciting non-invasive opportunity to better understand cerebellar physiology.Several studies have successfully demonstrated that CB-tACS can modulate the cerebellar outflow and cerebellum-linked behavior. In the present narrative review, we summarize current studies employing the CB-tACS approach and discuss open research questions. Hereby, we aim to provide an overview on this emerging electrophysiological technique and strive to promote future research in the field. CB-tACS will contribute in the further deciphering of cerebellar oscillatory signatures and its role for motor, cognitive, or affective functions. In long term, CB-tACS could develop into a therapeutic tool for retuning disturbed oscillatory activity in cerebellar networks underlying brain disorders.
Collapse
Affiliation(s)
- Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland. .,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL Valais), Sion, Switzerland. .,Department of Neurology, Julius-Maximilians-University Würzburg, Würzburg, Germany.
| | - Laurijn R Draaisma
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL Valais), Sion, Switzerland.,Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
38
|
Yuan K, Ti CHE, Wang X, Chen C, Lau CCY, Chu WCW, Tong RKY. Individual electric field predicts functional connectivity changes after anodal transcranial direct-current stimulation in chronic stroke. Neurosci Res 2023; 186:21-32. [PMID: 36220454 DOI: 10.1016/j.neures.2022.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
The neuromodulation effect of anodal tDCS is not thoroughly studied, and the heterogeneous profile of stroke individuals with brain lesions would further complicate the stimulation outcomes. This study aimed to investigate the functional changes in sensorimotor areas induced by anodal tDCS and whether individual electric field could predict the functional outcomes. Twenty-five chronic stroke survivors were recruited and divided into tDCS group (n = 12) and sham group (n = 13). Increased functional connectivity (FC) within the surrounding areas of ipsilesional primary motor cortex (M1) was only observed after anodal tDCS. Averaged FC among the ipsilesional sensorimotor regions was observed to be increased after anodal tDCS (t(11) = 2.57, p = 0.026), but not after sham tDCS (t(12) = 0.69, p = 0.50). Partial least square analysis identified positive correlations between electric field (EF) strength normal to the ipsilesional M1 surface and individual FC changes in tDCS group (r = 0.84, p < 0.001) but not in sham group (r = 0.21, p = 0.5). Our results indicated anodal tDCS facilitates the FC within the ipsilesional sensorimotor network in chronic stroke subjects, and individual electric field predicts the functional outcomes.
Collapse
Affiliation(s)
- Kai Yuan
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Chun-Hang Eden Ti
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Xin Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Cheng Chen
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Cathy Choi-Yin Lau
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Winnie Chiu-Wing Chu
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
39
|
Hanoglu L, Velioglu HA, Hanoglu T, Yulug B. Neuroimaging-Guided Transcranial Magnetic and Direct Current Stimulation in MCI: Toward an Individual, Effective and Disease-Modifying Treatment. Clin EEG Neurosci 2023; 54:82-90. [PMID: 34751037 DOI: 10.1177/15500594211052815] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The therapeutic approaches currently applied in Alzheimer's disease (AD) and similar neurodegenerative diseases are essentially based on pharmacological strategies. However, despite intensive research, the effectiveness of these treatments is limited to transient symptomatic effects, and they are still far from exhibiting a true therapeutic effect capable of altering prognosis. The lack of success of such pharmacotherapy-based protocols may be derived from the cases in the majority of trials being too advanced to benefit significantly in therapeutic terms at the clinical level. For neurodegenerative diseases, mild cognitive impairment (MCI) may be an early stage of the disease continuum, including Alzheimer's. Noninvasive brain stimulation (NIBS) techniques have been developed to modulate plasticity in the human cortex in the last few decades. NIBS techniques have made it possible to obtain unique findings concerning brain functions, and design novel approaches to treat various neurological and psychiatric conditions. In addition, its synaptic and cellular neurobiological effects, NIBS is an attractive treatment option in the early phases of neurodegenerative diseases, such as MCI, with its beneficial modifying effects on cellular neuroplasticity. However, there is still insufficient evidence about the potential positive clinical effects of NIBS on MCI. Furthermore, the huge variability of the clinical effects of NIBS limits its use. In this article, we reviewed the combined approach of NIBS with various neuroimaging and electrophysiological methods. Such methodologies may provide a new horizon to the path for personalized treatment, including a more individualized pathophysiology approach which might even define new specific targets for specific symptoms of neurodegenerations.
Collapse
Affiliation(s)
- Lutfu Hanoglu
- 218502Istanbul Medipol University School of Medicine, Istanbul, Turkey
| | - Halil Aziz Velioglu
- 218502Istanbul Medipol University, Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul, Turkey
| | - Taha Hanoglu
- 218502Istanbul Medipol University, Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul, Turkey
| | - Burak Yulug
- 450199Alanya Alaaddin Keykubat University School of Medicine, Alanya/Antalya, Turkey
| |
Collapse
|
40
|
Marinus N, Van Hoornweder S, Aarts M, Vanbilsen J, Hansen D, Meesen R. The influence of a single transcranial direct current stimulation session on physical fitness in healthy subjects: a systematic review. Exp Brain Res 2023; 241:31-47. [PMID: 36357590 PMCID: PMC9648891 DOI: 10.1007/s00221-022-06494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022]
Abstract
Physical fitness is of indisputable importance for both health, and sports. Currently, the brain is being increasingly recognized as a contributor to physical fitness. Hereby, transcranial direct current stimulation (tDCS), as an ergogenic aid, has gained scientific interest. The current PRISMA-adherent review aimed to examine the effect of tDCS on the three core components of physical fitness: muscle strength, -endurance and cardiopulmonary endurance. Randomized controlled- or cross-over trials evaluating the effect of a single tDCS session (vs. sham) in healthy individuals were included. Hereby, a wide array of tDCS-related factors (e.g., tDCS montage and dose) was taken into account. Thirty-five studies (540 participants) were included. Between-study heterogeneity in factors such as age, activity level, tDCS protocol, and outcome measures was large. The capacity of tDCS to improve physical fitness varied substantially across studies. Nevertheless, muscle endurance was most susceptible to improvements following anodal tDCS (AtDCS), with 69% of studies (n = 11) investigating this core component of physical fitness reporting positive effects. The primary motor cortex and dorsolateral prefrontal cortex were targeted the most, with positive results being reported on muscle and cardiopulmonary endurance. Finally, online tDCS seemed most beneficial, and no clear relationship between tDCS and dose-related parameters seemed present. These findings can contribute to optimizing tDCS interventions during the rehabilitation of patients with a variety of (chronic) diseases such as cardiovascular disease. Therefore, future studies should focus on further unraveling the potential of AtDCS on physical fitness and, more specifically, muscle endurance in both healthy subjects and patients suffering from (chronic) diseases. This study was registered in Prospero with the registration number CRD42021258529. "To enable PROSPERO to focus on COVID-19 registrations during the 2020 pandemic, this registration record was automatically published exactly as submitted. The PROSPERO team has not checked eligibility".
Collapse
Affiliation(s)
- Nastasia Marinus
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium. .,Biomedical Research Center, Hasselt University, Diepenbeek, Belgium.
| | - Sybren Van Hoornweder
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium
| | - Marthe Aarts
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium
| | - Jessie Vanbilsen
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium
| | - Dominique Hansen
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium.,Biomedical Research Center, Hasselt University, Diepenbeek, Belgium.,Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium
| | - Raf Meesen
- Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Agoralaan Building A 3590, Diepenbeek, Belgium.,Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Louvain, Belgium
| |
Collapse
|
41
|
The effects of aerobic exercise and transcranial direct current stimulation on cognitive function in older adults with and without cognitive impairment: A systematic review and meta-analysis. Ageing Res Rev 2022; 81:101738. [PMID: 36162707 DOI: 10.1016/j.arr.2022.101738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Aerobic exercise (AE) may slow age-related cognitive decline. However, such cognition-sparing effects are not uniform across cognitive domains and studies. Transcranial direct current stimulation (tDCS) is a form of non-invasive brain stimulation and is also emerging as a potential alternative to pharmaceutical therapies. Like AE, the effectiveness of tDCS is also inconsistent for reducing cognitive impairment in ageing. The unexplored possibility exists that pairing AE and tDCS could produce synergistic effects and reciprocally augment cognition-improving effects in older individuals with and without cognitive impairments. Previous research found such synergistic effects on cognition when cognitive training is paired with tDCS in older individuals with and without mild cognitive impairment (MCI) or dementia. AIM The purpose of this systematic review with meta-analysis was to explore if pairing AE with tDCS could augment singular effects of AE and tDCS on global cognition (GC), working memory (WM) and executive function (EF) in older individuals with or without MCI and dementia. METHODS Using a PRISMA-based systematic review, we compiled studies that examined the effects of AE alone, tDCS alone, and AE and tDCS combined on cognitive function in older individuals with and without mild cognitive impairment (MCI) or dementia. Using a PICOS approach, we systematically searched PubMed, Scopus and Web of Science searches up to December 2021, we focused on 'MoCA', 'MMSE', 'Mini-Cog' (measures) and 'cognition', 'cognitive function', 'cognitive', 'cognitive performance', 'executive function', 'executive process', 'attention', 'memory', 'memory performance' (outcome terms). We included only randomized controlled trials (RTC) in humans if available in English full text over the past 20 years, with participants' age over 60. We assessed the methodological quality of the included studies (RTC) by the Physiotherapy Evidence Database (PEDro) scale. RESULTS Overall, 68 studies were included in the meta-analyses. AE (ES = 0.56 [95% CI: 0.28-0.83], p = 0.01) and tDCS (ES = 0.69 [95% CI: 0.12-1.26], p = 0.02) improved GC in all three groups of older adults combined (healthy, MCI, demented). In healthy population, AE improved GC (ES = 0.46 [95% CI: 0.22-0.69], p = 0.01) and EF (ES = 0.27 [95% CI: 0.05-0.49], p = 0.02). AE improved GC in older adults with MCI (ES = 0.76 [95% CI: 0.21-1.32], p = 0.01). tDCS improved GC (ES = 0.69 [90% CI: 0.12-1.26], p = 0.02), all three cognitive function (GC, WM and EF) combined in older adults with dementia (ES = 1.12 [95% CI: 0.04-2.19], p = 0.04) and improved cognitive function in older adults overall (ES = 0.69 [95% CI: 0.20-1,18], p = 0.01). CONCLUSION Our systematic review with meta-analysis provided evidence that beyond the cardiovascular and fitness benefits of AE, pairing AE with tDCS may have the potential to slow symptom progression of cognitive decline in MCI and dementia. Future studies will examine the hypothesis of this present review that a potentiating effect would incrementally improve cognition with increasing severity of cognitive impairment.
Collapse
|
42
|
Van Hoornweder S, A Caulfield K, Nitsche M, Thielscher A, L J Meesen R. Addressing transcranial electrical stimulation variability through prospective individualized dosing of electric field strength in 300 participants across two samples: the 2-SPED approach. J Neural Eng 2022; 19:056045. [PMID: 36240729 PMCID: PMC9855635 DOI: 10.1088/1741-2552/ac9a78] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 01/25/2023]
Abstract
Objective. Transcranial electrical stimulation (tES) is a promising method for modulating brain activity and excitability with variable results to date. To minimize electric (E-)field strength variability, we introduce the 2-sample prospective E-field dosing (2-SPED) approach, which uses E-field strengths induced by tES in a first population to individualize stimulation intensity in a second population.Approach. We performed E-field modeling of three common tES montages in 300 healthy younger adults. First, permutation analyses identified the sample size required to obtain a stable group average E-field in the primary motor cortex (M1), with stability being defined as the number of participants where all group-average E-field strengths ± standard deviation did not leave the population's 5-95 percentile range. Second, this stable group average was used to individualize tES intensity in a second independent population (n = 100). The impact of individualized versus fixed intensity tES on E-field strength variability was analyzed.Main results. In the first population, stable group average E-field strengths (V/m) in M1 were achieved at 74-85 participants, depending on the tES montage. Individualizing the stimulation intensity (mA) in the second population resulted in uniform M1 E-field strength (all p < 0.001) and significantly diminished peak cortical E-field strength variability (all p < 0.01), across all montages.Significance. 2-SPED is a feasible way to prospectively induce more uniform E-field strengths in a region of interest. Future studies might apply 2-SPED to investigate whether decreased E-field strength variability also results in decreased physiological and behavioral variability in response to tES.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL—Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States of America
| | - Michael Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bürkle de la Camp-Platz, Bochum, Germany
| | - Axel Thielscher
- Section for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Raf L J Meesen
- REVAL—Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences KU Leuven, Leuven, Belgium
| |
Collapse
|
43
|
Evans C, Zich C, Lee JSA, Ward N, Bestmann S. Inter-individual variability in current direction for common tDCS montages. Neuroimage 2022; 260:119501. [PMID: 35878726 PMCID: PMC10510029 DOI: 10.1016/j.neuroimage.2022.119501] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022] Open
Abstract
The direction of applied electric current relative to the cortical surface is a key determinant of transcranial direct current stimulation (tDCS) effects. Inter-individual differences in anatomy affect the consistency of current direction at a cortical target. However, the degree of this variability remains undetermined. Using current flow modelling (CFM), we quantified the inter-individual variability in tDCS current direction at a cortical target (left primary motor cortex, M1). Three montages targeting M1 using circular electrodes were compared: PA-tDCS directed current perpendicular to the central sulcus in a posterior-anterior direction relative to M1, ML-tDCS directed current parallel to the central sulcus in a medio-lateral direction, and conventional-tDCS applied electrodes over M1 and the contralateral forehead. In 50 healthy brain scans from the Human Connectome Project, we extracted current direction and intensity from the grey matter surface in the sulcal bank (M1BANK) and gyral crown (M1CROWN), and neighbouring primary somatosensory cortex (S1BANK and S1CROWN). Results confirmed substantial inter-individual variability in current direction (50%-150%) across all montages. Radial inward current produced by PA-tDCS was predominantly located in M1BANK, whereas for conventional-tDCS it was clustered in M1CROWN. The difference in radial inward current in functionally distinct subregions of M1 raises the testable hypothesis that PA-tDCS and conventional-tDCS modulate cortical excitability through different mechanisms. We show that electrode locations can be used to closely approximate current direction in M1 and precentral gyrus, providing a landmark-based method for tDCS application to address the hypothesis without the need for MRI. By contrast, ML-tDCS current was more tangentially orientated, which is associated with weaker somatic polarisation. Substantial inter-individual variability in current direction likely contributes to variable neuromodulation effects reported for these protocols, emphasising the need for individualised electrode montages, including the control of current direction.
Collapse
Affiliation(s)
- Carys Evans
- Department for Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 33 Queen Square, London, WC1N 3BG, United Kingdom.
| | - Catharina Zich
- Department for Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 33 Queen Square, London, WC1N 3BG, United Kingdom; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jenny S A Lee
- Department for Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 33 Queen Square, London, WC1N 3BG, United Kingdom
| | - Nick Ward
- Department for Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 33 Queen Square, London, WC1N 3BG, United Kingdom
| | - Sven Bestmann
- Department for Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 33 Queen Square, London, WC1N 3BG, United Kingdom; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, United Kingdom
| |
Collapse
|
44
|
No robust online effects of transcranial direct current stimulation on corticospinal excitability. Brain Stimul 2022; 15:1254-1268. [PMID: 36084908 DOI: 10.1016/j.brs.2022.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been used for over twenty years to modulate cortical (particularly motor corticospinal) excitability both during (online) and outlasting (offline) the stimulation, with the former effects associated to the latter. However, tDCS effects are highly variable, partially because stimulation intensity is commonly not adjusted individually (in contrast to transcranial magnetic stimulation, TMS). In Experiment 1, we therefore explored an empirical approach of personalizing tDCS intensity for the primary motor cortex (M1) based on dose-response curves (DRCs), individually relating tDCS Intensity (in steps from 0.3 to 2.0 mA) and Polarity (anodal, cathodal) to the online modulation of concurrent TMS motor evoked potentials (MEP), assessing DRC reliability across two separate days. No robust DRCs could be observed, neither at the individual nor at the group level, with the only robust effect being a (paradoxical) MEP facilitation during cathodal tDCS at 2.0 mA, but no modulation at traditional intensities of or near 1 mA. In Experiment 2, we therefore attempted to replicate the classical bidirectional online MEP modulation during 1 mA tDCS that had been reported by several of the early seminal tDCS papers. We either closely recreated stimulation parameters and temporal protocol of these original studies (Experiment 2A) or slightly modernized them according to current standards (Experiment 2B). In neither experiment did we observed any significant online MEP modulation. We conclude that an empirical titration of individually effective tDCS intensities may not be feasible as online tDCS effects do not appear to be sufficiently robust.
Collapse
|
45
|
Nandi T, Puonti O, Clarke WT, Nettekoven C, Barron HC, Kolasinski J, Hanayik T, Hinson EL, Berrington A, Bachtiar V, Johnstone A, Winkler AM, Thielscher A, Johansen-Berg H, Stagg CJ. tDCS induced GABA change is associated with the simulated electric field in M1, an effect mediated by grey matter volume in the MRS voxel. Brain Stimul 2022; 15:1153-1162. [PMID: 35988862 PMCID: PMC7613675 DOI: 10.1016/j.brs.2022.07.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Transcranial direct current stimulation (tDCS) has wide ranging applications in neuro-behavioural and physiological research, and in neurological rehabilitation. However, it is currently limited by substantial inter-subject variability in responses, which may be explained, at least in part, by anatomical differences that lead to variability in the electric field (E-field) induced in the cortex. Here, we tested whether the variability in the E-field in the stimulated cortex during anodal tDCS, estimated using computational simulations, explains the variability in tDCS induced changes in GABA, a neurophysiological marker of stimulation effect. METHODS Data from five previously conducted MRS studies were combined. The anode was placed over the left primary motor cortex (M1, 3 studies, N = 24) or right temporal cortex (2 studies, N = 32), with the cathode over the contralateral supraorbital ridge. Single voxel spectroscopy was performed in a 2x2x2cm voxel under the anode in all cases. MRS data were acquired before and either during or after 1 mA tDCS using either a sLASER sequence (7T) or a MEGA-PRESS sequence (3T). sLASER MRS data were analysed using LCModel, and MEGA-PRESS using FID-A and Gannet. E-fields were simulated in a finite element model of the head, based on individual structural MR images, using SimNIBS. Separate linear mixed effects models were run for each E-field variable (mean and 95th percentile; magnitude, and components normal and tangential to grey matter surface, within the MRS voxel). The model included effects of time (pre or post tDCS), E-field, grey matter volume in the MRS voxel, and a 3-way interaction between time, E-field and grey matter volume. Additionally, we ran a permutation analysis using PALM to determine whether E-field anywhere in the brain, not just in the MRS voxel, correlated with GABA change. RESULTS In M1, higher mean E-field magnitude was associated with greater anodal tDCS-induced decreases in GABA (t(24) = 3.24, p = 0.003). Further, the association between mean E-field magnitude and GABA change was moderated by the grey matter volume in the MRS voxel (t(24) = -3.55, p = 0.002). These relationships were consistent across all E-field variables except the mean of the normal component. No significant relationship was found between tDCS-induced GABA decrease and E-field in the temporal voxel. No significant clusters were found in the whole brain analysis. CONCLUSIONS Our data suggest that the electric field induced by tDCS within the brain is variable, and is significantly related to anodal tDCS-induced decrease in GABA, a key neurophysiological marker of stimulation. These findings strongly support individualised dosing of tDCS, at least in M1. Further studies examining E-fields in relation to other outcome measures, including behaviour, will help determine the optimal E-fields required for any desired effects.
Collapse
Affiliation(s)
- Tulika Nandi
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK; NeuroImaging Center (NIC), Johannes Gutenberg University Medical Center, Germany.
| | - Oula Puonti
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Caroline Nettekoven
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Helen C Barron
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | | | - Taylor Hanayik
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Emily L Hinson
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Adam Berrington
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, UK
| | - Velicia Bachtiar
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | | | - Anderson M Winkler
- National Institute of Mental Health, National Institutes of Health, United States
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK; Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| |
Collapse
|
46
|
Kalloch B, Weise K, Lampe L, Bazin PL, Villringer A, Hlawitschka M, Sehm B. The influence of white matter lesions on the electric field in transcranial electric stimulation. Neuroimage Clin 2022; 35:103071. [PMID: 35671557 PMCID: PMC9168230 DOI: 10.1016/j.nicl.2022.103071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
Sensitivity analysis allows the simulation of tDCS with uncertain conductivities. White matter lesions (WML) have no global influence on the electric field in tDCS. In subjects with a high lesion load, a local influence can be observed. In low to medium lesion load subjects, explicit modeling of WML is not required.
Background Transcranial direct current stimulation (tDCS) is a promising tool to enhance therapeutic efforts, for instance, after a stroke. The achieved stimulation effects exhibit high inter-subject variability, primarily driven by perturbations of the induced electric field (EF). Differences are further elevated in the aging brain due to anatomical changes such as atrophy or lesions. Informing tDCS protocols by computer-based, individualized EF simulations is a suggested measure to mitigate this variability. Objective While brain anatomy in general and specifically atrophy as well as stroke lesions are deemed influential on the EF in simulation studies, the influence of the uncertainty in the change of the electrical properties of the white matter due to white matter lesions (WMLs) has not been quantified yet. Methods A group simulation study with 88 subjects assigned into four groups of increasing lesion load was conducted. Due to the lack of information about the electrical conductivity of WMLs, an uncertainty analysis was employed to quantify the variability in the simulation when choosing an arbitrary conductivity value for the lesioned tissue. Results The contribution of WMLs to the EF variance was on average only one tenth to one thousandth of the contribution of the other modeled tissues. While the contribution of the WMLs significantly increased (p≪.01) in subjects exhibiting a high lesion load compared to low lesion load subjects, typically by a factor of 10 and above, the total variance of the EF didnot change with the lesion load. Conclusion Our results suggest that WMLs do not perturb the EF globally and can thus be omitted when modeling subjects with low to medium lesion load. However, for high lesion load subjects, the omission of WMLs may yield less robust local EF estimations in the vicinity of the lesioned tissue. Our results contribute to the efforts of accurate modeling of tDCS for treatment planning.
Collapse
Affiliation(s)
- Benjamin Kalloch
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany; Leipzig University of Applied Science, Faculty of Computer Science and Media, Leipzig, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Methods and Development Group "Brain Networks", Leipzig, Germany; Technische Universität Ilmenau, Instiute of Biomedical Engineering and Informatics, Ilmenau, Germany.
| | - Konstantin Weise
- Max Planck Institute for Human Cognitive and Brain Sciences, Methods and Development Group "Brain Networks", Leipzig, Germany; Technische Universität Ilmenau, Advanced Electromagnetics Group, Ilmenau, Germany
| | - Leonie Lampe
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany
| | - Pierre-Louis Bazin
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany; University of Amsterdam, Faculty of Social and Behavioural Sciences, Amsterdam, The Netherlands
| | - Arno Villringer
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany
| | - Mario Hlawitschka
- Leipzig University of Applied Science, Faculty of Computer Science and Media, Leipzig, Germany
| | - Bernhard Sehm
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany; Department of Neurology, Martin Luther University of Halle-Wittenberg, Germany
| |
Collapse
|
47
|
Caulfield KA, Indahlastari A, Nissim NR, Lopez JW, Fleischmann HH, Woods AJ, George MS. Electric Field Strength From Prefrontal Transcranial Direct Current Stimulation Determines Degree of Working Memory Response: A Potential Application of Reverse-Calculation Modeling? Neuromodulation 2022; 25:578-587. [PMID: 35670064 DOI: 10.1111/ner.13342] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) for working memory is an enticing treatment, but there is mixed evidence to date. OBJECTIVES We tested the effects of electric field strength from uniform 2 mA dosing on working memory change from prestimulation to poststimulation. Second, we statistically evaluated a reverse-calculation method of individualizing tDCS dose and its effect on normalizing electric field at the cortex. MATERIALS AND METHODS We performed electric field modeling on a data set of 28 healthy older adults (15 women, mean age = 73.7, SD = 7.3) who received ten sessions of active 2 mA tDCS (N = 14) or sham tDCS (N = 14) applied over bilateral dorsolateral prefrontal cortices (DLPFC) in a triple-blind design. We evaluated the relationship between electric field strength and working memory change on an N-back task in conditions of above-median, high electric field from active 2 mA (N = 7), below-median, low electric field from active 2 mA (N = 7), and sham (N = 14) at regions of interest (ROI) at the left and right DLPFC. We then determined the individualized reverse-calculation dose to produce the group average electric field and measured the electric field variance between uniform 2 mA doses vs individualized reverse-calculation doses at the same ROIs. RESULTS Working memory improvements from pre- to post-tDCS were significant for the above-median electric field from active 2 mA condition at the left DLPFC (mixed ANOVA, p = 0.013). Furthermore, reverse-calculation modeling significantly reduced electric field variance at both ROIs (Levene's test; p < 0.001). CONCLUSIONS Higher electric fields at the left DLPFC from uniform 2 mA doses appear to drive working memory improvements from tDCS. Individualized doses from reverse-calculation modeling significantly reduce electric field variance at the cortex. Taken together, using reverse-calculation modeling to produce the same, high electric fields at the cortex across participants may produce more effective future tDCS treatments for working memory.
Collapse
Affiliation(s)
- Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA.
| | - Aprinda Indahlastari
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Nicole R Nissim
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - James W Lopez
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Holly H Fleischmann
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory Clinical Translational Research, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Mark S George
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
48
|
Van der Cruijsen J, Jonker ZD, Andrinopoulou ER, Wijngaarden JE, Tangkau DA, Tulen JHM, Frens MA, Ribbers GM, Selles RW. Transcranial Direct Current Stimulation Targeting the Entire Motor Network Does Not Increase Corticospinal Excitability. Front Hum Neurosci 2022; 16:842954. [PMID: 35601898 PMCID: PMC9114302 DOI: 10.3389/fnhum.2022.842954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) over the contralateral primary motor cortex of the target muscle (conventional tDCS) has been described to enhance corticospinal excitability, as measured with transcranial magnetic stimulation. Recently, tDCS targeting the brain regions functionally connected to the contralateral primary motor cortex (motor network tDCS) was reported to enhance corticospinal excitability more than conventional tDCS. We compared the effects of motor network tDCS, 2 mA conventional tDCS, and sham tDCS on corticospinal excitability in 21 healthy participants in a randomized, single-blind within-subject study design. We applied tDCS for 12 min and measured corticospinal excitability with TMS before tDCS and at 0, 15, 30, 45, and 60 min after tDCS. Statistical analysis showed that neither motor network tDCS nor conventional tDCS significantly increased corticospinal excitability relative to sham stimulation. Furthermore, the results did not provide evidence for superiority of motor network tDCS over conventional tDCS. Motor network tDCS seems equally susceptible to the sources of intersubject and intrasubject variability previously observed in response to conventional tDCS.
Collapse
Affiliation(s)
- Joris Van der Cruijsen
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Zeb D. Jonker
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Rijndam Rehabilitation Centre, Rotterdam, Netherlands
| | - Eleni-Rosalina Andrinopoulou
- Department of Biostatistics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jessica E. Wijngaarden
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Ditte A. Tangkau
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joke H. M. Tulen
- Department of Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Maarten A. Frens
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gerard M. Ribbers
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Rijndam Rehabilitation Centre, Rotterdam, Netherlands
| | - Ruud W. Selles
- Department of Rehabilitation Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
49
|
Vergallito A, Feroldi S, Pisoni A, Romero Lauro LJ. Inter-Individual Variability in tDCS Effects: A Narrative Review on the Contribution of Stable, Variable, and Contextual Factors. Brain Sci 2022; 12:522. [PMID: 35624908 PMCID: PMC9139102 DOI: 10.3390/brainsci12050522] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Due to its safety, portability, and cheapness, transcranial direct current stimulation (tDCS) use largely increased in research and clinical settings. Despite tDCS's wide application, previous works pointed out inconsistent and low replicable results, sometimes leading to extreme conclusions about tDCS's ineffectiveness in modulating behavioral performance across cognitive domains. Traditionally, this variability has been linked to significant differences in the stimulation protocols across studies, including stimulation parameters, target regions, and electrodes montage. Here, we reviewed and discussed evidence of heterogeneity emerging at the intra-study level, namely inter-individual differences that may influence the response to tDCS within each study. This source of variability has been largely neglected by literature, being results mainly analyzed at the group level. Previous research, however, highlighted that only a half-or less-of studies' participants could be classified as responders, being affected by tDCS in the expected direction. Stable and variable inter-individual differences, such as morphological and genetic features vs. hormonal/exogenous substance consumption, partially account for this heterogeneity. Moreover, variability comes from experiments' contextual elements, such as participants' engagement/baseline capacity and individual task difficulty. We concluded that increasing knowledge on inter-dividual differences rather than undermining tDCS effectiveness could enhance protocols' efficiency and reproducibility.
Collapse
Affiliation(s)
- Alessandra Vergallito
- Department of Psychology & NeuroMi, University of Milano Bicocca, 20126 Milano, Italy; (A.P.); (L.J.R.L.)
| | - Sarah Feroldi
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy;
| | - Alberto Pisoni
- Department of Psychology & NeuroMi, University of Milano Bicocca, 20126 Milano, Italy; (A.P.); (L.J.R.L.)
| | - Leonor J. Romero Lauro
- Department of Psychology & NeuroMi, University of Milano Bicocca, 20126 Milano, Italy; (A.P.); (L.J.R.L.)
| |
Collapse
|
50
|
Lee S, Park J, Choi DS, Lee C, Im CH. Multipair transcranial temporal interference stimulation for improved focalized stimulation of deep brain regions: A simulation study. Comput Biol Med 2022; 143:105337. [PMID: 35220075 DOI: 10.1016/j.compbiomed.2022.105337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
Abstract
Temporal interference stimulation (TIS) has been proved to be effective in stimulating deep brain regions while avoiding the stimulation of neocortical regions in animal experiments. In the traditional TIS, two alternating currents are injected with different frequencies via two electrode pairs attached to the scalp. In the human brain, however, it is difficult to achieve a focal stimulation of deep brain structures due to the high complexity of human brain structures. In this study, we hypothesized that the use of multiple electrode pairs may contribute to the more focalized delivery of temporal interference (TI) currents to the target site in the deep area of the brain. Based on this hypothesis, we proposed a novel multipair TIS method that employs more than two electrode pairs for improved focalized stimulation of the deep brain region (in this study, the head of the right hippocampus). Three realistic finite element models were used to validate the feasibility of the proposed multipair TIS. Additional electrode pairs were sequentially added to the conventional two-electrode pairs with the aim of maximizing the delivery of TI currents to the target while minimizing TI currents in the neocortical regions. The results confirmed that the multipair TIS provides better focalized stimulation than the conventional two-pair TIS for all three head models. It is expected that the proposed multipair TIS can be used to enhance the effectiveness of noninvasive deep brain stimulation.
Collapse
Affiliation(s)
- Sangjun Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea; Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jimin Park
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Da Som Choi
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea
| | - Chany Lee
- Department of Structure & Function of Neural Network, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea; Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|