1
|
Lai H, Fan P, Wang H, Wang Z, Chen N. New perspective on central nervous system disorders: focus on mass spectrometry imaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8080-8102. [PMID: 39508396 DOI: 10.1039/d4ay01205d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
An abnormally organized brain spatial network is linked to the development of various central nervous system (CNS) disorders, including neurodegenerative diseases and neuropsychiatric disorders. However, the complicated molecular mechanisms of these diseases remain unresolved, making the development of treatment strategies difficult. A novel molecular imaging technique, called mass spectrometry imaging (MSI), captures molecular information on the surface of samples in situ. With MSI, multiple compounds can be simultaneously visualized in a single experiment. The high spatial resolution enables the simultaneous visualization of the spatial distribution and relative content of various compounds. The wide application of MSI in biomedicine has facilitated extensive studies on CNS disorders in recent years. This review provides a concise overview of the processes, applications, advantages, and disadvantages, as well as mechanisms of the main types of MSI. Meanwhile, this review summarizes the main applications of MSI in studying CNS diseases, including Alzheimer's disease (AD), CNS tumors, stroke, depression, Huntington's disease (HD), and Parkinson's disease (PD). Finally, this review comprehensively discusses the synergistic application of MSI with other advanced imaging modalities, its utilization in organoid models, its integration with spatial omics techniques, and provides an outlook on its future potential in single-cell analysis.
Collapse
Affiliation(s)
- Huaqing Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Pinglong Fan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Huiqin Wang
- Hunan University of Chinese Medicine, Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, Hunan, China
| | - Zhenzhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Naihong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
2
|
Turpin J, Wadolowski S, Tambo W, Kim D, Al Abed Y, Sciubba DM, Becker LB, Ledoux D, Kim J, Powell K, Li C. Exploring Lysophosphatidylcholine as a Biomarker in Ischemic Stroke: The Plasma-Brain Disjunction. Int J Mol Sci 2024; 25:10649. [PMID: 39408978 PMCID: PMC11477326 DOI: 10.3390/ijms251910649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Lipids and their bioactive metabolites, notably lysophosphatidylcholine (LPC), are increasingly important in ischemic stroke research. Reduced plasma LPC levels have been linked to stroke occurrence and poor outcomes, positioning LPC as a potential prognostic or diagnostic marker. Nonetheless, the connection between plasma LPC levels and stroke severity remains unclear. This study aimed to elucidate this relationship by examining plasma LPC levels in conjunction with brain LPC levels to provide a deeper understanding of the underlying mechanisms. Adult male Sprague-Dawley rats underwent transient middle cerebral artery occlusion and were randomly assigned to different groups (sham-operated, vehicle, LPC supplementation, or LPC inhibition). We measured multiple LPC species in the plasma and brain, alongside assessing sensorimotor dysfunction, cerebral perfusion, lesion volume, and markers of BBB damage, inflammation, apoptosis, and oxidative stress. Among five LPC species, plasma LPC(16:0) and LPC(18:1) showed strong correlations with sensorimotor dysfunction, lesion severity, and mechanistic biomarkers in the rat stroke model. Despite notable discrepancies between plasma and brain LPC levels, both were strongly linked to functional outcomes and mechanistic biomarkers, suggesting that LPC's prognostic value is retained extracranially. This study advances the understanding of LPC as a blood marker in ischemic stroke and highlights directions for future research to further elucidate its association with stroke severity, particularly through investigations in more clinically representative models.
Collapse
Affiliation(s)
- Justin Turpin
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Translational Brain Research Laboratory, Feinstein Institutes for Medical Research, Manhasset, New York, NY 11030, USA
| | - Steven Wadolowski
- Translational Brain Research Laboratory, Feinstein Institutes for Medical Research, Manhasset, New York, NY 11030, USA
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, NY 11030, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, Feinstein Institutes for Medical Research, Manhasset, New York, NY 11030, USA
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, NY 11030, USA
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, New York, NY 11030, USA
| | - Daniel Kim
- Translational Brain Research Laboratory, Feinstein Institutes for Medical Research, Manhasset, New York, NY 11030, USA
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | - Yousef Al Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, NY 11030, USA
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, New York, NY 11030, USA
| | - Daniel M. Sciubba
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Lance B. Becker
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, NY 11030, USA
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, New York, NY 11030, USA
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Manhasset, New York, NY 11030, USA
| | - David Ledoux
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Junhwan Kim
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, NY 11030, USA
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Manhasset, New York, NY 11030, USA
| | - Keren Powell
- Translational Brain Research Laboratory, Feinstein Institutes for Medical Research, Manhasset, New York, NY 11030, USA
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, NY 11030, USA
| | - Chunyan Li
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Translational Brain Research Laboratory, Feinstein Institutes for Medical Research, Manhasset, New York, NY 11030, USA
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, NY 11030, USA
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, New York, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
3
|
Wang MF, Ouyang Y, Segura T, Muddiman DC. Optimizing neurotransmitter pathway detection by IR-MALDESI-MSI in mouse brain. Anal Bioanal Chem 2024; 416:4207-4218. [PMID: 38822822 PMCID: PMC11609309 DOI: 10.1007/s00216-024-05354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Mass spectrometry imaging (MSI) platforms such as infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) are advantageous for a variety of applications, including elucidating the localization of neurotransmitters (NTs) and related molecules with respect to ion abundance across a sample without the need for derivatization or organic matrix application. While IR-MALDESI-MSI conventionally uses a thin exogenous ice matrix to improve signal abundance, it has been previously determined that sucrose embedding without the ice matrix improves detection of lipid species in striatal, coronal mouse brain sections. This work considers components of this workflow to determine the optimal sample preparation and matrix to enhance the detection of NTs and their related metabolites in coronal sections from the striatal region of the mouse brain. The discoveries herein will enable more comprehensive follow-on studies for the investigation of NTs to enrich biological pathways and interpretation related to neurodegenerative diseases and ischemic stroke.
Collapse
Affiliation(s)
- Mary F Wang
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Yunxin Ouyang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
4
|
Krestensen KK, Heeren RMA, Balluff B. State-of-the-art mass spectrometry imaging applications in biomedical research. Analyst 2023; 148:6161-6187. [PMID: 37947390 DOI: 10.1039/d3an01495a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Mass spectrometry imaging has advanced from a niche technique to a widely applied spatial biology tool operating at the forefront of numerous fields, most notably making a significant impact in biomedical pharmacological research. The growth of the field has gone hand in hand with an increase in publications and usage of the technique by new laboratories, and consequently this has led to a shift from general MSI reviews to topic-specific reviews. Given this development, we see the need to recapitulate the strengths of MSI by providing a more holistic overview of state-of-the-art MSI studies to provide the new generation of researchers with an up-to-date reference framework. Here we review scientific advances for the six largest biomedical fields of MSI application (oncology, pharmacology, neurology, cardiovascular diseases, endocrinology, and rheumatology). These publications thereby give examples for at least one of the following categories: they provide novel mechanistic insights, use an exceptionally large cohort size, establish a workflow that has the potential to become a high-impact methodology, or are highly cited in their field. We finally have a look into new emerging fields and trends in MSI (immunology, microbiology, infectious diseases, and aging), as applied MSI is continuously broadening as a result of technological breakthroughs.
Collapse
Affiliation(s)
- Kasper K Krestensen
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Benjamin Balluff
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
5
|
Ollen-Bittle N, Lowry CA, Donovan KE, Andrew RD, Whitehead SN. Validating MALDI-IMS Feasibility in Ex Vivo Brain Slices. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37471497 DOI: 10.1021/jasms.3c00152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) generates unique mass spectra in X/Y coordinates across a tissue sample, thus allowing for the spatial detection and relative quantification of biologic compounds in situ. The soft ionization of MALDI-IMS makes it an ideal technique for high-resolution imaging of complex lipid species. Lipid-based spatial chemical maps derived from MALDI-IMS provide critical insight into the unique molecular profiles of a variety of neurologic diseases. Ex vivo brain slice preparations are a prominent alternative to in vivo animal models for studying many different neurologic conditions. For the first time, we present a feasible protocol for achieving reproducible lipidomic MALDI-IMS data from ex vivo rat brain slices and provide evidence that ex vivo brain slices maintain spatiochemical lipidomic profiles representative of an intact whole brain. We conducted a methods comparison assessing the lipid profiles within the neocortex, striatum, and corpus callosum between coronal sections taken from ex vivo brain slices and the current gold standard tissue preparation method, fresh frozen whole brains. For the first time we demonstrate a technique by which 400 μm ex vivo brain slices can be extracted from an imaging chamber and prepared for MALDI-IMS in a way that preserves their lipidomic integrity. We demonstrate the feasibility of MALDI-IMS in ex vivo brain slices and provide a roadmap for MALDI-IMS utilization in uncharted neuroscience fields.
Collapse
Affiliation(s)
- Nikita Ollen-Bittle
- Department of Anatomy and Cell Biology, Western University, London, Ontario N6A 5C1, Canada
| | - Chloe A Lowry
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Katherine E Donovan
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - R David Andrew
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Western University, London, Ontario N6A 5C1, Canada
- Deparment of Clinical Neurological Sciences, Western University, London, Ontario N6A 5C1, Canada
| |
Collapse
|
6
|
Mavroudakis L, Lanekoff I. Ischemic Stroke Causes Disruptions in the Carnitine Shuttle System. Metabolites 2023; 13:metabo13020278. [PMID: 36837897 PMCID: PMC9968086 DOI: 10.3390/metabo13020278] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Gaining a deep understanding of the molecular mechanisms underlying ischemic stroke is necessary to develop treatment alternatives. Ischemic stroke is known to cause a cellular energy imbalance when glucose supply is deprived, enhancing the role for energy production via β-oxidation where acylcarnitines are essential for the transportation of fatty acids into the mitochondria. Although traditional bulk analysis methods enable sensitive detection of acylcarnitines, they do not provide information on their abundances in various tissue regions. However, with quantitative mass spectrometry imaging the detected concentrations and spatial distributions of endogenous molecules can be readily obtained in an unbiased way. Here, we use pneumatically assisted nanospray desorption electrospray ionization mass spectrometry imaging (PA nano-DESI MSI) doped with internal standards to study the distributions of acylcarnitines in mouse brain affected by stroke. The internal standards enable quantitative imaging and annotation of endogenous acylcarnitines is achieved by studying fragmentation patterns. We report a significant accumulation of long-chain acylcarnitines due to ischemia in brain tissue of the middle cerebral artery occlusion (MCAO) stroke model. Further, we estimate activities of carnitine transporting enzymes and demonstrate disruptions in the carnitine shuttle system that affects the β-oxidation in the mitochondria. Our results show the importance for quantitative monitoring of metabolite distributions in distinct tissue regions to understand cell compensation mechanisms involved in handling damage caused by stroke.
Collapse
|
7
|
Martha SR, Levy SH, Federico E, Levitt MR, Walker M. Machine Learning Analysis of the Cerebrovascular Thrombi Lipidome in Acute Ischemic Stroke. J Neurosci Nurs 2023; 55:10-17. [PMID: 36346351 PMCID: PMC9839472 DOI: 10.1097/jnn.0000000000000682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ABSTRACT OBJECTIVE: The aim of this study was to identify a signature lipid profile from cerebral thrombi in acute ischemic stroke (AIS) patients at the time of ictus. METHODS: We performed untargeted lipidomics analysis using liquid chromatography-mass spectrometry on cerebral thrombi taken from a nonprobability, convenience sampling of adult subjects (≥18 years old, n = 5) who underwent thrombectomy for acute cerebrovascular occlusion. The data were classified using random forest, a machine learning algorithm. RESULTS: The top 10 metabolites identified from the random forest analysis were of the glycerophospholipid species and fatty acids. CONCLUSION: Preliminary analysis demonstrates feasibility of identification of lipid metabolomic profiling in cerebral thrombi retrieved from AIS patients. Recent advances in omic methodologies enable lipidomic profiling, which may provide insight into the cellular metabolic pathophysiology caused by AIS. Understanding of lipidomic changes in AIS may illuminate specific metabolite and lipid pathways involved and further the potential to develop personalized preventive strategies.
Collapse
|
8
|
Huang CY, Tsai PJ, Wu HW, Chen IT, Wang HYJ. Quantitative Analyses and Validation of Phospholipids and Sphingolipids in Ischemic Rat Brains. Metabolites 2022; 12:1075. [PMID: 36355158 PMCID: PMC9694501 DOI: 10.3390/metabo12111075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2023] Open
Abstract
Prior MALDI mass spectrometry imaging (MALDI-MSI) studies reported significant changes in phosphatidylcholines (PCs), lysophosphatidylcholines (LPCs), and sphingomyelins (SMs) in ischemic rat brains yet overlooked the information on other classes of PLs and SLs and provided very little or no validation on the detected lipid markers. Relative quantitation of four classes of PLs and two classes of SLs in the ischemic and normal temporal cortex (TCX), parietal cortex (PCX), and striatum (ST) of rats was performed with hydrophilic interaction chromatography (HILIC)-tandem mass spectrometry (MS/MS) analyses, and the marker lipid species was identified by multivariate data analysis and validated with additional tissue cohorts. The acquired lipid information was sufficient in differentiating individual anatomical regions under different pathological states, identifying region-specific ischemic brain lipid markers and revealing additional PL and SL markers not reported previously. Validation of orthogonal partial least square discriminating analysis (OPLS-DA) identified ischemic brain lipid markers yielded much higher classification accuracy, precision, specificity, sensitivity, and lower false positive and false negative rates than those from the volcano plot analyses using conventional statistical significance and a fold change of two as the cutoff and provided a wider prospective to ischemia-associated brain lipid changes.
Collapse
Affiliation(s)
- Chiung-Yin Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan 333012, Taiwan
- Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, New Taipei City 236027, Taiwan
| | - Ping-Ju Tsai
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- Department of Surgery, Yuan’s General Hospital, Kaohsiung 802635, Taiwan
| | - Hsuan-Wen Wu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - I-Ting Chen
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Hay-Yan J. Wang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| |
Collapse
|
9
|
Ma Y, Chen Z, He Q, Guo ZN, Yang Y, Liu F, Li F, Luo Q, Chang J. Spatiotemporal lipidomics reveals key features of brain lipid dynamic changes after cerebral ischemia and reperfusion therapy. Pharmacol Res 2022; 185:106482. [DOI: 10.1016/j.phrs.2022.106482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/03/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
|
10
|
Wang Z, Zhang Y, Tian R, Luo Z, Zhang R, Li X, Abliz Z. Data-Driven Deciphering of Latent Lesions in Heterogeneous Tissue Using Function-Directed t-SNE of Mass Spectrometry Imaging Data. Anal Chem 2022; 94:13927-13935. [PMID: 36173386 DOI: 10.1021/acs.analchem.2c02990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mass spectrometry imaging (MSI), which quantifies the underlying chemistry with molecular spatial information in tissue, represents an emerging tool for the functional exploration of pathological progression. Unsupervised machine learning of MSI datasets usually gives an overall interpretation of the metabolic features derived from the abundant ions. However, the features related to the latent lesions are always concealed by the abundant ion features, which hinders precise delineation of the lesions. Herein, we report a data-driven MSI data segmentation approach for recognizing the hidden lesions in the heterogeneous tissue without prior knowledge, which utilizes one-step prediction for feature selection to generate function-specific segmentation maps of the tissue. The performance and robustness of this approach are demonstrated on the MSI datasets of the ischemic rat brain tissues and the human glioma tissue, both possessing different structural complexity and metabolic heterogeneity. Application of the approach to the MSI datasets of the ischemic rat brain tissues reveals the location of the ischemic penumbra, a hidden zone between the ischemic core and the healthy tissue, and instantly discovers the metabolic signatures related to the penumbra. In view of the precise demarcation of latent lesions and the screening of lesion-specific metabolic signatures in tissues, this approach has great potential for in-depth exploration of the metabolic organization of complex tissue.
Collapse
Affiliation(s)
- Zixuan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Yaxin Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Runtao Tian
- Chemmind Technologies Co., Ltd., Beijing 100085, P. R. China
| | - Zhigang Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Xin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China.,Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, P. R. China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China.,Center for Imaging and Systems Biology, Minzu University of China, Beijing 100081, P. R. China.,Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, P. R. China
| |
Collapse
|
11
|
Liang Y, Feng Q, Wang Z. Mass Spectrometry Imaging as a New Method: To Reveal the Pathogenesis and the Mechanism of Traditional Medicine in Cerebral Ischemia. Front Pharmacol 2022; 13:887050. [PMID: 35721195 PMCID: PMC9204101 DOI: 10.3389/fphar.2022.887050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Mass spectrometry imaging (MSI) can describe the spatial distribution of molecules in various complex biological samples, such as metabolites, lipids, peptides and proteins in a comprehensive way, and can provide highly relevant supplementary information when combined with other molecular imaging techniques and chromatography techniques, so it has been used more and more widely in biomedical research. The application of mass spectrometry imaging in neuroscience is developing. It is very advantageous and necessary to use MSI to study various pathophysiological processes involved in brain injury and functional recovery during cerebral ischemia. Therefore, this paper introduces the techniques of mass spectrometry, including the principle of mass spectrometry, the acquisition and preparation of imaging samples, the commonly used ionization techniques, and the optimization of the current applied methodology. Furthermore, the research on the mechanism of cerebral ischemia by mass spectrometry was reviewed, such as phosphatidylcholine involved, dopamine, spatial distribution and level changes of physiological substances such as ATP in the Krebs cycle; The characteristics of mass spectrometry imaging as one of the methods of metabolomics in screening biomarkers related to cerebral ischemia were analyzed the advantages of MSI in revealing drug distribution and the mechanism of traditional drugs were summarized, and the existing problems of MSI were also analyzed and relevant suggestions were put forward.
Collapse
Affiliation(s)
- Yan Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaoqiao Feng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Zhang Wang,
| |
Collapse
|
12
|
Changes in Plasma Lipid Levels Following Cortical Spreading Depolarization in a Transgenic Mouse Model of Familial Hemiplegic Migraine. Metabolites 2022; 12:metabo12030220. [PMID: 35323663 PMCID: PMC8953552 DOI: 10.3390/metabo12030220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 01/01/2023] Open
Abstract
Metabolite levels in peripheral body fluids can correlate with attack features in migraine patients, which underscores the potential of plasma metabolites as possible disease biomarkers. Migraine headache can be preceded by an aura that is caused by cortical spreading depolarization (CSD), a transient wave of neuroglial depolarization. We previously identified plasma amino acid changes after CSD in familial hemiplegic migraine type 1 (FHM1) mutant mice that exhibit increased neuronal excitability and various migraine-related features. Here, we aimed to uncover lipid metabolic pathways affected by CSD, guided by findings on the involvement of lipids in hemiplegic migraine pathophysiology. Using targeted lipidomic analysis, we studied plasma lipid metabolite levels at different time points after CSD in wild-type and FHM1 mutant mice. Following CSD, the most prominent plasma lipid change concerned a transient increase in PGD2, which lasted longer in mutant mice. In wild-type mice only, levels of anti-inflammatory lipid mediators DPAn-3, EPA, ALA, and DHA were elevated 24 h following CSD compared to Sham-treated animals. Given the role of PGs and neuroinflammation in migraine pathophysiology, our findings underscore the potential of monitoring peripheral changes in lipids to gain insight in central brain mechanisms.
Collapse
|
13
|
Mavroudakis L, Duncan KD, Lanekoff I. Host-Guest Chemistry for Simultaneous Imaging of Endogenous Alkali Metals and Metabolites with Mass Spectrometry. Anal Chem 2022; 94:2391-2398. [PMID: 35077136 PMCID: PMC8829828 DOI: 10.1021/acs.analchem.1c03913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/14/2022] [Indexed: 12/15/2022]
Abstract
Sodium and potassium are biological alkali metal ions that are essential for the physiological processes of cells and organisms. In combination with small-molecule metabolite information, disturbances in sodium and potassium tissue distributions can provide a further understanding of the biological processes in diseases. However, methods using mass spectrometry are generally tailored toward either elemental or molecular detection, which limits simultaneous quantitative mass spectrometry imaging of alkali metal ions and molecular ions. Here, we provide a new method by including crown ether molecules in the solvent for nanospray desorption electrospray ionization mass spectrometry imaging (nano-DESI MSI) that combines host-guest chemistry targeting sodium and potassium ions and quantitative imaging of endogenous lipids and metabolites. After evaluation and optimization, the method was applied to an ischemic stroke model, which has highly dynamic tissue sodium and potassium concentrations, and we report 2 times relative increase in the detected sodium concentration in the ischemic region compared to healthy tissue. Further, in the same experiment, we showed the accumulation and depletion of lipids, neurotransmitters, and amino acids using relative quantitation with internal standards spiked in the nano-DESI solvent. Overall, we demonstrate a new method that with a simple modification in liquid extraction MSI techniques using host-guest chemistry provides the added dimension of alkali metal ion imaging to provide unique insights into biological processes.
Collapse
Affiliation(s)
| | | | - Ingela Lanekoff
- Department of Chemistry—BMC, Uppsala University, 751
24 Uppsala, Sweden
| |
Collapse
|
14
|
Schnackenberg LK, Thorn DA, Barnette D, Jones EE. MALDI imaging mass spectrometry: an emerging tool in neurology. Metab Brain Dis 2022; 37:105-121. [PMID: 34347208 DOI: 10.1007/s11011-021-00797-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/11/2021] [Indexed: 12/24/2022]
Abstract
Neurological disease and disorders remain a large public health threat. Thus, research to improve early detection and/or develop more effective treatment approaches are necessary. Although there are many common techniques and imaging modalities utilized to study these diseases, existing approaches often require a label which can be costly and time consuming. Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) is a label-free, innovative and emerging technique that produces 2D ion density maps representing the distribution of an analyte(s) across a tissue section in relation to tissue histopathology. One main advantage of MALDI IMS over other imaging modalities is its ability to determine the spatial distribution of hundreds of analytes within a single imaging run, without the need for a label or any a priori knowledge. Within the field of neurology and disease there have been several impactful studies in which MALDI IMS has been utilized to better understand the cellular pathology of the disease and or severity. Furthermore, MALDI IMS has made it possible to map specific classes of analytes to regions of the brain that otherwise may have been lost using more traditional methods. This review will highlight key studies that demonstrate the potential of this technology to elucidate previously unknown phenomenon in neurological disease.
Collapse
Affiliation(s)
- Laura K Schnackenberg
- Division of Systems Biology, National Center for Toxicological Research/FDA, 3900 NCTR Rd, Jefferson, AR, USA
| | - David A Thorn
- Division of Systems Biology, National Center for Toxicological Research/FDA, 3900 NCTR Rd, Jefferson, AR, USA
| | - Dustyn Barnette
- Division of Systems Biology, National Center for Toxicological Research/FDA, 3900 NCTR Rd, Jefferson, AR, USA
| | - E Ellen Jones
- Division of Systems Biology, National Center for Toxicological Research/FDA, 3900 NCTR Rd, Jefferson, AR, USA.
| |
Collapse
|
15
|
Nixon R, Ip THR, Jenkins B, Yip PK, Clarke P, Ponnusamy V, Michael-Titus AT, Koulman A, Shah DK. Lipid Profiles from Dried Blood Spots Reveal Lipidomic Signatures of Newborns Undergoing Mild Therapeutic Hypothermia after Hypoxic-Ischemic Encephalopathy. Nutrients 2021; 13:4301. [PMID: 34959853 PMCID: PMC8703828 DOI: 10.3390/nu13124301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is associated with perinatal brain injury, which may lead to disability or death. As the brain is a lipid-rich organ, various lipid species can be significantly impacted by HIE and these correlate with specific changes to the lipidomic profile in the circulation. Objective: To investigate the peripheral blood lipidomic signature in dried blood spots (DBS) from newborns with HIE. Using univariate analysis, multivariate analysis and sPLS-DA modelling, we show that newborns with moderate-severe HIE (n = 46) who underwent therapeutic hypothermia (TH) displayed a robust peripheral blood lipidomic signature comprising 29 lipid species in four lipid classes; namely phosphatidylcholine (PC), lysophosphatidylcholine (LPC), triglyceride (TG) and sphingomyelin (SM) when compared with newborns with mild HIE (n = 18). In sPLS-DA modelling, the three most discriminant lipid species were TG 50:3, TG 54:5, and PC 36:5. We report a reduction in plasma TG and SM and an increase in plasma PC and LPC species during the course of TH in newborns with moderate-severe HIE, compared to a single specimen from newborns with mild HIE. These findings may guide the research in nutrition-based intervention strategies after HIE in synergy with TH to enhance neuroprotection.
Collapse
Affiliation(s)
- Rebekah Nixon
- The Royal London Hospital, Barts Health NHS Trust, London E1 1FR, UK; (R.N.); (T.H.R.I.)
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (P.K.Y.); (A.T.M.-T.)
| | - Ting Hin Richard Ip
- The Royal London Hospital, Barts Health NHS Trust, London E1 1FR, UK; (R.N.); (T.H.R.I.)
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (P.K.Y.); (A.T.M.-T.)
| | - Benjamin Jenkins
- NIHR Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Ping K. Yip
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (P.K.Y.); (A.T.M.-T.)
| | - Paul Clarke
- Neonatal Unit, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich NR4 7UY, UK;
- Norwich Medical School, University of East Anglia, Norwich NR4 7UY, UK
| | - Vennila Ponnusamy
- Ashford and St. Peter’s Hospitals NHS Foundation Trust, Chertsey KT16 0PZ, UK;
| | - Adina T. Michael-Titus
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (P.K.Y.); (A.T.M.-T.)
| | - Albert Koulman
- NIHR Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Divyen K. Shah
- The Royal London Hospital, Barts Health NHS Trust, London E1 1FR, UK; (R.N.); (T.H.R.I.)
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (P.K.Y.); (A.T.M.-T.)
| |
Collapse
|
16
|
Mavroudakis L, Stevens SL, Duncan KD, Stenzel-Poore MP, Laskin J, Lanekoff I. CpG preconditioning reduces accumulation of lysophosphatidylcholine in ischemic brain tissue after middle cerebral artery occlusion. Anal Bioanal Chem 2021; 413:2735-2745. [PMID: 33078250 PMCID: PMC8007524 DOI: 10.1007/s00216-020-02987-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 01/01/2023]
Abstract
Ischemic stroke is one of the major causes of death and permanent disability in the world. However, the molecular mechanisms surrounding tissue damage are complex and further studies are needed to gain insights necessary for development of treatment. Prophylactic treatment by administration of cytosine-guanine (CpG) oligodeoxynucleotides has been shown to provide neuroprotection against anticipated ischemic injury. CpG binds to Toll-like receptor 9 (TLR9) causing initialization of an inflammatory response that limits visible ischemic damages upon subsequent stroke. Here, we use nanospray desorption electrospray ionization (nano-DESI) mass spectrometry imaging (MSI) to characterize molecular effects of CpG preconditioning prior to middle cerebral artery occlusion (MCAO) and reperfusion. By doping the nano-DESI solvent with appropriate internal standards, we can study and compare distributions of phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) in the ischemic hemisphere of the brain despite the large changes in alkali metal abundances. Our results show that CpG preconditioning not only reduces the infarct size but it also decreases the degradation of PC and accumulation of LPC species, which indicates reduced cell membrane breakdown and overall ischemic damage. Our findings show that molecular mechanisms of PC degradation are intact despite CpG preconditioning but that these are limited due to the initialized inflammatory response.
Collapse
Affiliation(s)
| | - Susan L Stevens
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kyle D Duncan
- Department of Chemistry - BMC, Uppsala University, 75123, Uppsala, Sweden
| | - Mary P Stenzel-Poore
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Julia Laskin
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Ingela Lanekoff
- Department of Chemistry - BMC, Uppsala University, 75123, Uppsala, Sweden.
| |
Collapse
|
17
|
Pinsky W, Harris A, Roseborough AD, Wang W, Khan AR, Jurcic K, Yeung KKC, Pasternak SH, Whitehead SN. Regional Lipid Expression Abnormalities Identified Using MALDI IMS Correspond to MRI-Defined White Matter Hyperintensities within Post-mortem Human Brain Tissues. Anal Chem 2021; 93:2652-2659. [PMID: 33464828 DOI: 10.1021/acs.analchem.0c05017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Periventricular white matter hyperintensities (pvWMHs) are a neurological feature detected with magnetic resonance imaging that are clinically associated with an increased risk of stroke and dementia. pvWMHs represent white matter lesions characterized by regions of myelin and axon rarefaction and as such likely involve changes in lipid composition; however, these alterations remain unknown. Lipids are critical in determining cell function and survival. Perturbations in lipid expression have previously been associated with neurological disorders. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is an emerging technique for untargeted, high-throughput investigation of lipid expression and spatial distribution in situ; however, the use of MALDI IMS has been previously been limited by the need for non-embedded, non-fixed, fresh-frozen samples. In the current study, we demonstrate the novel use of MALDI IMS to distinguish regional lipid abnormalities that correlate with magnetic resonance imaging (MRI) defined pvWMHs within ammonium formate washed, formalin-fixed human archival samples. MALDI IMS scans were conducted in positive or negative ion detection mode on tissues sublimated with 2,5-dihydroxybenzoic acid or 1,5-diaminonaphthalene matrices, respectively. Using a broad, untargeted approach to lipid analysis, we consistently detected 116 lipid ion species in 21 tissue blocks from 11 different post-mortem formalin-fixed human brains. Comparing the monoisotopic mass peaks of these lipid ions elucidated significant differences in lipid expression between pvWMHs and NAWM for 31 lipid ion species. Expanding our understanding of alterations in lipid composition will provide greater knowledge of molecular mechanisms underpinning ischemic white matter lesions and provides the potential for novel therapeutic interventions targeting lipid composition abnormalities.
Collapse
Affiliation(s)
- William Pinsky
- Vulnerable Brain Lab, Department of Anatomy and Cell Biology, University of Western Ontario, London, N6A 5C1 Ontario, Canada
| | - Aaron Harris
- Vulnerable Brain Lab, Department of Anatomy and Cell Biology, University of Western Ontario, London, N6A 5C1 Ontario, Canada
| | - Austyn D Roseborough
- Vulnerable Brain Lab, Department of Anatomy and Cell Biology, University of Western Ontario, London, N6A 5C1 Ontario, Canada
| | - Wenxuan Wang
- Vulnerable Brain Lab, Department of Anatomy and Cell Biology, University of Western Ontario, London, N6A 5C1 Ontario, Canada
| | - Ali R Khan
- Department of Medical Biophysics, University of Western Ontario, London, N6A 5C1 Ontario, Canada
| | - Kristina Jurcic
- MALDI Mass Spectrometry Facility, Department of Biochemistry, University of Western Ontario, London, N6A 5C1 Ontario, Canada
| | - Ken K-C Yeung
- Departments of Biochemistry and Chemistry, University of Western Ontario, London, N6A 5C1 Ontario, Canada
| | - Stephen H Pasternak
- Robarts Research Institute, Western University, London, N6A 3K7 Ontario, Canada
| | - Shawn N Whitehead
- Vulnerable Brain Lab, Department of Anatomy and Cell Biology, University of Western Ontario, London, N6A 5C1 Ontario, Canada
| |
Collapse
|
18
|
Neumann EK, Djambazova KV, Caprioli RM, Spraggins JM. Multimodal Imaging Mass Spectrometry: Next Generation Molecular Mapping in Biology and Medicine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2401-2415. [PMID: 32886506 PMCID: PMC9278956 DOI: 10.1021/jasms.0c00232] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Imaging mass spectrometry has become a mature molecular mapping technology that is used for molecular discovery in many medical and biological systems. While powerful by itself, imaging mass spectrometry can be complemented by the addition of other orthogonal, chemically informative imaging technologies to maximize the information gained from a single experiment and enable deeper understanding of biological processes. Within this review, we describe MALDI, SIMS, and DESI imaging mass spectrometric technologies and how these have been integrated with other analytical modalities such as microscopy, transcriptomics, spectroscopy, and electrochemistry in a field termed multimodal imaging. We explore the future of this field and discuss forthcoming developments that will bring new insights to help unravel the molecular complexities of biological systems, from single cells to functional tissue structures and organs.
Collapse
Affiliation(s)
- Elizabeth K Neumann
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Katerina V Djambazova
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
| | - Richard M Caprioli
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Jeffrey M Spraggins
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
| |
Collapse
|
19
|
Kloska A, Malinowska M, Gabig-Cimińska M, Jakóbkiewicz-Banecka J. Lipids and Lipid Mediators Associated with the Risk and Pathology of Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21103618. [PMID: 32443889 PMCID: PMC7279232 DOI: 10.3390/ijms21103618] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Stroke is a severe neurological disorder in humans that results from an interruption of the blood supply to the brain. Worldwide, stoke affects over 100 million people each year and is the second largest contributor to disability. Dyslipidemia is a modifiable risk factor for stroke that is associated with an increased risk of the disease. Traditional and non-traditional lipid measures are proposed as biomarkers for the better detection of subclinical disease. In the central nervous system, lipids and lipid mediators are essential to sustain the normal brain tissue structure and function. Pathways leading to post-stroke brain deterioration include the metabolism of polyunsaturated fatty acids. A variety of lipid mediators are generated from fatty acids and these molecules may have either neuroprotective or neurodegenerative effects on the post-stroke brain tissue; therefore, they largely contribute to the outcome and recovery from stroke. In this review, we provide an overview of serum lipids associated with the risk of ischemic stroke. We also discuss the role of lipid mediators, with particular emphasis on eicosanoids, in the pathology of ischemic stroke. Finally, we summarize the latest research on potential targets in lipid metabolic pathways for ischemic stroke treatment and on the development of new stroke risk biomarkers for use in clinical practice.
Collapse
Affiliation(s)
- Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.M.)
| | - Marcelina Malinowska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.M.)
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.M.)
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
- Correspondence: (M.G.-C.); (J.J.-B.); Tel.: +48-585-236-046 (M.G.-C.); +48-585-236-043 (J.J.-B.)
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.M.)
- Correspondence: (M.G.-C.); (J.J.-B.); Tel.: +48-585-236-046 (M.G.-C.); +48-585-236-043 (J.J.-B.)
| |
Collapse
|
20
|
Han C, Li S, Yue Q, Li N, Yang H, Zhao Z. Polydopamine-capped AgNPs as a novel matrix overcoming the ion suppression of phosphatidylcholine for MALDI MS comprehensive imaging of glycerophospholipids and sphingolipids in impact-induced injured brain. Analyst 2019; 144:6304-6312. [PMID: 31552925 DOI: 10.1039/c9an01361j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is a powerful tool for the characterization and localization of analytes without the need for extraction, purification, separation or labeling of samples. However, in tissue sections the most abundant lipids, phosphatidylcholines (PCs), could suppress the signals of other classes of coexisting lipids. In this work, polydopamine (PDA)-capped AgNPs (AgNPs@PDA) were synthesized as a matrix of MALDI MSI to analyze lipids in both positive and negative ion modes. By adjusting the thickness of the PDA layer, the signal of silver cluster ions of AgNPs@PDA was effectively controlled, and the ability of AgNPs@PDA serving as a matrix was optimized. More interestingly, using AgNPs@PDA as a matrix, the sensitivity of PCs was dramatically decreased, and the PC signals were greatly suppressed, while for other lipids (including PE, HexCer, PS, PI, PIP, and ST), they were just the opposite. The reason, we believe, is related to the positively charged surface of AgNPs@PDA, and the polyhydroxy and amino groups of PDA. Benefitting from the suppression of the signals of PCs and the improvement of detection sensitivity of other lipids, 58 glycerophospholipids and 25 sphingolipids in brain tissue sections could be imaged in one run with AgNPs@PDA as a matrix by MALDI MSI, much better than when using traditional organic matrices 2,5-dihydroxybenzoic acid and 9-aminoacridine.
Collapse
Affiliation(s)
- Chao Han
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China.
| | | | | | | | | | | |
Collapse
|