1
|
Alomari N, Totonchy J. Host-Level Susceptibility and IRF1 Expression Influence the Ability of IFN-γ to Inhibit KSHV Infection in B Lymphocytes. Viruses 2022; 14:2295. [PMID: 36298850 PMCID: PMC9607942 DOI: 10.3390/v14102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with vascular endothelial cell tumor, Kaposi's sarcoma (KS) and lymphoproliferative disorder, multicentric Castleman's disease (MCD), primary effusion lymphoma (PEL) and KSHV inflammatory cytokine syndrome (KICS). Dysregulation of proinflammatory cytokines is found in most KSHV associated diseases. However, little is known about the role of host microenvironment in the regulation of KSHV establishment in B cells. In the present study, we demonstrated that IFN-γ has a strong inhibitory effect on KSHV infection but only in a subset of tonsil-derived lymphocyte samples that are intrinsically more susceptible to infection, contain higher proportions of naïve B cells, and display increased levels of IRF1 and STAT1-pY701. The effect of IFN-γ in responsive samples was associated with increased frequencies of germinal center B cells (GCB) and decreased infection of plasma cells, suggesting that IFN-γ-mediated modulation of viral dynamics in GC can inhibit the establishment of KSHV infection.
Collapse
Affiliation(s)
| | - Jennifer Totonchy
- Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618, USA
| |
Collapse
|
2
|
Kennedy MA, Tyl MD, Betsinger CN, Federspiel JD, Sheng X, Arbuckle JH, Kristie TM, Cristea IM. A TRUSTED targeted mass spectrometry assay for pan-herpesvirus protein detection. Cell Rep 2022; 39:110810. [PMID: 35545036 PMCID: PMC9245836 DOI: 10.1016/j.celrep.2022.110810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 02/11/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
The presence and abundance of viral proteins within host cells are part of the essential signatures of the cellular stages of viral infections. However, methods that can comprehensively detect and quantify these proteins are still limited, particularly for viruses with large protein coding capacity. Here, we design and experimentally validate a mass spectrometry-based Targeted herpesviRUS proTEin Detection (TRUSTED) assay for monitoring human viruses representing the three Herpesviridae subfamilies—herpes simplex virus type 1, human cytomegalovirus (HCMV), and Kaposi sarcoma-associated herpesvirus. We demonstrate assay applicability for (1) capturing the temporal cascades of viral replication, (2) detecting proteins throughout a range of virus concentrations and in in vivo models of infection, (3) assessing the effects of clinical therapeutic agents and sirtuin-modulating compounds, (4) studies using different laboratory and clinical viral strains, and (5) discovering a role for carbamoyl phosphate synthetase 1 in supporting HCMV replication. Herpesviruses encode many proteins, making it difficult to comprehensively monitor viral protein levels by traditional approaches. Kennedy et al. develop a set of targeted mass spectrometry-based assays for measuring herpesvirus protein levels spanning all virus subfamilies (α, β, and γ) and demonstrate their usefulness for a wide range of applications.
Collapse
Affiliation(s)
- Michelle A Kennedy
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Matthew D Tyl
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Cora N Betsinger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Joel D Federspiel
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Xinlei Sheng
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Jesse H Arbuckle
- Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas M Kristie
- Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
3
|
Ngalamika O, Mukasine MC, Kawimbe M, Vally F. Viral and immunological markers of HIV-associated Kaposi sarcoma recurrence. PLoS One 2021; 16:e0254177. [PMID: 34214127 PMCID: PMC8253384 DOI: 10.1371/journal.pone.0254177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Kaposi sarcoma (KS) is an AIDS-defining angio-proliferative malignancy highly prevalent in Sub-Saharan Africa. The main objective of this study was to determine the factors associated with recurrence of HIV-associated KS. We recruited a cohort of individuals on antiretroviral therapy who were in remission for HIV-associated KS after undergoing cytotoxic cancer chemotherapy. Collected variables included sociodemographic and clinical parameters, cytokines and chemokines, HIV viral loads, and CD4 counts. Compared to individuals who had KS recurrence, IL-5 was significantly higher at time of follow-up in individuals who had sustained remission (22.7pg/ml vs. 2.4pg/ml; p = 0.02); IL-6 was significantly higher at baseline and time of follow-up in individuals who had sustained remission, (18.4pg/ml vs. 0pg/ml; p = 0.01) and (18.0pg/ml vs. 0.18pg/ml; p = 0.03) respectively; IP-10 was significantly lower at baseline and at time of follow-up in individuals who had sustained remission, (534pg/ml vs. 920pg/ml; p = 0.04) and (446pg/ml vs.1098pg/ml; p = 0.01) respectively; while HIV viral load was significantly lower at baseline and at time of follow-up in individuals who had sustained remission, (0copies/ml vs. 113copies/ml; p = 0.004) and (0copies/ml vs. 152copies/ml; p = 0.025) respectively. Plasma levels of IL-5, IL-6, and IP-10 are associated with recurrence of HIV-associated KS, while persistently detectable HIV viral loads increase the risk of KS recurrence.
Collapse
Affiliation(s)
- Owen Ngalamika
- Dermatology and Venereology Division, Adult University Teaching Hospital, Lusaka, Zambia
- University of Zambia School of Medicine, Lusaka, Zambia
- HHV8 Research Molecular Virology Laboratory, University Teaching Hospital, Lusaka, Zambia
- * E-mail:
| | - Marie Claire Mukasine
- HHV8 Research Molecular Virology Laboratory, University Teaching Hospital, Lusaka, Zambia
| | - Musonda Kawimbe
- HHV8 Research Molecular Virology Laboratory, University Teaching Hospital, Lusaka, Zambia
| | - Faheema Vally
- Dermatology and Venereology Division, Adult University Teaching Hospital, Lusaka, Zambia
| |
Collapse
|
4
|
Wang G, Zarek C, Chang T, Tao L, Lowe A, Reese TA. Th2 Cytokine Modulates Herpesvirus Reactivation in a Cell Type Specific Manner. J Virol 2021; 95:JVI.01946-20. [PMID: 33536178 PMCID: PMC8103696 DOI: 10.1128/jvi.01946-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Gammaherpesviruses, such as Epstein-Barr virus (EBV), Kaposi's sarcoma associated virus (KSHV), and murine γ-herpesvirus 68 (MHV68), establish latent infection in B cells, macrophages, and non-lymphoid cells, and can induce both lymphoid and non-lymphoid cancers. Research on these viruses has relied heavily on immortalized B cell and endothelial cell lines. Therefore, we know very little about the cell type specific regulation of virus infection. We have previously shown that treatment of MHV68-infected macrophages with the cytokine interleukin-4 (IL-4) or challenge of MHV68-infected mice with an IL-4-inducing parasite leads to virus reactivation. However, we do not know if all latent reservoirs of the virus, including B cells, reactivate the virus in response to IL-4. Here we used an in vivo approach to address the question of whether all latently infected cell types reactivate MHV68 in response to a particular stimulus. We found that IL-4 receptor expression on macrophages was required for IL-4 to induce virus reactivation, but that it was dispensable on B cells. We further demonstrated that the transcription factor, STAT6, which is downstream of the IL-4 receptor and binds virus gene 50 N4/N5 promoter in macrophages, did not bind to the virus gene 50 N4/N5 promoter in B cells. These data suggest that stimuli that promote herpesvirus reactivation may only affect latent virus in particular cell types, but not in others.Importance Herpesviruses establish life-long quiescent infections in specific cells in the body, and only reactivate to produce infectious virus when precise signals induce them to do so. The signals that induce herpesvirus reactivation are often studied only in one particular cell type infected with the virus. However, herpesviruses establish latency in multiple cell types in their hosts. Using murine gammaherpesvirus-68 (MHV68) and conditional knockout mice, we examined the cell type specificity of a particular reactivation signal, interleukin-4 (IL-4). We found that IL-4 only induced herpesvirus reactivation from macrophages, but not from B cells. This work indicates that regulation of virus latency and reactivation is cell type specific. This has important implications for therapies aimed at either promoting or inhibiting reactivation for the control or elimination of chronic viral infections.
Collapse
Affiliation(s)
- Guoxun Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christina Zarek
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tyron Chang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lili Tao
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alexandria Lowe
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tiffany A Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Pseudomonas aeruginosa Stimulates Inflammation and Enhances Kaposi's Sarcoma Herpesvirus-Induced Cell Proliferation and Cellular Transformation through both Lipopolysaccharide and Flagellin. mBio 2020; 11:mBio.02843-20. [PMID: 33173008 PMCID: PMC7667028 DOI: 10.1128/mbio.02843-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inflammation triggered by innate immunity promotes carcinogenesis in cancer. Kaposi's sarcoma (KS), a hyperproliferative and inflammatory tumor caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection, is the most common cancer in AIDS patients. KSHV infection sensitizes cells to pathogen-associated molecular patterns (PAMPs). We examined the role of Pseudomonas aeruginosa, an opportunistic bacterium that can affect AIDS patients, in inflammation and cell proliferation of KSHV-transformed cells. P. aeruginosa stimulation increased cell proliferation and efficiency of colony formation in soft agar of KSHV-transformed rat primary mesenchymal precursor (KMM) cells but had no significant effect on the untransformed (MM) cells. P. aeruginosa stimulation also increased cell proliferation of KSHV-infected human B cells, BJAB, but not the uninfected cells. Mechanistically, P. aeruginosa stimulation resulted in increased inflammatory cytokines and activation of p38, ERK1/2, and JNK mitogen-activated protein kinase (MAPK) pathways in KMM cells while having no obvious effect on MM cells. P. aeruginosa induction of inflammation and MAPKs was observed with and without inhibition of the Toll-like receptor 4 (TLR4) pathway, while a flagellin-deleted mutant of P. aeruginosa required a functional TLR4 pathway to induce inflammation and MAPKs. Furthermore, treatment with either lipopolysaccharide (LPS) or flagellin alone was sufficient to induce inflammatory cytokines, activate MAPKs, and increase cell proliferation and efficiency of colony formation in soft agar of KMM cells. These results demonstrate that both LPS and flagellin are PAMPs that contribute to P. aeruginosa induction of inflammation in KSHV-transformed cells. Because AIDS-KS patients are susceptible to P. aeruginosa infection, our work highlights the preventive and therapeutic potential of targeting P. aeruginosa infection in these patients.IMPORTANCE Kaposi's sarcoma (KS), caused by infection with Kaposi's sarcoma-associated herpesvirus (KSHV), is one of the most common cancers in AIDS patients. KS is a highly inflammatory tumor, but how KSHV infection induces inflammation remains unclear. We have previously shown that KSHV infection upregulates Toll-like receptor 4 (TLR4), sensitizing cells to lipopolysaccharide (LPS) and Escherichia coli In the current study, we examined the role of Pseudomonas aeruginosa, an opportunistic bacterium that can affect AIDS patients, in inflammation and cell proliferation of KSHV-transformed cells. P. aeruginosa stimulation increased cell proliferation, inflammatory cytokines, and activation of growth and survival pathways in KSHV-transformed cells through two pathogen-associated molecular patterns, LPS and flagellin. Because AIDS-KS patients are susceptible to P. aeruginosa infection, our work highlights the preventive and therapeutic potential of targeting P. aeruginosa infection in these patients.
Collapse
|
6
|
Alomari N, Totonchy J. Cytokine-Targeted Therapeutics for KSHV-Associated Disease. Viruses 2020; 12:E1097. [PMID: 32998419 PMCID: PMC7600567 DOI: 10.3390/v12101097] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) also known as human herpesvirus 8 (HHV-8), is linked to several human malignancies including Kaposi sarcoma (KS), primary effusion lymphoma (PEL), multicentric Castleman's disease (MCD) and recently KSHV inflammatory cytokine syndrome (KICS). As with other diseases that have a significant inflammatory component, current therapy for KSHV-associated disease is associated with significant off-target effects. However, recent advances in our understanding of the pathogenesis of KSHV have produced new insight into the use of cytokines as potential therapeutic targets. Better understanding of the role of cytokines during KSHV infection and tumorigenesis may lead to new preventive or therapeutic strategies to limit KSHV spread and improve clinical outcomes. The cytokines that appear to be promising candidates as KSHV antiviral therapies include interleukins 6, 10, and 12 as well as interferons and tumor necrosis factor-family cytokines. This review explores our current understanding of the roles that cytokines play in promoting KSHV infection and tumorigenesis, and summarizes the current use of cytokines as therapeutic targets in KSHV-associated diseases.
Collapse
Affiliation(s)
| | - Jennifer Totonchy
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA;
| |
Collapse
|
7
|
Regulation of KSHV Latency and Lytic Reactivation. Viruses 2020; 12:v12091034. [PMID: 32957532 PMCID: PMC7551196 DOI: 10.3390/v12091034] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is associated with three malignancies— Kaposi’s sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman’s disease (MCD). Central to the pathogenesis of these diseases is the KSHV viral life cycle, which is composed of a quiescent latent phase and a replicative lytic phase. While the establishment of latency enables persistent KSHV infection and evasion of the host immune system, lytic replication is essential for the dissemination of the virus between hosts and within the host itself. The transition between these phases, known as lytic reactivation, is controlled by a complex set of environmental, host, and viral factors. The effects of these various factors converge on the regulation of two KSHV proteins whose functions facilitate each phase of the viral life cycle—latency-associated nuclear antigen (LANA) and the master switch of KSHV reactivation, replication and transcription activator (RTA). This review presents the current understanding of how the transition between the phases of the KSHV life cycle is regulated, how the various phases contribute to KSHV pathogenesis, and how the viral life cycle can be exploited as a therapeutic target.
Collapse
|
8
|
Pant K, Chandrasekaran A, Chang CJ, Vageesh A, Popkov AJ, Weinberg JB. Effects of tumor necrosis factor on viral replication and pulmonary inflammation during acute mouse adenovirus type 1 respiratory infection. Virology 2020; 547:12-19. [PMID: 32560900 DOI: 10.1016/j.virol.2020.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/22/2023]
Abstract
CD8 T cells contribute to effective clearance of mouse adenovirus type 1 (MAV-1) and to virus-induced pulmonary inflammation. We characterized effects of a CD8 T cell effector, TNF, on MAV-1 pathogenesis. TNF inhibited MAV-1 replication in vitro. TNF deficiency or immunoneutralization had no effect on lung viral loads or viral gene expression in mice infected intranasally with MAV-1. Absence of TNF delayed virus-induced weight loss and reduced histological evidence of pulmonary inflammation, although concentrations of proinflammatory cytokines and chemokines in bronchoalveolar lavage fluid (BALF) were not significantly affected. BALF concentrations of IL-10 were greater in TNF-deficient mice compared to controls. Our data indicate that TNF is not essential for control of viral replication in vivo, but virus-induced TNF contributes to some aspects of immunopathology and disease. Redundant CD8 T cell effectors and other aspects of immune function are sufficient for antiviral and pro-inflammatory responses to acute MAV-1 respiratory infection.
Collapse
Affiliation(s)
- Krittika Pant
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Christine J Chang
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Aditya Vageesh
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | - Jason B Weinberg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Myoung J, Lee JY, Min KS. Methyltransferase of a cell culture-adapted hepatitis E inhibits the MDA5 receptor signaling pathway. J Microbiol 2019; 57:1126-1131. [PMID: 31758397 PMCID: PMC7090864 DOI: 10.1007/s12275-019-9478-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Abstract
Hepatitis E virus (HEV) is a causative agent of acute hepatitis and jaundice. The number of human infections is approximated to be over 20 million cases per year. The transmission is mainly via the fecal-oral route and contaminated water and food are considered to be a major source of infection. As a mouse model is not available, a recent development of a cell culture-adapted HEV strain (47832c) is considered as a very important tools for molecular analysis of HEV pathogenesis in cells. Previously, we demonstrated that HEV-encoded methyltransferase (MeT) encoded by the 47832c strain inhibits MDA5- and RIG-I-mediated activation of interferon β (IFN-β) promoter. Here, we report that MeT impairs the phosphorylation and activation of interferon regulatory factor 3 and the p65 subunit of NF-κB in a dose-dependent manner. In addition, the MeT encoded by the 47832c, but not that of HEV clinical or field isolates (SAR-55, Mex-14, KC-1, and ZJ-1), displays the inhibitory effect. A deeper understanding of MeTmediated suppression of IFN-β expression would provide basis of the cell culture adaptation of HEV.
Collapse
Affiliation(s)
- Jinjong Myoung
- Korea Zoonosis Research Institute, Genetic Engineering Research Institute and Department of Bioactive Material Science, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Jeong Yoon Lee
- Korea Zoonosis Research Institute, Genetic Engineering Research Institute and Department of Bioactive Material Science, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Kang Sang Min
- Korea Zoonosis Research Institute, Genetic Engineering Research Institute and Department of Bioactive Material Science, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
10
|
Lee JY, Bae S, Myoung J. Middle East respiratory syndrome coronavirus-encoded ORF8b strongly antagonizes IFN-β promoter activation: its implication for vaccine design. J Microbiol 2019; 57:803-811. [PMID: 31452044 PMCID: PMC7091237 DOI: 10.1007/s12275-019-9272-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a causative agent of severe-to-fatal pneumonia especially in patients with pre-existing conditions, such as smoking and chronic obstructive pulmonary disease (COPD). MERS-CoV transmission continues to be reported in the Saudi Arabian Peninsula since its discovery in 2012. However, it has rarely been epidemic outside the area except one large outbreak in South Korea in May 2015. The genome of the epidemic MERS-CoV isolated from a Korean patient revealed its homology to previously reported strains. MERS-CoV encodes 5 accessory proteins and generally, they do not participate in the genome transcription and replication but rather are involved in viral evasion of the host innate immune responses. Here we report that ORF8b, an accessory protein of MERS-CoV, strongly inhibits both MDA5- and RIG-I-mediated activation of interferon beta promoter activity while downstream signaling molecules were left largely unaffected. Of note, MDA5 protein levels were significantly down-regulated by ORF8b and co-expression of ORF4a and ORF4b. These novel findings will facilitate elucidation of mechanisms of virus-encoded evasion strategies, thus helping design rationale antiviral countermeasures against deadly MERS-CoV infection.
Collapse
Affiliation(s)
- Jeong Yoon Lee
- Korea Zoonosis Research Institute, Genetic Engineering Research Institute & Department of Bioactive Material Science, College of Natural Science, Chonbuk National University, Jeonju, 54531, Republic of Korea
| | - Sojung Bae
- Korea Zoonosis Research Institute, Genetic Engineering Research Institute & Department of Bioactive Material Science, College of Natural Science, Chonbuk National University, Jeonju, 54531, Republic of Korea
| | - Jinjong Myoung
- Korea Zoonosis Research Institute, Genetic Engineering Research Institute & Department of Bioactive Material Science, College of Natural Science, Chonbuk National University, Jeonju, 54531, Republic of Korea.
| |
Collapse
|
11
|
The Kaposi's Sarcoma-Associated Herpesvirus Protein ORF42 Is Required for Efficient Virion Production and Expression of Viral Proteins. Viruses 2019; 11:v11080711. [PMID: 31382485 PMCID: PMC6722526 DOI: 10.3390/v11080711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi’s sarcoma and other aggressive AIDS-associated malignancies, encodes over 90 genes, most of which are expressed only during the lytic replication cycle. The role of many of the KSHV lytic proteins in the KSHV replication cycle remains unknown, and many proteins are annotated based on known functions of homologs in other herpesviruses. Here we investigate the role of the previously uncharacterized KSHV lytic protein ORF42, a presumed tegument protein. We find that ORF42 is dispensable for reactivation from latency but is required for efficient production of viral particles. Like its alpha- and beta-herpesviral homologs, ORF42 is a late protein that accumulates in the viral particles. However, unlike its homologs, ORF42 appears to be required for efficient expression of at least some viral proteins and may potentiate post-transcriptional stages of gene expression. These results demonstrate that ORF42 has an important role in KSHV replication and may contribute to shaping viral gene expression.
Collapse
|
12
|
Hussein HAM, Alfhili MA, Pakala P, Simon S, Hussain J, McCubrey JA, Akula SM. miRNAs and their roles in KSHV pathogenesis. Virus Res 2019; 266:15-24. [PMID: 30951791 DOI: 10.1016/j.virusres.2019.03.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman Disease (MCD). Recent mechanistic advances have discerned the importance of microRNAs in the virus-host relationship. KSHV has two modes of replication: lytic and latent phase. KSHV entry into permissive cells, establishment of infection, and maintenance of latency are contingent upon successful modulation of the host miRNA transcriptome. Apart from host cell miRNAs, KSHV also encodes viral miRNAs. Among various cellular and molecular targets, miRNAs are appearing to be key players in regulating viral pathogenesis. Therefore, the use of miRNAs as novel therapeutics has gained considerable attention as of late. This innovative approach relies on either mimicking miRNA species by identical oligonucleotides, or selective silencing of miRNA with specific oligonucleotide inhibitors. Here, we provide an overview of KSHV pathogenesis at the molecular level with special emphasis on the various roles miRNAs play during virus infection.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States; Faculty of Science, Al Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohammad A Alfhili
- Department of Medicine (Division of Hematology/Oncology), Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Pranaya Pakala
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Sandra Simon
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Jaffer Hussain
- Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| |
Collapse
|