1
|
Qi T, Wang G. Superiority of quadratic over conventional neural networks for classification of gaussian mixture data. Vis Comput Ind Biomed Art 2022; 5:23. [PMID: 36167898 PMCID: PMC9515302 DOI: 10.1186/s42492-022-00118-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractTo enrich the diversity of artificial neurons, a type of quadratic neurons was proposed previously, where the inner product of inputs and weights is replaced by a quadratic operation. In this paper, we demonstrate the superiority of such quadratic neurons over conventional counterparts. For this purpose, we train such quadratic neural networks using an adapted backpropagation algorithm and perform a systematic comparison between quadratic and conventional neural networks for classificaiton of Gaussian mixture data, which is one of the most important machine learning tasks. Our results show that quadratic neural networks enjoy remarkably better efficacy and efficiency than conventional neural networks in this context, and potentially extendable to other relevant applications.
Collapse
|
2
|
Kisby GE, Spencer PS. Genotoxic Damage During Brain Development Presages Prototypical Neurodegenerative Disease. Front Neurosci 2021; 15:752153. [PMID: 34924930 PMCID: PMC8675606 DOI: 10.3389/fnins.2021.752153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 01/15/2023] Open
Abstract
Western Pacific Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS/PDC) is a disappearing prototypical neurodegenerative disorder (tau-dominated polyproteinopathy) linked with prior exposure to phytogenotoxins in cycad seed used for medicine and/or food. The principal cycad genotoxin, methylazoxymethanol (MAM), forms reactive carbon-centered ions that alkylate nucleic acids in fetal rodent brain and, depending on the timing of systemic administration, induces persistent developmental abnormalities of the cortex, hippocampus, cerebellum, and retina. Whereas administration of MAM prenatally or postnatally can produce animal models of epilepsy, schizophrenia or ataxia, administration to adult animals produces little effect on brain structure or function. The neurotoxic effects of MAM administered to rats during cortical brain development (specifically, gestation day 17) are used to model the histological, neurophysiological and behavioral deficits of human schizophrenia, a condition that may precede or follow clinical onset of motor neuron disease in subjects with sporadic ALS and ALS/PDC. While studies of migrants to and from communities impacted by ALS/PDC indicate the degenerative brain disorder may be acquired in juvenile and adult life, a proportion of indigenous cases shows neurodevelopmental aberrations in the cerebellum and retina consistent with MAM exposure in utero. MAM induces specific patterns of DNA damage and repair that associate with increased tau expression in primary rat neuronal cultures and with brain transcriptional changes that parallel those associated with human ALS and Alzheimer's disease. We examine MAM in relation to neurodevelopment, epigenetic modification, DNA damage/replicative stress, genomic instability, somatic mutation, cell-cycle reentry and cellular senescence. Since the majority of neurodegenerative disease lacks a solely inherited genetic basis, research is needed to explore the hypothesis that early-life exposure to genotoxic agents may trigger or promote molecular events that culminate in neurodegeneration.
Collapse
Affiliation(s)
- Glen E. Kisby
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Lebanon, OR, United States
| | - Peter S. Spencer
- School of Medicine (Neurology), Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
3
|
Zeidler M, Kummer KK, Schöpf CL, Kalpachidou T, Kern G, Cader MZ, Kress M. NOCICEPTRA: Gene and microRNA Signatures and Their Trajectories Characterizing Human iPSC-Derived Nociceptor Maturation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102354. [PMID: 34486248 PMCID: PMC8564443 DOI: 10.1002/advs.202102354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 05/07/2023]
Abstract
Nociceptors are primary afferent neurons serving the reception of acute pain but also the transit into maladaptive pain disorders. Since native human nociceptors are hardly available for mechanistic functional research, and rodent models do not necessarily mirror human pathologies in all aspects, human induced pluripotent stem cell-derived nociceptors (iDN) offer superior advantages as a human model system. Unbiased mRNA::microRNA co-sequencing, immunofluorescence staining, and qPCR validations, reveal expression trajectories as well as miRNA target spaces throughout the transition of pluripotent cells into iDNs. mRNA and miRNA candidates emerge as regulatory hubs for neurite outgrowth, synapse development, and ion channel expression. The exploratory data analysis tool NOCICEPTRA is provided as a containerized platform to retrieve experimentally determined expression trajectories, and to query custom gene sets for pathway and disease enrichments. Querying NOCICEPTRA for marker genes of cortical neurogenesis reveals distinct similarities and differences for cortical and peripheral neurons. The platform provides a public domain neuroresource to exploit the entire data sets and explore miRNA and mRNA as hubs regulating human nociceptor differentiation and function.
Collapse
Affiliation(s)
- Maximilian Zeidler
- Institute of PhysiologyMedical University of InnsbruckInnsbruck6020Austria
| | - Kai K. Kummer
- Institute of PhysiologyMedical University of InnsbruckInnsbruck6020Austria
| | - Clemens L. Schöpf
- Institute of PhysiologyMedical University of InnsbruckInnsbruck6020Austria
| | | | - Georg Kern
- Institute of PhysiologyMedical University of InnsbruckInnsbruck6020Austria
| | - M. Zameel Cader
- Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordOX3 9DSUK
| | - Michaela Kress
- Institute of PhysiologyMedical University of InnsbruckInnsbruck6020Austria
| |
Collapse
|
4
|
Moreau CA, Urchs SGW, Kuldeep K, Orban P, Schramm C, Dumas G, Labbe A, Huguet G, Douard E, Quirion PO, Lin A, Kushan L, Grot S, Luck D, Mendrek A, Potvin S, Stip E, Bourgeron T, Evans AC, Bearden CE, Bellec P, Jacquemont S. Mutations associated with neuropsychiatric conditions delineate functional brain connectivity dimensions contributing to autism and schizophrenia. Nat Commun 2020; 11:5272. [PMID: 33077750 PMCID: PMC7573583 DOI: 10.1038/s41467-020-18997-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
16p11.2 and 22q11.2 Copy Number Variants (CNVs) confer high risk for Autism Spectrum Disorder (ASD), schizophrenia (SZ), and Attention-Deficit-Hyperactivity-Disorder (ADHD), but their impact on functional connectivity (FC) remains unclear. Here we report an analysis of resting-state FC using magnetic resonance imaging data from 101 CNV carriers, 755 individuals with idiopathic ASD, SZ, or ADHD and 1,072 controls. We characterize CNV FC-signatures and use them to identify dimensions contributing to complex idiopathic conditions. CNVs have large mirror effects on FC at the global and regional level. Thalamus, somatomotor, and posterior insula regions play a critical role in dysconnectivity shared across deletions, duplications, idiopathic ASD, SZ but not ADHD. Individuals with higher similarity to deletion FC-signatures exhibit worse cognitive and behavioral symptoms. Deletion similarities identified at the connectivity level could be related to the redundant associations observed genome-wide between gene expression spatial patterns and FC-signatures. Results may explain why many CNVs affect a similar range of neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Clara A Moreau
- Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, 4565 Queen Mary Rd, Montreal, QC, H3W 1W5, Canada.
| | - Sebastian G W Urchs
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, 4565 Queen Mary Rd, Montreal, QC, H3W 1W5, Canada.
- Montreal Neurological Institute and Hospital, McGill University, 3801 Rue de l'Université, Montreal, QC, H3A 2B4, Canada.
| | - Kumar Kuldeep
- Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Pierre Orban
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, 7401 Rue Hochelaga, Montreal, QC, H1N 3M5, Canada
- Département de Psychiatrie et d'Addictologie, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, succursale Centre-ville, Montreal, QC, H3C 3J7, Canada
| | - Catherine Schramm
- Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1E2, Canada
| | - Guillaume Dumas
- Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Human Genetics and Cognitive Functions, Institut Pasteur, Université de Paris, UMR3571 CNRS, Paris, France
| | - Aurélie Labbe
- Département des Sciences de la Décision, HEC, 3000, chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 2A7, Canada
| | - Guillaume Huguet
- Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Elise Douard
- Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Pierre-Olivier Quirion
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, 4565 Queen Mary Rd, Montreal, QC, H3W 1W5, Canada
- Canadian Center for Computational Genomics, McGill University and Genome Quebec Innovation Center 740, Dr. Penfield Avenue, H3A 0G1, Montreal, Canada
| | - Amy Lin
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles, Semel Institute/NPI, 760 Westwood Plaza, Los Angeles, CA, 90024, USA
| | - Leila Kushan
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles, Semel Institute/NPI, 760 Westwood Plaza, Los Angeles, CA, 90024, USA
| | - Stephanie Grot
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, 7401 Rue Hochelaga, Montreal, QC, H1N 3M5, Canada
- Département de Psychiatrie et d'Addictologie, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, succursale Centre-ville, Montreal, QC, H3C 3J7, Canada
| | - David Luck
- Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Adrianna Mendrek
- Department of Psychology, Bishop's University, 2600 College Street, Sherbrooke, QC, J1M IZ7, Canada
| | - Stephane Potvin
- Département de Psychiatrie et d'Addictologie, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, succursale Centre-ville, Montreal, QC, H3C 3J7, Canada
| | - Emmanuel Stip
- Département de Psychiatrie et d'Addictologie, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, succursale Centre-ville, Montreal, QC, H3C 3J7, Canada
- United Arab Emirates University, College of Medicine and health Sciences, PO 17666, Al Ain, QC, UAE
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, Université de Paris, UMR3571 CNRS, Paris, France
| | - Alan C Evans
- Montreal Neurological Institute and Hospital, McGill University, 3801 Rue de l'Université, Montreal, QC, H3A 2B4, Canada
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, University of California, Los Angeles, Semel Institute/NPI, 760 Westwood Plaza, Los Angeles, CA, 90024, USA
| | - Pierre Bellec
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, 4565 Queen Mary Rd, Montreal, QC, H3W 1W5, Canada
| | - Sebastien Jacquemont
- Sainte Justine Hospital Research Center, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
- Department of Pediatrics, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
| |
Collapse
|
5
|
Sun Y, Sheridan P, Laurent O, Li J, Sacks DA, Fischer H, Qiu Y, Jiang Y, Yim IS, Jiang LH, Molitor J, Chen JC, Benmarhnia T, Lawrence JM, Wu J. Associations between green space and preterm birth: Windows of susceptibility and interaction with air pollution. ENVIRONMENT INTERNATIONAL 2020; 142:105804. [PMID: 32505016 PMCID: PMC7340571 DOI: 10.1016/j.envint.2020.105804] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Recent studies have reported inconsistent associations between maternal residential green space and preterm birth (PTB, born < 37 completed gestational weeks). In addition, windows of susceptibility during pregnancy have not been explored and potential interactions of green space with air pollution exposures during pregnancy are still unclear. OBJECTIVES To evaluate the relationships between green space and PTB, identify windows of susceptibility, and explore potential interactions between green space and air pollution. METHODS Birth certificate records for all births in California (2001-2008) were obtained. The Normalized Difference Vegetation Index (NDVI) was used to characterized green space exposure. Gestational age was treated as a time-to-event outcome; Cox proportional hazard models were applied to estimate the association between green space exposure and PTB, moderately PTB (MPTB, gestational age < 35 weeks), and very PTB (VPTB, gestational age < 30 weeks), after controlling for maternal age, race/ethnicity, education, and median household income. Month-specific green space exposure was used to identify potential windows of susceptibility. Potential interactions between green space and air pollution [fine particulate matter < 2.5 µm (PM2.5), nitrogen dioxide (NO2), and ozone (O3)] were examined on both additive and multiplicative scales. RESULTS In total, 3,753,799 eligible births were identified, including 341,123 (9.09%) PTBs, 124,631 (3.32%) MPTBs, and 22,313 (0.59%) VPTBs. A reduced risk of PTB was associated with increases in residential NDVI exposure in 250 m, 500 m, 1000 m, and 2000 m buffers. In the 2000 m buffer, the association was strongest for VPTB [adjusted hazard ratio (HR) per interquartile range increase in NDVI: 0.959, 95% confidence interval (CI): 0.942-0.976)], followed by MPTB (HR = 0.970, 95% CI: 0.962-0.978) and overall PTB (HR = 0.972, 95% CI: 0.966-0.978). For PTB, green space during the 3rd - 5th gestational months had stronger associations than those in the other time periods, especially during the 4th gestational month (NDVI 2000 m: HR = 0.970, 95% CI: 0.965-0.975). We identified consistent positive additive and multiplicative interactions between decreasing green space and higher air pollution. CONCLUSION This large study found that maternal exposure to residential green space was associated with decreased risk of PTB, MPTB, and VPTB, especially in the second trimester. There is a synergistic effect between low green space and high air pollution levels on PTB, indicating that increasing exposure to green space may be more beneficial for women with higher air pollution exposures during pregnancy.
Collapse
Affiliation(s)
- Yi Sun
- Program in Environmental Health Sciences, University of California, Irvine, CA 92697-3957, USA
| | - Paige Sheridan
- Department of Family Medicine and Public Health & Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive #0725, CA La Jolla 92093, USA
| | - Olivier Laurent
- Program in Public Health, 653 East Peltason Drive, University of California, Irvine CA 92697-3957, USA
| | - Jia Li
- Program in Public Health, 653 East Peltason Drive, University of California, Irvine CA 92697-3957, USA
| | - David A Sacks
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Heidi Fischer
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Yang Qiu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, #24 First Ring Road South Section One, Chengdu, Sichuan, China
| | - Yu Jiang
- School of Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ilona S Yim
- Department of Psychological Science, University of California, Irvine, CA 92697-7085, USA
| | - Luo-Hua Jiang
- Department of Epidemiology, University of California, Irvine, CA, USA
| | - John Molitor
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Jiu-Chiuan Chen
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tarik Benmarhnia
- Department of Family Medicine and Public Health & Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive #0725, CA La Jolla 92093, USA
| | - Jean M Lawrence
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Jun Wu
- Program in Environmental Health Sciences, University of California, Irvine, CA 92697-3957, USA; Program in Public Health, 653 East Peltason Drive, University of California, Irvine CA 92697-3957, USA.
| |
Collapse
|
6
|
Ojeda J, Ávila A. Early Actions of Neurotransmitters During Cortex Development and Maturation of Reprogrammed Neurons. Front Synaptic Neurosci 2019; 11:33. [PMID: 31824293 PMCID: PMC6881277 DOI: 10.3389/fnsyn.2019.00033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
The development of the brain is shaped by a myriad of factors among which neurotransmitters play remarkable roles before and during the formation and maturation of synaptic circuits. Cellular processes such as neurogenesis, morphological development, synaptogenesis and maturation of synapses are temporary and spatially regulated by the local or distal influence of neurotransmitters in the developing cortex. Thus, research on this area has contributed to the understanding of fundamental mechanisms of brain development and to shed light on the etiology of various human neurodevelopmental disorders such as autism and Rett syndrome (RTT), among others. Recently, the field of neuroscience has been shaken by an explosive advance of experimental approaches linked to the use of induced pluripotent stem cells and reprogrammed neurons. This new technology has allowed researchers for the first time to model in the lab the unique events that take place during early human brain development and to explore the mechanisms that cause synaptopathies. In this context, the role of neurotransmitters during early stages of cortex development is beginning to be re-evaluated and a revision of the state of the art has become necessary in a time when new protocols are being worked out to differentiate stem cells into functional neurons. New perspectives on reconsidering the function of neurotransmitters include opportunities for methodological advances, a better understanding of the origin of mental disorders and the potential for development of new treatments.
Collapse
Affiliation(s)
- Jorge Ojeda
- Developmental Neurobiology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Ariel Ávila
- Developmental Neurobiology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
7
|
De Los Santos H, Bennett KP, Hurley JM. ENCORE: A Visualization Tool for Insight into Circadian Omics. ACM-BCB ... ... : THE ... ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE. ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE 2019; 2019:5-14. [PMID: 31754663 PMCID: PMC6868525 DOI: 10.1145/3307339.3342137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Circadian rhythms are 24-hour biological cycles that control daily molecular rhythms in many organisms. The cellular elements that fall under the regulation of the clock are often studied through the use of omics-scale data sets gathered over time to determine how circadian regulation impacts cellular physiology. Previously, we created the ECHO (Extended Circadian Harmonic Oscillator) tool to identify rhythms in these data sets. Using ECHO, we found that circadian oscillations widely undergo a change in amplitude over time and that these amplitude changes have a biological function in the cell. However, ECHO does not align gene ontologies with the identified oscillating genes to give functional context. Thus, we created ENCORE (ECHO Native Circadian Ontological Rhythmicity Explorer), a novel visualization tool which combines the disparate databases of Gene Ontologies, protein-protein interactions, and auxiliary information to uncover the meaning of circadianly-regulated genes. This freely-available tool performs automatic enrichment and creates publication-worthy visualizations which we used to extend previously-gathered data on circadian regulation of physiology from published omics-scale studies in three circadian model organisms: mouse, fruit fly, and Neurospora crassa.
Collapse
Affiliation(s)
- Hannah De Los Santos
- Institute for Data Exploration and Applications/Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY
| | - Kristin P Bennett
- Institute for Data Exploration and Applications/Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY
| | - Jennifer M Hurley
- Department of Biological Sciences/Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY
| |
Collapse
|