1
|
Novak TE, Billings K, Ellis SG, Smith MF, Wills BD, Stevison LS. Response of fruit fly ( Drosophila pseudoobscura) to diet manipulation of nutrient density. PHYSIOLOGICAL ENTOMOLOGY 2024; 49:412-421. [PMID: 39583217 PMCID: PMC11584062 DOI: 10.1111/phen.12459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 11/26/2024]
Abstract
Caloric intake can greatly affect many aspects of an organism's life. A deficiency of calories can lead to stress resulting in decreased fecundity, insufficient calories to maintain tissues and increased lifespan. Conversely, increasing caloric density increases fecundity and decreases lifespan. Despite decades of work exploring food quality and quantity on physiology in the model species Drosophila melanogaster Meigan 1830 (Diptera: Drosophilidae) and the melanogaster group in general, relatively little work explores the physiological responses to diet manipulation in other Drosophila species, like the obscura species group. Here, we looked at the effects of five different caloric densities (0.5×, 0.75×, 1.0×, 1.5× and 3.0×) on food intake, body weight, body fat, fecundity and longevity in D. pseudoobscura Frolova & Astaurov, 1929 (Diptera: Drosophilidae). Comparing longevity and fecundity across diets, we found that heavy caloric concentration (3.0×) decreases lifespan and that calorie restriction (0.5× and 0.75×) led to significant decreases in fecundity and body weight. However, calorie concentration did not significantly increase D. pseudoobscura body fat. By expanding our understanding of the physiological responses to diet stress to D. pseudoobscura, we establish the framework for comparative work across Drosophila species. With this information, we can then identify which physiological responses to diet manipulation might be most conserved and comparable across species.
Collapse
Affiliation(s)
- Taylor E Novak
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Kristin Billings
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Sara Grace Ellis
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Makenly F Smith
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Bill D Wills
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Laurie S Stevison
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
2
|
Hong MS, Kim JS, Jin YR, Kim HJ, Lee JS, Lee MC. Multigenerational analysis of reproductive timing and life cycle parameters in the marine rotifer Brachionus plicatilis. MARINE POLLUTION BULLETIN 2024; 209:117196. [PMID: 39509907 DOI: 10.1016/j.marpolbul.2024.117196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
Reproductive timing in organisms can influence reproductive success and longevity, yet its long-term effects remain underexplored. This study monitored the first- and last-born offspring of Brachionus plicatilis across five generations to examine the impact of breeding timing on fertility and longevity. The last-born group produced more offspring in the F1 and F2 generations. However, the first-born group produced more offspring from the F3 generation onward, with statistically significant differences observed in the F4 generation. Survival analysis indicated no differences up to the F3 generation. However, the post-reproductive period was significantly shorter in the last group compared to the first group in the F3 and F4 generations. These findings suggest that delayed breeding timing cumulatively reduces reproductive output and lifespan, though recovery may occur in the F5 generation. This study provides valuable insights into the generational effects of breeding timing and may inform reproductive strategies in similar species.
Collapse
Affiliation(s)
- Mi-Song Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Ji-Su Kim
- Department of Food and Nutrition, College of Human Ecology, Hanyang University, Seoul 04763, South Korea
| | - Yu Ri Jin
- Department of Food and Nutrition, College of Bio-Nano Technology, Gachon University, Seongnam 13120, South Korea
| | - Hee Jeong Kim
- Department of Food and Nutrition, College of Bio-Nano Technology, Gachon University, Seongnam 13120, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Min-Chul Lee
- Department of Food and Nutrition, College of Bio-Nano Technology, Gachon University, Seongnam 13120, South Korea.
| |
Collapse
|
3
|
Liguori A, Korm S, Profetto A, Richters E, Gribble KE. Maternal age effects on offspring lifespan and reproduction vary within a species. Ecol Evol 2024; 14:e11287. [PMID: 38756682 PMCID: PMC11097000 DOI: 10.1002/ece3.11287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 05/18/2024] Open
Abstract
Across diverse taxa, offspring from older mothers have decreased lifespan and fitness. Little is known about the extent to which maternal age effects vary among genotypes for a given species, however, except for studies of a few arthropod species. To investigate the presence and degree of intraspecific variability in maternal age effects, we compared lifespan, reproductive schedule, and lifetime reproductive output of offspring produced by young, middle-aged, and old mothers in four strains of rotifers in the Brachionus plicatilis species complex. We found significant variability among strains in the magnitude and direction of maternal age effects on offspring life history traits. In one strain, offspring of young mothers lived 20% longer than offspring of old mothers, whereas there were no significant effects of maternal age on lifespan for other strains. Depending on strain, advanced maternal age had positive effects, negative effects, or no effect on lifetime reproductive output. Across strains, older mothers produced offspring that had higher maximum daily reproduction early in life. The effects of maternal age on offspring vital rates could not be explained by changes in trade-offs between lifespan and reproduction. This study documents intraspecific variability in maternal age effects in an additional clade. Investigating intraspecific variability is critical for understanding the ubiquity of maternal age effects and their role in the evolution of life history and aging.
Collapse
Affiliation(s)
- Alyssa Liguori
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological LaboratoryWoods HoleMassachusettsUSA
- Department of BiologyState University of New York at New PaltzNew PaltzNew YorkUSA
| | - Sovannarith Korm
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological LaboratoryWoods HoleMassachusettsUSA
| | - Alex Profetto
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological LaboratoryWoods HoleMassachusettsUSA
- Translational Genomics LaboratoryMcLean HospitalBelmontMassachusettsUSA
| | - Emily Richters
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological LaboratoryWoods HoleMassachusettsUSA
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew York CityNew YorkUSA
| | - Kristin E. Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological LaboratoryWoods HoleMassachusettsUSA
| |
Collapse
|
4
|
Liguori A, Korm S, Profetto A, Richters E, Gribble KE. Maternal age effects on offspring lifespan and reproduction vary within a species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530305. [PMID: 36909646 PMCID: PMC10002641 DOI: 10.1101/2023.02.27.530305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Across diverse taxa, offspring from older mothers have decreased lifespan and fitness. Little is known about whether such maternal age effects vary among genotypes for a given species, however. We compared maternal age effects among four strains of rotifers in the Brachionus plicatilis species complex. For each strain, we measured lifespan, reproductive schedule, and lifetime reproductive output of offspring produced by young, middle-aged, and old mothers. We found unexpected variability among strains in the magnitude and direction of maternal age effects on offspring life history traits. In one strain, offspring of young mothers lived 20% longer than offspring of old mothers, whereas there were no significant effects of maternal age on lifespan for the other strains. Across strains, advanced maternal age had positive effects, negative effects, or no effect on lifetime reproductive output. For all but one strain, older mothers produced offspring that had higher maximum daily reproduction early in life. Maternal age effects appear to be genetically determined traits, not features of life history strategy or due to accumulation of age-related damage in the germline. Investigating intraspecific variability is critical for understanding the ubiquity of maternal age effects and their role in the evolution of life history and aging.
Collapse
|
5
|
Sepp T, Meitern R, Heidinger B, Noreikiene K, Rattiste K, Hõrak P, Saks L, Kittilson J, Urvik J, Giraudeau M. Parental age does not influence offspring telomeres during early life in common gulls (Larus canus). Mol Ecol 2022; 31:6197-6207. [PMID: 33772917 DOI: 10.1111/mec.15905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/27/2021] [Accepted: 03/22/2021] [Indexed: 01/31/2023]
Abstract
Parental age can affect offspring telomere length through heritable and epigenetic-like effects, but at what stage during development these effects are established is not well known. To address this, we conducted a cross-fostering experiment in common gulls (Larus canus) that enabled us distinguish between pre- and post-natal parental age effects on offspring telomere length. Whole clutches were exchanged after clutch completion within and between parental age classes (young and old) and blood samples were collected from chicks at hatching and during the fastest growth phase (11 days later) to measure telomeres. Neither the ages of the natal nor the foster parents predicted the telomere length or the change in telomere lengths of their chicks. Telomere length (TL) was repeatable within chicks, but increased across development (repeatability = 0.55, intraclass correlation coefficient within sampling events 0.934). Telomere length and the change in telomere length were not predicted by post-natal growth rate. Taken together, these findings suggest that in common gulls, telomere length during early life is not influenced by parental age or growth rate, which may indicate that protective mechanisms buffer telomeres from external conditions during development in this relatively long-lived species.
Collapse
Affiliation(s)
- Tuul Sepp
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Richard Meitern
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Britt Heidinger
- Biological Sciences Department, North Dakota State University, Fargo, ND, USA
| | - Kristina Noreikiene
- Institute of Veterinary Medicine, Estonian University of Life Sciences, Tartu, Estonia
| | - Kalev Rattiste
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Peeter Hõrak
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Lauri Saks
- Estonian Marine Institute, University of Tartu, Tartu, Estonia
| | - Jeffrey Kittilson
- Biological Sciences Department, North Dakota State University, Fargo, ND, USA
| | - Janek Urvik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.,Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Mathieu Giraudeau
- CREEC, Montpellier Cedex 5, France.,MIVEGEC, UMR IRD/CNRS/UM 5290, Montpellier Cedex 5, France
| |
Collapse
|
6
|
Sparks AM, Hammers M, Komdeur J, Burke T, Richardson DS, Dugdale HL. Sex-dependent effects of parental age on offspring fitness in a cooperatively breeding bird. Evol Lett 2022; 6:438-449. [PMID: 36579166 PMCID: PMC9783413 DOI: 10.1002/evl3.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Parental age can have considerable effects on offspring phenotypes and health. However, intergenerational effects may also have longer term effects on offspring fitness. Few studies have investigated parental age effects on offspring fitness in natural populations while also testing for sex- and environment-specific effects. Further, longitudinal parental age effects may be masked by population-level processes such as the selective disappearance of poor-quality individuals. Here, we used multigenerational data collected on individually marked Seychelles warblers (Acrocephalus sechellensis) to investigate the impact of maternal and paternal age on offspring life span and lifetime reproductive success. We found negative effects of maternal age on female offspring life span and lifetime reproductive success, which were driven by within-mother effects. There was no difference in annual reproductive output of females born to older versus younger mothers, suggesting that the differences in offspring lifetime reproductive success were driven by effects on offspring life span. In contrast, there was no association between paternal age and female offspring life span or either maternal or paternal age and male offspring life span. Lifetime reproductive success, but not annual reproductive success, of male offspring increased with maternal age, but this was driven by between-mother effects. No paternal age effects were found on female offspring lifetime reproductive success but there was a positive between-father effect on male offspring lifetime reproductive success. We did not find strong evidence for environment-dependent parental age effects. Our study provides evidence for parental age effects on the lifetime fitness of offspring and shows that such effects can be sex dependent. These results add to the growing literature indicating the importance of intergenerational effects on long-term offspring performance and highlight that these effects can be an important driver of variation in longevity and fitness in the wild.
Collapse
Affiliation(s)
- Alexandra M. Sparks
- Faculty of Biological Sciences, School of BiologyUniversity of LeedsLeedsLS2 9JTUnited Kingdom,School of BiosciencesUniversity of SheffieldSheffieldS10 2TNUnited Kingdom
| | - Martijn Hammers
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningen9712 CPThe Netherlands,Aeres University of Applied SciencesAlmere1325 WBThe Netherlands
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningen9712 CPThe Netherlands
| | - Terry Burke
- School of BiosciencesUniversity of SheffieldSheffieldS10 2TNUnited Kingdom
| | - David S. Richardson
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUnited Kingdom,Nature SeychellesMahéRepublic of Seychelles
| | - Hannah L. Dugdale
- Faculty of Biological Sciences, School of BiologyUniversity of LeedsLeedsLS2 9JTUnited Kingdom,Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningen9712 CPThe Netherlands
| |
Collapse
|
7
|
Anderson CE, Malek MC, Jonas-Closs RA, Cho Y, Peshkin L, Kirschner MW, Yampolsky LY. Inverse Lansing Effect: Maternal Age and Provisioning Affecting Daughters' Longevity and Male Offspring Production. Am Nat 2022; 200:704-721. [PMID: 36260845 DOI: 10.1086/721148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
AbstractMaternal age effects on offspring life history are known in a variety of organisms, with offspring of older mothers typically having lower life expectancy (the Lansing effect). However, there is no consensus on the generality and mechanisms of this pattern. We tested predictions of the Lansing effect in several Daphnia magna clones and observed clone-specific magnitude and direction of the maternal age effect on offspring longevity. We also report ambidirectional, genotype-specific effects of maternal age on the propensity of daughters to produce male offspring. Focusing on two clones with contrasting life histories, we demonstrate that maternal age effects can be explained by lipid provisioning of embryos by mothers of different ages. Individuals from a single-generation maternal age reversal treatment showed intermediate life span and intermediate lipid content at birth. In the clone characterized by the "inverse Lansing effect," neonates produced by older mothers showed higher mitochondrial membrane potential in neural tissues than their counterparts born to younger mothers. We conclude that an inverse Lansing effect is possible and hypothesize that it may be caused by age-specific maternal lipid provisioning creating a calorically restricted environment during embryonic development, which in turn reduces fecundity and increases life span in offspring.
Collapse
|
8
|
González-Tokman D. Effects of mating age and mate age on lifespan and reproduction in a horned beetle. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
van Daalen SF, Hernández CM, Caswell H, Neubert MG, Gribble KE. The Contributions of Maternal Age Heterogeneity to Variance in Lifetime Reproductive Output. Am Nat 2022; 199:603-616. [PMID: 35472026 PMCID: PMC11416746 DOI: 10.1086/718716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
AbstractVariance among individuals in fitness components reflects both genuine heterogeneity between individuals and stochasticity in events experienced along the life cycle. Maternal age represents a form of heterogeneity that affects both the mean and the variance of lifetime reproductive output (LRO). Here, we quantify the relative contribution of maternal age heterogeneity to the variance in LRO using individual-level laboratory data on the rotifer Brachionus manjavacas to parameterize a multistate age × maternal age matrix model. In B. manjavacas, advanced maternal age has large negative effects on offspring survival and fertility. We used multistate Markov chains with rewards to quantify the contributions to variance in LRO of heterogeneity and of the stochasticity inherent in the outcomes of probabilistic transitions and reproductive events. Under laboratory conditions, maternal age heterogeneity contributes 26% of the variance in LRO. The contribution changes when mortality and fertility are reduced to mimic more ecologically relevant environments. Over the parameter space where populations are near stationarity, maternal age heterogeneity contributes an average of 3% of the variance. Thus, the contributions of maternal age heterogeneity and individual stochasticity can be expected to depend strongly on environmental conditions; over most of the parameter space, the variance in LRO is dominated by stochasticity.
Collapse
Affiliation(s)
- Silke F. van Daalen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94248, 1090 GE Amsterdam, Netherlands
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Christina M. Hernández
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Hal Caswell
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94248, 1090 GE Amsterdam, Netherlands
| | - Michael G. Neubert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Kristin E. Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
10
|
Callejas‐Díaz M, Chambel MR, San‐Martín‐Lorén J, Gea‐Izquierdo G, Santos‐Del‐Blanco L, Postma E, Climent JM. The role of maternal age, growth, and environment in shaping offspring performance in an aerial conifer seed bank. AMERICAN JOURNAL OF BOTANY 2022; 109:366-376. [PMID: 34973037 PMCID: PMC9790720 DOI: 10.1002/ajb2.1811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 05/09/2023]
Abstract
PREMISE Maternal effects have been demonstrated to affect offspring performance in many organisms, and in plants, seeds are important mediators of these effects. Some woody plant species maintain long-lasting canopy seed banks as an adaptation to wildfires. Importantly, these seeds stored in serotinous cones are produced by the mother plant under varying ontogenetic and physiological conditions. METHODS We sampled the canopy seed bank of a highly serotinous population of Pinus pinaster to test whether maternal age and growth and the environmental conditions during each crop year affected seed mass and ultimately germination and early survival. After determining retrospectively the year of each seed cohort, we followed germination and early survival in a semi-natural common garden. RESULTS Seed mass was related to maternal age and growth at the time of seed production; i.e., slow-growing, older mothers had smaller seeds, and fast-growing, young mothers had larger seeds, which could be interpreted either as a proxy of senescence or as a maternal strategy. Seed mass had a positive effect on germination success, but aside from differences in seed mass, maternal age had a negative effect and diameter had a positive effect on germination timing and subsequent survival. CONCLUSIONS The results highlight the importance of maternal conditions combined with seed mass in shaping seedling establishment. Our findings open new insights in the offspring performance deriving from long-term canopy seed banks, which may have high relevance for plant adaptation.
Collapse
Affiliation(s)
- Marta Callejas‐Díaz
- Department of Forest Ecology and GeneticsForest Research Centre, National Institute for Agricultural and Food Research and Technology (INIA‐CSIC)MadridSpain
| | - M. Regina Chambel
- Department of Forest Ecology and GeneticsForest Research Centre, National Institute for Agricultural and Food Research and Technology (INIA‐CSIC)MadridSpain
| | - Javier San‐Martín‐Lorén
- Department of Forest Ecology and GeneticsForest Research Centre, National Institute for Agricultural and Food Research and Technology (INIA‐CSIC)MadridSpain
| | - Guillermo Gea‐Izquierdo
- Department of Forest Ecology and GeneticsForest Research Centre, National Institute for Agricultural and Food Research and Technology (INIA‐CSIC)MadridSpain
| | - Luis Santos‐Del‐Blanco
- Department of Forest Ecology and GeneticsForest Research Centre, National Institute for Agricultural and Food Research and Technology (INIA‐CSIC)MadridSpain
| | - Erik Postma
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| | - José M. Climent
- Department of Forest Ecology and GeneticsForest Research Centre, National Institute for Agricultural and Food Research and Technology (INIA‐CSIC)MadridSpain
- Sustainable Forest Management Research InstituteUniversity of Valladolid‐National Institute for Agricultural and Food Research and TechnologyPalenciaSpain
| |
Collapse
|
11
|
Kim DH, Byeon E, Kim MS, Lee YH, Park JC, Hagiwara A, Lee JS. The Genome of the Marine Rotifer Brachionus manjavacas: Genome-Wide Identification of 310 G Protein-Coupled Receptor (GPCR) Genes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:226-242. [PMID: 35262805 DOI: 10.1007/s10126-022-10102-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The marine rotifer Brachionus manjavacas is widely used in ecological, ecotoxicological, and ecophysiological studies. The reference genome of B. manjavacas is a good starting point to uncover the potential molecular mechanisms of responses to various environmental stressors. In this study, we assembled the whole-genome sequence (114.1 Mb total, N50 = 6.36 Mb) of B. manjavacas, consisting of 61 contigs with 18,527 annotated genes. To elucidate the potential ligand-receptor signaling pathways in marine Brachionus rotifers in response to environmental signals, we identified 310 G protein-coupled receptor (GPCR) genes in the B. manjavacas genome after comparing them with three other species, including the minute rotifer Proales similis, Drosophila melanogaster, and humans (Homo sapiens). The 310 full-length GPCR genes were categorized into five distinct classes: A (262), B (26), C (7), F (2), and other (13). Most GPCR gene families showed sporadic evolutionary processes, but some classes were highly conserved between species as shown in the minute rotifer P. similis. Overall, these results provide potential clues for in silico analysis of GPCR-based signaling pathways in the marine rotifer B. manjavacas and will expand our knowledge of ligand-receptor signaling pathways in response to various environmental signals in rotifers.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jun Chul Park
- Départment Des Sciences, Université Sainte-Anne, Church Point, NS, B0W 1M0, Canada
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
- Organization for Marine Science and Technology, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
12
|
A collective analysis of lifespan-extending compounds in diverse model organisms, and of species whose lifespan can be extended the most by the application of compounds. Biogerontology 2021; 22:639-653. [PMID: 34687363 DOI: 10.1007/s10522-021-09941-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/17/2021] [Indexed: 12/13/2022]
Abstract
Research on aging and lifespan-extending compounds has been carried out using diverse model organisms, including yeast, worms, flies and mice. Many studies reported the identification of novel lifespan-extending compounds in different species, some of which may have the potential to translate to the clinic. However, studies collectively and comparatively analyzing all the data available in these studies are highly limited. Here, by using data from the DrugAge database, we first identified top compounds in terms of their effects on percent change in average lifespan of diverse organisms, collectively (n = 1728). We found that, when data from all organisms studied were combined for each compound, aspirin resulted in the highest percent increase in average lifespan (52.01%), followed by minocycline (27.30%), N-acetyl cysteine (17.93%), nordihydroguaiaretic acid (17.65%) and rapamycin (15.66%), in average. We showed that minocycline led to the highest percent increase in average lifespan among other compounds, in both Drosophila melanogaster (28.09%) and Caenorhabditis elegans (26.67%), followed by curcumin (11.29%) and gluconic acid (5.51%) for D. melanogaster and by metformin (26.56%), resveratrol (15.82%) and quercetin (9.58%) for C. elegans. Moreover, we found that top 5 species whose lifespan can be extended the most by compounds with lifespan-extending properties are Philodina acuticornis, Acheta domesticus, Aeolosoma viride, Mytilina brevispina and Saccharomyces cerevisiae (211.80%, 76%, 70.26%, 55.18% and 45.71% in average, respectively). This study provides novel insights on lifespan extension in model organisms, and highlights the importance of databases with high quality content curated by researchers from multiple resources, in aging research.
Collapse
|
13
|
Travers LM, Carlsson H, Lind MI, Maklakov AA. Beneficial cumulative effects of old parental age on offspring fitness. Proc Biol Sci 2021; 288:20211843. [PMID: 34641727 PMCID: PMC8511764 DOI: 10.1098/rspb.2021.1843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Old parental age is commonly associated with negative effects on offspring life-history traits. Such parental senescence effects are predicted to have a cumulative detrimental effect over successive generations. However, old parents may benefit from producing higher quality offspring when these compete for seasonal resources. Thus, old parents may choose to increase investment in their offspring, thereby producing fewer but larger and more competitive progeny. We show that Caenorhabditis elegans hermaphrodites increase parental investment with advancing age, resulting in fitter offspring who reach their reproductive peak earlier. Remarkably, these effects increased over six successive generations of breeding from old parents and were subsequently reversed following a single generation of breeding from a young parent. Our findings support the hypothesis that offspring of old parents receive more resources and convert them into increasingly faster life histories. These results contradict the theory that old parents transfer a cumulative detrimental 'ageing factor' to their offspring.
Collapse
Affiliation(s)
- Laura M Travers
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Hanne Carlsson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Martin I Lind
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Alexei A Maklakov
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
14
|
Poulain M, Chambre D, Pes GM. Centenarians exposed to the Spanish flu in their early life better survived to COVID-19. Aging (Albany NY) 2021; 13:21855-21865. [PMID: 34570724 PMCID: PMC8507269 DOI: 10.18632/aging.203577] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023]
Abstract
Background: Although it is known that mortality due to COVID-19 increases progressively with age, the probability of dying from this serious infection among the oldest-old population is little known, and controversial data are found in literature. Methods: We examine the mortality by year and month of birth of Belgians who had turned 100 during the current COVID-19 pandemic and whose birth fell on the years around the end the First World War and the outbreak of the H1N1 "Spanish flu" pandemic. Findings: The COVID-19 mortality of the "older" centenarians is significantly lower than that of "younger" centenarians, and this difference between the two groups reaches a maximum on August 1, 1918 as the discriminating cut-off date of birth. Having excluded the plausible impact of the end of WWI it becomes clear that this date corresponds to the time of reporting the first victims of the Spanish flu pandemic in Belgium. Interpretation: In this study, the striking temporal coincidence between the outbreak of the Spanish flu epidemic and the birth of the cohorts characterized by greater fragility towards COVID-19 in 2020 strongly suggests a link between exposure to 1918 H1N1 pandemic influenza and resistance towards 2020 SARS-Cov-2. It can be speculated that the lifetime persistence of cross-reactive immune mechanisms has enabled centenarians exposed to the Spanish flu to overcome the threat of COVID-19 a century later.
Collapse
Affiliation(s)
- Michel Poulain
- IACCHOS Université Catholique de Louvain, Louvain-la-Neuve, Belgium.,Estonian Institute for Population Studies, Tallinn University, Tallinn, Estonia
| | | | - Giovanni Mario Pes
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
15
|
No evidence for increased fitness of offspring from multigenerational effects of parental size or natal carcass size in the burying beetle Nicrophorus marginatus. PLoS One 2021; 16:e0253885. [PMID: 34234367 PMCID: PMC8263245 DOI: 10.1371/journal.pone.0253885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/14/2021] [Indexed: 11/19/2022] Open
Abstract
Multigenerational effects (often called maternal effects) are components of the offspring phenotype that result from the parental phenotype and the parental environment as opposed to heritable genetic effects. Multigenerational effects are widespread in nature and are often studied because of their potentially important effects on offspring traits. Although multigenerational effects are commonly observed, few studies have addressed whether they affect offspring fitness. In this study we assess the effect of potential multigenerational effects of parental body size and natal carcass size on lifetime fitness in the burying beetle, Nicrophorus marginatus (Coleoptera; Silphidae). Lifespan, total number of offspring, and number of offspring in the first reproductive bout were not significantly related to parental body size or natal carcass size. However, current carcass size used for reproduction was a significant predictor for lifetime number of offspring and number of offspring in the first brood. We find no evidence that multigenerational effects from larger parents or larger natal carcasses contribute to increased fitness of offspring.
Collapse
|
16
|
Ou HD, Atlihan R, Wang XQ, Li HX, Yu XF, Jin X, Yang MF. Host deprivation effects on population performance and paralysis rates of Habrobracon hebetor (hymenoptera: Braconidae). PEST MANAGEMENT SCIENCE 2021; 77:1851-1863. [PMID: 33284482 DOI: 10.1002/ps.6210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/29/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Habrobracon hebetor (Hymenoptera: Braconidae) is a gregarious ectoparasitoid that attacks the larvae of several species of pyralid and noctuid moths. The reproduction and population dynamics of parasitoids in general are affected by host deprivation. However, how host deprivation affects H. hebetor is unknown. The effect of host deprivation on the parental generation, life table parameters, and the paralysis rate of the F1 generation of H. hebetor were evaluated using the age-stage, two-sex life table under laboratory conditions. RESULTS The results indicated that the greatest longevity and the least lifetime fecundity of the F0 generation occurred after 19 days of host deprivation (PW-20 treatment). The life table parameters (intrinsic rate of increase, r; finite rate of increase, λ; and net reproductive rate, R0 ) and the paralysis rate parameters (net paralysis rate, C0 ; transformation rate, Qp ; stable paralysis rate, ψ; and finite paralysis rate, ω) of F1 individuals after PW-20 treatment were significantly higher than those of individuals subjected to the control treatment (no host deprivation). However, no difference was detected between the two host deprivation treatments: host deprivation after 1 day of host contact and immediate host deprivation (PW treatment). CONCLUSION Our results demonstrated that the effectiveness of H. hebetor did not decrease even during host deprivation for 19 days. Meanwhile, it was observed that mass rearing of the parasitoid could be improved by providing 10 individuals of 5th instar larvae of Ephestia elutella (Lepidoptera: Pyralidae) with a 20% honey-water solution. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hou-Ding Ou
- Institute of Entomology of Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Regions, Guiyang, China
| | - Remzi Atlihan
- Department of Plant Protection, Faculty of Agriculture, University of Van Yüzüncü Yıl, Van, Turkey
| | - Xiu-Qin Wang
- Institute of Entomology of Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Regions, Guiyang, China
| | - Hao-Xi Li
- College of Tobacco Sciences, Guizhou University, Guiyang, China
| | - Xiao-Fei Yu
- College of Tobacco Sciences, Guizhou University, Guiyang, China
| | - Xin Jin
- Guizhou Tobacco Company, Guiyang Branch Company, Guiyang, China
| | - Mao-Fa Yang
- Institute of Entomology of Guizhou University, Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Regions, Guiyang, China
- College of Tobacco Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
17
|
Gribble KE. Brachionus rotifers as a model for investigating dietary and metabolic regulators of aging. ACTA ACUST UNITED AC 2021; 6:1-15. [PMID: 33709041 PMCID: PMC7903245 DOI: 10.3233/nha-200104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Because every species has unique attributes relevant to understanding specific aspects of aging, using a diversity of study systems and a comparative biology approach for aging research has the potential to lead to novel discoveries applicable to human health. Monogonont rotifers, a standard model for studies of aquatic ecology, evolutionary biology, and ecotoxicology, have also been used to study lifespan and healthspan for nearly a century. However, because much of this work has been published in the ecology and evolutionary biology literature, it may not be known to the biomedical research community. In this review, we provide an overview of Brachionus rotifers as a model to investigate nutritional and metabolic regulators of aging, with a focus on recent studies of dietary and metabolic pathway manipulation. Rotifers are microscopic, aquatic invertebrates with many advantages as a system for studying aging, including a two-week lifespan, easy laboratory culture, direct development without a larval stage, sexual and asexual reproduction, easy delivery of pharmaceuticals in liquid culture, and transparency allowing imaging of cellular morphology and processes. Rotifers have greater gene homology with humans than do established invertebrate models for aging, and thus rotifers may be used to investigate novel genetic mechanisms relevant to human lifespan and healthspan. The research on caloric restriction; dietary, pharmaceutical, and genetic interventions; and transcriptomics of aging using rotifers provide insights into the metabolic regulators of lifespan and health and suggest future directions for aging research. Capitalizing on the unique biology of Brachionus rotifers, referencing the vast existing literature about the influence of diet and drugs on rotifer lifespan and health, continuing the development of genetic tools for rotifers, and growing the rotifer research community will lead to new discoveries a better understanding of the biology of aging.
Collapse
|
18
|
Yoon DS, Lee Y, Park JC, Lee MC, Lee JS. Alleviation of tributyltin-induced toxicity by diet and microplastics in the marine rotifer Brachionus koreanus. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123739. [PMID: 33254767 DOI: 10.1016/j.jhazmat.2020.123739] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 06/12/2023]
Abstract
To determine the effects of tributyltin (TBT) upon multiple exposures of diet and microplastic in rotifer, in vivo life parameters were measured. In 10 μg/L TBT-exposed rotifer, the 1 and 0.5 x diet groups resulted in reproduction reduction. However, 10 x diet treatment showed no significant changes in the total fecundity, despite a decrease in daily reproduction. Besides, differences in the lifespan were observed in response to different diet regimens. TBT and/or MP-exposed parental rotifer (F0) showed a significant delay in the pre-reproductive day under 0.5 x diet regimen. In all dietary regimens, exposure to TBT and MP induced an increase in reactive oxygen species, but antioxidant activities were perturbed. To further verify the carryover effect of TBT toxicity, progeny rotifer (F1) obtained from 24 h TBT and/or MP-exposed F0 was used. Interestingly, the faster hatching rate was observed only in F1 obtained from 1 x diet regimen-exposed F0. However, in the 0.5 x diet, the total fecundity was reduced and the pattern of the daily reproduction was collapsed. Thus, the toxicity of TBT can be alleviated by MP and nutrition status, but TBT-induced toxicity and its carryover effect are inevitable.
Collapse
Affiliation(s)
- Deok-Seo Yoon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
19
|
Depeux C, Lemaître JF, Moreau J, Dechaume-Moncharmont FX, Laverre T, Pauhlac H, Gaillard JM, Beltran-Bech S. Reproductive senescence and parental effects in an indeterminate grower. J Evol Biol 2020; 33:1256-1264. [PMID: 32574391 DOI: 10.1111/jeb.13667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022]
Abstract
Reproductive senescence is the decrease of reproductive performance with increasing age and can potentially include trans-generational effects as the offspring produced by old parents might have a lower fitness than those produced by young parents. This negative effect may be caused either by the age of the father, mother or the interaction between the ages of both parents. Using the common woodlouse Armadillidium vulgare, an indeterminate grower, as a biological model, we tested for the existence of a deleterious effect of parental age on fitness components. Contrary to previous findings reported from vertebrate studies, old parents produced both a higher number and larger offspring than young parents. However, their offspring had lower fitness components (by surviving less, producing a smaller number of clutches or not reproducing at all) than offspring born to young parents. Our findings strongly support the existence of trans-generational senescence in woodlice and contradict the belief that old individuals in indeterminate growers contribute the most to recruitment and correspond thereby to the key life stage for population dynamics. Our work also provides rare evidence that the trans-generational effect of senescence can be stronger than direct reproductive senescence in indeterminate growers.
Collapse
Affiliation(s)
- Charlotte Depeux
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex 9, France.,Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 558, Université Lyon 1, Villeurbanne cedex, France
| | - Jean-François Lemaître
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 558, Université Lyon 1, Villeurbanne cedex, France
| | - Jérôme Moreau
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, Dijon, France.,Centre d'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, Villiers-en-bois, France
| | | | - Tiffany Laverre
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex 9, France
| | - Hélène Pauhlac
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex 9, France
| | - Jean-Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 558, Université Lyon 1, Villeurbanne cedex, France
| | - Sophie Beltran-Bech
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex 9, France
| |
Collapse
|
20
|
Monaghan P, Maklakov AA, Metcalfe NB. Intergenerational Transfer of Ageing: Parental Age and Offspring Lifespan. Trends Ecol Evol 2020; 35:927-937. [PMID: 32741650 DOI: 10.1016/j.tree.2020.07.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022]
Abstract
The extent to which the age of parents at reproduction can affect offspring lifespan and other fitness-related traits is important in our understanding of the selective forces shaping life history evolution. In this article, the widely reported negative effects of parental age on offspring lifespan (the 'Lansing effect') is examined. Outlined herein are the potential routes whereby a Lansing effect can occur, whether effects might accumulate across multiple generations, and how the Lansing effect should be viewed as part of a broader framework, considering how parental age affects offspring fitness. The robustness of the evidence for a Lansing effect produced so far, potential confounding variables, and how the underlying mechanisms might best be unravelled through carefully designed experimental studies are discussed.
Collapse
Affiliation(s)
- Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, MVLS, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Alexei A Maklakov
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, MVLS, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
21
|
Hernández CM, van Daalen SF, Caswell H, Neubert MG, Gribble KE. A demographic and evolutionary analysis of maternal effect senescence. Proc Natl Acad Sci U S A 2020; 117:16431-16437. [PMID: 32601237 PMCID: PMC7368264 DOI: 10.1073/pnas.1919988117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Maternal effect senescence-a decline in offspring survival or fertility with maternal age-has been demonstrated in many taxa, including humans. Despite decades of phenotypic studies, questions remain about how maternal effect senescence impacts evolutionary fitness. To understand the influence of maternal effect senescence on population dynamics, fitness, and selection, we developed matrix population models in which individuals are jointly classified by age and maternal age. We fit these models to data from individual-based culture experiments on the aquatic invertebrate, Brachionus manjavacas (Rotifera). By comparing models with and without maternal effects, we found that maternal effect senescence significantly reduces fitness for B. manjavacas and that this decrease arises primarily through reduced fertility, particularly at maternal ages corresponding to peak reproductive output. We also used the models to estimate selection gradients, which measure the strength of selection, in both high growth rate (laboratory) and two simulated low growth rate environments. In all environments, selection gradients on survival and fertility decrease with increasing age. They also decrease with increasing maternal age for late maternal ages, implying that maternal effect senescence can evolve through the same process as in Hamilton's theory of the evolution of age-related senescence. The models we developed are widely applicable to evaluate the fitness consequences of maternal effect senescence across species with diverse aging and fertility schedule phenotypes.
Collapse
Affiliation(s)
| | - Silke F van Daalen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Hal Caswell
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Michael G Neubert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
| | - Kristin E Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
22
|
Natural cryptic variation in epigenetic modulation of an embryonic gene regulatory network. Proc Natl Acad Sci U S A 2020; 117:13637-13646. [PMID: 32482879 DOI: 10.1073/pnas.1920343117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gene regulatory networks (GRNs) that direct animal embryogenesis must respond to varying environmental and physiological conditions to ensure robust construction of organ systems. While GRNs are evolutionarily modified by natural genomic variation, the roles of epigenetic processes in shaping plasticity of GRN architecture are not well understood. The endoderm GRN in Caenorhabditis elegans is initiated by the maternally supplied SKN-1/Nrf2 bZIP transcription factor; however, the requirement for SKN-1 in endoderm specification varies widely among distinct C. elegans wild isotypes, owing to rapid developmental system drift driven by accumulation of cryptic genetic variants. We report here that heritable epigenetic factors that are stimulated by transient developmental diapause also underlie cryptic variation in the requirement for SKN-1 in endoderm development. This epigenetic memory is inherited from the maternal germline, apparently through a nuclear, rather than cytoplasmic, signal, resulting in a parent-of-origin effect (POE), in which the phenotype of the progeny resembles that of the maternal founder. The occurrence and persistence of POE varies between different parental pairs, perduring for at least 10 generations in one pair. This long-perduring POE requires piwi-interacting RNA (piRNA) function and the germline nuclear RNA interference (RNAi) pathway, as well as MET-2 and SET-32, which direct histone H3K9 trimethylation and drive heritable epigenetic modification. Such nongenetic cryptic variation may provide a resource of additional phenotypic diversity through which adaptation may facilitate evolutionary changes and shape developmental regulatory systems.
Collapse
|
23
|
Carvalho MR, Aboujaoude C, Peñagaricano F, Santos JEP, DeVries TJ, McBride BW, Ribeiro ES. Associations between maternal characteristics and health, survival, and performance of dairy heifers from birth through first lactation. J Dairy Sci 2020; 103:823-839. [PMID: 31677831 PMCID: PMC7094727 DOI: 10.3168/jds.2019-17083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/10/2019] [Indexed: 01/08/2023]
Abstract
The objective of this study was to investigate whether health, survival, and performance of dairy heifers from birth through first lactation are associated with parity and health status of their dams. Holstein heifers (n = 1,811) derived from artificial insemination were categorized as (1) daughters of primiparous cows that, consequently, were nonlactating heifers during gestation (Prim-NoL; n = 787); (2) daughters of multiparous cows that did not have any clinical diseases in the previous lactation (Mult-NoCD; n = 638); and (3) daughters of multiparous cows that had at least one clinical disease in the previous lactation (Mult-CD; n = 386). Clinical diseases of the multiparous dams included retained placenta, metritis, mastitis, lameness, and digestive and respiratory problems. Data collected for evaluation of daughters included genotypic and phenotypic characteristics at birth, morbidity, reproductive performance, and culling from birth through 305 d in milk of first lactation. Orthogonal contrasts were used to evaluate the effect of the parity of the dam (Prim-NoL vs. Mult-NoCD + Mult-CD) and the effect of clinical disease occurrence in the previous lactation among multiparous dams (Mult-NoCD vs. Mult-CD). Compared with daughters of multiparous cows, daughters of Prim-NoL were lighter at birth (36 vs. 41 kg), had greater genetic merit for production traits (e.g., genomic estimated breeding value for milk yield: 875 vs. 746 kg), were less likely to leave the herd (17 vs. 28%) and to lose pregnancy as a heifer (9 vs. 14%), calved earlier (703 vs. 711 d old), were less likely to have clinical diseases as a first lactation cow (30 vs. 37%), and had reduced performance in the first lactation when considering their genetic merit (e.g., 305-d yield of energy-corrected milk: 11,270 vs. 11,539 kg). Compared with daughters of Mult-NoCD, daughters of Mult-CD were less likely to have digestive problems as a heifer (17 vs. 27%) and clinical disease as a first lactation cow (32 vs. 42%), but were also more likely to leave the herd as a heifer (32 vs. 25%) even though genetic merit for production traits were similar (e.g., genomic estimated breeding value for milk: 744 vs. 749 kg). In conclusion, both parity and health status of the dam in the previous lactation were associated with morbidity, survival, and performance of their daughters from birth through 305 d in milk of the first lactation and might represent factors affecting developmental programming of dairy heifers in utero.
Collapse
Affiliation(s)
- M R Carvalho
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - C Aboujaoude
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - F Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - J E P Santos
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - T J DeVries
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - B W McBride
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - E S Ribeiro
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada, N1G 2W1.
| |
Collapse
|
24
|
Kynurenic Acid and Its Analogs Are Beneficial Physiologic Attenuators in Bdelloid Rotifers. Molecules 2019; 24:molecules24112171. [PMID: 31185582 PMCID: PMC6600480 DOI: 10.3390/molecules24112171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 12/22/2022] Open
Abstract
The in vivo investigation of kynurenic acid (KYNA) and its analogs is one of the recent exciting topics in pharmacology. In the current study we assessed the biological effects of these molecules on bdelloid rotifers (Philodina acuticornis and Adineta vaga) by monitoring changes in their survival and phenotypical characteristics. In addition to longitudinal (slowly changing) markers (survival, number of rotifers alive and body size index), some dynamic (quickly responding) ones (cellular reduction capacity and mastax contraction frequency) were measured as well. KYNA and its analogs increased longevity, reproduction and growth, whereas reduction capacity and energy-dependent muscular activity decreased conversely. We found that spermidine, a calorie restriction mimetic, exerted similar changes in the applied micro-invertebrates. This characterized systemic profile evoked by the above-mentioned compounds was named beneficial physiologic attenuation. In reference experiments, using a stimulator (cyclic adenosine monophosphate) and a toxin (sodium azide), all parameters changed in the same direction (positively or negatively, respectively), as expected. The currently described adaptive phenomenon in bdelloid rotifers may provide holistic perspectives in translational research.
Collapse
|