1
|
Zeng X, Ma C, Fu W, Xu Y, Wang R, Liu D, Zhang L, Hu N, Li D, Li W. Changes in Type 1 Diabetes-Associated Gut Microbiota Aggravate Brain Ischemia Injury by Affecting Microglial Polarization Via the Butyrate-MyD88 Pathway in Mice. Mol Neurobiol 2025; 62:3764-3780. [PMID: 39322832 DOI: 10.1007/s12035-024-04514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
People with type 1 diabetes (T1D) have a significantly elevated risk of stroke, but the mechanism through which T1D worsens ischemic stroke remains unclear. This study was aimed at investigating the roles of T1D-associated changes in the gut microbiota in aggravating ischemic stroke and the underlying mechanism. Fecal 16SrRNA sequencing indicated that T1D mice and mice with transplantation of T1D mouse gut microbiota had lower relative abundance of butyric acid producers, f_Erysipelotrichaceae and g_Allobaculum, and lower content of butyric acid in feces. After middle cerebral artery occlusion (MCAO), these mice had poorer neurological outcomes and more severe inflammation, but higher expression of myeloid differentiation factor 88 (MyD88) in the ischemic penumbra; moreover, the microglia were inclined to polarize toward the pro-inflammatory type. Administration of butyrate to T1D mice in the drinking water alleviated the neurological damage after MCAO. Butyrate influenced the response and polarization of BV2 and decreased the production of inflammatory cytokines via MyD88 after oxygen-glucose deprivation/reoxygenation. Knocking down MyD88 in the brain alleviated neurological outcomes and decreased the concentrations of inflammatory cytokines in the brain after stroke in mice with transplantation of T1D mouse gut microbiota. Poor neurological outcomes and aggravated inflammatory responses of T1D mice after ischemic stroke may be partly due to differences in microglial polarization mediated by the gut microbiota-butyrate-MyD88 pathway. These findings provide new ideas and potential intervention targets for alleviating neurological damage after ischemic stroke in T1D.
Collapse
MESH Headings
- Animals
- Myeloid Differentiation Factor 88/metabolism
- Gastrointestinal Microbiome
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/microbiology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/metabolism
- Microglia/metabolism
- Microglia/pathology
- Mice
- Male
- Mice, Inbred C57BL
- Brain Ischemia/metabolism
- Brain Ischemia/pathology
- Brain Ischemia/microbiology
- Butyrates/metabolism
- Butyrates/pharmacology
- Signal Transduction
- Cell Polarity/drug effects
- Cytokines/metabolism
- Infarction, Middle Cerebral Artery/complications
- Infarction, Middle Cerebral Artery/pathology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/microbiology
- Butyric Acid/pharmacology
Collapse
Affiliation(s)
- Xianzhang Zeng
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Can Ma
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Wenchao Fu
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Yongmei Xu
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Rui Wang
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Dan Liu
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Lijuan Zhang
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Narisu Hu
- Oral Implant Center, Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Dongmei Li
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Wenzhi Li
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
2
|
Paganini A, Fritschi N, Filippi C, Ritz N, Simmen U, Scheinemann K, Filippi A, Diesch-Furlanetto T. Comparative analysis of salivary cytokine profiles in newly diagnosed pediatric patients with cancer and healthy children. Sci Rep 2025; 15:3544. [PMID: 39875458 PMCID: PMC11775095 DOI: 10.1038/s41598-025-87608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
Salivary cytokines have the potential to serve as biomarkers for evaluating cancer progression and treatment response in specific cancer types. This study explored salivary cytokine profiles in pediatric cancer patients and healthy controls, examining changes during chemotherapy. We conducted a prospective study involving newly diagnosed cancer patients and healthy controls under 19 years old. Saliva samples were collected at diagnosis, and three and six months post-diagnosis for cancer patients, while healthy controls provided samples at a single time point. Cytokine levels were analyzed using Luminex technology. Our study included 19 cancer patients (10 with leukemia, 5 with lymphoma, and 4 with solid tumors) and 128 healthy controls aged 4 to 18 years. At diagnosis, patients with leukemia and solid tumors showed elevated levels of interferon-γ, interleukin (IL)-1α, IL-1β, IL-4, IL-5, IL-8, IL-10, and tumor necrosis factor. After three months, IL-6, IL-10, and inducible protein-10 levels significantly increased, while IL-1α, IL-1β, and IL-8 rose by six months. These findings indicate that salivary cytokines are elevated at diagnosis and during initial treatment phases in pediatric cancer patients, highlighting saliva's potential as a noninvasive medium for early detection of systemic diseases in children.
Collapse
Affiliation(s)
- Alina Paganini
- Department of Oral Surgery, University Center for Dental Medicine Basel, University of Basel, Basel, Switzerland
| | - Nora Fritschi
- Mycobacterial and Migrant Health Research Group, Department of Clinical Research, University of Basel Children's Hospital, University of Basel, Basel, Switzerland
- University Children's Hospital Basel, Basel, Switzerland
- Children's Hospital of Central Switzerland, Lucerne, Switzerland
| | - Cornelia Filippi
- Department of Children and Adolescent Dentistry, University Center for Dental Medicine Basel, University of Basel, Basel, Switzerland
| | - Nicole Ritz
- Mycobacterial and Migrant Health Research Group, Department of Clinical Research, University of Basel Children's Hospital, University of Basel, Basel, Switzerland
- Children's Hospital of Central Switzerland, Lucerne, Switzerland
- Department of Pediatrics, The Royal Children's Hospital Melbourne, The University of Melbourne, Melbourne, Australia
| | - Urs Simmen
- Simmen Statistical Consulting, Basel, Switzerland
| | - Katrin Scheinemann
- Department of Pediatric Oncology/Hematology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
- Faculty of Health Science and Medicine, University Lucerne, Lucerne, Switzerland
- Department of Pediatrics, McMaster Children's Hospital and McMaster University, Hamilton, Canada
| | - Andreas Filippi
- Department of Oral Surgery, University Center for Dental Medicine Basel, University of Basel, Basel, Switzerland
| | - Tamara Diesch-Furlanetto
- Department of Pediatric Oncology/Hematology, University Children's Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Lai F, Fang Y, Cheng C, Zhong X, Zheng W, Lan S, Peng Q, Cai X, Cao T, Zhong C, Gao Y. CDK4 as a Prognostic Marker of Hepatocellular Carcinoma and CDK4 Inhibitors as Potential Therapeutics. Curr Med Chem 2025; 32:343-358. [PMID: 38231074 PMCID: PMC11826894 DOI: 10.2174/0109298673279399240102095116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND The proteins CDK4 and CDK6, which are extremely homologous, control cell cycle entry. For the treatment of breast tumors that include hormone receptors, CDK4 and CDK6 inhibitors have been authorized. The link between CDK4 and liver hepatocellular carcinoma (LIHC), however, has not yet been established. OBJECTIVE The study aimed to explore the link between CDK4 and LIHC and the effect of CDK4 inhibitors on LIHC. METHODS In this study, we have evaluated CDK4's prognostic relevance in LIHC using data from The Cancer Genome Atlas (TCGA). The relationship between clinical-pathologic features and CDK4 expression has been evaluated using the Kruskal-Wallis test, the Wilcoxon signed-rank test, and logistic regression. We have analyzed CDK4 and factors related to the prognosis of HCC using the Kaplan-Meier technique and multivariate Cox regression. Gene set enrichment analysis (GSEA) identified CDK4-related critical pathways. To investigate the connections between CDK4 and cancer immune infiltrates, TCGA data were employed in single-sample gene set enrichment analysis (ssGSEA). For functional validation, CDK4 was chosen since it can be inhibited by recognized CDK4/ 6-inhibitors (e.g., abemaciclib). RESULTS Poorer overall and disease-specific outcomes were linked to high CDK4 expression in HCC patients. GSEA suggested that CDK4 and immune response are closely connected. The amount of Th2 cells infiltrating was positively correlated with CDK4 expression, while the amount of cytotoxic cells infiltrating was negatively correlated, according to ssGSEA. Both in vitro and in vivo, the anti-tumor efficacy of CDK4 inhibitor has been found to be superior to that of sorafenib. CONCLUSION This study suggests a relationship between CDK4 and immune infiltration and prognosis in HCC. Additionally, a CDK4 inhibitor may have anti-tumor properties against hepatocellular cancer.
Collapse
Affiliation(s)
- Fobao Lai
- Department of Oncology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Yingbing Fang
- Department of Hepatobiliary Surgery, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Cong Cheng
- Department of Infectious Disease, Successful Hospital Affiliated to Xiamen University, Xiamen, China
| | - Xuejing Zhong
- Department of Science and Education, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Wanrong Zheng
- College of Medical Nursing, Minxi Vocational and Technical College, Longyan, China
| | - Shiqian Lan
- Department of Digestive Endoscopy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Quanshui Peng
- Department of Hepatobiliary Surgery, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Xiumei Cai
- Department of Digestive Endoscopy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Tiantian Cao
- Department of Oncology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Chengqian Zhong
- Department of Digestive Endoscopy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Yuzhen Gao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Li P, Zhao Y, Hu J, Chen J, Cheng Y, Song M, Han M, Hao X, Wang Y. Preparation, characterization, and antitumor immunity activity of polysaccharide fractions from Radix Tinosporae in vivo. Int J Biol Macromol 2025; 286:138096. [PMID: 39613073 DOI: 10.1016/j.ijbiomac.2024.138096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
To investigate the preliminary structural characteristics and functions of polysaccharides from Radix Tinosporae, a neutral α-glucan polysaccharide, RTP-W with a molecular weight of 14.248 kDa was obtained. The potential therapeutic effect of RTP-W on hepatocellular carcinoma was investigated in vivo. Structural analysis revealed that RTP-W comprises a backbone of (1 → 4)-linked α-D-Glcp units with the occasional occupancy of α-Glcp-(1 → at the O-6 position for every nine α (1 → 4)-D-Glcp unit. Studies showed that RTP-W significantly protects the liver against cancer, extends the survival of mice with liver cancer, and lowers ALT, AST, and GGT levels in their blood. Further investigation revealed that RTP-W reversed the exhaustion of CD8+ T cells by reducing PD-1 expression and promoting cell proliferation and cytokine expression, primarily through the activation of the Akt signaling pathway. These findings indicate that RTP-W has promising potential as an immunomodulatory agent with antitumor effects.
Collapse
Affiliation(s)
- Pingfei Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, Shiyan, Hubei 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yongheng Zhao
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Jiao Hu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, Shiyan, Hubei 442000, China; Department of Pharmacy, Jingzhou, Central Hospital, Hubei 442000, China
| | - Jing Chen
- Department of Integrated Traditional and Western Medicine of Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yinshui Cheng
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Mengnan Song
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Mingqing Han
- Hubei Jinshuiyuan Agricultural Development Co., Ltd., Shiyan, Hubei 442000, China
| | - Xincai Hao
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Yunfu Wang
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, Shiyan, Hubei 442000, China; Institute of Neuroscience, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| |
Collapse
|
5
|
Saraswat I, Goel A. Herbal Remedies for Hepatic Inflammation: Unravelling Pathways and Mechanisms for Therapeutic Intervention. Curr Pharm Des 2025; 31:128-139. [PMID: 39350422 DOI: 10.2174/0113816128348771240925100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/16/2024] [Indexed: 02/18/2025]
Abstract
Inflammation is a universal response of mammalian tissue to harm, comprising reactions to injuries, pathogens, and foreign particles. Liver inflammation is commonly associated with hepatocyte necrosis and apoptosis. These forms of liver cell injury initiate a sequence of events independent of the etiological basis for the inflammation and can result in hepatic disorders. It is also common for liver cancer. This review fundamentally focuses on the molecular pathways involved in hepatic inflammation. This review aims to explore the molecular pathways involved in hepatic inflammation, focusing on arachidonic acid, NF-κB, MAPK, PI3K/Akt, and JAK/STAT pathways. It investigates active compounds in herbal plants and their pharmacological characteristics. The review proposes a unique therapeutic blueprint for managing hepatic inflammation and diseases by modifying these pathways with herbal remedies.
Collapse
Affiliation(s)
- Istuti Saraswat
- Department of Biotechnology, GLA University, 17 km Stone, NH-2 Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh, India
| | - Anjana Goel
- Department of Biotechnology, GLA University, 17 km Stone, NH-2 Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh, India
| |
Collapse
|
6
|
Friedrich AD, Zwirner NW. What immunology has to say about pesticide safety. Front Immunol 2024; 15:1487805. [PMID: 39717784 PMCID: PMC11663841 DOI: 10.3389/fimmu.2024.1487805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
The use of pesticides has enabled the development of contemporary industrial agriculture and significantly increased crop yields. However, they are also considered a source of environmental pollution and a potential hazard to human health. Despite national agencies and the scientific community analyzing pesticide safety, immunotoxicity assays are often not required, poorly designed, or underestimated. Epidemiological evidence indicates that pesticide exposure increases the risk of developing cancer. Therefore, pesticides may not only act as carcinogens per se but also as immunosuppressive agents that create a permissive context for tumor development. Given recent evidence demonstrating the critical role of the immune response in cancer progression, we will highlight the necessity of assessing the potential impacts of pesticides on the immune response, particularly on tumor immunosurveillance. In this Perspective article, we will focus on the need to critically review fundamental aspects of toxicological studies conducted on pesticides to provide a clearer understanding of the risks associated with exposure to these compounds to human health.
Collapse
Affiliation(s)
- Adrián David Friedrich
- Laboratorio de Fisiopatología de la Inmunidad Innata (IBYME-CONICET), Buenos Aires, Argentina
| | - Norberto Walter Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata (IBYME-CONICET), Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Vlasheva M, Katsarova M, Kandilarov I, Zlatanova-Tenisheva H, Gardjeva P, Denev P, Sadakova N, Filipov V, Kostadinov I, Dimitrova S. Echinacea purpurea and Onopordum acanthium Combined Extracts Cause Immunomodulatory Effects in Lipopolysaccharide-Challenged Rats. PLANTS (BASEL, SWITZERLAND) 2024; 13:3397. [PMID: 39683190 DOI: 10.3390/plants13233397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Echinacea purpurea and Onopordum acanthium, which belong to the Asteraceae family, are widely used plants in traditional medicine. Their antioxidant, anti-inflammatory, antiviral, antibacterial, and antitumor effects are well known. However, there are no data on the effects of their combination. The aim of the present study was to combine E. purpurea with O. acanthium to study the in vivo immunomodulatory effect of two combinations and to compare it with that of single plants. Their total polyphenolic and flavonoid content and the amounts of individual compounds characteristic of both species were determined. The influence of the obtained extracts on the serum concentrations of cytokines IFN-γ, TNF-α, and IL-10 in experimental animals with lipopolysaccharide-induced systemic inflammatory response was investigated. This research found that a combination of E. purpurea/O. acanthium in the ratio 1:1 reduced the proinflammatory cytokines TNF-α (244.82 pg/mL) and IFN-γ (1327.92 pg/mL) compared to the LPS-control, respectively, (574.17 pg/mL) and (3354.00 pg/mL), and the combination E. purpurea/O. acanthium in the ratio of 3:1 significantly increased the levels of the anti-inflammatory cytokine IL-10 (1313.95 pg/mL) compared to the LPS-control (760.09 pg/mL). In conclusion, our results could be a basis for future biomedical research on creating phytopreparations with an immunomodulatory effect.
Collapse
Affiliation(s)
- Maria Vlasheva
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| | - Mariana Katsarova
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| | - Ilin Kandilarov
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| | - Hristina Zlatanova-Tenisheva
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| | - Petya Gardjeva
- Department of Microbiology and Immunology, Faculty of Medicine, Medical University of Plovdiv, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| | - Petko Denev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Nora Sadakova
- Clinic of Neurology, St. Panteleimon Hospital Plovdiv, 9 Nicola Vaptsarov Blvd., 4004 Plovdiv, Bulgaria
| | - Viktor Filipov
- Faculty of Medicine, Medical University of Plovdiv, 15A Vasil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| | - Ilia Kostadinov
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| | - Stela Dimitrova
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., 4002 Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, 15A Vassil Aprilov Blvd., 4002 Plovdiv, Bulgaria
| |
Collapse
|
8
|
Gaur V, Tyagi W, Das S, Ganguly S, Bhattacharyya J. CD40 agonist engineered immunosomes modulated tumor microenvironment and showed pro-immunogenic response, reduced toxicity, and tumor free survival in mice bearing glioblastoma. Biomaterials 2024; 311:122688. [PMID: 38943821 DOI: 10.1016/j.biomaterials.2024.122688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/29/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
CD40 agonist antibodies (αCD40) have shown promising anti-tumor response in both preclinical and early clinical studies. However, its systemic administration is associated with immune- and hepato-toxicities which hampers its clinical usage. In addition, αCD40 showed low tumor retention and induced PD-L1 expression which makes tumor microenvironment (TME) immunosuppressive. To overcome these issues, in this study, we have developed a multifunctional Immunosome where αCD40 is conjugated on the surface and RRX-001, a small molecule immunomodulator was encapsulated inside it. Immunosomes showed higher tumor accumulation till 96 h of administration and displayed sustained release of αCD40 in vivo. Immunosomes significantly delayed tumor growth and showed tumor free survival in mice bearing GL-261 glioblastoma by increasing the population of CD45+CD8+ T cells, CD45+CD20+ B cells, CD45+CD11c+ DCs and F4/80+CD86+ cells in TME. Immunosome significantly reduced the population of T-regulatory cells, M2 macrophage, and MDSCs and lowered the PD-L1 expression. Moreover, Immunosomes significantly enhanced the levels of Th1 cytokines (IFN-γ, IL-6, IL-2) over Th2 cytokines (IL-4 and IL-10) which supported anti-tumor response. Most interestingly, Immunosomes averted the in vivo toxicities associated with free αCD40 by lowering the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), IL-6, IL-1α and reduced the degree of liver damage. In addition, Immunosomes treated long-term surviving mice showed tumor specific immune memory response which prevented tumor growth upon rechallenge. Our results suggested that this novel formulation can be further explored in clinics to improve in vivo anti-tumor efficacy of αCD40 with long-lasting tumor specific immunity while reducing the associated toxicities.
Collapse
Affiliation(s)
- Vidit Gaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, India; Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, India
| | - Witty Tyagi
- Molecular Oncology Laboratory, National Institute of Immunology, Delhi, India
| | - Sanjeev Das
- Molecular Oncology Laboratory, National Institute of Immunology, Delhi, India
| | - Surajit Ganguly
- Department of Molecular Medicine, Jamia Hamdard University, Delhi, India
| | - Jayanta Bhattacharyya
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, India; Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, India.
| |
Collapse
|
9
|
Mauro E, Rodríguez-Perálvarez M, D'Alessio A, Crespo G, Piñero F, De Martin E, Colmenero J, Pinato DJ, Forner A. New Scenarios in Liver Transplantation for Hepatocellular Carcinoma. Liver Int 2024. [PMID: 39494583 DOI: 10.1111/liv.16142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND AND AIMS Despite liver transplantation (LT) is considered the optimal treatment for hepatocellular carcinoma (HCC), particularly in patients with impaired liver function, the shortage of donors has forced the application of very restrictive criteria for selecting ideal candidates for whom LT can offer the best outcome. With the evolving LT landscape due to the advent of direct-acting antivirals (DAAs) and the steady increase in donors, major efforts have been made to expand the transplant eligibility criteria for HCC. In addition, the emergence of immune checkpoint inhibitors (ICIs) for the treatment of HCC, with demonstrated efficacy in earlier stages, has revolutionized the therapeutic approach for these patients, and their integration in the setting of LT is challenging. Management of immunological compromise from ICIs, including the wash-out period before LT and post-LT immunosuppression adjustments, is crucial to balance the risk of graft rejection against HCC recurrence. Additionally, the effects of increased immunosuppression on non-hepatic complications must be understood to prevent them from becoming obstacles to long-term OS. METHODS AND RESULTS In this review, we will evaluate the emerging evidence and its implications for the future of LT in HCC. Addressing these novel challenges and opportunities, while integrating the current clinical evidence with predictive algorithms, would ensure a fair balance between individual patient needs and the overall population benefit in the LT system.
Collapse
Affiliation(s)
- Ezequiel Mauro
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, ICMDM, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Manuel Rodríguez-Perálvarez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Department of Hepatology and Liver Transplantation, Hospital Universitario Reina Sofía, Universidad de Córdoba, IMIBIC, CIBERehd, Córdoba, Spain
| | - Antonio D'Alessio
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Gonzalo Crespo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Liver Transplant Unit, Liver Unit, ICMDM, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Federico Piñero
- School of Medicine, Hospital Universitario Austral, Austral University, Buenos Aires, Argentina
| | - Eleonora De Martin
- AP-HP Hôpital Paul-Brousse, Centre Hépato-Biliaire, INSERM Unit 1193, Université Paris-Saclay, FHU Hepatinov, Villejuif, France
| | - Jordi Colmenero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Liver Transplant Unit, Liver Unit, ICMDM, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - David James Pinato
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Alejandro Forner
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, ICMDM, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| |
Collapse
|
10
|
Gainor JF, Patel MR, Weber JS, Gutierrez M, Bauman JE, Clarke JM, Julian R, Scott AJ, Geiger JL, Kirtane K, Robert-Tissot C, Coder B, Tasneem M, Sun J, Zheng W, Gerbereux L, Laino A, Porichis F, Pollard JR, Hou P, Sehgal V, Chen X, Morrissey M, Daghestani HN, Feldman I, Srinivasan L, Frederick JP, Brown M, Aanur P, Meehan R, Burris HA. T-cell Responses to Individualized Neoantigen Therapy mRNA-4157 (V940) Alone or in Combination with Pembrolizumab in the Phase 1 KEYNOTE-603 Study. Cancer Discov 2024; 14:2209-2223. [PMID: 39115419 DOI: 10.1158/2159-8290.cd-24-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/06/2024] [Accepted: 07/23/2024] [Indexed: 11/02/2024]
Abstract
mRNA-4157 (V940) is an individualized neoantigen therapy targeting up to 34 patient-specific tumor neoantigens to induce T-cell responses and potentiate antitumor activity. We report mechanistic insights into the immunogenicity of mRNA-4157 via characterization of T-cell responses to neoantigens from the first-in-human, phase 1, KEYNOTE-603 study (NCT03313778) in patients with resected non-small cell lung cancer (Part A: 1-mg mRNA-4157, n = 4) or resected cutaneous melanoma (Part D: 1-mg mRNA-4157 + 200-mg pembrolizumab, n = 12). Safety, tolerability, and immunogenicity were assessed. All patients experienced ≥1 treatment-emergent adverse event; there were no grade 4/5 adverse events or dose-limiting toxicities. mRNA-4157 alone induced consistent de novo and strengthened preexisting T-cell responses to targeted neoantigens. Following combination therapy, sustained mRNA-4157-induced neoantigen-specific T-cell responses and expansion of cytotoxic CD8 and CD4 T cells were observed. These findings show the potential of a novel mRNA individualized neoantigen therapy approach in oncology. Significance: The safety and immunogenicity results from this phase 1 study of mRNA-4157 as adjuvant monotherapy or combination therapy with pembrolizumab show generation of de novo and enhancement of existing neoantigen-specific T-cell responses and provide mechanistic proof of concept to support further development of mRNA-4157 for patients with resected solid tumors. See related commentary by Berraondo et al., p. 2021.
Collapse
Affiliation(s)
| | - Manish R Patel
- Florida Cancer Specialists, Sarasota, Florida
- Sarah Cannon Research Institute, Nashville, Tennessee
| | - Jeffrey S Weber
- Perlmutter Cancer Center at NYU Langone Health, New York, New York
| | | | - Julie E Bauman
- George Washington University Cancer Center, Washington, District of Columbia
| | | | | | - Aaron J Scott
- University of Arizona Cancer Center, Tucson, Arizona
| | | | - Kedar Kirtane
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | | | | | - Jing Sun
- Moderna, Inc., Cambridge, Massachusetts
| | - Wei Zheng
- Moderna, Inc., Cambridge, Massachusetts
| | | | | | | | | | | | | | - Xing Chen
- Moderna, Inc., Cambridge, Massachusetts
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sun J, Li Y, Bie B, Tian H, Li J, Yang L, Zhou Z, Mu Y, Li Z. Dystrobrevin beta is a promising prognostic biomarker and therapeutic target for hepatocellular carcinoma. Am J Transl Res 2024; 16:6072-6096. [PMID: 39544815 PMCID: PMC11558408 DOI: 10.62347/fcfo5076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/25/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVES Dystrobrevin beta (DTNB) is a constituent of the dystrophin-associated protein complex (DPC). Our previous RNA sequencing (RNA-seq) study revealed that knockdown of the oncogenic long noncoding RNA (lncRNA) HOXD cluster antisense RNA 1 (HOXD-AS1) in hepatocellular carcinoma (HCC) cells could reduce the expression levels of DTNB. However, the association between DTNB and HCC remains uncertain. METHODS The upregulation of DTNB in HCC cell lines and the regulatory effect of HOXD-AS1 on its expression were verified using quantitative real-time PCR (qRT-PCR). The potential clinical significance, biological functions and underlying mechanisms of DTNB in HCC were investigated through bioinformatics analysis. The high expression of DTNB was validated in HCC tissues, and its biological function in HCC was investigated by performing loss-of-function assays in vitro. RESULTS DTNB was highly expressed in HCC cells and was positively regulated by the lncRNA HOXD-AS1 in several HCC cell lines. The upregulation of DTNB was significantly associated with T stage, histologic grade, tumour status, adjacent hepatic tissue inflammation, alpha-fetoprotein (AFP) level, and unfavorable prognosis, serving as an independent risk indicator associated with overall survival with substantial diagnostic and prognostic implications for HCC. DTNB was also closely linked to immune cell infiltration, immunotherapy, and sensitivity to anti-HCC drugs. Genes co-expressed with DTNB in HCC were identified, and functional enrichment analysis indicated that DTNB may function in HCC by regulating the cell cycle. A potential ceRNA (competing endogenous RNA) regulatory axis of HOXD-AS1/miR-139-3p/DTNB in HCC was predicted and validated. The high expression of DTNB was validated in our HCC cohort and loss-of-function assays revealed that DTNB knockdown can suppress the proliferation, migration, and invasion of HCC cells and trigger cell cycle arrest at the G0/G1 phase. CONCLUSIONS DTNB, a downstream target of the lncRNA HOXD-AS1, has potential utility as a prognostic biomarker and a target for the treatment of HCC.
Collapse
Affiliation(s)
- Jin Sun
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Center for Tumour and Immunology, The Precision Medical Institute, Xi’an Jiaotong UniversityXi’an 710115, Shaanxi, China
| | - Yingnan Li
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Center for Tumour and Immunology, The Precision Medical Institute, Xi’an Jiaotong UniversityXi’an 710115, Shaanxi, China
| | - Beibei Bie
- Department of Pharmacy, Medical School, Xi’an Peihua UniversityXi’an 710125, Shaanxi, China
| | - Hongwei Tian
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Center for Tumour and Immunology, The Precision Medical Institute, Xi’an Jiaotong UniversityXi’an 710115, Shaanxi, China
| | - Jun Li
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Center for Tumour and Immunology, The Precision Medical Institute, Xi’an Jiaotong UniversityXi’an 710115, Shaanxi, China
| | - Lan Yang
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Zhe Zhou
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Yanhua Mu
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Center for Tumour and Immunology, The Precision Medical Institute, Xi’an Jiaotong UniversityXi’an 710115, Shaanxi, China
| | - Zongfang Li
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Shaanxi Provincial Clinical Research Center for Hepatic and Splenic Diseases, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
- Center for Tumour and Immunology, The Precision Medical Institute, Xi’an Jiaotong UniversityXi’an 710115, Shaanxi, China
- Department of Geriatric General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| |
Collapse
|
12
|
Zheng X, Song X, Zhang B, Chen X, Zhang Y, Luo Q, Li Z, Deng Z, Xu R, Peng L, Xie C. Evaluating the impact of treatment sequencing on outcomes in hepatocellular carcinoma: a comparative analysis of TACE and systemic therapies. Clin Exp Med 2024; 24:238. [PMID: 39382711 PMCID: PMC11481669 DOI: 10.1007/s10238-024-01500-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
This study aimed to evaluate how the timing of transarterial chemoembolization (TACE) relative to systemic therapy (tyrosine-kinase inhibitors [TKIs] and immune checkpoint inhibitors [ICIs]) influences oncological outcomes in patients with hepatocellular carcinoma (HCC). A retrospective analysis was conducted on HCC patients treated with TACE plus TKIs and ICIs from January 2018 to February 2023. We compared objective response rate (ORR), disease control rate (DCR), overall survival (OS), and progression-free survival (PFS) between patients receiving TACE before versus after systemic therapies. Multivariate Cox regression analyses identified potential prognostic factors. Of the 194 patients enrolled, 111 received TACE before systemic therapies, and 83 after. The median age at diagnosis was 52.8 years. There were no significant differences in ORR (40.72% vs. 30.41%, p = 0.989) or DCR (48.45% vs. 35.57%, p = 0.770) between the groups. Likewise, OS (18.73 vs. 18.20 months, p = 0.091) and PFS (11.53 vs. 10.05 months, p = 0.336) were similar regardless of treatment sequence. In the result of Cox analysis, a 20% decrease in AFP from baseline at one month was associated with improved OS (HR = 0.35, 95% CI 0.17-0.70, p = 0.003) and PFS (HR = 0.69, 95% CI 0.49-0.96, p = 0.028). Large tumor size (≥ 10 cm) was a poor prognostic factor for OS (HR = 2.12, 95% CI 1.07-4.21, p = 0.032), and the presence of portal vein tumor thrombus adversely affected PFS (HR = 2.31, 95% CI 1.47-3.62, p < 0.001). The sequencing of TACE and systemic therapies does not significantly impact the prognosis of advanced HCC. A 20% reduction in AFP within one month of treatment commencement emerges as a protective prognostic factor for HCC.
Collapse
Affiliation(s)
- XingRong Zheng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, 600# TianHe Road, Guangzhou, 510630, Guangdong Province, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, China
| | - Xin Song
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, 600# TianHe Road, Guangzhou, 510630, Guangdong Province, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, China
| | - BoXiang Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, 600# TianHe Road, Guangzhou, 510630, Guangdong Province, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, China
| | - XiYao Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, 600# TianHe Road, Guangzhou, 510630, Guangdong Province, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, China
| | - YeQiong Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, 600# TianHe Road, Guangzhou, 510630, Guangdong Province, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, China
| | - QiuMin Luo
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, 600# TianHe Road, Guangzhou, 510630, Guangdong Province, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, China
| | - ZhiPeng Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, 600# TianHe Road, Guangzhou, 510630, Guangdong Province, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, China
| | - ZheXuan Deng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, 600# TianHe Road, Guangzhou, 510630, Guangdong Province, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, China
| | - RuiXuan Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, 600# TianHe Road, Guangzhou, 510630, Guangdong Province, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, China
| | - Liang Peng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, 600# TianHe Road, Guangzhou, 510630, Guangdong Province, China.
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China.
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, China.
| | - Chan Xie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, 600# TianHe Road, Guangzhou, 510630, Guangdong Province, China.
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510630, Guangdong Province, China.
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, China.
| |
Collapse
|
13
|
Arpinati L, Carradori G, Scherz-Shouval R. CAF-induced physical constraints controlling T cell state and localization in solid tumours. Nat Rev Cancer 2024; 24:676-693. [PMID: 39251836 DOI: 10.1038/s41568-024-00740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
Solid tumours comprise cancer cells that engage in continuous interactions with non-malignant cells and with acellular components, forming the tumour microenvironment (TME). The TME has crucial and diverse roles in tumour progression and metastasis, and substantial efforts have been dedicated into understanding the functions of different cell types within the TME. These efforts highlighted the importance of non-cell-autonomous signalling in cancer, mediating interactions between the cancer cells, the immune microenvironment and the non-immune stroma. Much of this non-cell-autonomous signalling is mediated through acellular components of the TME, known as the extracellular matrix (ECM), and controlled by the cells that secrete and remodel the ECM - the cancer-associated fibroblasts (CAFs). In this Review, we delve into the complex crosstalk among cancer cells, CAFs and immune cells, highlighting the effects of CAF-induced ECM remodelling on T cell functions and offering insights into the potential of targeting ECM components to improve cancer therapies.
Collapse
Affiliation(s)
- Ludovica Arpinati
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Giulia Carradori
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
14
|
Hunzeker ZE, Zhao L, Kim AM, Parker JM, Zhu Z, Xiao H, Bai Q, Wakefield MR, Fang Y. The role of IL-22 in cancer. Med Oncol 2024; 41:240. [PMID: 39231878 DOI: 10.1007/s12032-024-02481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Interleukin-22, discovered in the year of 2000, is a pleiotropic Th17 cytokine from the IL-10 family of cytokines. IL-22 signals through the type 2 cytokine receptor complex IL-22R and predominantly activates STAT3. This pathway leads to the transcription of several different types of genes, giving IL-22 context-specific functions ranging from inducing antimicrobial peptide expression to target cell proliferation. In recent years, it has been shown that IL-22 is involved in the pathogenesis of neoplasia in some cancers through its pro-proliferative and anti-apoptotic effects. This review highlights studies with recent discoveries and conclusions drawn on IL-22 and its involvement and function in various cancers. Such a study may be helpful to better understand the role of IL-22 in cancer so that new treatment could be developed targeting IL-22.
Collapse
Affiliation(s)
- Zachary E Hunzeker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Department of Internal Medicine, University of Texas Houston Health Science Center, Houston, TX, USA
| | - Lei Zhao
- Department of Respiratory Medicine, the 2nd People's Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Austin M Kim
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Jacob M Parker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Ziwen Zhu
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Huaping Xiao
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA.
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
15
|
Liu L, Chen J, Ye F, Chu F, Rao C, Wang Y, Yan Y, Wu J. Prognostic value of oxidative phosphorylation-related genes in hepatocellular carcinoma. Discov Oncol 2024; 15:258. [PMID: 38960931 PMCID: PMC11222354 DOI: 10.1007/s12672-024-01129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is the most prevalent malignancies worldwide. Recently, oxidative phosphorylation (OXPHOS) has received extensive concern as an emerging target in antitumor therapy. However, the OXPHOS-involved underlying genes and clinical utilization in HCC remain worth exploring. The present research aimed to create an OXPHOS-relevant signature in HCC. PATIENTS AND METHODS In this study, the prognostic signature genes linked with OXPHOS were identified, and prognostic models were built using least absolute shrinkage and selection operator (LASSO) cox regression analysis. Furthermore, the combination study of immune microenvironment and signature genes looked into the involvement of immune cells in signature-based genes in HCC. Following that, chemotherapeutic drug sensitivity and immunotherapy analysis was implemented to predict clinical efficacy in HCC patients. Finally, clinical samples were collected to measure the expression of OXPHOS-related signature genes. RESULTS Following a series of screens, six prognostic signature genes related with OXPHOS were identified: MRPS23, MPV17, MAPK3, IGF2BP2, CDK5, and IDH2, on which a risk model was built. The findings revealed a significant drop in the survival rate of HCC patients as their risk score increased. Meanwhile, independent prognostic study demonstrated that the risk score could accurately identify HCC patients. Immuno-microenvironmental correlation research suggested that the prognostic characteristics could serve as a reference index for both immunotherapy and chemotherapy. Finally, RT-qPCR exhibited a trend in signature gene expression that was consistent with the results. CONCLUSION In this study, a total of six prognostic genes associated with OXPHOS were selected and a prognostic model was constructed, providing an essential reference for the study of OXPHOS in HCC.
Collapse
Affiliation(s)
- Luzheng Liu
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Jiacheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Fei Ye
- Department of Blood Cell Therapy, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
| | - Fengran Chu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Chaoluan Rao
- Department of Nursing, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
| | - Yong Wang
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
| | - Yanggang Yan
- Department of Interventional Radiology and Vascular Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China.
| | - Jincai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China.
| |
Collapse
|
16
|
Xiao Y, Hu Y. Comprehensive Bioinformatics Analysis and Machine Learning of TTK as a Transhepatic Arterial Chemoembolization Resistance Target in Hepatocellular Carcinoma. Mol Biotechnol 2024:10.1007/s12033-024-01233-3. [PMID: 38954354 DOI: 10.1007/s12033-024-01233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
Transhepatic arterial chemoembolization (TACE) is the standard treatment for intermediate-stage hepatocellular carcinoma (HCC). However, a significant proportion of patients are non-responders or poor responders to TACE. Therefore, our aim is to identify the targets of TACE responders or non-responders. GSE104580 was utilized to identify differentially expressed genes (DEGs) in TACE responders and non-responders. Following the protein-protein interaction (PPI) analysis, hub genes were identified using the MCC and MCODE plugins in Cytoscape software, as well as LASSO regression analysis. Gene set enrichment analysis (GSEA) was performed to investigate potential mechanisms. Subsequently, the hub genes were validated using data from The Cancer Genome Atlas (TCGA), the Cancer Cell Line Encyclopedia (CCLE), and The Human Protein Atlas (HPA) database. To evaluate the clinical significance of the hub genes, Kaplan-Meier (KM) survival and Cox regression analysis were employed. A total of 375 DEGs were identified, with 126 remaining following PPI analysis, and TTK, a dual-specificity protein kinase associated with cell proliferation, was ultimately identified as the hub gene through multiple screening methods. Data analysis from TCGA, CCLE, and HPA databases revealed elevated TTK expression in HCC tissues. GSEA indicated that the cell cycle, farnesoid X receptor pathway, PPAR pathway, FOXM1 pathway, E2F pathway, and ferroptosis could be potential mechanisms for TACE non-responders. Analysis of immune cell infiltration showed a significant correlation between TTK and Th2 cells. KM and Cox analysis suggested that HCC patients with high TTK expression had a worse prognosis. TTK may play a pivotal role in HCC patients' response to TACE therapy and could be linked to the prognosis of these patients.
Collapse
Affiliation(s)
- Yangyang Xiao
- Department of Gerontology, Jiangxi University of Traditional Chinese Medicine Affiliated Hospital, Nanchang, Jiangxi Province, China
| | - Youwen Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No.1 Minde Rd, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
17
|
Li J, Cheng C, Zhang J. An analysis of AURKB's prognostic and immunological roles across various cancers. J Cell Mol Med 2024; 28:e18475. [PMID: 38898693 PMCID: PMC11187167 DOI: 10.1111/jcmm.18475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Aurora kinase B (AURKB), an essential regulator in the process of mitosis, has been revealed through various studies to have a significant role in cancer development and progression. However, the specific mechanisms remain poorly understood. This study, therefore, seeks to elucidate the multifaceted role of AURKB in diverse cancer types. This study utilized bioinformatics techniques to examine the transcript, protein, promoter methylation and mutation levels of AURKB. The study further analysed associations between AURKB and factors such as prognosis, pathological stage, biological function, immune infiltration, tumour mutational burden (TMB) and microsatellite instability (MSI). In addition, immunohistochemical staining data of 50 cases of renal clear cell carcinoma and its adjacent normal tissues were collected to verify the difference in protein expression of AURKB in the two tissues. The results show that AURKB is highly expressed in most cancers, and the protein level of AURKB and the methylation level of its promoter vary among cancer types. Survival analysis showed that AURKB was associated with overall survival in 12 cancer types and progression-free survival in 11 cancer types. Elevated levels of AURKB were detected in the advanced stages of 10 different cancers. AURKB has a potential impact on cancer progression through its effects on cell cycle regulation as well as inflammatory and immune-related pathways. We observed a strong association between AURKB and immune cell infiltration, immunomodulatory factors, TMB and MSI. Importantly, we confirmed that the AURKB protein is highly expressed in kidney renal clear cell carcinoma (KIRC). Our study reveals that AURKB may be a potential biomarker for pan-cancer and KIRC.
Collapse
Affiliation(s)
- Jun Li
- Department of UrologyThe First Affiliated Hospital of Bengbu Medical UniversityBengbuChina
| | - Cui Cheng
- Department of Gynaecological OncologyThe First Affiliated Hospital of Bengbu Medical UniversityBengbuChina
| | - Jiajun Zhang
- Department of UrologyThe First Affiliated Hospital of Bengbu Medical UniversityBengbuChina
| |
Collapse
|
18
|
Lee AV, Nestler KA, Chiappinelli KB. Therapeutic targeting of DNA methylation alterations in cancer. Pharmacol Ther 2024; 258:108640. [PMID: 38570075 DOI: 10.1016/j.pharmthera.2024.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
DNA methylation is a critical component of gene regulation and plays an important role in the development of cancer. Hypermethylation of tumor suppressor genes and silencing of DNA repair pathways facilitate uncontrolled cell growth and synergize with oncogenic mutations to perpetuate cancer phenotypes. Additionally, aberrant DNA methylation hinders immune responses crucial for antitumor immunity. Thus, inhibiting dysregulated DNA methylation is a promising cancer therapy. Pharmacologic inhibition of DNA methylation reactivates silenced tumor suppressors and bolster immune responses through induction of viral mimicry. Now, with the advent of immunotherapies and discovery of the immune-modulatory effects of DNA methylation inhibitors, there is great interest in understanding how targeting DNA methylation in combination with other therapies can enhance antitumor immunity. Here, we describe the role of aberrant DNA methylation in cancer and mechanisms by which it promotes tumorigenesis and modulates immune responses. Finally, we review the initial discoveries and ongoing efforts to target DNA methylation as a cancer therapeutic.
Collapse
Affiliation(s)
- Abigail V Lee
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Kevin A Nestler
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
19
|
Salem R, Greten TF. Interventional radiology meets immuno-oncology for hepatocellular carcinoma. J Hepatol 2024; 80:967-976. [PMID: 35988688 DOI: 10.1016/j.jhep.2022.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 12/04/2022]
Abstract
Locoregional and systemic therapies are the most used treatment options for patients with hepatocellular carcinoma (HCC). Interventional radiologists have improved and developed novel protocols and devices for both intratumoural ablative approaches with curative intent and various transarterial intrahepatic treatment options, which have continuously improved patient outcomes. Two large phase III randomised clinical trials have demonstrated the efficacy of different immune checkpoint inhibitors either as single agents or in combination in the first-line setting and immunotherapy has become the standard first-line treatment option for patients with advanced HCC. Herein, we discuss advances and perspectives in the area of interventional radiology (IR) and immune-oncology (IO). We summarise results from recent studies and provide an overview of ongoing studies in IR and IO. Based on the significant advances in both areas, we propose that IR and IO need to cover the emerging "discipline" of IR-IO, in which we develop and test novel approaches to combine locoregional therapies with immunotherapy, in order to develop sufficient evidence for them to be considered standard of care for patients with HCC in the near future.
Collapse
Affiliation(s)
- Riad Salem
- Department of Radiology, Northwestern Feinberg School of Medicine, Chicago, IL, USA.
| | - Tim F Greten
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, Bethesda MD, USA; NCI CCR Liver Cancer Program, Center for Cancer Research, NCI, Bethesda MD, USA
| |
Collapse
|
20
|
Li CC, Liu M, Lee HP, Wu W, Ma L. Heterogeneity in Liver Cancer Immune Microenvironment: Emerging Single-Cell and Spatial Perspectives. Semin Liver Dis 2024; 44:133-146. [PMID: 38788780 DOI: 10.1055/s-0044-1787152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Primary liver cancer is a solid malignancy with a high mortality rate. The success of immunotherapy has shown great promise in improving patient care and highlights a crucial need to understand the complexity of the liver tumor immune microenvironment (TIME). Recent advances in single-cell and spatial omics technologies, coupled with the development of systems biology approaches, are rapidly transforming the landscape of tumor immunology. Here we review the cellular landscape of liver TIME from single-cell and spatial perspectives. We also discuss the cellular interaction networks within the tumor cell community in regulating immune responses. We further highlight the challenges and opportunities with implications for biomarker discovery, patient stratification, and combination immunotherapies.
Collapse
Affiliation(s)
- Caiyi Cherry Li
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Meng Liu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Hsin-Pei Lee
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Wenqi Wu
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
21
|
Golonko A, Pienkowski T, Swislocka R, Orzechowska S, Marszalek K, Szczerbinski L, Swiergiel AH, Lewandowski W. Dietary factors and their influence on immunotherapy strategies in oncology: a comprehensive review. Cell Death Dis 2024; 15:254. [PMID: 38594256 PMCID: PMC11004013 DOI: 10.1038/s41419-024-06641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Immunotherapy is emerging as a promising avenue in oncology, gaining increasing importance and offering substantial advantages when compared to chemotherapy or radiotherapy. However, in the context of immunotherapy, there is the potential for the immune system to either support or hinder the administered treatment. This review encompasses recent and pivotal studies that assess the influence of dietary elements, including vitamins, fatty acids, nutrients, small dietary molecules, dietary patterns, and caloric restriction, on the ability to modulate immune responses. Furthermore, the article underscores how these dietary factors have the potential to modify and enhance the effectiveness of anticancer immunotherapy. It emphasizes the necessity for additional research to comprehend the underlying mechanisms for optimizing the efficacy of anticancer therapy and defining dietary strategies that may reduce cancer-related morbidity and mortality. Persistent investigation in this field holds significant promise for improving cancer treatment outcomes and maximizing the benefits of immunotherapy.
Collapse
Affiliation(s)
- Aleksandra Golonko
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Tomasz Pienkowski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland.
| | - Renata Swislocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351, Bialystok, Poland
| | - Sylwia Orzechowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Krystian Marszalek
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
| | - Lukasz Szczerbinski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Artur Hugo Swiergiel
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Faculty of Biology, Department of Animal and Human Physiology, University of Gdansk, W. Stwosza 59, 80-308, Gdansk, Poland
| | - Wlodzimierz Lewandowski
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351, Bialystok, Poland
| |
Collapse
|
22
|
Li J, Liu Y, Zheng R, Qu C, Li J. Molecular mechanisms of TACE refractoriness: Directions for improvement of the TACE procedure. Life Sci 2024; 342:122540. [PMID: 38428568 DOI: 10.1016/j.lfs.2024.122540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Transcatheter arterial chemoembolisation (TACE) is the standard of care for intermediate-stage hepatocellular carcinoma and selected patients with advanced hepatocellular carcinoma. However, TACE does not achieve a satisfactory objective response rate, and the concept of TACE refractoriness has been proposed to identify patients who do not fully benefit from TACE. Moreover, repeated TACE is necessary to obtain an optimal and sustained anti-tumour response, which may damage the patient's liver function. Therefore, studies have recently been performed to improve the effectiveness of TACE. In this review, we summarise the detailed molecular mechanisms associated with TACE responsiveness and relapse after this treatment to provide more effective targets for adjuvant therapy while helping to improve TACE regimens.
Collapse
Affiliation(s)
- Jiahao Li
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China; The Public Laboratory Platform of the First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yingnan Liu
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Ruipeng Zheng
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Chao Qu
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China; The Public Laboratory Platform of the First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jiarui Li
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
23
|
Chen J, Sun S, Li H, Cai X, Wan C. IL-22 signaling promotes sorafenib resistance in hepatocellular carcinoma via STAT3/CD155 signaling axis. Front Immunol 2024; 15:1373321. [PMID: 38596684 PMCID: PMC11003268 DOI: 10.3389/fimmu.2024.1373321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Sorafenib is currently the first-line treatment for patients with advanced hepatocellular carcinoma (HCC). Nevertheless, sorafenib resistance remains a huge challenge in the clinic. Therefore, it is urgent to elucidate the mechanisms underlying sorafenib resistance for developing novel treatment strategies for advanced HCC. In this study, we aimed to investigate the role and mechanisms of interleukin-22 (IL-22) in sorafenib resistance in HCC. Methods The in vitro experiments using HCC cell lines and in vivo studies with a nude mouse model were used. Calcium staining, chromatin immunoprecipitation, lactate dehydrogenase release and luciferase reporter assays were employed to explore the expression and roles of IL-22, STAT3 and CD155 in sorafenib resistance. Results Our clinical results demonstrated a significant correlation between elevated IL-22 expression and poor prognosis in HCC. Analysis of transcriptomic data from the phase-3 STORM-trial (BIOSTORM) suggested that STAT3 signaling activation and natural killer (NK) cell infiltration may associate sorafenib responses. STAT3 signaling could be activated by IL-22 administration in HCC cells, and then enhanced sorafenib resistance in HCC cells by promoting cell proliferation and reducing apoptosis in vitro and in vivo. Further, we found IL-22/STAT3 axis can transcriptionally upregulate CD155 expression in HCC cells, which could significantly reduce NK cell-mediated HCC cell lysis in a co-culture system. Conclusions Collectively, IL-22 could contribute to sorafenib resistance in HCC by activating STAT3/CD155 signaling axis to decrease the sensitivities of tumor cells to sorafenib-mediated direct cytotoxicity and NK cell-mediated lysis. These findings deepen the understanding of how sorafenib resistance develops in HCC in terms of IL-22/STAT3 signaling pathway, and provide potential targets to overcome sorafenib resistance in patients with advanced HCC.
Collapse
Affiliation(s)
- Junzhang Chen
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiran Sun
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Li
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiong Cai
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chidan Wan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
LIU JUN, LI WENLI, LU RUYUE, XU JIAQING, JIANG CHUNHUI, DUAN JUNLIN, ZHANG LINGZHI, WANG GUANFU, CHEN JIAXI. Investigation of the feasibility of NRAV as a biomarker for hepatocellular carcinoma. Oncol Res 2024; 32:717-726. [PMID: 38560576 PMCID: PMC10972727 DOI: 10.32604/or.2023.043575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/23/2023] [Indexed: 04/04/2024] Open
Abstract
The long non-coding RNA, Negative Regulator of Antiviral Response (NRAV) has been identified as a participant in both respiratory virus replication and immune checkpoints, however, its involvement in pan-cancer immune regulation and prognosis, particularly those of hepatocellular carcinoma (HCC), remains unclear. To address this knowledge gap, we analyzed expression profiles obtained from The Cancer Genome Atlas (TCGA) database, comparing normal and malignant tumor tissues. We found that NRAV expression is significantly upregulated in tumor tissues compared to adjacent nontumor tissues. Kaplan-Meier (K-M) analysis revealed the prognostic power of NRAV, wherein overexpression was significantly linked to reduced overall survival in a diverse range of tumor patients. Furthermore, noteworthy associations were observed between NRAV, immune checkpoints, immune cell infiltration, genes related to autophagy, epithelial-mesenchymal transition (EMT), pyroptosis, tumor mutational burden (TMB), and microsatellite instability (MSI) across different cancer types, including HCC. Moreover, NRAV upregulation expression was associated with multiple pathological stages by clinical observations. Furthermore, our investigation revealed a substantial elevation in the expression of NRAV in both HCC tumor tissues and cells compared to normal tissues and cells. The inhibition of NRAV resulted in the inhibition of cell proliferation, migration, and invasion in HCC cells, while also influencing the expression of CD274 (PD-L1) and CD44, along with various biomarkers associated with EMT, autophagy, and pyroptosis. The aforementioned results propose NRAV as a promising prognostic biomarker for HCC.
Collapse
Affiliation(s)
- JUN LIU
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Taizhou, China
- Department of Clinical Laboratory, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - WENLI LI
- Department of Clinical Laboratory, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - RUYUE LU
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Taizhou, China
| | - JIAQING XU
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Taizhou, China
| | - CHUNHUI JIANG
- School of Basic Medical Sciences Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - JUNLIN DUAN
- Department of Clinical Laboratory, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - LINGZHI ZHANG
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - GUANFU WANG
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - JIAXI CHEN
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of System Medicine and Precision Diagnosis and Treatment of Taizhou, Taizhou, China
| |
Collapse
|
25
|
Wong MTJ, Anuar NS, Noordin R, Tye GJ. Generation of IgG antibodies against Strongyloides stercoralis in mice via immunization with recombinant antigens A133 and Ss-IR. Acta Trop 2024; 251:107122. [PMID: 38246399 DOI: 10.1016/j.actatropica.2024.107122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/16/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Strongyloidiasis, caused by the nematode Strongyloides stercoralis, remains a threat to global public health, and a vaccine would be useful to control the disease, especially in developing countries. This study aimed to evaluate the efficacy of recombinant proteins, A133 and Ss-IR, as potential vaccine candidates against strongyloidiasis by investigating the humoral and cellular immune responses in immunized mice. Respective antigens were adjuvanted with Complete Freund's Adjuvant (prime) and Incomplete Freund's Adjuvant (boost) and administered intraperitoneally (prime) and subcutaneously (boost) to female BALB/c mice. For antigen-only doses, only antigens were injected without adjuvants. Altogether, 1 prime dose, 4 booster doses, and 2 antigen-only doses were administered successively. ELISAs were conducted to assess the antibody responses, along with flow cytometry and cytokine ELISA to elucidate the cellular immune responses. Results showed that A133 and Ss-IR induced the production of IgG1 and IgG2a, with A133 generating more robust IgG2a responses than Ss-IR. Flow cytometry findings indicated that effector CD8+T-cells and memory B-cells activity were upregulated significantly for A133 only, whereas cytokine ELISA demonstrated that a Th1/Th2/Th17 mixed cell responses were triggered upon vaccination with either antigen. This preliminary study illustrated the good potential of recombinant A133 and Ss-IR as vaccine candidates against S. stercoralis. It provided information on the probable immune mechanism involved in host defence and the elicitation of protection against S. stercoralis.
Collapse
Affiliation(s)
- Matthew Tze Jian Wong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Nor Suhada Anuar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Rahmah Noordin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia; Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia.
| |
Collapse
|
26
|
Liu Y, Wu J, Hao H. Antitumor immunostimulatory activity of the traditional Chinese medicine polysaccharide on hepatocellular carcinoma. Front Immunol 2024; 15:1369110. [PMID: 38455058 PMCID: PMC10917928 DOI: 10.3389/fimmu.2024.1369110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignancy, often associated with compromised immune function in affected patients. This can be attributed to the secretion of specific factors by liver cancer cells, which hinder the immune response and lead to a state of immune suppression. Polysaccharides derived from traditional Chinese medicine (TCM) are valuable constituents known for their immunomodulatory properties. This review aims to look into the immunomodulatory effects of TCM polysaccharides on HCC. The immunomodulatory effects of TCM polysaccharides are primarily manifested through the activation of effector T lymphocytes, dendritic cells, NK cells, and macrophages against hepatocellular carcinoma (HCC) both in vivo and in vitro settings. Furthermore, TCM polysaccharides have demonstrated remarkable adjuvant antitumor immunomodulatory effects on HCC in clinical settings. Therefore, the utilization of TCM polysaccharides holds promising potential for the development of novel therapeutic agents or adjuvants with advantageous immunomodulatory properties for HCC.
Collapse
Affiliation(s)
- Yang Liu
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Jiawen Wu
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Huiqin Hao
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
27
|
Karimi A, Yarmohammadi H, Erinjeri JP. Immune Effects of Intra-Arterial Liver-Directed Therapies. J Vasc Interv Radiol 2024; 35:178-184. [PMID: 38272638 PMCID: PMC11334421 DOI: 10.1016/j.jvir.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/08/2023] [Accepted: 10/21/2023] [Indexed: 01/27/2024] Open
Abstract
Image-guided intra-arterial locoregional therapies (LRTs) such as transarterial embolization, transarterial chemoembolization, and transarterial radioembolization exhibit effects on the immune system. Understanding the humoral (cytokine, chemokine, and growth factor) and cellular (T cell, neutrophil, dendritic cell, and macrophage) mechanisms underlying the immune effects of LRT is crucial to designing rational and effective combinations of immunotherapy and interventional radiology procedures. This article aims to review the immune effects of intra-arterial LRTs and provide insight into strategies to combine LRTs with systemic immunotherapy.
Collapse
Affiliation(s)
- Anita Karimi
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hooman Yarmohammadi
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph P Erinjeri
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
28
|
Mangelinck A, Dubuisson A, Becht E, Dromaint-Catesson S, Fasquel M, Provost N, Walas D, Darville H, Galizzi JP, Lefebvre C, Blanc V, Lombardi V. Characterization of CD4 + and CD8 + T cells responses in the mixed lymphocyte reaction by flow cytometry and single cell RNA sequencing. Front Immunol 2024; 14:1320481. [PMID: 38283342 PMCID: PMC10820991 DOI: 10.3389/fimmu.2023.1320481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
Background The Mixed Lymphocyte Reaction (MLR) consists in the allogeneic co-culture of monocytes derived dendritic cells (MoDCs) with T cells from another donor. This in vitro assay is largely used for the assessment of immunotherapy compounds. Nevertheless, the phenotypic changes associated with lymphocyte responsiveness under MLR have never been thoroughly evaluated. Methods Here, we used multiplex cytokine and chemokine assays, multiparametric flow cytometry and single cell RNA sequencing to deeply characterize T cells activation and function in the context of CD4+- and CD8+-specific MLR kinetics. Results We showed that CD4+ and CD8+ T cells in MLR share common classical markers of response such as polyfunctionality, increased proliferation and CD25 expression but differ in their kinetics and amplitude of activation as well as their patterns of cytokines secretion and immune checkpoints expression. The analysis of immunoreactive Ki-67+CD25+ T cells identified PBK, LRR1 and MYO1G as new potential markers of MLR response. Using cell-cell communication network inference and pathway analysis on single cell RNA sequencing data, we also highlighted key components of the immunological synapse occurring between T cells and the stimulatory MoDCs together with downstream signaling pathways involved in CD4+ and CD8+ T cells activation. Conclusion These results provide a deep understanding of the kinetics of the MLR assay for CD4+ or CD8+ T cells and may allow to better characterize compounds impacting MLR and eventually identify new strategies for immunotherapy in cancer.
Collapse
|
29
|
Cho Y, Yoo HS, Kim SD, Ko M, Joo HE, Jang S, Jeong MK. Herbal Medicines for the Improvement of Immune Function in Patients With Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Integr Cancer Ther 2024; 23:15347354241287775. [PMID: 39380153 PMCID: PMC11483700 DOI: 10.1177/15347354241287775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/19/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
Background: Lung cancer has the highest mortality rate of all cancers worldwide. Conserving the immune system and reducing the adverse events associated with cancer treatment have become increasingly important. Our study aimed to investigate the immunological effects of herbal medicine (HM) alone, independent of conventional cancer therapies, in patients with non-small cell lung cancer (NSCLC). Methods: We searched 8 databases for articles published until March 2023. Bias risk was assessed using RevMan 5.4. Meta-analyses of CD4+ and CD8+ levels reported in the included RCTs were also performed. Results: A total of 610 patients from 5 RCTs were included in the analysis. Immune markers in the peripheral blood of patients treated with HM alone were compared with those in the control group. As a result of meta-analyses, CD4+ (three studies; mean difference(MD) = 5.21, 95 confidence interval (CI) [3.26, 7.27], I2 = 61%, n = 428) and CD4+/CD8+ (two studies; MD = 0.22, 95% CI [0.18, 0.26], I2 = 0%, n = 278) significantly increased in the treatment group, while CD8+ levels (three studies; MD = -3.04, 95% CI [-5.80, -0.29], I2 = 74%, n = 428) decreased in HM groups compared to comparison groups. In a single trial, IL-1, IL-6, tumor necrosis factor (TNF)-a levels and the number of Tregs in the treatment group significantly decreased, while Th17 levels and the Th17/Treg ratios increased. Conclusion: This study provides a comprehensive and systematic review of the immunological effects of HM in patients with NSCLC. Future studies should explore how the immunological effects of HM correlate with clinical outcomes, such as tumor response and survival rates.PROSPERO registration: CRD42023459.
Collapse
Affiliation(s)
- Youngmin Cho
- Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Hwa-Seung Yoo
- Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
- Seoul Korean Medicine Hospital of Daejeon University, Seoul, Republic of Korea
| | - Soo-Dam Kim
- Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Mimi Ko
- Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Han-eum Joo
- Daejeon Korean Medicine Hospital of Daejeon University, Daejeon, Republic of Korea
| | - Soobin Jang
- Daegu Haany University, Gyeongsan, Republic of Korea
| | - Mi-Kyung Jeong
- Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| |
Collapse
|
30
|
Duangnumsawang Y, Zentek J, Vahjen W, Tarradas J, Boroojeni FG. Impact of feed additives and host-related factors on bacterial metabolites, mucosal integrity and immune response in the ileum of broilers. Vet Res Commun 2023; 47:1861-1878. [PMID: 37160636 DOI: 10.1007/s11259-023-10135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/30/2023] [Indexed: 05/11/2023]
Abstract
The present study aimed to investigate the effect of age, breed, and sex of broilers, as well as a probiotic or phytobiotic product on mucosal morphology, bacterial metabolites, and immune traits in the ileum of broilers. A total of 2,880 one-day-old male and female broiler chicks from two breeds (Ross308® and Cobb500®) were randomly assigned to 72 pens. Broilers were offered a wheat-soybean diet without (CO), or with either a probiotic (PO; 2.4 × 109 CFU/kg of Bacillus subtilis DSM32324 and DSM32325 and B. amyloliquefaciens DSM25840) or a phytobiotic (PY; grape extract, 165 ppm procyanidin and 585 ppm polyphenols of the diet) product. The trial was conducted with a 3 × 2 × 2 factorial arrangement of diet, breed, and sex in a completely randomized design (6 replicate-pens per treatment). At day 7, 21, and 35, one chicken per pen was slaughtered for collecting ileal tissue to evaluate of histomorphology and mRNA expression, as well as ileal digesta to measure bacterial metabolites. Data were subjected to ANOVA (the main factors; age, diet, breed, and sex) and Four-Way ANOVA (interactions) using GLM procedure. Overall, the concentration of acetate and total short chain fatty acids reached the peak and lactate decreased to its lowest on day 21, but their concentrations at day 7 and 35 were similar (p > 0.05). Spermine, spermidine, and ammonia decreased after day 7, while putrescine and cadaverine increased after day 21 (p < 0.05). mRNA expression of cytokines, mucin 2 (MUC2) and claudin 5 (CLDN5) was similar; increased from day 7 to 21 and decreased afterward (p < 0.05). Villus height, crypt depth and villus surface area increased with age (p < 0.05). Acidic goblet cells (GC) number and density increased after day 21 (p < 0.05). Ross broilers showed higher D-lactate concentration and IFN-γ expression, while Cobb broilers had greater IL-4, IL-6 and TNF-α expression and higher total GC number (p < 0.05). Female displayed higher villus height and GC number and density (mixed and total GC) than male (p < 0.05). The effect of dietary treatment was not found on any investigated variables (p > 0.05). In conclusion, aging of broilers affected ileal histomorphology, cytokine expression, and barrier integrity, as well as bacterial activity. These observed impacts could be attributed to host-microbiota interaction and the direct effects of bacterial metabolites on intestinal cells and immune system.
Collapse
Affiliation(s)
- Yada Duangnumsawang
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Faculty of Veterinary Science, Prince of Songkla University, Hatyai, Songkhla, Thailand
| | - Jürgen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Wilfried Vahjen
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Joan Tarradas
- ‡Institute for Food and Agricultural Research and Technology IRTA, Constantí, Spain
| | - Farshad Goodarzi Boroojeni
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
31
|
Wang Y, Song Y, He Y, Wang Y, Maurer J, Kiessling F, Lammers T, Wang F, Shi Y. Direct immunoactivation by chemotherapeutic drugs in cancer treatment. ADVANCED THERAPEUTICS 2023; 6:2300209. [PMID: 38249990 PMCID: PMC7615547 DOI: 10.1002/adtp.202300209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Indexed: 01/23/2024]
Abstract
The immune system plays a crucial role in recognizing and eliminating pathogenic substances and malignant cells in the body. For cancer treatment, immunotherapy is becoming the standard treatment for many types of cancer and is often combined with chemotherapy. Although chemotherapeutic agents are often reported to have adverse effects, including immunosuppression, they can also play a positive role in immunotherapy by directly stimulating the immune system. This has been demonstrated in preclinical and clinical studies in the past decades. Chemotherapeutics can activate immune cells through different immune receptors and signaling pathways depending on their chemical structure and formulation. In this review, we summarize and discuss the direct immunoactivation effects of chemotherapeutics and possible mechanisms behind these effects. Finally, we prospect chemo-immunotherapeutic combinations for the more effective and safer treatment of cancer.
Collapse
Affiliation(s)
- Yurui Wang
- Department of Polymer Therapeutics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Yiran Song
- Department of Gastroenterology, Shanghai 10th People's Hospital, School of Medicine, Tongji University, Shanghai 200040, PR China
| | - Yazhi He
- Department of Gastroenterology, Shanghai 10th People's Hospital, School of Medicine, Tongji University, Shanghai 200040, PR China
| | - Yang Wang
- Department of Gastroenterology, Shanghai 10th People's Hospital, School of Medicine, Tongji University, Shanghai 200040, PR China
| | - Jochen Maurer
- Department of Gynecology and Obstetrics, Uniklinik RWTH Aachen, Aachen 52074, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen 52074, Germany
| | - Feng Wang
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, PR China
| | - Yang Shi
- Department of Polymer Therapeutics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, Faculty of Medicine, RWTH Aachen University, Aachen 52074, Germany
| |
Collapse
|
32
|
Kazakov AS, Deryusheva EI, Rastrygina VA, Sokolov AS, Permyakova ME, Litus EA, Uversky VN, Permyakov EA, Permyakov SE. Interaction of S100A6 Protein with the Four-Helical Cytokines. Biomolecules 2023; 13:1345. [PMID: 37759746 PMCID: PMC10526228 DOI: 10.3390/biom13091345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
S100 is a family of over 20 structurally homologous, but functionally diverse regulatory (calcium/zinc)-binding proteins of vertebrates. The involvement of S100 proteins in numerous vital (patho)physiological processes is mediated by their interaction with various (intra/extra)cellular protein partners, including cell surface receptors. Furthermore, recent studies have revealed the ability of specific S100 proteins to modulate cell signaling via direct interaction with cytokines. Previously, we revealed the binding of ca. 71% of the four-helical cytokines via the S100P protein, due to the presence in its molecule of a cytokine-binding site overlapping with the binding site for the S100P receptor. Here, we show that another S100 protein, S100A6 (that has a pairwise sequence identity with S100P of 35%), specifically binds numerous four-helical cytokines. We have studied the affinity of the recombinant forms of 35 human four-helical cytokines from all structural families of this fold to Ca2+-loaded recombinant human S100A6, using surface plasmon resonance spectroscopy. S100A6 recognizes 26 of the cytokines from all families of this fold, with equilibrium dissociation constants from 0.3 nM to 12 µM. Overall, S100A6 interacts with ca. 73% of the four-helical cytokines studied to date, with a selectivity equivalent to that for the S100P protein, with the differences limited to the binding of interleukin-2 and oncostatin M. The molecular docking study evidences the presence in the S100A6 molecule of a cytokine-binding site, analogous to that found in S100P. The findings argue the presence in some of the promiscuous members of the S100 family of a site specific to a wide range of four-helical cytokines. This unique feature of the S100 proteins potentially allows them to modulate the activity of the numerous four-helical cytokines in the disorders accompanied by an excessive release of the cytokines.
Collapse
Affiliation(s)
- Alexey S. Kazakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Evgenia I. Deryusheva
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Victoria A. Rastrygina
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Andrey S. Sokolov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Maria E. Permyakova
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Ekaterina A. Litus
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Vladimir N. Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
- Department of Molecular, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Eugene A. Permyakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Sergei E. Permyakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| |
Collapse
|
33
|
Dong G, Fan F, He Y, Luo Y, Yu J, Liang P. T-Lymphocyte Gene-Regulated CCL5 and Its Association with Extrahepatic Metastasis in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1267-1279. [PMID: 37551333 PMCID: PMC10404438 DOI: 10.2147/jhc.s420836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Extrahepatic metastasis in hepatocellular carcinoma (HCC) greatly limits the prognostic survival of HCC patients. Levels of preoperative peripheral lymphocyte subsets and cytokines in the serum for predicting extrahepatic spread of hepatocellular carcinoma are still not common in clinical practice. The aim of this study is to investigate the value and mechanisms of peripheral lymphocyte subsets and cytokines in predicting extrahepatic spread of HCC. METHODS We used a retrospective design to analyze data pertaining to a total of 380 patients with HCC who were examined for peripheral T-lymphocyte subsets before receiving microwave ablation. We performed Cox regression analysis to screen out independent risk factors and used pathology specimens from the patients and public databases of liver cancer to investigate the correlation between cytokines and intra-tumor immune cells. RESULTS The CD4low group had better metastasis-free 1-year, 3-year, and 5-year survival rates compared to the CD4high group (80% vs 69%, 67% vs 51%, and 57% vs 39%, respectively; HR 1.7 (1.2, 2.3), P = 0.0019). Similarly, the CD8high group had better metastasis-free 1-year, 3-year, and 5-year survival rates compared to the CD8low group (65% vs 78%, 46% vs 64%, and 34% vs 54%, respectively; HR 0.6 (0.4, 0.8), P < 0.001). Patients with the CD4high/CD8low phenotype had significantly worse metastasis-free survival times compared to other patients (HR 2.0 (1.5, 2.8), P < 0.001). Additionally, T lymphocyte-specific genes (CD4, CD8) were correlated with CCL5 expression, which was also positively correlated with the level of intra-tumoral infiltrating CD8 T cells and the prognosis of HCC patients. CONCLUSION Both CD4+ and CD8+ T lymphocyte subsets were independent risk factors for extrahepatic metastasis in HCC. Serum CCL5 levels could indicate the infiltration level of intra-tumoral CD8+ T cells and the risk of extrahepatic metastasis in HCC patients, aiding in patient risk stratification for metastasis.
Collapse
Affiliation(s)
- Guoping Dong
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
- Chinese PLA Medical School, Beijing, 100853, People’s Republic of China
| | - Fangying Fan
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
- Chinese PLA Medical School, Beijing, 100853, People’s Republic of China
| | - Yao He
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People’s Republic of China
| | - Yanchun Luo
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Jie Yu
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
- Chinese PLA Medical School, Beijing, 100853, People’s Republic of China
| | - Ping Liang
- Department of Interventional Ultrasound, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People’s Republic of China
- Chinese PLA Medical School, Beijing, 100853, People’s Republic of China
| |
Collapse
|
34
|
Kaya NA, Tai D, Lim X, Lim JQ, Lau MC, Goh D, Phua CZJ, Wee FYT, Joseph CR, Lim JCT, Neo ZW, Ye J, Cheung L, Lee J, Loke KSH, Gogna A, Yao F, Lee MY, Shuen TWH, Toh HC, Hilmer A, Chan YS, Lim TKH, Tam WL, Choo SP, Yeong J, Zhai W. Multimodal molecular landscape of response to Y90-resin microsphere radioembolization followed by nivolumab for advanced hepatocellular carcinoma. J Immunother Cancer 2023; 11:e007106. [PMID: 37586766 PMCID: PMC10432632 DOI: 10.1136/jitc-2023-007106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Combination therapy with radioembolization (yttrium-90)-resin microspheres) followed by nivolumab has shown a promising response rate of 30.6% in a Phase II trial (CA209-678) for advanced hepatocellular carcinoma (HCC); however, the response mechanisms and relevant biomarkers remain unknown. METHODS By collecting both pretreatment and on-treatment samples, we performed multimodal profiling of tissue and blood samples and investigated molecular changes associated with favorable responses in 33 patients from the trial. RESULTS We found that higher tumor mutation burden, NCOR1 mutations and higher expression of interferon gamma pathways occurred more frequently in responders. Meanwhile, non-responders tended to be enriched for a novel Asian-specific transcriptomic subtype (Kaya_P2) with a high frequency of chromosome 16 deletions and upregulated cell cycle pathways. Strikingly, unlike other cancer types, we did not observe any association between T-cell populations and treatment response, but tumors from responders had a higher proportion of CXCL9+/CXCR3+ macrophages. Moreover, biomarkers discovered in previous immunotherapy trials were not predictive in the current cohort, suggesting a distinctive molecular landscape associated with differential responses to the combination therapy. CONCLUSIONS This study unraveled extensive molecular changes underlying distinctive responses to the novel treatment and pinpointed new directions for harnessing combination therapy in patients with advanced HCC.
Collapse
Affiliation(s)
- Neslihan Arife Kaya
- Genome Institute of Singapore (GIS), Agency for Science(A*STAR), Technology and Research, Singapore
| | - David Tai
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
- Duke NUS Medical School, Singapore
| | - Xinru Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jia Qi Lim
- Genome Institute of Singapore (GIS), Agency for Science(A*STAR), Technology and Research, Singapore
| | - Mai Chan Lau
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- Bioinformatics Institute (BII), Agency of Science Technology and Research, Singapore
| | - Denise Goh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Cheryl Zi Jin Phua
- Genome Institute of Singapore (GIS), Agency for Science(A*STAR), Technology and Research, Singapore
| | - Felicia Yu Ting Wee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Craig Ryan Joseph
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jeffrey Chun Tatt Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Zhen Wei Neo
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jiangfeng Ye
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Lawrence Cheung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Joycelyn Lee
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
- Duke NUS Medical School, Singapore
| | - Kelvin S H Loke
- Duke NUS Medical School, Singapore
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore
| | - Apoorva Gogna
- Department of Vascular and Interventional Radiology, Singapore General Hospital, Singapore
| | - Fei Yao
- Genome Institute of Singapore (GIS), Agency for Science(A*STAR), Technology and Research, Singapore
| | - May Yin Lee
- Genome Institute of Singapore (GIS), Agency for Science(A*STAR), Technology and Research, Singapore
| | | | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Axel Hilmer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Koln, Cologne, Germany
| | - Yun Shen Chan
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong Province, China
| | - Tony Kiat-Hon Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore (GIS), Agency for Science(A*STAR), Technology and Research, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Su Pin Choo
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Joe Yeong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Weiwei Zhai
- Genome Institute of Singapore (GIS), Agency for Science(A*STAR), Technology and Research, Singapore
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Gruenewald LD, Koch V, Martin SS, Yel I, Mahmoudi S, Bernatz S, Eichler K, Gruber-Rouh T, Pinto Dos Santos D, D'Angelo T, Wesarg S, Herrmann E, Golbach R, Handon M, Vogl TJ, Booz C. Dual-Energy CT-based Opportunistic Volumetric Bone Mineral Density Assessment of the Distal Radius. Radiology 2023; 308:e223150. [PMID: 37552067 DOI: 10.1148/radiol.223150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Background In patients with distal radius fractures (DRFs), low bone mineral density (BMD) is associated with bone substitute use during surgery and bone nonunion, but BMD information is not regularly available. Purpose To evaluate the feasibility of dual-energy CT (DECT)-based BMD assessment from routine examinations in the distal radius and the relationship between the obtained BMD values, the occurrence of DRFs, bone nonunion, and use of surgical bone substitute. Materials and Methods Scans in patients who underwent routine dual-source DECT in the distal radius between January 2016 and December 2021 were retrospectively acquired. Phantomless BMD assessment was performed using the delineated trabecular bone of a nonfractured segment of the distal radius and both DECT image series. CT images and health records were examined to determine fracture severity, surgical management, and the occurrence of bone nonunion. Associations of BMD with the occurrence of DRFs, bone nonunion, and bone substitute use at surgical treatment were examined with generalized additive models and receiver operating characteristic analysis. Results This study included 263 patients (median age, 52 years; IQR, 36-64 years; 132 female patients), of whom 192 were diagnosed with fractures. Mean volumetric BMD was lower in patients who sustained a DRF (93.9 mg/cm3 vs 135.4 mg/cm3; P < .001), required bone substitutes (79.6 mg/cm3 vs 95.5 mg/cm3; P < .001), and developed bone nonunion (71.1 mg/cm3 vs 96.5 mg/cm3; P < .001). Receiver operating characteristic curve analysis identified these patients with an area under the curve of 0.71-0.91 (P < .001). Lower BMD increased the risk to sustain DRFs, develop bone nonunion, and receive bone substitutes at surgery (P < .001). Conclusion DECT-based BMD assessment at routine examinations is feasible and could help predict surgical bone substitute use and the occurrence of bone nonunion in patients with DRFs. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Carrino in this issue.
Collapse
Affiliation(s)
- Leon D Gruenewald
- From the Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology (L.D.G., V.K., S.S.M., I.Y., C.B.), Department of Diagnostic and Interventional Radiology (S.M., S.B., K.E., T.G.R., D.P.D.S., M.H., T.J.V.), and Department of Biostatistics and Mathematical Modeling (E.H., R.G.), University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy (T.D.); Department of Radiology and Nuclear Medicine, Erasmus Medical College, Rotterdam, the Netherlands (T.D.); and Fraunhofer IGD, Darmstadt, Germany (S.W.)
| | - Vitali Koch
- From the Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology (L.D.G., V.K., S.S.M., I.Y., C.B.), Department of Diagnostic and Interventional Radiology (S.M., S.B., K.E., T.G.R., D.P.D.S., M.H., T.J.V.), and Department of Biostatistics and Mathematical Modeling (E.H., R.G.), University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy (T.D.); Department of Radiology and Nuclear Medicine, Erasmus Medical College, Rotterdam, the Netherlands (T.D.); and Fraunhofer IGD, Darmstadt, Germany (S.W.)
| | - Simon S Martin
- From the Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology (L.D.G., V.K., S.S.M., I.Y., C.B.), Department of Diagnostic and Interventional Radiology (S.M., S.B., K.E., T.G.R., D.P.D.S., M.H., T.J.V.), and Department of Biostatistics and Mathematical Modeling (E.H., R.G.), University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy (T.D.); Department of Radiology and Nuclear Medicine, Erasmus Medical College, Rotterdam, the Netherlands (T.D.); and Fraunhofer IGD, Darmstadt, Germany (S.W.)
| | - Ibrahim Yel
- From the Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology (L.D.G., V.K., S.S.M., I.Y., C.B.), Department of Diagnostic and Interventional Radiology (S.M., S.B., K.E., T.G.R., D.P.D.S., M.H., T.J.V.), and Department of Biostatistics and Mathematical Modeling (E.H., R.G.), University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy (T.D.); Department of Radiology and Nuclear Medicine, Erasmus Medical College, Rotterdam, the Netherlands (T.D.); and Fraunhofer IGD, Darmstadt, Germany (S.W.)
| | - Scherwin Mahmoudi
- From the Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology (L.D.G., V.K., S.S.M., I.Y., C.B.), Department of Diagnostic and Interventional Radiology (S.M., S.B., K.E., T.G.R., D.P.D.S., M.H., T.J.V.), and Department of Biostatistics and Mathematical Modeling (E.H., R.G.), University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy (T.D.); Department of Radiology and Nuclear Medicine, Erasmus Medical College, Rotterdam, the Netherlands (T.D.); and Fraunhofer IGD, Darmstadt, Germany (S.W.)
| | - Simon Bernatz
- From the Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology (L.D.G., V.K., S.S.M., I.Y., C.B.), Department of Diagnostic and Interventional Radiology (S.M., S.B., K.E., T.G.R., D.P.D.S., M.H., T.J.V.), and Department of Biostatistics and Mathematical Modeling (E.H., R.G.), University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy (T.D.); Department of Radiology and Nuclear Medicine, Erasmus Medical College, Rotterdam, the Netherlands (T.D.); and Fraunhofer IGD, Darmstadt, Germany (S.W.)
| | - Katrin Eichler
- From the Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology (L.D.G., V.K., S.S.M., I.Y., C.B.), Department of Diagnostic and Interventional Radiology (S.M., S.B., K.E., T.G.R., D.P.D.S., M.H., T.J.V.), and Department of Biostatistics and Mathematical Modeling (E.H., R.G.), University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy (T.D.); Department of Radiology and Nuclear Medicine, Erasmus Medical College, Rotterdam, the Netherlands (T.D.); and Fraunhofer IGD, Darmstadt, Germany (S.W.)
| | - Tatjana Gruber-Rouh
- From the Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology (L.D.G., V.K., S.S.M., I.Y., C.B.), Department of Diagnostic and Interventional Radiology (S.M., S.B., K.E., T.G.R., D.P.D.S., M.H., T.J.V.), and Department of Biostatistics and Mathematical Modeling (E.H., R.G.), University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy (T.D.); Department of Radiology and Nuclear Medicine, Erasmus Medical College, Rotterdam, the Netherlands (T.D.); and Fraunhofer IGD, Darmstadt, Germany (S.W.)
| | - Daniel Pinto Dos Santos
- From the Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology (L.D.G., V.K., S.S.M., I.Y., C.B.), Department of Diagnostic and Interventional Radiology (S.M., S.B., K.E., T.G.R., D.P.D.S., M.H., T.J.V.), and Department of Biostatistics and Mathematical Modeling (E.H., R.G.), University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy (T.D.); Department of Radiology and Nuclear Medicine, Erasmus Medical College, Rotterdam, the Netherlands (T.D.); and Fraunhofer IGD, Darmstadt, Germany (S.W.)
| | - Tommaso D'Angelo
- From the Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology (L.D.G., V.K., S.S.M., I.Y., C.B.), Department of Diagnostic and Interventional Radiology (S.M., S.B., K.E., T.G.R., D.P.D.S., M.H., T.J.V.), and Department of Biostatistics and Mathematical Modeling (E.H., R.G.), University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy (T.D.); Department of Radiology and Nuclear Medicine, Erasmus Medical College, Rotterdam, the Netherlands (T.D.); and Fraunhofer IGD, Darmstadt, Germany (S.W.)
| | - Stefan Wesarg
- From the Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology (L.D.G., V.K., S.S.M., I.Y., C.B.), Department of Diagnostic and Interventional Radiology (S.M., S.B., K.E., T.G.R., D.P.D.S., M.H., T.J.V.), and Department of Biostatistics and Mathematical Modeling (E.H., R.G.), University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy (T.D.); Department of Radiology and Nuclear Medicine, Erasmus Medical College, Rotterdam, the Netherlands (T.D.); and Fraunhofer IGD, Darmstadt, Germany (S.W.)
| | - Eva Herrmann
- From the Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology (L.D.G., V.K., S.S.M., I.Y., C.B.), Department of Diagnostic and Interventional Radiology (S.M., S.B., K.E., T.G.R., D.P.D.S., M.H., T.J.V.), and Department of Biostatistics and Mathematical Modeling (E.H., R.G.), University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy (T.D.); Department of Radiology and Nuclear Medicine, Erasmus Medical College, Rotterdam, the Netherlands (T.D.); and Fraunhofer IGD, Darmstadt, Germany (S.W.)
| | - Rejane Golbach
- From the Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology (L.D.G., V.K., S.S.M., I.Y., C.B.), Department of Diagnostic and Interventional Radiology (S.M., S.B., K.E., T.G.R., D.P.D.S., M.H., T.J.V.), and Department of Biostatistics and Mathematical Modeling (E.H., R.G.), University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy (T.D.); Department of Radiology and Nuclear Medicine, Erasmus Medical College, Rotterdam, the Netherlands (T.D.); and Fraunhofer IGD, Darmstadt, Germany (S.W.)
| | - Marlin Handon
- From the Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology (L.D.G., V.K., S.S.M., I.Y., C.B.), Department of Diagnostic and Interventional Radiology (S.M., S.B., K.E., T.G.R., D.P.D.S., M.H., T.J.V.), and Department of Biostatistics and Mathematical Modeling (E.H., R.G.), University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy (T.D.); Department of Radiology and Nuclear Medicine, Erasmus Medical College, Rotterdam, the Netherlands (T.D.); and Fraunhofer IGD, Darmstadt, Germany (S.W.)
| | - Thomas J Vogl
- From the Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology (L.D.G., V.K., S.S.M., I.Y., C.B.), Department of Diagnostic and Interventional Radiology (S.M., S.B., K.E., T.G.R., D.P.D.S., M.H., T.J.V.), and Department of Biostatistics and Mathematical Modeling (E.H., R.G.), University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy (T.D.); Department of Radiology and Nuclear Medicine, Erasmus Medical College, Rotterdam, the Netherlands (T.D.); and Fraunhofer IGD, Darmstadt, Germany (S.W.)
| | - Christian Booz
- From the Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology (L.D.G., V.K., S.S.M., I.Y., C.B.), Department of Diagnostic and Interventional Radiology (S.M., S.B., K.E., T.G.R., D.P.D.S., M.H., T.J.V.), and Department of Biostatistics and Mathematical Modeling (E.H., R.G.), University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy (T.D.); Department of Radiology and Nuclear Medicine, Erasmus Medical College, Rotterdam, the Netherlands (T.D.); and Fraunhofer IGD, Darmstadt, Germany (S.W.)
| |
Collapse
|
36
|
Wang YW, Zuo JC, Chen C, Li XH. Post-translational modifications and immune responses in liver cancer. Front Immunol 2023; 14:1230465. [PMID: 37609076 PMCID: PMC10441662 DOI: 10.3389/fimmu.2023.1230465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/26/2023] [Indexed: 08/24/2023] Open
Abstract
Post-translational modification (PTM) refers to the covalent attachment of functional groups to protein substrates, resulting in structural and functional changes. PTMs not only regulate the development and progression of liver cancer, but also play a crucial role in the immune response against cancer. Cancer immunity encompasses the combined efforts of innate and adaptive immune surveillance against tumor antigens, tumor cells, and tumorigenic microenvironments. Increasing evidence suggests that immunotherapies, which harness the immune system's potential to combat cancer, can effectively improve cancer patient prognosis and prolong the survival. This review presents a comprehensive summary of the current understanding of key PTMs such as phosphorylation, ubiquitination, SUMOylation, and glycosylation in the context of immune cancer surveillance against liver cancer. Additionally, it highlights potential targets associated with these modifications to enhance the response to immunotherapies in the treatment of liver cancer.
Collapse
Affiliation(s)
| | | | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Medical College of Tianjin University, Tianjin, China
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Medical College of Tianjin University, Tianjin, China
| |
Collapse
|
37
|
Sankar K, Pearson AN, Worlikar T, Perricone MD, Holcomb EA, Mendiratta-Lala M, Xu Z, Bhowmick N, Green MD. Impact of immune tolerance mechanisms on the efficacy of immunotherapy in primary and secondary liver cancers. Transl Gastroenterol Hepatol 2023; 8:29. [PMID: 37601739 PMCID: PMC10432235 DOI: 10.21037/tgh-23-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 08/22/2023] Open
Abstract
The liver is a functionally unique organ with an immunosuppressive microenvironment. The liver is the sixth most common site of primary cancer in humans and is a frequent site of metastasis from other solid tumors. The development of effective therapies for primary and metastatic liver cancer has been challenging due to the complex metabolic and immune microenvironment of the liver. The liver tumor microenvironment (TME) in primary and secondary (metastatic) liver cancers is heterogenous and consists of unique immune and stromal cell populations. Crosstalk between these cell populations and tumor cells creates an immunosuppressive microenvironment within the liver which potentiates cancer progression. Immune checkpoint inhibitors (ICIs) are now clinically approved for the management of primary and secondary liver cancer and can partially overcome liver immune tolerance, but their efficacy is limited. In this review, we describe the liver microenvironment and the use of immunotherapy in primary and secondary liver cancer. We discuss emerging combination strategies utilizing locoregional and systemic therapy approaches which may enhance efficacy of immunotherapy in primary and secondary liver cancer. A deeper understanding of the immunosuppressive microenvironment of the liver will inform novel therapies and therapeutic combinations in order to improve outcomes of patients with primary and secondary liver cancer.
Collapse
Affiliation(s)
- Kamya Sankar
- Division of Medical Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ashley N. Pearson
- Graduate Program in Immunology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Tejaswi Worlikar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Matthew D. Perricone
- Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Erin A. Holcomb
- Graduate Program in Immunology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | | | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Neil Bhowmick
- Division of Medical Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael D. Green
- Graduate Program in Immunology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
38
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 238] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
39
|
Wang H, Sun P, Yao R, Zhang W, Zhou X, Yao J, He K. Comprehensive pan-cancer analysis of PTGES3 and its prognostic role in hepatocellular carcinoma. Front Oncol 2023; 13:1158490. [PMID: 37274225 PMCID: PMC10234500 DOI: 10.3389/fonc.2023.1158490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction PTGES3, also known as p23, is a molecule chaperone of Hsp90 that is involved in the pathogenesis of malignant tumors. Increasing studies have shown that PTGES3 plays a nonnegligible role in tumor development. However, analysis of PTGES3 in pan-cancer has not been performed yet. Methods We explored the role of PTGES3 in 33 types of tumors and depicted the potentialimmune-related pathways among them. Using multiple databases includingTCGA, LinkedOmics, GDSC, and TIMER, we made a comprehensive analysis to explore whether there was an interaction between PTGES3 and prognosis, DNA methylation, copy number variation (CNV), tumor mutational burden (TMB), microsatellite instability (MSI), and tumor immune microenvironment (TME). Results Our study revealed that PTGES3 expression level was upregulated in most cancers. PTGES3 was also associated with a positive or negative prognosis in a variety of cancers, which was mainly associated with DNA methylation, CNV, MSI, TMB, andmismatch repair-related genes. High PTGES3 expression was related to the infiltration of Th2 subsets of CD4+ T cells and immune checkpoint-related genes in most cancers, especially in hepatocellular carcinoma (HCC). Enrichment analysis demonstrated that PTGES3 was involved in cellular processes including DNA replication and spliceosome. The relationship between PTGES3 expression and HCC progression was verified at the protein level through immune histochemical analysis. Conclusions Our research demonstrated theprognostic predictive value of PTGES3 in a wide range of cancers, which was alsoassociated with the process of tumor immune infiltration. As a result, it suggestedthat PTGES3 was a valuable prognostic biomarker in HCC treatment.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi, Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Peng Sun
- Department of Hepatobilary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ruoyu Yao
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi, Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenrui Zhang
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi, Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaoshuang Zhou
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, China
| | - Jia Yao
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi, Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Kun He
- Department of Emergency Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
40
|
Brandi N, Renzulli M. The Synergistic Effect of Interventional Locoregional Treatments and Immunotherapy for the Treatment of Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24108598. [PMID: 37239941 DOI: 10.3390/ijms24108598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Immunotherapy has remarkably revolutionized the management of advanced HCC and prompted clinical trials, with therapeutic agents being used to selectively target immune cells rather than cancer cells. Currently, there is great interest in the possibility of combining locoregional treatments with immunotherapy for HCC, as this combination is emerging as an effective and synergistic tool for enhancing immunity. On the one hand, immunotherapy could amplify and prolong the antitumoral immune response of locoregional treatments, improving patients' outcomes and reducing recurrence rates. On the other hand, locoregional therapies have been shown to positively alter the tumor immune microenvironment and could therefore enhance the efficacy of immunotherapy. Despite the encouraging results, many unanswered questions still remain, including which immunotherapy and locoregional treatment can guarantee the best survival and clinical outcomes; the most effective timing and sequence to obtain the most effective therapeutic response; and which biological and/or genetic biomarkers can be used to identify patients likely to benefit from this combined approach. Based on the current reported evidence and ongoing trials, the present review summarizes the current application of immunotherapy in combination with locoregional therapies for the treatment of HCC, and provides a critical evaluation of the current status and future directions.
Collapse
Affiliation(s)
- Nicolò Brandi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy
| | - Matteo Renzulli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy
| |
Collapse
|
41
|
Song L, Su X, Lu Y, Hua D, Gao Z. An Inflammation-Associated Prognosis Model for Hepatocellular Carcinoma Based on Adenylate Uridylate- (AU-) Rich Element Genes. Mediators Inflamm 2023; 2023:2613492. [PMID: 37181805 PMCID: PMC10169245 DOI: 10.1155/2023/2613492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/26/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a typical inflammation-driven cancer and ranks sixth in the incidence rate worldwide. The role of adenylate uridylate- (AU-) rich element genes (AREGs) in HCC remains unclear. HCC-related datasets were acquired from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database. Differentially expressed AREGs (DE-AREGs) between HCC samples and healthy controls were identified. The univariate Cox and LASSO analyses were performed to determine the prognostic genes. Furthermore, a signature and corresponding nomogram were configured for the clinical prediction of HCC. The potential signature-related biological significance was explored using functional and pathway enrichment analysis. Additionally, immune infiltration analysis was also performed. Finally, the expression of prognostic genes was verified using real-time quantitative polymerase chain reaction (RT-qPCR). A total of 189 DE-AREGs between normal and HCC samples were identified, wherein CENPA, TXNRD1, RABIF, UGT2B15, and SERPINE1 were selected to generate an AREG-related signature. Moreover, the prognostic accuracy of the AREG-related signature was also confirmed. Functional analysis indicated that the high-risk score was related to various functions and pathways. Inflammation and immune-related analyses indicated that the difference of T cell and B cell receptor abundance, microvascular endothelial cells (MVE), lymphatic endothelial cells (lye), pericytes, stromal cells, and the six immune checkpoints was statistically significant between the different risk groups. Similarly, RT-qPCR outcomes of these signature genes were also significant. In conclusion, an inflammation-associated signature based on five DE-AREGs was constructed, which could act as a prognostic indicator of patients with HCC.
Collapse
Affiliation(s)
- Li Song
- Academy of Advanced Interdisciplinary Studies, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiangzheng Su
- Department of Tissue Repair and Regeneration, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yao Lu
- Department of Tissue Repair and Regeneration, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Dongliang Hua
- Academy of Advanced Interdisciplinary Studies, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Ziren Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
42
|
Posa A, Contegiacomo A, Ponziani FR, Punzi E, Mazza G, Scrofani A, Pompili M, Goldberg SN, Natale L, Gasbarrini A, Sala E, Iezzi R. Interventional Oncology and Immuno-Oncology: Current Challenges and Future Trends. Int J Mol Sci 2023; 24:ijms24087344. [PMID: 37108507 PMCID: PMC10138371 DOI: 10.3390/ijms24087344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Personalized cancer treatments help to deliver tailored and biologically driven therapies for cancer patients. Interventional oncology techniques are able to treat malignancies in a locoregional fashion, with a variety of mechanisms of action leading to tumor necrosis. Tumor destruction determines a great availability of tumor antigens that can be recognized by the immune system, potentially triggering an immune response. The advent of immunotherapy in cancer care, with the introduction of specific immune checkpoint inhibitors, has led to the investigation of the synergy of these drugs when used in combination with interventional oncology treatments. The aim of this paper is to review the most recent advances in the field of interventional oncology locoregional treatments and their interactions with immunotherapy.
Collapse
Affiliation(s)
- Alessandro Posa
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Andrea Contegiacomo
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Ernesto Punzi
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Giulia Mazza
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Annarita Scrofani
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Maurizio Pompili
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Shraga Nahum Goldberg
- Division of Image-Guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem 12000, Israel
| | - Luigi Natale
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Evis Sala
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Roberto Iezzi
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
43
|
Sun R, Li J, Lin X, Yang Y, Liu B, Lan T, Xiao S, Deng A, Yin Z, Xu Y, Xiang Z, Wu B. Peripheral immune characteristics of hepatitis B virus-related hepatocellular carcinoma. Front Immunol 2023; 14:1079495. [PMID: 37077908 PMCID: PMC10106696 DOI: 10.3389/fimmu.2023.1079495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
BackgroundLiver cancer is the sixth most common cancer worldwide and the third leading cause of cancer-related death. As a chronic liver disease, many studies have shown that the immune response plays a key role in the progression of liver cancer. Chronic hepatitis B virus (HBV) infection is one of the high-risk factors for HCC, accounting for 50%–80% of HCC cases worldwide, and little is known about the immune status of HBV associated hepatocellular carcinoma (HBV-HCC), therefore, we aimed to explore the changes in peripheral immunity in patients with HBV-HCC.MethodsIn this study, patients with HBV-HCC (n=26), patients with hepatitis B-related cirrhosis (HBV-LC) (n=31) and healthy volunteers (n=49) were included. The lymphocytes and their subpopulation phenotypes in peripheral blood were characterized. In addition, we explored the effect of viral replication on peripheral immunity in patients with HCC and analyzed the circulating immunophenotypic characteristics at different stages of HCC with flow cytometry.ResultsFirstly, our results showed that the percentages of total αβ T cells in the peripheral blood of HBV-HCC patients was significantly decreased compared to healthy subjects. Secondly, we found that naïve CD4+ T cells in HBV-HCC patients were significantly reduced, terminally differentiated CD8+ T cells, homing memory CD8+ T cells and Th2 cells were increased in peripheral circulation in HBV-HCC patients. Moreover, in the peripheral blood of HBV-HCC patients, expression of TIGIT on CD4+ T cells and PD-1 on the surface of Vδ 1 T cells was increased. In addition, we found that sustained viral replication resulted in up-regulation of TIM3 expression on CD4+ T cells, and TIM3+ γδ T cells increased in peripheral circulation in patients with advanced HBV-HCC.ConclusionOur study showed that circulating lymphocytes in HBV-HCC patients exhibited features of immune exhaustion, especially in HCC patients with persistent viral replication and in patients with intermediate and advanced HBV-HCC, including decreased frequency of T cells and elevated expression of inhibitory receptors including TIGIT and TIM3 on CD4+ T cells and γδ T cells. Meanwhile, our research suggests that the combination of CD3+ T cell and CD8+HLADR+CD38+ T cell may be a potential diagnostic indicator for HBV-HCC. These findings could help us to better understand the immune characteristics of HBV-HCC and explore the immune mechanisms and immunotherapy strategies for HBV-HCC.
Collapse
Affiliation(s)
- Ruonan Sun
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiawei Li
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
| | - Xianyi Lin
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yidong Yang
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bing Liu
- Department of Interventional Medicine, Zhuhai People’s Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Tianbi Lan
- Department of Hematology, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Shuang Xiao
- Guangzhou Purui Biotechnology Co., Ltd., Guangzhou, Guangdong, China
| | - Anyi Deng
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
| | - Yan Xu
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
- *Correspondence: Bin Wu, ; Zheng Xiang, ; Yan Xu,
| | - Zheng Xiang
- Department of Microbiology and Immunology, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
- *Correspondence: Bin Wu, ; Zheng Xiang, ; Yan Xu,
| | - Bin Wu
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- *Correspondence: Bin Wu, ; Zheng Xiang, ; Yan Xu,
| |
Collapse
|
44
|
Decraene B, Vanmechelen M, Clement P, Daisne JF, Vanden Bempt I, Sciot R, Garg AD, Agostinis P, De Smet F, De Vleeschouwer S. Cellular and molecular features related to exceptional therapy response and extreme long-term survival in glioblastoma. Cancer Med 2023. [PMID: 36776000 DOI: 10.1002/cam4.5681] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/14/2023] Open
Abstract
Glioblastoma Multiforme (GBM) remains the most common malignant primary brain tumor with a dismal prognosis that rarely exceeds beyond 2 years despite extensive therapy, which consists of maximal safe surgical resection, radiotherapy, and/or chemotherapy. Recently, it has become clear that GBM is not one homogeneous entity and that both intra-and intertumoral heterogeneity contributes significantly to differences in tumoral behavior which may consequently be responsible for differences in survival. Strikingly and in spite of its dismal prognosis, small fractions of GBM patients seem to display extremely long survival, defined as surviving over 10 years after diagnosis, compared to the large majority of patients. Although the underlying mechanisms for this peculiarity remain largely unknown, emerging data suggest that still poorly characterized both cellular and molecular factors of the tumor microenvironment and their interplay probably play an important role. We hereby give an extensive overview of what is yet known about these cellular and molecular features shaping extreme long survival in GBM.
Collapse
Affiliation(s)
- B Decraene
- KU Leuven, Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Leuven, Belgium.,KU Leuven Department of Neurosciences, Experimental Neurosurgery and Neuroanatomy Research Group, Leuven, Belgium.,Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - M Vanmechelen
- KU Leuven, Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Leuven, Belgium.,Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - P Clement
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | - J F Daisne
- Radiation Oncology Department, University Hospitals Leuven, Leuven, Belgium
| | - I Vanden Bempt
- Department of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - R Sciot
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - A D Garg
- KU Leuven, VIB Center for Cancer Biology Research, Leuven, Belgium
| | - P Agostinis
- KU Leuven, Laboratory of Cell Stress & Immunity (CSI), Department of Cellular & Molecular Medicine, Leuven, Belgium
| | - F De Smet
- KU Leuven, Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Leuven, Belgium
| | - S De Vleeschouwer
- KU Leuven Department of Neurosciences, Experimental Neurosurgery and Neuroanatomy Research Group, Leuven, Belgium.,Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium.,KU Leuven, Leuven Brain Institute (LBI), Leuven, Belgium
| |
Collapse
|
45
|
Lok B, Babu D, Tabana Y, Dahham SS, Adam MAA, Barakat K, Sandai D. The Anticancer Potential of Psidium guajava (Guava) Extracts. Life (Basel) 2023; 13:life13020346. [PMID: 36836712 PMCID: PMC9963020 DOI: 10.3390/life13020346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
The fruits, leaves, and bark of the guava (Psidium guajava) tree have traditionally been used to treat a myriad of ailments, especially in the tropical and subtropical regions. The various parts of the plant have been shown to exhibit medicinal properties, such as antimicrobial, antioxidant, anti-inflammatory, and antidiabetic activities. Recent studies have shown that the bioactive phytochemicals of several parts of the P. guajava plant exhibit anticancer activity. This review aims to present a concise summary of the in vitro and in vivo studies investigating the anticancer activity of the plant against various human cancer cell lines and animal models, including the identified phytochemicals that contributes to their activity via the different mechanisms. In vitro growth and cell viability studies, such as the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the sulforhodamine B (SRB) assay, and the trypan blue exclusion test, were conducted using P. guajava extracts and their biomolecules to assess their effects on human cancer cell lines. Numerous studies have showcased that the P. guajava plant and its bioactive molecules, especially those extracted from its leaves, selectively suppress the growth of human cancer cells without cytotoxicity against the normal cells. This review presents the potential of the extracts of P. guajava and the bioactive molecules derived from it, to be utilized as a feasible alternative or adjuvant treatment for human cancers. The availability of the plant also contributes towards its viability as a cancer treatment in developing countries.
Collapse
Affiliation(s)
- Bronwyn Lok
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Penang, Malaysia
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Saad Sabbar Dahham
- Department of Science, University of Technology and Applied Sciences Rustaq, Rustaq PC 329, Oman
| | | | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Doblin Sandai
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Penang, Malaysia
- Correspondence: ; Tel.: +60-4-5622386
| |
Collapse
|
46
|
Fosado R, Soto-Hernández JE, Núñez-Anita RE, Aceves C, Berumen LC, Mendieta I. Neuroendocrine Differentiation of Lung Cancer Cells Impairs the Activation of Antitumor Cytotoxic Responses in Mice. Int J Mol Sci 2023; 24:ijms24020990. [PMID: 36674504 PMCID: PMC9865473 DOI: 10.3390/ijms24020990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Lung cancer has the highest mortality among all types of cancer; during its development, cells can acquire neural and endocrine properties that affect tumor progression by releasing several factors, some acting as immunomodulators. Neuroendocrine phenotype correlates with invasiveness, metastasis, and low survival rates. This work evaluated the effect of neuroendocrine differentiation of adenocarcinoma on the mouse immune system. A549 cells were treated with FSK (forskolin) and IBMX (3-Isobutyl-1-methylxanthine) for 96 h to induce neuroendocrine differentiation (NED). Systemic effects were assessed by determining changes in circulating cytokines and immune cells of BALB/c mice immunized with PBS, undifferentiated A549 cells, or neuroendocrine A549NED cells. A549 cells increased circulating monocytes, while CD4+CD8- and CD4+CD8+ T cells increased in mice immunized with neuroendocrine cells. IL-2 and IL-10 increased in mice that received untreated A549 cells, suggesting that the immune system mounts a regulated response against adenocarcinoma, which did not occur with A549NED cells. Cocultures demonstrated the cytotoxic capacity of PBMCs when confronted with A549 cells, while in the presence of neuroendocrine cells they not only were unable to show cytolytic activity, but also lost viability. Neuroendocrine differentiation seems to mount less of an immune response when injected in mice, which may contribute to the poor prognosis of cancer patients affected by this pathology.
Collapse
Affiliation(s)
- Ricardo Fosado
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico
| | - Jazmín E. Soto-Hernández
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico
| | - Rosa Elvira Núñez-Anita
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro 58893, Mexico
| | - Carmen Aceves
- Instituto de Neurobiología, Universidad Nacional Autónoma de México-Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro 76230, Mexico
| | - Laura C. Berumen
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico
| | - Irasema Mendieta
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México-Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro 76230, Mexico
- Correspondence: ; Tel.: +52-442-192-12-00 (ext. 5529)
| |
Collapse
|
47
|
Nonami A, Matsuo R, Funakoshi K, Nakayama T, Goto S, Iino T, Takaishi S, Mizuno S, Akashi K, Eto M. Prospective study of adoptive activated αβT lymphocyte immunotherapy for refractory cancers: development and validation of a response scoring system. Cytotherapy 2023; 25:76-81. [PMID: 36253253 DOI: 10.1016/j.jcyt.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/03/2022] [Accepted: 09/25/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND AIMS This prospective clinical study aimed to determine the efficacy and prognostic factors of adoptive activated αβT lymphocyte immunotherapy for various refractory cancers. The primary endpoint was overall survival (OS), and the secondary endpoint was radiological response. METHODS The authors treated 96 patients. Activated αβT lymphocytes were infused every 2 weeks for a total of six times. Prognostic factors were identified by analyzing clinical and laboratory data obtained before therapy. RESULTS Median survival time (MST) was 150 days (95% confidence interval, 105-191), and approximately 20% of patients achieved disease control (complete response + partial response + stable disease). According to the multivariate Cox proportional hazards model with Akaike information criterion-best subset selection, sex, concurrent therapy, neutrophil/lymphocyte ratio, albumin, lactate dehydrogenase, CD4:CD8 ratio and T helper (Th)1:Th2 ratio were strong prognostic factors. Using parameter estimates of the Cox analysis, the authors developed a response scoring system. The authors then determined the threshold of the response score between responders and non-responders. This threshold was able to significantly differentiate OS of responders from that of non-responders. MST of responders was longer than that of non-responders (317.5 days versus 74 days). The validity of this response scoring system was then confirmed by internal validation. CONCLUSIONS Adoptive activated αβT lymphocyte immunotherapy has clinical efficacy in certain patients. The authors' scoring system is the first prognostic model reported for this therapy, and it is useful for selecting patients who might obtain a better prognosis through this modality.
Collapse
Affiliation(s)
- Atsushi Nonami
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka, Japan; Department of Medicine and Biosystemic Science, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Ryu Matsuo
- Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kouta Funakoshi
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka, Japan
| | - Tomohiro Nakayama
- Department of Radiology, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Shigenori Goto
- Department of Next-Generation Cell and Immune Therapy, Juntendo University School of Medicine, Tokyo, Japan
| | - Tadafumi Iino
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka, Japan
| | - Shigeo Takaishi
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka, Japan
| | - Shinichi Mizuno
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka, Japan; Division of Medical Sciences and Technology, Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Akashi
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka, Japan; Department of Medicine and Biosystemic Science, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka, Japan; Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
48
|
Zhang N, Yao H, Zhang Z, Li Z, Chen X, Zhao Y, Ju R, He J, Pan H, Liu X, Lv Y. Ongoing involvers and promising therapeutic targets of hepatic fibrosis: The hepatic immune microenvironment. Front Immunol 2023; 14:1131588. [PMID: 36875101 PMCID: PMC9978172 DOI: 10.3389/fimmu.2023.1131588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Hepatic fibrosis is often secondary to chronic inflammatory liver injury. During the development of hepatic fibrosis, the damaged hepatocytes and activated hepatic stellate cells (HSCs) caused by the pathogenic injury could secrete a variety of cytokines and chemokines, which will chemotactic innate and adaptive immune cells of liver tissue and peripheral circulation infiltrating into the injury site, mediating the immune response against injury and promoting tissue reparation. However, the continuous release of persistent injurious stimulus-induced inflammatory cytokines will promote HSCs-mediated fibrous tissue hyperproliferation and excessive repair, which will cause hepatic fibrosis development and progression to cirrhosis even liver cancer. And the activated HSCs can secrete various cytokines and chemokines, which directly interact with immune cells and actively participate in liver disease progression. Therefore, analyzing the changes in local immune homeostasis caused by immune response under different pathological states will greatly enrich our understanding of liver diseases' reversal, chronicity, progression, and even deterioration of liver cancer. In this review, we summarized the critical components of the hepatic immune microenvironment (HIME), different sub-type immune cells, and their released cytokines, according to their effect on the development of progression of hepatic fibrosis. And we also reviewed and analyzed the specific changes and the related mechanisms of the immune microenvironment in different chronic liver diseases.Moreover, we retrospectively analyzed whether the progression of hepatic fibrosis could be alleviated by modulating the HIME.We aimed to elucidate the pathogenesis of hepatic fibrosis and provide the possibility for exploring the therapeutic targets for hepatic fibrosis.
Collapse
Affiliation(s)
- Nana Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huimin Yao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhixuan Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhuoqun Li
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xue Chen
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ran Ju
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiayi He
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Heli Pan
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lv
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
49
|
de León UAP, Vázquez-Jiménez A, Matadamas-Guzmán M, Resendis-Antonio O. Boolean modeling reveals that cyclic attractors in macrophage polarization serve as reservoirs of states to balance external perturbations from the tumor microenvironment. Front Immunol 2022; 13:1012730. [PMID: 36544764 PMCID: PMC9760798 DOI: 10.3389/fimmu.2022.1012730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Cyclic attractors generated from Boolean models may explain the adaptability of a cell in response to a dynamical complex tumor microenvironment. In contrast to this idea, we postulate that cyclic attractors in certain cases could be a systemic mechanism to face the perturbations coming from the environment. To justify our conjecture, we present a dynamic analysis of a highly curated transcriptional regulatory network of macrophages constrained into a cancer microenvironment. We observed that when M1-associated transcription factors (STAT1 or NF-κB) are perturbed and the microenvironment balances to a hyper-inflammation condition, cycle attractors activate genes whose signals counteract this effect implicated in tissue damage. The same behavior happens when the M2-associated transcription factors are disturbed (STAT3 or STAT6); cycle attractors will prevent a hyper-regulation scenario implicated in providing a suitable environment for tumor growth. Therefore, here we propose that cyclic macrophage phenotypes can serve as a reservoir for balancing the phenotypes when a specific phenotype-based transcription factor is perturbed in the regulatory network of macrophages. We consider that cyclic attractors should not be simply ignored, but it is necessary to carefully evaluate their biological importance. In this work, we suggest one conjecture: the cyclic attractors can serve as a reservoir to balance the inflammatory/regulatory response of the network under external perturbations.
Collapse
Affiliation(s)
- Ugo Avila-Ponce de León
- Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
| | - Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
| | - Meztli Matadamas-Guzmán
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México, Mexico
- Coordinación de la Investigación Científica – Red de Apoyo a la Investigación - Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
50
|
Ali E, Trailin A, Ambrozkiewicz F, Liška V, Hemminki K. Activated Hepatic Stellate Cells in Hepatocellular Carcinoma: Their Role as a Potential Target for Future Therapies. Int J Mol Sci 2022; 23:ijms232315292. [PMID: 36499616 PMCID: PMC9741299 DOI: 10.3390/ijms232315292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a global healthcare challenge, which affects more than 815,000 new cases every year. Activated hepatic stellate cells (aHSCs) remain the principal cells that drive HCC onset and growth. aHSCs suppress the anti-tumor immune response through interaction with different immune cells. They also increase the deposition of the extracellular matrix proteins, challenging the reversion of fibrosis and increasing HCC growth and metastasis. Therapy for HCC was reported to activate HSCs, which could explain the low efficacy of current treatments. Conversely, recent studies aimed at the deactivation of HSCs show that they have been able to inhibit HCC growth. In this review article, we discuss the role of aHSCs in HCC pathophysiology and therapy. Finally, we provide suggestions for the experimental implementation of HSCs in HCC therapies.
Collapse
Affiliation(s)
- Esraa Ali
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 32300 Pilsen, Czech Republic
| | - Andriy Trailin
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 32300 Pilsen, Czech Republic
- Correspondence: ; Tel.: +420-377-593-862
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 32300 Pilsen, Czech Republic
| | - Václav Liška
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 32300 Pilsen, Czech Republic
- Department of Surgery University Hospital and Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 32300 Pilsen, Czech Republic
| | - Kari Hemminki
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 32300 Pilsen, Czech Republic
- Department of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|