1
|
Rudelli C, Galuppi R, Cabbri R, Dalmonte T, Fontanesi L, Andreani G, Isani G. Field Application of an Innovative Approach to Assess Honeybee Health and Nutritional Status. Animals (Basel) 2024; 14:2183. [PMID: 39123709 PMCID: PMC11311059 DOI: 10.3390/ani14152183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Environment, forage quality, management practices, pathogens, and pesticides influence honeybee responses to stressors. This study proposes an innovative approach to assess colony health and performance using molecular diagnostic tools by correlating hemolymph proteins with common measures of colony strength, prevalent honeybee pathogens (Varroa destructor and Nosema spp.), and essential trace elements (iron, zinc and copper). Colonies were selected from four apiaries located in different environmental and foraging conditions in the province of Bologna (Italy). Hemolymph samples were taken from June to October 2019. The Varroa infestation of the colonies was estimated by assessing the natural mortality of the mites, while the bees were tested for Nosema spp. spores using a microscopic method. Hemolymph proteins were quantified and separated using SDS-PAGE, and colony performance was assessed by determining adult bees, total brood, honey, and pollen reserves. The biomarkers measured proved to be useful for monitoring changes in performance and trophic conditions during summer and early autumn. Significant correlations were found between hemolymph proteins and colony performance measures. A positive correlation between pollen reserves, vitellogenin, and hexamerin 70a highlights the importance of these proteins for successful overwintering. In October, Varroa infestation was negatively correlated with total proteins, vitellogenin, apolipophorin II, transferrin, and hexamerin 70a, with negative implications for overwintering; furthermore, Varroa infestation was also negatively correlated with iron content, potentially affecting iron homeostasis.
Collapse
Affiliation(s)
- Cecilia Rudelli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.R.); (R.G.); (R.C.); (T.D.); (G.A.)
| | - Roberta Galuppi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.R.); (R.G.); (R.C.); (T.D.); (G.A.)
| | - Riccardo Cabbri
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.R.); (R.G.); (R.C.); (T.D.); (G.A.)
| | - Thomas Dalmonte
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.R.); (R.G.); (R.C.); (T.D.); (G.A.)
| | - Luca Fontanesi
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, Viale Giuseppe Fanin 46, 40127 Bologna, Italy;
| | - Giulia Andreani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.R.); (R.G.); (R.C.); (T.D.); (G.A.)
| | - Gloria Isani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.R.); (R.G.); (R.C.); (T.D.); (G.A.)
| |
Collapse
|
2
|
Ma C, Gu G, Chen S, Shi X, Li Z, Li-Byarlay H, Bai L. Impact of chronic exposure to field level glyphosate on the food consumption, survival, gene expression, gut microbiota, and metabolomic profiles of honeybees. ENVIRONMENTAL RESEARCH 2024; 250:118509. [PMID: 38408628 DOI: 10.1016/j.envres.2024.118509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/25/2024] [Accepted: 02/15/2024] [Indexed: 02/28/2024]
Abstract
Glyphosate (GLY) is among the most widely used pesticides in the world. However, there are a lot of unknowns about chronic exposure to GLY's effects on Honeybee (HB) behavior and physiology. To address this, we carried out five experiments to study the impact of chronic exposure to 5 mg/kg GLY on sugar consumption, survival, gene expression, gut microbiota, and metabolites of HB workers. Our results find a significant decrease in sugar consumption and survival probability of HB after chronic exposure to GLY. Further, genes associated with immune response, energy metabolism, and longevity were conspicuously altered. In addition, a total of seven metabolites were found to be differentially expressed in the metabolomic profiles, mainly related the sucrose metabolism. There was no significant difference in the gut microbiota. Results suggest that chronic exposure to field-level GLY altered the health of HB and the intricate toxic mechanisms. Our data provided insights into the chronic effects of GLY on HB behavior in food intake and health, which represents the field conditions where HB are exposed to pesticides over extended periods.
Collapse
Affiliation(s)
- Changsheng Ma
- Longping Branch Graduate School, College of Biology, Hunan University, Changsha 410125, China; Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Gaoying Gu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, Yunnan Province 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sihao Chen
- Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, Liverpool L69 3BX, UK; Department of Health and Environmental Sciences, Xi'an-Jiaotong Liverpool University, Suzhou 215123, China
| | - Xiaoyu Shi
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zuren Li
- Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Hongmei Li-Byarlay
- Agricultural Research and Development Program, Central State University, Wilberforce, OH 45384, USA.
| | - Lianyang Bai
- Longping Branch Graduate School, College of Biology, Hunan University, Changsha 410125, China; Key laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
3
|
Kirk DA, Martínez-Lanfranco JA, Forsyth DJ, Martin AE. Farm management and landscape context shape plant diversity at wetland edges in the Prairie Pothole Region of Canada. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2943. [PMID: 38504599 DOI: 10.1002/eap.2943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/29/2023] [Indexed: 03/21/2024]
Abstract
Evaluating the impacts of farming systems on biodiversity is increasingly important given the need to stem biodiversity loss, decrease fossil fuel dependency, and maintain ecosystem services benefiting farmers. We recorded woody and herbaceous plant species diversity, composition, and abundance in 43 wetland-adjacent prairie remnants beside crop fields managed using conventional, minimum tillage, organic, or perennial cover (wildlife-friendly) land management in the Prairie Pothole Region. We used a hierarchical framework to estimate diversity at regional and local scales (gamma, alpha), and how these are related through species turnover (beta diversity). We tested the expectation that gamma richness/evenness and beta diversity of all plants would be higher in remnants adjacent to perennial cover and organic fields than in conventional and minimum tillage fields. We expected the same findings for plants providing ecosystem services (bee-pollinated species) and disservices (introduced species). We predicted similar relative effects of land management on alpha diversity, but with the expectation that the benefits of organic farming would decrease with increasing grassland in surrounding landscapes. Gamma richness and evenness of all plants were highest for perennial cover, followed by minimum tillage, organic, and conventional sites. Bee-pollinated species followed a similar pattern for richness, but for evenness organic farming came second, after perennial cover sites, followed by minimum tillage and conventional. For introduced species, organic sites had the highest gamma richness and evenness. Grassland amount moderated the effect of land management type on all plants and bee-pollinated plant richness, but not as expected. The richness of organic sites increased with the amount of grassland in the surrounding landscape. Conversely, for conventional sites, richness increased as the amount of grassland in the landscape declined. Our results are consistent with the expectation that adopting wildlife-friendly land management practices can benefit biodiversity at regional and local scales, in particular the use of perennial cover to benefit plant diversity at regional scales. At more local extents, organic farming increased plant richness, but only when sufficient grassland was available in the surrounding landscape; organic farms also had the highest beta diversity for all plants and bee-pollinated plants. Maintaining native cover in agroecosystems, in addition to low-intensity farming practices, could sustain plant biodiversity and facilitate important ecosystem services.
Collapse
Affiliation(s)
| | - Juan Andrés Martínez-Lanfranco
- Department of Biological Sciences, University of Alberta, Centennial Center for Interdisciplinary Science Bldg, Edmonton, Alberta, Canada
| | - Douglas J Forsyth
- Canadian Wildlife Service, Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada
| | - Amanda E Martin
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Rinkevich FD, Danka RG, Rinderer TE, Margotta JW, Bartlett LJ, Healy KB. Relative impacts of Varroa destructor (Mesostigmata:Varroidae) infestation and pesticide exposure on honey bee colony health and survival in a high-intensity corn and soybean producing region in northern Iowa. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:18. [PMID: 38805656 PMCID: PMC11132140 DOI: 10.1093/jisesa/ieae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024]
Abstract
The negative effects of Varroa and pesticides on colony health and survival are among the most important concerns to beekeepers. To compare the relative contribution of Varroa, pesticides, and interactions between them on honey bee colony performance and survival, a 2-year longitudinal study was performed in corn and soybean growing areas of Iowa. Varroa infestation and pesticide content in stored pollen were measured from 3 apiaries across a gradient of corn and soybean production areas and compared to measurements of colony health and survival. Colonies were not treated for Varroa the first year, but were treated the second year, leading to reduced Varroa infestation that was associated with larger honey bee populations, increased honey production, and higher colony survival. Pesticide detections were highest in areas with high-intensity corn and soybean production treated with conventional methods. Pesticide detections were positively associated with honey bee population size in May 2015 in the intermediate conventional (IC) and intermediate organic (IO) apiaries. Varroa populations across all apiaries in October 2015 were negatively correlated with miticide and chlorpyrifos detections. Miticide detections across all apiaries and neonicotinoid detections in the IC apiary in May 2015 were higher in colonies that survived. In July 2015, colony survival was positively associated with total pesticide detections in all apiaries and chlorpyrifos exposure in the IC and high conventional (HC) apiaries. This research suggests that Varroa are a major cause of reduced colony performance and increased colony losses, and honey bees are resilient upon low to moderate pesticide detections.
Collapse
Affiliation(s)
- Frank D Rinkevich
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Laboratory, Baton Rouge, LA, USA
| | - Robert G Danka
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Laboratory, Baton Rouge, LA, USA
| | - Thomas E Rinderer
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Laboratory, Baton Rouge, LA, USA
| | - Joseph W Margotta
- Department of Entomology, Louisiana State University, Baton Rouge, LA, USA
| | - Lewis J Bartlett
- Center for the Ecology of Infectious Disease, Odum School of Ecology, University of Georgia, Athens, GA, USA
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Kristen B Healy
- Department of Entomology, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
5
|
Glavinic U, Jovanovic NM, Dominikovic N, Lakic N, Ćosić M, Stevanovic J, Stanimirovic Z. Potential of Wormwood and Oak Bark-Based Supplement in Health Improvement of Nosema ceranae-Infected Honey Bees. Animals (Basel) 2024; 14:1195. [PMID: 38672343 PMCID: PMC11047348 DOI: 10.3390/ani14081195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Nosema ceranae, a microsporidian parasite, as one of the stressors that contribute to honey bee decline, has a significant negative impact on the longevity, productivity, and reproductive capacity of honey bee colonies. There are several different strategies for Nosema infection control, including natural-based and antibiotic-based products. In this study, we tested wormwood and oak bark-based supplement "Medenko forte" on survival, Nosema infection, oxidative stress, and expression of immune-related genes in artificially N. ceranae-infected bees. The results revealed a positive influence on the survival of Nosema-infected bees, irrespectively of the moment of supplement application (day 1, day 3, or day 6 after bee emergence), as well as reduction of Nosema loads and, consequently, Nosema-induced oxidative stress. Supplementation had no negative effects on bee immunity, but better anti-Nosema than immune-stimulating effects were affirmed based on expression levels of abaecin, defensin, hymenoptaecin, apidaecin, and vitellogenin genes. In conclusion, the tested supplement "Medenko forte" has great potential in the health protection of Nosema-infected bees. However, further investigations need to be performed to elucidate its mechanisms of action.
Collapse
Affiliation(s)
- Uros Glavinic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (N.D.); (J.S.); (Z.S.)
| | - Nemanja M. Jovanovic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Nina Dominikovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (N.D.); (J.S.); (Z.S.)
| | - Nada Lakic
- Department of Statistics, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Milivoje Ćosić
- Institute of Forestry, Kneza Viseslava 3, 11000 Belgrade, Serbia;
| | - Jevrosima Stevanovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (N.D.); (J.S.); (Z.S.)
| | - Zoran Stanimirovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (N.D.); (J.S.); (Z.S.)
| |
Collapse
|
6
|
Jovanovic NM, Glavinic U, Ristanic M, Vejnovic B, Ilic T, Stevanovic J, Stanimirovic Z. Effects of Plant-Based Supplement on Oxidative Stress of Honey Bees ( Apis mellifera) Infected with Nosema ceranae. Animals (Basel) 2023; 13:3543. [PMID: 38003159 PMCID: PMC10668651 DOI: 10.3390/ani13223543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
One of the most important approaches in the prevention and treatment of nosemosis is the use of herbal preparations as food supplements for bees. Therefore, the aim of this study was to investigate the effects of a plant-based supplement branded as "B+" on honeybees in a laboratory experiment. Four experimental groups were established: treated group (T), N. ceranae-infected and treated group (IT), N. ceranae-infected group (I) and non-infected group (NI). Survival, N. ceranae spore load and oxidative stress parameters together with expression levels of antioxidant enzyme genes and vitellogenin gene were monitored. The mortality in the T, IT and NI groups was significantly (p < 0.001) lower than in than in the I group. Within Nosema-infected groups, the IT group had a significantly lower (p < 0.001) number of N. ceranae spores than the I group. In addition, expression levels of genes for antioxidant enzymes were lower (p < 0.001) in the IT group compared to the I group. The concentration of malondialdehyde and the activities of antioxidant enzymes (superoxide dismutase, catalase and glutathione S-transferase) were significantly lower (p < 0.001) in the IT group compared to the I group. No negative effects of the tested supplement were observed. All these findings indicate that the tested supplement exerted beneficial effects manifested in better bee survival, reduced N. ceranae spore number and reduced oxidative stress of bees (lower expression of genes for antioxidant enzymes and oxidative stress parameters).
Collapse
Affiliation(s)
- Nemanja M. Jovanovic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (N.M.J.); (T.I.)
| | - Uros Glavinic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| | - Marko Ristanic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| | - Branislav Vejnovic
- Department of Economics and Statistics, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia;
| | - Tamara Ilic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (N.M.J.); (T.I.)
| | - Jevrosima Stevanovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| | - Zoran Stanimirovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| |
Collapse
|
7
|
Visick OD, Ratnieks FLW. Density of wild honey bee, Apis mellifera, colonies worldwide. Ecol Evol 2023; 13:e10609. [PMID: 37841222 PMCID: PMC10568204 DOI: 10.1002/ece3.10609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023] Open
Abstract
The western honey bee, Apis mellifera, lives worldwide in approximately 102 million managed hives but also wild throughout much of its native and introduced range. Despite the global importance of A. mellifera as a crop pollinator, wild colonies have received comparatively little attention in the scientific literature and basic information regarding their density and abundance is scattered. Here, we review 40 studies that have quantified wild colony density directly (n = 33) or indirectly using genetic markers (n = 7) and analyse data from 41 locations worldwide to identify factors that influence wild colony density. We also compare the density of wild and managed colonies at a regional scale using data on managed colonies from the Food and Agriculture Organization (FAO). Wild colony densities varied from 0.1 to 24.2/km2 and were significantly lower in Europe (average of 0.26/km2) than in Northern America (1.4/km2), Oceania (4.4/km2), Latin America (6.7/km2) and Africa (6.8/km2). Regional differences were not significant after controlling for both temperature and survey area, suggesting that cooler climates and larger survey areas may be responsible for the low densities reported in Europe. Managed colony densities were 2.2/km2 in Asia, 1.2/km2 in Europe, 0.2/km2, in Northern America, 0.2/km2 in Oceania, 0.5/km2 in Latin America and 1/km2 in Africa. Wild colony densities exceeded those of managed colonies in all regions except Europe and Asia. Overall, there were estimated to be between two and three times as many wild colonies as managed worldwide. More wild colony surveys, particularly in Asia and South America, are needed to assess the relative density of wild and managed colonies at smaller spatial scales.
Collapse
Affiliation(s)
- Oliver D. Visick
- Laboratory of Apiculture and Social Insects (LASI), School of Life SciencesUniversity of SussexBrightonUK
| | - Francis L. W. Ratnieks
- Laboratory of Apiculture and Social Insects (LASI), School of Life SciencesUniversity of SussexBrightonUK
| |
Collapse
|
8
|
Pons DG, Herrera C, Torrens-Mas M, Leza M, Sastre-Serra J. Sublethal doses of glyphosate modulates mitochondria and oxidative stress in honeybees by direct feeding. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22028. [PMID: 37259187 DOI: 10.1002/arch.22028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Honeybees are essential for the ecosystem maintenance and for plant production in agriculture. Glyphosate is a broad-spectrum systemic herbicide widely used in crops to control weeds and could affect honeybees' health in sublethal doses. Our aim was to study how sublethal doses of glyphosate affects to oxidative stress and mitochondrial homeostasis in honeybees. We exposed honeybees to glyphosate at 5 and 10 mg·l-1 for 2 and 10 h for the gene expression analysis by reverse transcription polymerase chain reaction and for 48 and 72 h for the antioxidant enzymes activity and lipid peroxidation determination. We observed a general increase in antioxidant- and mitochondrial-related genes expression in honeybees after 2 h of exposition to glyphosate, as well as a rise in catalase and superoxide dismutase enzymatic activity after 48 h and an increment in lipid peroxidation adducts generation after 72 h. These results suggest a direct effect of glyphosate on honeybees' health, with an insufficient response of the antioxidant system to the generated oxidative stress, resulting in an increase in lipid peroxidation and, therefore, oxidative damage. Altogether, results obtained in this work demonstrate that sublethal treatments of glyphosate could directly affect honeybee individuals under laboratory conditions. Therefore, it is necessary to investigate alternatives to glyphosate to determine if they are less harmful to non-target organisms.
Collapse
Affiliation(s)
- Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands, Palma de Mallorca, Illes Balears, Spain
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, Illes Balears, Spain
| | - Cayetano Herrera
- Department of Biology (Zoology), University of the Balearic Islands, Palma, Balearic Islands, Spain
| | - Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands, Palma de Mallorca, Illes Balears, Spain
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, Illes Balears, Spain
- Translational Research In Aging and Longevity (TRIAL) Health Research Institute of the Balearic Islands (IdISBa), Palma de Mallorca, Spain
| | - Mar Leza
- Department of Biology (Zoology), University of the Balearic Islands, Palma, Balearic Islands, Spain
| | - Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d´Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands, Palma de Mallorca, Illes Balears, Spain
- Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Meikle WG, Corby-Harris V, Ricigliano V, Snyder L, Weiss M. Cold storage as part of a Varroa management strategy: effects on honey bee colony performance, mite levels and stress biomarkers. Sci Rep 2023; 13:11842. [PMID: 37481663 PMCID: PMC10363162 DOI: 10.1038/s41598-023-39095-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023] Open
Abstract
Placing honey bee colonies in cold storage has been proposed as a way to induce a pause in brood production as part of a Varroa mite treatment plan. Here, we exposed colonies to combinations of with or without an October cold storage period and with or without a subsequent miticide application. We then measured the effects of those treatments on colony-level variables (i.e. colony size, Varroa infestation level, survivorship and hive weight and temperature) and pooled individual-level variables that are associated with nutritional and stress responses. Colonies were assessed before and after cold storage, and again post winter, for a total duration of about 5 months, and the experiment was repeated. Brood levels were significantly lower after cold storage, and hive temperatures indicated that most or all brood had emerged after about two weeks in cold storage. However, Varroa levels at the end of the experiments in February were not significantly different among treatment groups. Colonies kept outside (not subjected to cold storage) and treated with a miticide had higher survivorship on average than any other treatment group, but no other group comparisons were significant, and long-term impact of cold storage on adult bee populations and on colony thermoregulation was low. The bee forage environment was also very different between the 2 years of the study, as rainfall and bee forage availability were much higher the second year. Colonies were over 2.5 times larger on average the second year compared to the first, both in terms of adult bee mass and brood area, and expression levels of nutrition and stress response genes were also significantly higher the second year. The results indicate that limited cold storage would likely have little long-term impact on most colony and individual measures of health, but for such a strategy to succeed levels of stressors, such as Varroa, may also need to be low.
Collapse
Affiliation(s)
- William G Meikle
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, 85719, USA.
| | | | - Vincent Ricigliano
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, 85719, USA
- Honey Bee Breeding, Genetics, and Physiology Research, USDA-ARS, Baton Rouge, LA, 70820, USA
| | - Lucy Snyder
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, 85719, USA
| | - Milagra Weiss
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, 85719, USA
| |
Collapse
|
10
|
Isani G, Bellei E, Rudelli C, Cabbri R, Ferlizza E, Andreani G. SDS-PAGE-Based Quantitative Assay of Hemolymph Proteins in Honeybees: Progress and Prospects for Field Application. Int J Mol Sci 2023; 24:10216. [PMID: 37373362 DOI: 10.3390/ijms241210216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In human and veterinary medicine, serum proteins are considered to be useful biomarkers for assessing the health and nutritional status of the organism. Honeybee hemolymph has a unique proteome that could represent a source of valuable biomarkers. Therefore, the aims of this study were to separate and identify the most abundant proteins in the hemolymph of worker honeybees to suggest a panel of these proteins that could represent useful biomarkers for assessing the nutritional and health status of the colonies and, finally, to analyze them in different periods of the year. Four apiaries were selected in the province of Bologna, and the bees were analyzed in April, May, July, and November. Thirty specimens from three hives of each apiary were sampled and their hemolymph was collected. The most represented bands obtained after 1D sodium-dodecyl-sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) were cut from the gel, and the proteins were identified using an LC-ESI-Q-MS/MS System. A total of twelve proteins were unmistakably identified; the two most abundant proteins were apolipophorin and vitellogenin, which are known biomarkers of bee trophic and health status. The two other proteins identified were transferrin and hexamerin 70a, the first being involved in iron homeostasis and the second being a storage protein. Most of these proteins showed an increase from April to November, mirroring the physiological changes of honeybees during the productive season. The current study suggests a panel of biomarkers from honeybee hemolymph worth testing under different physiological and pathological field conditions.
Collapse
Affiliation(s)
- Gloria Isani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Elisa Bellei
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, Proteomic Lab, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Cecilia Rudelli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Riccardo Cabbri
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Enea Ferlizza
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Via Belmeloro, 8, 40126 Bologna, Italy
| | - Giulia Andreani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| |
Collapse
|
11
|
Tang J, Ji C, Shi W, Su S, Xue Y, Xu J, Chen X, Zhao Y, Chen C. Survey Results of Honey Bee Colony Losses in Winter in China (2009-2021). INSECTS 2023; 14:554. [PMID: 37367370 DOI: 10.3390/insects14060554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
There is growing concern that massive loss of honey bees can cause serious negative effects on biodiversity and ecosystems. Surveys of colony losses have been performed worldwide to monitor the dynamic changes and health status of honey bee colonies. Here, we present the results of surveys regarding winter colony losses from 21 provinces in China from 2009 to 2021, with a total of 1,744,324 colonies managed by 13,704 beekeepers. The total colony losses were low (9.84%; 95% Confidence Interval (CI): 9.60-10.08%) but varied among years, provinces, and scales of apiaries. As little is known about the overwintering mortality of Apis cerana, in this study, we surveyed and compared the loss rates between Apis mellifera and A. cerana in China. We found colonies of A. mellifera suffered significantly lower losses than A. cerana in China. Larger apiaries resulted in higher losses in A. mellifera, whereas the opposite was observed in A. cerana. Furthermore, we used generalized linear mixed-effects models (GLMMs) to evaluate the effects of potential risk factors on winter colony losses and found that the operation size, species, migration, migration×species interaction, and queen problems were significantly related to the loss rates. New queens can increase their colony overwintering survival. Migratory beekeepers and large operations reported lower loss rates.
Collapse
Affiliation(s)
- Jiao Tang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Congcong Ji
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Shi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunbo Xue
- Jilin Province Institute of Apicultural Science, Jilin 132000, China
| | - Jinshan Xu
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xiao Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yazhou Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chao Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
12
|
Palmer-Young EC, Malfi R, Zhou Y, Joyce B, Whitehead H, Van Wyk JI, Baylis K, Grubbs K, Boncristiani DL, Evans JD, Irwin RE, Adler LS. Sunflower-Associated Reductions in Varroa Mite Infestation of Honey Bee Colonies. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:68-77. [PMID: 36573405 DOI: 10.1093/jee/toac196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 06/18/2023]
Abstract
Landscapes can affect parasite epidemiology in wild and agricultural animals. Honey bees are threatened by loss of floral resources and by parasites, principally the mite Varroa destructor and the viruses it vectors. Existing mite control relies heavily on chemical treatments that can adversely affect bees. Alternative, pesticide-free control methods are needed to mitigate infestation with these ectoparasites. Many flowering plants provide nectar and pollen that confer resistance to parasites. Enrichment of landscapes with antiparasitic floral resources could therefore provide a sustainable means of parasite control in pollinators. Floral rewards of Asteraceae plants can reduce parasitic infection in diverse bee species, including honey and bumble bees. Here, we tested the effects of sunflower (Helianthus annuus) cropland and pollen supplementation on honey bee resistance to macro- and microparasites. Although sunflower had nonsignificant effects on microparasites, We found that increased sunflower pollen availability correlated with reduced Varroa mite infestation in landscapes and pollen-supplemented colonies. At the landscape level, each doubling of sunflower crop area was associated with a 28% reduction in mite infestation. In field trials, late-summer supplementation of colonies with sunflower pollen reduced mite infestation by 2.75-fold relative to artificial pollen. United States sunflower crop acreage has declined by 2% per year since 1980, however, suggesting reduced availability of this floral resource. Although further research is needed to determine whether the observed effects represent direct inhibition of mite fecundity or mite-limiting reductions in honey bee brood-rearing, our findings suggest the potential for sunflower plantings or pollen supplements to counteract a major driver of honey bee losses worldwide.
Collapse
Affiliation(s)
| | - Rosemary Malfi
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Yujun Zhou
- Department of Agricultural & Consumer Economics, University of Illinois at Urbana-Champaign, Urbana and Champaign, IL, USA
| | - Bryanna Joyce
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Hannah Whitehead
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jennifer I Van Wyk
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Kathy Baylis
- Department of Agricultural & Consumer Economics, University of Illinois at Urbana-Champaign, Urbana and Champaign, IL, USA
| | - Kyle Grubbs
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | | | - Jay D Evans
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | - Rebecca E Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Lynn S Adler
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
13
|
Anderson KE, Copeland DC, Erickson RJ, Floyd AS, Maes PC, Mott BM. A high-throughput sequencing survey characterizing European foulbrood disease and Varroosis in honey bees. Sci Rep 2023; 13:1162. [PMID: 36670153 PMCID: PMC9859799 DOI: 10.1038/s41598-023-28085-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
As essential pollinators of ecosystems and agriculture, honey bees (Apis mellifera) are host to a variety of pathogens that result in colony loss. Two highly prevalent larval diseases are European foulbrood (EFB) attributed to the bacterium Melissococcus plutonius, and Varroosis wherein larvae can be afflicted by one or more paralytic viruses. Here we used high-throughput sequencing and qPCR to detail microbial succession of larval development from six diseased, and one disease-free apiary. The disease-free larval microbiome revealed a variety of disease-associated bacteria in early larval instars, but later developmental stages were dominated by beneficial symbionts. Microbial succession associated with EFB pathology differed by apiary, characterized by associations with various gram-positive bacteria. At one apiary, diseased larvae were uniquely described as "melting and deflated", symptoms associated with Varroosis. We found that Acute Bee Paralysis Virus (ABPV) levels were significantly associated with these symptoms, and various gram-negative bacteria became opportunistic in the guts of ABPV afflicted larvae. Perhaps contributing to disease progression, the ABPV associated microbiome was significantly depleted of gram-positive bacteria, a likely result of recent antibiotic application. Our results contribute to the understanding of brood disease diagnosis and treatment, a growing problem for beekeeping and agriculture worldwide.
Collapse
Affiliation(s)
- Kirk E Anderson
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 E. Allen Rd., Tucson, AZ, 85719, USA.
| | - Duan C Copeland
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 E. Allen Rd., Tucson, AZ, 85719, USA
- Department of Microbiology, School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Robert J Erickson
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 E. Allen Rd., Tucson, AZ, 85719, USA
| | - Amy S Floyd
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 E. Allen Rd., Tucson, AZ, 85719, USA
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Patrick C Maes
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Brendon M Mott
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 E. Allen Rd., Tucson, AZ, 85719, USA
| |
Collapse
|
14
|
Long-term spatiotemporal patterns in the number of colonies and honey production in Mexico. Sci Rep 2023; 13:1017. [PMID: 36653357 PMCID: PMC9849204 DOI: 10.1038/s41598-022-25469-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/30/2022] [Indexed: 01/19/2023] Open
Abstract
Honey bee decline is currently one of the world's most serious environmental issues, and scientists, governments, and producers have generated interest in understanding its causes and consequences in honey production and food supply. Mexico is one of the world's top honey producers, however, the honey bee population's status has not been documented to date. Based on 32 years of data from beekeeping, we make a country-level assessment of honey bee colony trends in Mexico. We use generalized additive mixed models to measure the associations between the percent change in honey bee hives and the percent change in honey yield per hive in relation to land-use, climate, and socioeconomic conditions. Despite the fact that the average annual yield per hive increased from 1980 to 2012, we detected a significant decline in the percent change in the number of honey bee hives across the time period studied. We also found a relationship between climatic conditions and agricultural land use, with agriculture increases and high temperatures producing a decrease in the percent change in honey yield. We found a relationship between a reduction in the temperature range (the difference between maximum and minimum temperatures) and a decrease in the percent change in the number of hives, while socioeconomic factors related to poverty levels have an impact on the number of hives and honey yields. Although long-term declines in hive numbers are not correlated with poverty levels, socioeconomic factors in states with high and medium poverty levels limit the increase in honey yield per hive. These results provide evidence that land-use changes, unfavorable climatic conditions, political, and socioeconomic factors are partially responsible for the reductions in the percent change in honey bee hives in Mexico.
Collapse
|
15
|
Dequenne I, Philippart de Foy JM, Cani PD. Developing Strategies to Help Bee Colony Resilience in Changing Environments. Animals (Basel) 2022; 12:ani12233396. [PMID: 36496917 PMCID: PMC9737243 DOI: 10.3390/ani12233396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/10/2022] Open
Abstract
Climate change, loss of plant biodiversity, burdens caused by new pathogens, predators, and toxins due to human disturbance and activity are significant causes of the loss of bee colonies and wild bees. The aim of this review is to highlight some possible strategies that could help develop bee resilience in facing their changing environments. Scientists underline the importance of the links between nutrition, microbiota, and immune and neuroendocrine stress resistance of bees. Nutrition with special care for plant-derived molecules may play a major role in bee colony health. Studies have highlighted the importance of pollen, essential oils, plant resins, and leaves or fungi as sources of fundamental nutrients for the development and longevity of a honeybee colony. The microbiota is also considered as a key factor in bee physiology and a cornerstone between nutrition, metabolism, growth, health, and pathogen resistance. Another stressor is the varroa mite parasite. This parasite is a major concern for beekeepers and needs specific strategies to reduce its severe impact on honeybees. Here we discuss how helping bees to thrive, especially through changing environments, is of great concern for beekeepers and scientists.
Collapse
Affiliation(s)
- Isabelle Dequenne
- J-M Philippart de Foy & I Dequenne Consultation, Avenue Orban, 127, 1150 Brussels, Belgium
| | | | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
- WELBIO Department, WEL Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Avenue Pasteur, 6, 1300 Wavre, Belgium
- Correspondence:
| |
Collapse
|
16
|
Insolia L, Molinari R, Rogers SR, Williams GR, Chiaromonte F, Calovi M. Honey bee colony loss linked to parasites, pesticides and extreme weather across the United States. Sci Rep 2022; 12:20787. [PMID: 36456591 PMCID: PMC9714769 DOI: 10.1038/s41598-022-24946-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Honey bee (Apis mellifera) colony loss is a widespread phenomenon with important economic and biological implications, whose drivers are still an open matter of investigation. We contribute to this line of research through a large-scale, multi-variable study combining multiple publicly accessible data sources. Specifically, we analyzed quarterly data covering the contiguous United States for the years 2015-2021, and combined open data on honey bee colony status and stressors, weather data, and land use. The different spatio-temporal resolutions of these data are addressed through an up-scaling approach that generates additional statistical features which capture more complex distributional characteristics and significantly improve modeling performance. Treating this expanded feature set with state-of-the-art feature selection methods, we obtained findings that, nation-wide, are in line with the current knowledge on the aggravating roles of Varroa destructor and pesticides in colony loss. Moreover, we found that extreme temperature and precipitation events, even when controlling for other factors, significantly impact colony loss. Overall, our results reveal the complexity of biotic and abiotic factors affecting managed honey bee colonies across the United States.
Collapse
Affiliation(s)
- Luca Insolia
- Institute of Economics & EMbeDS, Sant'Anna School of Advanced Studies, Pisa, 56127, Italy.,Geneva School of Economics and Management, University of Geneva, Geneva, 1205, Switzerland
| | - Roberto Molinari
- Department of Mathematics and Statistics, Auburn University, Auburn, 36849, AL, USA
| | | | - Geoffrey R Williams
- Department of Entomology and Plant Pathology, Auburn University, Auburn, 36849, AL, USA
| | - Francesca Chiaromonte
- Institute of Economics & EMbeDS, Sant'Anna School of Advanced Studies, Pisa, 56127, Italy.,Department of Statistics, The Pennsylvania State University, University Park, 16802, PA, USA
| | - Martina Calovi
- Department of Geography, Norwegian University of Science and Technology, Trondheim, 7491, Norway.
| |
Collapse
|
17
|
Dostálková S, Kodrík D, Simone-Finstrom M, Petřivalský M, Danihlík J. Fine-scale assessment of Chlorella syrup as a nutritional supplement for honey bee colonies. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1028037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Habitat loss, climate change, and global agriculture have a non-negligible effect on the reduced abundance and diversity of floral resources. Malnutrition and nutritional stress are consequences of the combination of these factors with considerable impact on honey bee health and colony losses. The solution to inadequate natural sources for beekeeping is the additional feeding of honey bee colonies with food supplements. The algae Chlorella is a natural food source, with a nutrient profile similar to natural pollen, thus it has promising application in beekeeping. We evaluated Chlorella vulgaris syrup as a dietary supplement in the view of the oxidative stress that may be caused by long term administration to the colonies. Consuming Chlorella syrup did not influence the activity of digestive enzymes of summer honey bee workers, however, lipase activity insignificantly increased. After Chlorella application to colonies, we also observed insignificantly higher gene expression of antioxidant enzymes catalase and superoxid dismutase1 in adult workers; however, in larvae the expression of those genes was not affected. Surprisingly, the gene expression did not correspond with enzyme activity in adult bee abdomens. In Chlorella fed colonies, we recorded a higher concentration of vitellogenin, which plays multiple roles in honey bee physiology, i.e., antioxidant, storage protein, or immunity-related functions. Our new findings brought evidence that Chlorella did not negatively affect the digestion or oxidative balance of honey bees, thus its application as a pollen supplement can be fully recommended for maintaining the health of honey bee colonies during periods of dearth.
Collapse
|
18
|
Gorrochategui-Ortega J, Muñoz-Colmenero M, Kovačić M, Filipi J, Puškadija Z, Kezić N, Parejo M, Büchler R, Estonba A, Zarraonaindia I. A short exposure to a semi-natural habitat alleviates the honey bee hive microbial imbalance caused by agricultural stress. Sci Rep 2022; 12:18832. [PMID: 36336704 PMCID: PMC9637708 DOI: 10.1038/s41598-022-23287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022] Open
Abstract
Honeybee health and the species' gut microbiota are interconnected. Also noteworthy are the multiple niches present within hives, each with distinct microbiotas and all coexisting, which we termed "apibiome". External stressors (e.g. anthropization) can compromise microbial balance and bee resilience. We hypothesised that (1) the bacterial communities of hives located in areas with different degrees of anthropization differ in composition, and (2) due to interactions between the multiple microbiomes within the apibiome, changes in the community of a niche would impact the bacteria present in other hive sections. We characterised the bacterial consortia of different niches (bee gut, bee bread, hive entrance and internal hive air) of 43 hives from 3 different environments (agricultural, semi-natural and natural) through 16S rRNA amplicon sequencing. Agricultural samples presented lower community evenness, depletion of beneficial bacteria, and increased recruitment of stress related pathways (predicted via PICRUSt2). The taxonomic and functional composition of gut and hive entrance followed an environmental gradient. Arsenophonus emerged as a possible indicator of anthropization, gradually decreasing in abundance from agriculture to the natural environment in multiple niches. Importantly, after 16 days of exposure to a semi-natural landscape hives showed intermediate profiles, suggesting alleviation of microbial dysbiosis through reduction of anthropization.
Collapse
Affiliation(s)
- June Gorrochategui-Ortega
- grid.11480.3c0000000121671098Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Marta Muñoz-Colmenero
- grid.11480.3c0000000121671098Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain ,grid.419099.c0000 0001 1945 7711Instituto de Investigaciones Marinas (CSIC)/Institute of Marine Research, Eduardo Cabello 6, 36208 Vigo, Pontevedra Spain
| | - Marin Kovačić
- grid.412680.90000 0001 1015 399XFaculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, V.Preloga 1, 31000 Osijek, Croatia
| | - Janja Filipi
- grid.424739.f0000 0001 2159 1688Department of Ecology, Agronomy and Aquaculture, University of Zadar, Trg Kneza Višeslava 9, 23000 Zadar, Croatia
| | - Zlatko Puškadija
- grid.412680.90000 0001 1015 399XFaculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, V.Preloga 1, 31000 Osijek, Croatia
| | - Nikola Kezić
- grid.4808.40000 0001 0657 4636Department of Fisheries, Apiculture and Special Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Melanie Parejo
- grid.11480.3c0000000121671098Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Ralph Büchler
- grid.506460.10000 0004 4679 6788Landesbetrieb Landwirtschaft Hessen (LLH), Bieneninstitut, Erlenstraße 9, 35274 Kirchhain, Germany
| | - Andone Estonba
- grid.11480.3c0000000121671098Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Iratxe Zarraonaindia
- grid.11480.3c0000000121671098Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain ,grid.424810.b0000 0004 0467 2314IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
19
|
Park MG, Delphia CM, Prince C, Yocum GD, Rinehart JP, O’Neill KM, Burkle LA, Bowsher JH, Greenlee KJ. Effects of Temperature and Wildflower Strips on Survival and Macronutrient Stores of the Alfalfa Leafcutting Bee (Hymenoptera: Megachilidae) Under Extended Cold Storage. ENVIRONMENTAL ENTOMOLOGY 2022; 51:958-968. [PMID: 35964238 PMCID: PMC9585370 DOI: 10.1093/ee/nvac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Megachile rotundata (F.) is an important pollinator of alfalfa in the United States. Enhancing landscapes with wildflowers is a primary strategy for conserving pollinators and may improve the sustainability of M. rotundata. Changing cold storage temperatures from a traditionally static thermal regime (STR) to a fluctuating thermal regime (FTR) improves overwintering success and extends M. rotundata's shelf life and pollination window. Whether floral resources enhance overwintering survival and/or interact with a thermal regime are unknown. We tested the combined effects of enhancing alfalfa fields with wildflowers and thermal regime on survival and macronutrient stores under extended cold storage (i.e., beyond one season). Megachile rotundata adults were released in alfalfa plots with and without wildflower strips. Completed nests were harvested in September and stored in STR. After a year, cells were randomly assigned to remain in STR for 6 months or in FTR for a year of extended cold storage; emergence rates were observed monthly. Macronutrient levels of emerged females were assessed. FTR improved M. rotundata survival but there was no measurable effect of wildflower strips on overwintering success or nutrient stores. Timing of nest establishment emerged as a key factor: offspring produced late in the season had lower winter survival and dry body mass. Sugars and glycogen stores increased under FTR but not STR. Trehalose levels were similar across treatments. Total lipid stores depleted faster under FTR. While wildflowers did not improve M. rotundata survival, our findings provide mechanistic insight into benefits and potential costs of FTR for this important pollinator.
Collapse
Affiliation(s)
| | - Casey M Delphia
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
- Montana Entomology Collection, Marsh Labs, Montana State University, Bozeman, MT, USA
| | - Cassandra Prince
- Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, Fargo, ND, USA
| | - George D Yocum
- Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, Fargo, ND, USA
| | - Joseph P Rinehart
- Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, Fargo, ND, USA
| | - Kevin M O’Neill
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - Laura A Burkle
- Department of Ecology, Montana State University, Bozeman, MT, USA
| | - Julia H Bowsher
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Kendra J Greenlee
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
20
|
Ricigliano VA, Cank KB, Todd DA, Knowles SL, Oberlies NH. Metabolomics-Guided Comparison of Pollen and Microalgae-Based Artificial Diets in Honey Bees. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9790-9801. [PMID: 35881882 PMCID: PMC9372997 DOI: 10.1021/acs.jafc.2c02583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Managed honey bee colonies used for crop pollination are fed artificial diets to offset nutritional deficiencies related to land-use intensification and climate change. In this study, we formulated novel microalgae diets using Chlorella vulgaris and Arthrospira platensis (spirulina) biomass and fed them to young adult honey bee workers. Diet-induced changes in bee metabolite profiles were studied relative to a natural pollen diet using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) metabolomics. Untargeted analyses of pollen- and microalgae-fed bees revealed significant overlap, with 248 shared features determined by LC-MS and 87 shared features determined by GC-MS. Further metabolomic commonalities were evident upon subtraction of unique diet features. Twenty-five identified metabolites were influenced by diet, which included complex lipids, essential fatty acids, vitamins, and phytochemicals. The metabolomics results are useful to understand mechanisms underlying favorable growth performance as well as increased antioxidant and heat shock protein gene expression in bees fed the microalgae diets. We conclude that the tested microalgae have potential as sustainable feed additives and as a source of bee health-modulating natural products. Metabolomics-guided diet development could eventually help tailor feed interventions to achieve precision nutrition in honey bees and other livestock animals.
Collapse
Affiliation(s)
- Vincent A. Ricigliano
- Vincent
A. Ricigliano—Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton
Rouge, Louisiana 70820, United States
| | - Kristof B. Cank
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402-6170, United States
| | - Daniel A. Todd
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402-6170, United States
| | - Sonja L. Knowles
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402-6170, United States
| | - Nicholas H. Oberlies
- Department
of Chemistry and Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402-6170, United States
- .
Fax: (336) 334-5402
| |
Collapse
|
21
|
Social microbiota and social gland gene expression of worker honey bees by age and climate. Sci Rep 2022; 12:10690. [PMID: 35739206 PMCID: PMC9226125 DOI: 10.1038/s41598-022-14442-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Abstract
Winter forage dearth is a major contributor to honey bee colony loss and can influence disease susceptibility. Honey bees possess a secretory head gland that interfaces with the social environment on many levels. During winter or forage dearth, colonies produce a long-lived (diutinus) worker phenotype that survives until environmental conditions improve. We used a known-age worker cohort to investigate microbiome integrity and social gene expression of workers in early and late winter. We provide additional context by contrasting host-microbial interactions from warm outdoor and cold indoor environments. Our results provide novel evidence that social immune gene expression is associated with worker longevity, and highlight the midgut as a target of opportunistic disease during winter. Host microbial interactions suggest opportunistic disease progression and resistance in long-lived workers, but susceptibility to opportunistic disease in younger workers that emerged during the winter, including increases in Enterobacteriaceae, fungal load and non-core bacterial abundance. The results are consistent with increased social immunity, including host associations with the social microbiota, and a social immune response by long-lived workers to combat microbial opportunism. The cost/benefit ratio associated with limited expression of the diutinus phenotype may be a strong determinant of colony survival during winter forage dearth.
Collapse
|
22
|
Ricigliano VA, Williams ST, Oliver R. Effects of different artificial diets on commercial honey bee colony performance, health biomarkers, and gut microbiota. BMC Vet Res 2022; 18:52. [PMID: 35062935 PMCID: PMC8780706 DOI: 10.1186/s12917-022-03151-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/04/2022] [Indexed: 12/03/2022] Open
Abstract
Background Honey bee colonies managed for agricultural pollination are highly dependent on human inputs, especially for disease control and supplemental nutrition. Hives are routinely fed artificial “pollen substitute” diets to compensate for insufficient nutritional forage in the environment. The aim of this study was to investigate the effects of different artificial diets in a northern California, US commercial beekeeping operation from August through February. This time period represents an extended forage dearth when supplemental nutrition is used to stimulate late winter colony growth prior to almond pollination in the early spring. A total of 144 honey bee colonies were divided into 8 feeding groups that were replicated at three apiary sites. Feeding groups received commercial diets (Global, Ultra Bee, Bulk Soft, MegaBee, AP23, Healthy Bees), a beekeeper-formulated diet (Homebrew), or a sugar negative control. Diets were analyzed for macronutrient and amino acid content then evaluated with respect to honey bee colony population size, average bee weight, nutrition-related gene expression, gut microbiota abundance, and pathogen levels. Results Replicated at three apiary sites, two pollen-containing diets (Global and Homebrew) produced the largest colonies and the heaviest bees per colony. Two diets (Bulk Soft and AP23) that did not contain pollen led to significantly larger colonies than a sugar negative control diet. Diet macronutrient content was not correlated with colony size or health biomarkers. The sum of dietary essential amino acid deficiencies relative to leucine content were correlated with average bee weight in November and colony size used for almond pollination in February. Nutrition-related gene expression, gut microbiota, and pathogen levels were influenced by apiary site, which overrode some diet effects. Regarding microbiota, diet had a significant impact on the abundance of Bifidobacterium and Gilliamella and trended towards effects on other prominent bee gut taxa. Conclusions Multiple colony and individual bee measures are necessary to test diet efficacy since honey bee nutritional responses are complex to evaluate. Balancing essential amino acid content relative to leucine instead of tryptophan may improve diet protein efficiency ratios. Optimization of bee diets could improve feed sustainability and agricultural pollination efficiency by supporting larger, healthier honey bee colonies. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03151-5.
Collapse
|
23
|
Mayack C, Macherone A, Zaki AG, Filiztekin E, Özkazanç B, Koperly Y, Schick SJ, Eppley EJ, Deb M, Ambiel N, Schafsnitz AM, Broadrup RL. Environmental exposures associated with honey bee health. CHEMOSPHERE 2022; 286:131948. [PMID: 34426277 DOI: 10.1016/j.chemosphere.2021.131948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Bee health is declining on a global scale, yet the exact causes and their interactions responsible for the decline remain unknown. To more objectively study bee health, recently biomarkers have been proposed as an essential tool, because they can be rapidly quantified and standardized, serving as a comparable measure across bee species and varying environments. Here, we used a systems biology approach to draw associations between endogenous and exogenous chemical profiles, with pesticide exposure, or the abundance of the 21 most common honey bee diseases. From the analysis we identified chemical biomarkers for both pesticide exposure and bee diseases along with the mechanistic biological pathways that may influence disease onset and progression. We found a total of 2352 chemical features, from 30 different hives, sampled from seven different locations. Of these, a total of 1088 significant associations were found that could serve as chemical biomarker profiles for predicting both pesticide exposure and the presence of diseases in a bee colony. In almost all cases we found novel external environmental exposures within the top seven associations with bee diseases and pesticide exposures, with the majority having previously unknown connections to bee health. We highlight the exposure-outcome paradigm and its ability to identify previously uncategorized interactions from different environmental exposures associated with bee diseases, pesticides, mechanisms, and potential synergistic interactions of these that are responsible for honey bee health decline.
Collapse
Affiliation(s)
- Christopher Mayack
- Department of Biology, Swarthmore College, Swarthmore, PA, USA; Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul, Turkey.
| | - Anthony Macherone
- Life Science and Chemical Analysis Group, Agilent Technologies, Santa Clara, CA, USA; Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Asal Ghaffari Zaki
- Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul, Turkey
| | - Elif Filiztekin
- Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul, Turkey
| | - Burcu Özkazanç
- Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul, Turkey
| | - Yasameen Koperly
- Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul, Turkey
| | | | | | - Moniher Deb
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | - Nicholas Ambiel
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | | | | |
Collapse
|
24
|
Quinlan GM, Milbrath MO, Otto CR, Isaacs R. Farmland in U.S. Conservation Reserve Program has unique floral composition that promotes bee summer foraging. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Iwasaki JM, Hogendoorn K. How protection of honey bees can help and hinder bee conservation. CURRENT OPINION IN INSECT SCIENCE 2021; 46:112-118. [PMID: 34091098 DOI: 10.1016/j.cois.2021.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Pollinators are globally recognised for their role in ecosystem function and reports of pollinator declines are a source of public and academic concern. However, pollinator decline is often erroneously interpreted as if crop pollination services are under threat, which can lead to misguided efforts to protect introduced and/or widespread crop pollinating species that are not in decline, without addressing the needs of other imperilled species. The honey bee (Apis mellifera L.) in particular has widespread recognition for its role as an integral agricultural pollinator and is the focus of many pollinator campaigns. However, we argue outside of their native range that honey bees are inappropriate as umbrella or flagship species for the conservation of pollinators.
Collapse
Affiliation(s)
- Jay M Iwasaki
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Katja Hogendoorn
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| |
Collapse
|
26
|
Niemuth ND, Wangler B, LeBrun JJ, Dewald D, Larson S, Schwagler T, Bradbury CW, Pritchert RD, Iovanna R. Conservation planning for pollinators in the U.S. Great Plains: considerations of context, treatments, and scale. Ecosphere 2021. [DOI: 10.1002/ecs2.3556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Neal D. Niemuth
- Habitat and Population Evaluation Team U.S. Fish and Wildlife Service Bismarck North Dakota 58501 USA
| | - Brian Wangler
- Habitat and Population Evaluation Team U.S. Fish and Wildlife Service Bismarck North Dakota 58501 USA
| | - Jaymi J. LeBrun
- Habitat and Population Evaluation Team U.S. Fish and Wildlife Service Bloomington Minnesota 55437 USA
| | - David Dewald
- Natural Resources Conservation Service U.S. Department of Agriculture Bismarck North Dakota 58501 USA
| | - Scott Larson
- Ecological Services U.S. Fish and Wildlife Service Pierre South Dakota 57501 USA
| | - Todd Schwagler
- Natural Resources Conservation Service U.S. Department of Agriculture Bismarck North Dakota 58501 USA
| | - Curtis W. Bradbury
- Natural Resources Conservation Service U.S. Department of Agriculture Bismarck North Dakota 58501 USA
| | - Ronald D. Pritchert
- Habitat and Population Evaluation Team U.S. Fish and Wildlife Service Bismarck North Dakota 58501 USA
| | - Rich Iovanna
- U.S. Department of Agriculture, Farm Production and Conservation Washington D.C. 20250 USA
| |
Collapse
|
27
|
Hsu CK, Wang DY, Wu MC. A Potential Fungal Probiotic Aureobasidium melanogenum CK-CsC for the Western Honey Bee, Apis mellifera. J Fungi (Basel) 2021; 7:508. [PMID: 34202244 PMCID: PMC8306588 DOI: 10.3390/jof7070508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/23/2022] Open
Abstract
Aureobasidium melanogenum has been used as an animal feed additive for improving thehealth of pets, however, it has not yet been applied in honey bees. Here, a fungal strain CK-CsC isolated from bee bread pollen, was identified as A. melanogenum. Following characterizing CK-CsC fermentation broth, the 4-days fermentation broth (SYM medium or bee pollen) of the CK-CsC was used to feed newly emerged adult honey bees in cages under laboratory-controlled conditions for analysis of survival, gene expression of nutrient and antibacterial peptide, and gut microbiota of honey bees. It was found that the CK-CsC fermentation broth (SYM medium or bee pollen) is nontoxic to honey bees, and can regularly increase nutrient gene expression of honey bees. However, significant mortality of bees was observed after bees were fed on the supernatant liquid of the fermentation broth. Notably, this mortality can be lowered by the simultaneous consumption of bee pollen. The honey bees that were fed bee pollen exhibited more γ-Proteobacteria, Bacteriodetes, and Actinobacteria in their gut flora than did the honey bees fed only crude supernatant liquid extract. These findings indicate that A. melanogenum CK-CsC has high potential as a bee probiotic when it was fermented with bee pollen.
Collapse
Affiliation(s)
| | | | - Ming-Cheng Wu
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan; (C.-K.H.); (D.-Y.W.)
| |
Collapse
|
28
|
Jovanovic NM, Glavinic U, Delic B, Vejnovic B, Aleksic N, Mladjan V, Stanimirovic Z. Plant-based supplement containing B-complex vitamins can improve bee health and increase colony performance. Prev Vet Med 2021; 190:105322. [PMID: 33744676 DOI: 10.1016/j.prevetmed.2021.105322] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/10/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022]
Abstract
It is common knowledge that nutritive stress resulting from decreased diversity and quality of food, pollution of food sources and beekeeping errors may lead to increased susceptibility of bees to pathogens and pesticides. The dearth of adequate food is frequently compensated with supplements. Thus, this research was aimed to study the effects of the plant-based supplement B + on colony strength (assessed according to open and sealed brood area, honey and pollen/bee bread reserves, and the number of adult bees). In addition, Nosema ceranae spores and viruses were quantified and the level of infestation with Varroa destructor assessed. The experiment was conducted in late summer and early spring. In colonies which were given B + in feed a significant increase (p < 0.05) in the parameters of colony strength were noticed in comparison to the control (colonies fed on sugar syrup). Moreover, it was proven that the bees from these colonies had significantly lower (p < 0.05) N. ceranae spore counts, and acute bee paralysis, deformed wing and sacbrood virus loads. Our results suggest that the addition of B + supplement to the colonies provide them with nutrients, contribute to their strengthening, might prevent nutritive stress and increase the success of bees in combating pathogens.
Collapse
Affiliation(s)
- Nemanja M Jovanovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia.
| | - Uros Glavinic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia.
| | - Biljana Delic
- Higher Agricultural School of Vocational Studies in Šabac, Vojvode Putnika 56, 15000 Šabac, Serbia.
| | - Branislav Vejnovic
- Department of Economics and Statistics, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia.
| | - Nevenka Aleksic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia.
| | - Vladimir Mladjan
- Higher Agricultural School of Vocational Studies in Šabac, Vojvode Putnika 56, 15000 Šabac, Serbia.
| | - Zoran Stanimirovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. oslobodjenja 18, 11000 Belgrade, Serbia.
| |
Collapse
|
29
|
Sublethal concentrations of clothianidin affect honey bee colony growth and hive CO 2 concentration. Sci Rep 2021; 11:4364. [PMID: 33623125 PMCID: PMC7902615 DOI: 10.1038/s41598-021-83958-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/19/2021] [Indexed: 11/22/2022] Open
Abstract
The effects of agricultural pesticide exposure upon honey bee colonies is of increasing interest to beekeepers and researchers, and the impact of neonicotinoid pesticides in particular has come under intense scrutiny. To explore potential colony-level effects of a neonicotinoid pesticide at field-relevant concentrations, honey bee colonies were fed 5- and 20-ppb concentrations of clothianidin in sugar syrup while control colonies were fed unadulterated syrup. Two experiments were conducted in successive years at the same site in southern Arizona, and one in the high rainfall environment of Mississippi. Across all three experiments, adult bee masses were about 21% lower among colonies fed 20-ppb clothianidin than the untreated control group, but no effects of treatment on brood production were observed. Average daily hive weight losses per day in the 5-ppb clothianidin colonies were about 39% lower post-treatment than in the 20-ppb clothianidin colonies, indicating lower consumption and/or better foraging, but the dry weights of newly-emerged adult bees were on average 6–7% lower in the 5-ppb group compared to the other groups, suggesting a nutritional problem in the 5-ppb group. Internal hive CO2 concentration was higher on average in colonies fed 20-ppb clothianidin, which could have resulted from greater CO2 production and/or reduced ventilating activity. Hive temperature average and daily variability were not affected by clothianidin exposure but did differ significantly among trials. Clothianidin was found to be, like imidacloprid, highly stable in honey in the hive environment over several months.
Collapse
|
30
|
Krichilsky E, Centrella M, Eitzer B, Danforth B, Poveda K, Grab H. Landscape Composition and Fungicide Exposure Influence Host-Pathogen Dynamics in a Solitary Bee. ENVIRONMENTAL ENTOMOLOGY 2021; 50:107-116. [PMID: 33247307 DOI: 10.1093/ee/nvaa138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 06/12/2023]
Abstract
Both ecosystem function and agricultural productivity depend on services provided by bees; these services are at risk from bee declines which have been linked to land use change, pesticide exposure, and pathogens. Although these stressors often co-occur in agroecosystems, a majority of pollinator health studies have focused on these factors in isolation, therefore limiting our ability to make informed policy and management decisions. Here, we investigate the combined impact of altered landscape composition and fungicide exposure on the prevalence of chalkbrood disease, caused by fungi in the genus Ascosphaera Olive and Spiltoir 1955 (Ascosphaeraceae: Onygenales), in the introduced solitary bee, Osmia cornifrons (Radoszkowski 1887) (Megachilidae: Hymenoptera). We used both field studies and laboratory assays to evaluate the potential for interactions between altered landscape composition, fungicide exposure, and Ascosphaera on O. cornifrons mortality. Chalkbrood incidence in larval O. cornifrons decreased with high open natural habitat cover, whereas Ascosphaera prevalence in adults decreased with high urban habitat cover. Conversely, high fungicide concentration and high forest cover increased chalkbrood incidence in larval O. cornifrons and decreased Ascosphaera incidence in adults. Our laboratory assay revealed an additive effect of fungicides and fungal pathogen exposure on the mortality of a common solitary bee. Additionally, we utilized phylogenetic methods and identified four species of Ascosphaera with O. cornifrons, both confirming previous reports and shedding light on new associates. Our findings highlight the impact of fungicides on bee health and underscore the importance of studying interactions among factors associated with bee decline.
Collapse
Affiliation(s)
| | - Mary Centrella
- Pesticide Management Education Program, Cornell University, Ithaca, NY
| | - Brian Eitzer
- The Connecticut Agricultural Experiment Station, Department of Analytical Chemistry, Johnson-Horsfall Laboratory, New Haven, CT
| | - Bryan Danforth
- Department of Entomology, Cornell University, Ithaca, NY
| | - Katja Poveda
- Department of Entomology, Cornell University, Ithaca, NY
| | - Heather Grab
- Department of Entomology, Cornell University, Ithaca, NY
| |
Collapse
|
31
|
Calovi M, Grozinger CM, Miller DA, Goslee SC. Summer weather conditions influence winter survival of honey bees (Apis mellifera) in the northeastern United States. Sci Rep 2021; 11:1553. [PMID: 33452352 PMCID: PMC7811010 DOI: 10.1038/s41598-021-81051-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/01/2021] [Indexed: 01/29/2023] Open
Abstract
Honey bees are crucial pollinators for agricultural and natural ecosystems, but are experiencing heavy mortality in North America and Europe due to a complex suite of factors. Understanding the relative importance of each factor would enable beekeepers to make more informed decisions and improve assessment of local and regional habitat suitability. We used 3 years of Pennsylvania beekeepers' survey data to assess the importance of weather, topography, land use, and management factors on overwintering mortality at both apiary and colony levels, and to predict survival given current weather conditions and projected climate changes. Random Forest, a tree-based machine learning approach suited to describing complex nonlinear relationships among factors, was used. A Random Forest model predicted overwintering survival with 73.3% accuracy for colonies and 65.7% for apiaries where Varroa mite populations were managed. Growing degree days and precipitation of the warmest quarter of the preceding year were the most important predictors at both levels. A weather-only model was used to predict colony survival probability, and to create a composite map of survival for 1981-2019. Although 3 years data were likely not enough to adequately capture the range of possible climatic conditions, the model performed well within its constraints.
Collapse
Affiliation(s)
- Martina Calovi
- grid.29857.310000 0001 2097 4281Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA 16802 USA
| | - Christina M. Grozinger
- grid.29857.310000 0001 2097 4281Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, The Pennsylvania University, University Park, PA 16802 USA
| | - Douglas A. Miller
- grid.29857.310000 0001 2097 4281Department of Geography, The Pennsylvania State University, University Park, PA 16802 USA ,grid.29857.310000 0001 2097 4281Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA 16802 USA
| | - Sarah C. Goslee
- grid.463419.d0000 0001 0946 3608USDA-ARS Pasture Systems and Watershed Management Research Unit, University Park, PA 16802 USA
| |
Collapse
|
32
|
McNeil DJ, McCormick E, Heimann AC, Kammerer M, Douglas MR, Goslee SC, Grozinger CM, Hines HM. Bumble bees in landscapes with abundant floral resources have lower pathogen loads. Sci Rep 2020; 10:22306. [PMID: 33339846 PMCID: PMC7749142 DOI: 10.1038/s41598-020-78119-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/19/2020] [Indexed: 01/14/2023] Open
Abstract
The pollination services provided by bees are essential for supporting natural and agricultural ecosystems. However, bee population declines have been documented across the world. Many of the factors known to undermine bee health (e.g., poor nutrition) can decrease immunocompetence and, thereby, increase bees’ susceptibility to diseases. Given the myriad of stressors that can exacerbate disease in wild bee populations, assessments of the relative impact of landscape habitat conditions on bee pathogen prevalence are needed to effectively conserve pollinator populations. Herein, we assess how landscape-level conditions, including various metrics of floral/nesting resources, insecticides, weather, and honey bee (Apis mellifera) abundance, drive variation in wild bumble bee (Bombus impatiens) pathogen loads. Specifically, we screened 890 bumble bee workers from varied habitats in Pennsylvania, USA for three pathogens (deformed wing virus, black queen cell virus, and Vairimorpha (= Nosema) bombi), Defensin expression, and body size. Bumble bees collected within low-quality landscapes exhibited the highest pathogen loads, with spring floral resources and nesting habitat availability serving as the main drivers. We also found higher loads of pathogens where honey bee apiaries are more abundant, a positive relationship between Vairimorpha loads and rainfall, and differences in pathogens by geographic region. Collectively, our results highlight the need to support high-quality landscapes (i.e., those with abundant floral/nesting resources) to maintain healthy wild bee populations.
Collapse
Affiliation(s)
- Darin J McNeil
- Department of Entomology, Insect Biodiversity Center, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Elyse McCormick
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Ashley C Heimann
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Melanie Kammerer
- Department of Entomology, Insect Biodiversity Center, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Margaret R Douglas
- Department of Environmental Studies and Environmental Science, Dickinson College, Carlisle, PA, 17013, USA
| | - Sarah C Goslee
- United States Department of Agriculture-Agricultural Research Service, Pasture Systems and Watershed Management Research Unit, University Park, PA, 16802, USA
| | - Christina M Grozinger
- Department of Entomology, Insect Biodiversity Center, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Heather M Hines
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
33
|
Microbial Ecology of European Foul Brood Disease in the Honey Bee ( Apis mellifera): Towards a Microbiome Understanding of Disease Susceptibility. INSECTS 2020; 11:insects11090555. [PMID: 32825355 PMCID: PMC7565670 DOI: 10.3390/insects11090555] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/01/2023]
Abstract
Simple Summary Honey bees are vital to the agriculture of the world, but like all managed organisms, disease control has become challenging due to the overuse and misuse of antibiotics. Alternate solutions with potential to control disease include natural compounds and probiotic supplements. Probiotic supplements in honey bees have been praised by industry, but studies applying probiotics to honey bee larval disease are lacking and technically challenging. In this study we tested the effectiveness of a demonstrated probiotic (Parasacharribacter apium strain C6) to mitigate a damaging larval disease called European Foul Brood (EFB). Based on a controlled laboratory study and two separate trials, the probiotic had no effect on EFB disease. The control groups performed as expected, validating the very sensitive lab procedure used to artificially rear honey bee larvae. Surprisingly, the probiotic provided no survival benefit to larvae in the absence of disease, contradicting past results. We discuss the difficult technique of larval rearing in the laboratory with reference to an improved experimental design introducing disease agents and potential remedies. In summary, our findings indicate that the representation of honey bee health and disease in the laboratory setting requires repeatable validation with reference to rigorous control and natural colony context. Abstract European honey bees (Apis mellifera Linnaeus) are beneficial insects that provide essential pollination services for agriculture and ecosystems worldwide. Modern commercial beekeeping is plagued by a variety of pathogenic and environmental stressors often confounding attempts to understand colony loss. European foulbrood (EFB) is considered a larval-specific disease whose causative agent, Melissococcus plutonius, has received limited attention due to methodological challenges in the field and laboratory. Here, we improve the experimental and informational context of larval disease with the end goal of developing an EFB management strategy. We sequenced the bacterial microbiota associated with larval disease transmission, isolated a variety of M.plutonius strains, determined their virulence against larvae in vitro, and explored the potential for probiotic treatment of EFB disease. The larval microbiota was a low diversity environment similar to honey, while worker mouthparts and stored pollen contained significantly greater bacterial diversity. Virulence of M. plutonius against larvae varied markedly by strain and inoculant concentration. Our chosen probiotic, Parasaccharibacter apium strain C6, did not improve larval survival when introduced alone, or in combination with a virulent EFB strain. We discuss the importance of positive and negative controls for in vitro studies of the larval microbiome and disease.
Collapse
|
34
|
McMinn-Sauder H, Richardson R, Eaton T, Smith M, Johnson R. Flowers in Conservation Reserve Program (CRP) Pollinator Plantings and the Upper Midwest Agricultural Landscape Supporting Honey Bees. INSECTS 2020; 11:insects11070405. [PMID: 32629811 PMCID: PMC7411617 DOI: 10.3390/insects11070405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022]
Abstract
A present goal of the Conservation Reserve Program (CRP) is to manage land in agricultural landscapes to increase pollinator abundance and diversity. CP42, or the pollinator seed mix, is planted and managed to support foraging pollinators with blooming flowers present at all points in the foraging season. This high-quality habitat provides an excellent opportunity to study honey bee nutrition and determine whether honey bees located near CRP sites use known resources included in planting seed mixes. This study aims to highlight the primary sources of honey bee forage in the northern Midwest as well as to assess honey bee utilization of the floral resources provided by the pollinator seed mix used for CRP plantings. We received pollen samples collected using pollen traps by beekeepers in Ohio, South Dakota, Indiana, Illinois, and Michigan. Metabarcoding methods were used to identify and quantify pollen collected at different points in the season. The results indicate that honey bees frequently used major mass flowering resources such as Glycine, Trifolium, and Symphiotrichum throughout the season. In addition, flowers included in the CRP pollinator seed mix were used modestly. These results have implications for pollinator seed mix design.
Collapse
Affiliation(s)
- Harper McMinn-Sauder
- Department of Entomology, The Ohio State University, Columbus, OH 43210, USA; (R.R.); (T.E.); (R.J.)
- Correspondence:
| | - Rodney Richardson
- Department of Entomology, The Ohio State University, Columbus, OH 43210, USA; (R.R.); (T.E.); (R.J.)
| | - Tyler Eaton
- Department of Entomology, The Ohio State University, Columbus, OH 43210, USA; (R.R.); (T.E.); (R.J.)
| | - Mike Smith
- Conservation Technology Information Center, West Lafayette, IN 47906, USA;
| | - Reed Johnson
- Department of Entomology, The Ohio State University, Columbus, OH 43210, USA; (R.R.); (T.E.); (R.J.)
| |
Collapse
|
35
|
Ricigliano VA. Microalgae as a promising and sustainable nutrition source for managed honey bees. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21658. [PMID: 31976574 DOI: 10.1002/arch.21658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Managed honey bee colony losses are attributed to a number of interacting stressors, but many lines of evidence point to malnutrition as a primary factor. Commercial beekeepers have become increasingly reliant on artificial pollen substitute diets to nourish colonies during periods of forage scarcity and to bolster colony size before pollination services. These artificial diets may be deficient in essential macronutrients (proteins, lipids, prebiotic fibers), micronutrients (vitamins, minerals), and antioxidants. Therefore, improving the efficacy of pollen substitutes can be considered vital to modern beekeeping. Microalgae are prolific sources of plant-based nutrition with many species exhibiting biochemical profiles that are comparable to natural pollen. This emerging feed source has been employed in a variety of organisms, including limited applications in honey bees. Herein, I introduce the nutritional value and functional properties of microalgae, extrapolating to central aspects of honey bee physiology and health. To conclude, I discuss the potential of microalgae-based feeds to sustainably provision managed colonies on an agricultural scale.
Collapse
Affiliation(s)
- Vincent A Ricigliano
- Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton Rouge, Louisiana
| |
Collapse
|
36
|
Meikle WG, Weiss M, Beren E. Landscape factors influencing honey bee colony behavior in Southern California commercial apiaries. Sci Rep 2020; 10:5013. [PMID: 32193405 PMCID: PMC7081305 DOI: 10.1038/s41598-020-61716-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/27/2020] [Indexed: 12/02/2022] Open
Abstract
Colony brood levels, frames of bees (adult bee mass) and internal hive temperature were monitored for 60 colonies for each of two years as they were moved from agricultural, tree crop and mountain landscapes in southern California to blueberry and almond pollination sites. Hive weight was also continuously monitored for 20 of those hives for 6 weeks for both years, during commercial pollination. Pesticide residues in wax, honey and beebread samples were analyzed by composite apiary samples. While colonies in mountain sites had more adult bees and brood than those in agricultural sites in August, by October brood levels were higher in colonies from agricultural sites. Though hives from different original landscapes differed in size in October, hive assessments revealed no differences between the groups after co-wintering when graded for commercial almond pollination. Beebread from hives in agricultural sites had greater agrochemical diversity and in general higher pesticide hazard quotients than those from mountain sites, but those hives also had higher and more constant temperatures from September until January than hives from mountain sites. Hives placed in commercial almond pollination gained on average 287 g per d, compared to an average loss of 68 g per d for colonies in commercial blueberry pollination, although weight data indicated greater foraging effort by colonies in blueberries, possibly due to the proximity and abundance of almond pollen during bloom. Temperature monitoring was effective at distinguishing hive groups and had the best overall value in terms of equipment, installation, colony disturbance and information yield.
Collapse
Affiliation(s)
| | - Milagra Weiss
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, USA
| | - Eli Beren
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, USA
| |
Collapse
|
37
|
Grozinger CM, Zayed A. Improving bee health through genomics. Nat Rev Genet 2020; 21:277-291. [DOI: 10.1038/s41576-020-0216-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2020] [Indexed: 01/16/2023]
|
38
|
Negri P, Villalobos E, Szawarski N, Damiani N, Gende L, Garrido M, Maggi M, Quintana S, Lamattina L, Eguaras M. Towards Precision Nutrition: A Novel Concept Linking Phytochemicals, Immune Response and Honey Bee Health. INSECTS 2019; 10:E401. [PMID: 31726686 PMCID: PMC6920938 DOI: 10.3390/insects10110401] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
The high annual losses of managed honey bees (Apis mellifera) has attracted intensive attention, and scientists have dedicated much effort trying to identify the stresses affecting bees. There are, however, no simple answers; rather, research suggests multifactorial effects. Several works have been reported highlighting the relationship between bees' immunosuppression and the effects of malnutrition, parasites, pathogens, agrochemical and beekeeping pesticides exposure, forage dearth and cold stress. Here we analyze a possible connection between immunity-related signaling pathways that could be involved in the response to the stress resulted from Varroa-virus association and cold stress during winter. The analysis was made understanding the honey bee as a superorganism, where individuals are integrated and interacting within the colony, going from social to individual immune responses. We propose the term "Precision Nutrition" as a way to think and study bees' nutrition in the search for key molecules which would be able to strengthen colonies' responses to any or all of those stresses combined.
Collapse
Affiliation(s)
- Pedro Negri
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Ethel Villalobos
- Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 3050 Maile Way, 310 Gilmore Hall, Honolulu, HI 96822, USA;
| | - Nicolás Szawarski
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Natalia Damiani
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Liesel Gende
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Melisa Garrido
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Matías Maggi
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Silvina Quintana
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Lorenzo Lamattina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
- Instituto de Investigaciones Biológicas (IIB-CONICET), UNMdP, Dean Funes 3350, Mar del Plata CP 7600, Argentina
| | - Martin Eguaras
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| |
Collapse
|
39
|
López-Uribe MM, Ricigliano VA, Simone-Finstrom M. Defining Pollinator Health: A Holistic Approach Based on Ecological, Genetic, and Physiological Factors. Annu Rev Anim Biosci 2019; 8:269-294. [PMID: 31618045 DOI: 10.1146/annurev-animal-020518-115045] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evidence for global bee population declines has catalyzed a rapidly evolving area of research that aims to identify the causal factors and to effectively assess the status of pollinator populations. The term pollinator health emerged through efforts to understand causes of bee decline and colony losses, but it lacks a formal definition. In this review, we propose a definition for pollinator health and synthesize the available literature on the application of standardized biomarkers to assess health at the individual, colony, and population levels. We focus on biomarkers in honey bees, a model species, but extrapolate the potential application of these approaches to monitor the health status of wild bee populations. Biomarker-guided health measures can inform beekeeper management decisions, wild bee conservation efforts, and environmental policies. We conclude by addressing challenges to pollinator health from a One Health perspective that emphasizes the interplay between environmental quality and human, animal, and bee health.
Collapse
Affiliation(s)
- Margarita M López-Uribe
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| | - Vincent A Ricigliano
- Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton Rouge, Louisiana 70820, USA; ,
| | - Michael Simone-Finstrom
- Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton Rouge, Louisiana 70820, USA; ,
| |
Collapse
|
40
|
Szawarski N, Saez A, Domínguez E, Dickson R, De Matteis Á, Eciolaza C, Justel M, Aliano A, Solar P, Bergara I, Pons C, Bolognesi A, Carna G, Garcia W, Garcia O, Eguaras M, Lamattina L, Maggi M, Negri P. Effect of Abscisic Acid (ABA) Combined with Two Different Beekeeping Nutritional Strategies to Confront Overwintering: Studies on Honey Bees' Population Dynamics and Nosemosis. INSECTS 2019; 10:insects10100329. [PMID: 31581467 PMCID: PMC6835648 DOI: 10.3390/insects10100329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 12/29/2022]
Abstract
In temperate climates, beekeeping operations suffer colony losses and colony depopulation of Apis mellifera during overwintering, which are associated with biotic and abiotic stressors that impact bees’ health. In this work, we evaluate the impacts of abscisic acid (ABA) dietary supplementation on honey bee colonies kept in Langstroth hives. The effects of ABA were evaluated in combination with two different beekeeping nutritional strategies to confront overwintering: “honey management” and “syrup management”. Specifically, we evaluated strength parameters of honey bee colonies (adult bee and brood population) and the population dynamics of Nosema (prevalence and intensity) associated with both nutritional systems and ABA supplementation during the whole study (late autumn-winter-early spring). The entire experiment was designed and performed with a local group of beekeepers, “Azahares del sudeste”, who showed interest in answering problems associated with the management of honey bee colonies during the winter. The results indicated that the ABA supplementation had positive effects on the population dynamics of the A. mellifera colonies during overwintering and on the nosemosis at colony level (prevalence) in both nutritional strategies evaluated.
Collapse
Affiliation(s)
- Nicolás Szawarski
- Centro de Investigación en Abejas Sociales (CIAS) (IIPROSAM-CONICET), Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Mar del Plata CP 7600, Argentina.
| | - Agustín Saez
- INIBIOMA, Universidad Nacional del Comahue, (CONICET), Quintral 1250, Bariloche 8400, Argentina
| | - Enzo Domínguez
- Centro de Investigación en Abejas Sociales (CIAS) (IIPROSAM-CONICET), Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Mar del Plata CP 7600, Argentina
| | - Rachel Dickson
- Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224, USA
| | - Ángela De Matteis
- Beekeeper from Azahares del Sudeste association, Instituto Nacional de Tecnología Agropecuaria (INTA), Mar del Plata CP 7600, Argentina
| | - Carlos Eciolaza
- Beekeeper from Azahares del Sudeste association, Instituto Nacional de Tecnología Agropecuaria (INTA), Mar del Plata CP 7600, Argentina
| | - Marcelino Justel
- Beekeeper from Azahares del Sudeste association, Instituto Nacional de Tecnología Agropecuaria (INTA), Mar del Plata CP 7600, Argentina
| | - Alfredo Aliano
- Beekeeper from Azahares del Sudeste association, Instituto Nacional de Tecnología Agropecuaria (INTA), Mar del Plata CP 7600, Argentina
| | - Pedro Solar
- Beekeeper from Azahares del Sudeste association, Instituto Nacional de Tecnología Agropecuaria (INTA), Mar del Plata CP 7600, Argentina
| | - Ignacio Bergara
- Beekeeper from Azahares del Sudeste association, Instituto Nacional de Tecnología Agropecuaria (INTA), Mar del Plata CP 7600, Argentina
| | - Claudia Pons
- Beekeeper from Azahares del Sudeste association, Instituto Nacional de Tecnología Agropecuaria (INTA), Mar del Plata CP 7600, Argentina
| | - Aldo Bolognesi
- Beekeeper from Azahares del Sudeste association, Instituto Nacional de Tecnología Agropecuaria (INTA), Mar del Plata CP 7600, Argentina
| | - Gabriel Carna
- Beekeeper from Azahares del Sudeste association, Instituto Nacional de Tecnología Agropecuaria (INTA), Mar del Plata CP 7600, Argentina
| | - Walter Garcia
- Beekeeper from Azahares del Sudeste association, Instituto Nacional de Tecnología Agropecuaria (INTA), Mar del Plata CP 7600, Argentina
| | - Omar Garcia
- Beekeeper from Azahares del Sudeste association, Instituto Nacional de Tecnología Agropecuaria (INTA), Mar del Plata CP 7600, Argentina
| | - Martin Eguaras
- Centro de Investigación en Abejas Sociales (CIAS) (IIPROSAM-CONICET), Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Mar del Plata CP 7600, Argentina
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas (IIB-CONICET), Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Mar del Plata CP 7600, Argentina
| | - Matías Maggi
- Centro de Investigación en Abejas Sociales (CIAS) (IIPROSAM-CONICET), Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Mar del Plata CP 7600, Argentina
| | - Pedro Negri
- Centro de Investigación en Abejas Sociales (CIAS) (IIPROSAM-CONICET), Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Mar del Plata CP 7600, Argentina
| |
Collapse
|
41
|
McConnell MD. Bridging the gap between conservation delivery and economics with precision agriculture. WILDLIFE SOC B 2019. [DOI: 10.1002/wsb.995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mark D. McConnell
- Department of Wildlife, Fisheries and AquacultureMississippi State University 775 Stone Boulevard Mississippi State MS 39762 USA
| |
Collapse
|
42
|
Burger LW, Evans KO, McConnell MD, Burger LM. Private lands conservation: A vision for the future. WILDLIFE SOC B 2019. [DOI: 10.1002/wsb.1001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- L. Wes Burger
- Forest and Wildlife Research Center P.O. Box 9740 Mississippi State MS 39762 USA
| | - Kristine O. Evans
- Department of Wildlife, Fisheries, and Aquaculture P.O. Box 9690 Mississippi State MS 39762 USA
| | - Mark D. McConnell
- Department of Wildlife, Fisheries, and Aquaculture P.O. Box 9690 Mississippi State MS 39762 USA
| | - Leslie M. Burger
- Department of Wildlife, Fisheries, and Aquaculture P.O. Box 9690 Mississippi State MS 39762 USA
| |
Collapse
|