1
|
Zhang B, Yang D, Zhang J, Yang N, Kong J, Hu Y, Liu J, Liu Q, Chen G, Zhang X. Short-term temperature changes affected the predation ability of Orius similis on Bemisia tabaci nymphs. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2303-2313. [PMID: 39316688 DOI: 10.1093/jee/toae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/21/2024] [Accepted: 08/31/2024] [Indexed: 09/26/2024]
Abstract
Bemisia tabaci (Gennadius), a major pest that can adversely affect economies and agriculture globally, is particularly sensitive to climate change-induced temperature fluctuations, which can intensify its outbreaks. Orius similis Zheng, a primary natural predator of B. tabaci, also experiences temperature-related effects that influence its biocontrol efficacy. Thus, understanding the response of O. similis to temperature changes is pivotal for optimizing its biocontrol potential. Herein, our investigations showed that the functional response of O. similis to both high- and low-instar nymphs of B. tabaci adheres to the type II model at temperatures of 19, 22, 25, 28, and 31 °C. At 28 °C, O. similis exhibits the highest instantaneous attack rate (high-instar: 1.1580, low-instar: 1.2112), and the shortest handling time per prey (high-instar: 0.0218, low-instar: 0.0191). The efficacy of O. similis in controlling B. tabaci nymphs follows the sequence: 28 °C > 25 °C > 31 °C > 22 °C > 19 °C. Additionally, search efficiency inversely correlates with prey density. Simulations using the Hessell-Varley interference model indicate that increased density of O. similis under any temperature condition leads to reduced predation rates. Moreover, O. similis shows a predation preference for low-instar nymphs of B. tabaci, with higher predation level observed at the same temperature. In conclusion, for effective control of B. tabaci in field releases, O. similis should be optimally released at temperatures between 25 and 28 °C to preferably target the egg or early nymph stages of B. tabaci and determining the appropriate number of O. similis is important to minimize interference among individuals and enhance biocontrol efficacy.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Dan Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Jinlong Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Nian Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Jiao Kong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Ying Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Jihuan Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Qing Liu
- School of Resources and Environment, Baoshan University, Key Laboratory of Conservation and Utilization of Insect Resources in Western Yunnan, Baoshan Key Laboratory of Biodiversity Conservation and Utilization of Gaoligong Mountains, Baoshan, China
| | - Guohua Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xiaoming Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
2
|
Junker JR, Cross WF, Hood JM, Benstead JP, Huryn AD, Nelson D, Ólafsson JS, Gíslason GM. Environmental warming increases the importance of high-turnover energy channels in stream food webs. Ecology 2024; 105:e4314. [PMID: 38710667 DOI: 10.1002/ecy.4314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/03/2024] [Accepted: 03/14/2024] [Indexed: 05/08/2024]
Abstract
Warming temperatures are altering communities and trophic networks across Earth's ecosystems. While the overall influence of warming on food webs is often context-dependent, increasing temperatures are predicted to change communities in two fundamental ways: (1) by reducing average body size and (2) by increasing individual metabolic rates. These warming-induced changes have the potential to influence the distribution of food web fluxes, food web stability, and the relative importance of deterministic and stochastic ecological processes shaping community assembly. Here, we quantified patterns and the relative distribution of organic matter fluxes through stream food webs spanning a broad natural temperature gradient (5-27°C). We then related these patterns to species and community trait distributions of mean body size and population biomass turnover (P:B) within and across streams. We predicted that (1) communities in warmer streams would exhibit smaller body size and higher P:B and (2) organic matter fluxes within warmer communities would increasingly skew toward smaller, higher P:B populations. Across the temperature gradient, warmer communities were characterized by smaller body size (~9% per °C) and higher P:B (~7% faster turnover per °C) populations on average. Additionally, organic matter fluxes within warmer streams were increasingly skewed toward higher P:B populations, demonstrating that warming can restructure organic matter fluxes in both an absolute and relative sense. With warming, the relative distribution of organic matter fluxes was decreasingly likely to arise through the random sorting of species, suggesting stronger selection for traits driving high turnover with increasing temperature. Our study suggests that a warming world will favor energy fluxes through "smaller and faster" populations, and that these changes may be more predictable than previously thought.
Collapse
Affiliation(s)
- James R Junker
- Department of Ecology, Montana State University, Bozeman, Montana, USA
| | - Wyatt F Cross
- Department of Ecology, Montana State University, Bozeman, Montana, USA
| | - James M Hood
- The Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jonathan P Benstead
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Alexander D Huryn
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Daniel Nelson
- National Aquatic Monitoring Center, Department of Watershed Sciences, Utah State University, Logan, Utah, USA
| | - Jón S Ólafsson
- Marine and Freshwater Research Institute, Hafnarfjördur, Iceland
| | - Gísli M Gíslason
- University of Iceland, Institute of Life and Environmental Sciences, Reykjavík, Iceland
| |
Collapse
|
3
|
Sporta Caputi S, Kabala JP, Rossi L, Careddu G, Calizza E, Ventura M, Costantini ML. Individual diet variability shapes the architecture of Antarctic benthic food webs. Sci Rep 2024; 14:12333. [PMID: 38811641 PMCID: PMC11137039 DOI: 10.1038/s41598-024-62644-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
Antarctic biodiversity is affected by seasonal sea-ice dynamics driving basal resource availability. To (1) determine the role of intraspecific dietary variability in structuring benthic food webs sustaining Antarctic biodiversity, and (2) understand how food webs and the position of topologically central species vary with sea-ice cover, single benthic individuals' diets were studied by isotopic analysis before sea-ice breakup and afterwards. Isotopic trophospecies (or Isotopic Trophic Units) were investigated and food webs reconstructed using Bayesian Mixing Models. As nodes, these webs used either ITUs regardless of their taxonomic membership (ITU-webs) or ITUs assigned to species (population-webs). Both were compared to taxonomic-webs based on taxa and their mean isotopic values. Higher resource availability after sea-ice breakup led to simpler community structure, with lower connectance and linkage density. Intra-population diet variability and compartmentalisation were crucial in determining community structure, showing population-webs to be more complex, stable and robust to biodiversity loss than taxonomic-webs. The core web, representing the minimal community 'skeleton' that expands opportunistically while maintaining web stability with changing resource availability, was also identified. Central nodes included the sea-urchin Sterechinus neumayeri and the bivalve Adamussium colbecki, whose diet is described in unprecedented detail. The core web, compartmentalisation and topologically central nodes represent crucial factors underlying Antarctica's rich benthic food web persistence.
Collapse
Affiliation(s)
- Simona Sporta Caputi
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185, Rome, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Jerzy Piotr Kabala
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185, Rome, Italy
| | - Loreto Rossi
- CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196, Rome, Italy.
| | - Giulio Careddu
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185, Rome, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Edoardo Calizza
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185, Rome, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Matteo Ventura
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185, Rome, Italy
| | - Maria Letizia Costantini
- Department of Environmental Biology, Sapienza University of Rome, Via Dei Sardi 70, 00185, Rome, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, Piazzale Flaminio 9, 00196, Rome, Italy
| |
Collapse
|
4
|
Ahme A, Happe A, Striebel M, Cabrerizo MJ, Olsson M, Giesler J, Schulte-Hillen R, Sentimenti A, Kühne N, John U. Warming increases the compositional and functional variability of a temperate protist community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171971. [PMID: 38547992 DOI: 10.1016/j.scitotenv.2024.171971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Phototrophic protists are a fundamental component of the world's oceans by serving as the primary source of energy, oxygen, and organic nutrients for the entire ecosystem. Due to the high thermal seasonality of their habitat, temperate protists could harbour many well-adapted species that tolerate ocean warming. However, these species may not sustain ecosystem functions equally well. To address these uncertainties, we conducted a 30-day mesocosm experiment to investigate how moderate (12 °C) and substantial (18 °C) warming compared to ambient conditions (6 °C) affect the composition (18S rRNA metabarcoding) and ecosystem functions (biomass, gross oxygen productivity, nutritional quality - C:N and C:P ratio) of a North Sea spring bloom community. Our results revealed warming-driven shifts in dominant protist groups, with haptophytes thriving at 12 °C and diatoms at 18 °C. Species responses primarily depended on the species' thermal traits, with indirect temperature effects on grazing being less relevant and phosphorus acting as a critical modulator. The species Phaeocystis globosa showed highest biomass on low phosphate concentrations and relatively increased in some replicates of both warming treatments. In line with this, the C:P ratio varied more with the presence of P. globosa than with temperature. Examining further ecosystem responses under warming, our study revealed lowered gross oxygen productivity but increased biomass accumulation whereas the C:N ratio remained unaltered. Although North Sea species exhibited resilience to elevated temperatures, a diminished functional similarity and heightened compositional variability indicate potential ecosystem repercussions for higher trophic levels. In conclusion, our research stresses the multifaceted nature of temperature effects on protist communities, emphasising the need for a holistic understanding that encompasses trait-based responses, indirect effects, and functional dynamics in the face of exacerbating temperature changes.
Collapse
Affiliation(s)
- Antonia Ahme
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.
| | - Anika Happe
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Schleusenstraße 1, 26382 Wilhelmshaven, Germany
| | - Maren Striebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Schleusenstraße 1, 26382 Wilhelmshaven, Germany
| | - Marco J Cabrerizo
- Department of Ecology, University of Granada, Campus Fuentenueva s/n 1, 18071 Granada, Spain; Department of Ecology and Animal Biology, University of Vigo, Campus Lagoas Marcosende s/n, 36310 Vigo, Spain
| | - Markus Olsson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, 106 91 Stockholm, Sweden
| | - Jakob Giesler
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Ruben Schulte-Hillen
- Albert-Ludwigs-Universität Freiburg, Fahnenbergplatz, 79104 Freiburg i.Br., Germany
| | - Alexander Sentimenti
- Albert-Ludwigs-Universität Freiburg, Fahnenbergplatz, 79104 Freiburg i.Br., Germany
| | - Nancy Kühne
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Uwe John
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Ammerländer Heersstraße 231, 26129 Oldenburg, Germany
| |
Collapse
|
5
|
Antunes AC, Berti E, Brose U, Hirt MR, Karger DN, O'Connor LMJ, Pollock LJ, Thuiller W, Gauzens B. Linking biodiversity, ecosystem function, and Nature's contributions to people: a macroecological energy flux perspective. Trends Ecol Evol 2024; 39:427-434. [PMID: 38310065 DOI: 10.1016/j.tree.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 02/05/2024]
Abstract
At macroecological scales, the provision of Nature's contributions to people (NCP) is mostly estimated with biophysical information, ignoring the ecological processes underlying them. This hinders our ability to properly quantify the impact of declining biodiversity and the provision of NCP. Here, we propose a framework that combines local-scale food web energy flux approaches and large-scale biodiversity models to evaluate ecosystem functions and flux-related NCP at extensive spatiotemporal scales. Importantly, this approach has the potential to upscale ecosystem functions, assess the vulnerability of flux-related NCP to the climate crisis, and support the development of multiscale mitigation policies.
Collapse
Affiliation(s)
- Ana Carolina Antunes
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany; EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany.
| | - Emilio Berti
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany; EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Ulrich Brose
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany; EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Myriam R Hirt
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany; EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Dirk N Karger
- Swiss Federal Institute for Forest, Snow, and Landscape Research, 8903 Birmensdorf, Switzerland
| | - Louise M J O'Connor
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - Laura J Pollock
- Biology Department, McGill University, 1205 Docteur Penfield, Montréal, QC, H3A 1B1, Canada
| | - Wilfried Thuiller
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, LECA, F-38000 Grenoble, France
| | - Benoit Gauzens
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany; EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Xie J, Wang T, Zhang P, Zhang H, Wang H, Wang K, Zhang M, Xu J. Effects of multiple stressors on freshwater food webs: Evidence from a mesocosm experiment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123819. [PMID: 38508368 DOI: 10.1016/j.envpol.2024.123819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/26/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Natural and anthropogenic pressures exert influence on ecosystem structure and function by affecting the physiology and behavior of organisms, as well as the trophic interactions within assemblages. Therefore, understanding how multiple stressors affect aquatic ecosystems can improve our ability to manage and protect these ecosystems and contribute to understanding fundamental ecological principles. Here, we conducted a mesocosm experiment to ascertain the individual and combined effects of multiple stressors on trophic interactions within species in freshwater ecosystems. Furthermore, we investigated how species respond to such changes by adapting their food resources. To mimic a realistic food web, we selected fish and shrimp as top predators, gastropods, zooplankton and zoobenthos as intermediate consumers, with producers (macrophytes, periphyton and phytoplankton) and detritus as basal resources. Twelve different treatments included a control, nutrient loading only, herbicide exposure only, and a combination of nutrient loading and herbicide exposure, each replicated under ambient temperature, constant warming and multiple heat waves to simulate environmental stressors. Our results demonstrated that antagonistic interactions between environmental stressors were widespread in trophic interactions, with a more pronounced and less intense impact observed for the high trophic level species. The responses of freshwater communities to environmental stressors are complex, involving direct effects on individual species as well as indirect effects through species interactions. Moreover, our results confirmed that the combinations of stressors, but not individual stressors, led to a shift to herbivory in top predators, indicating that multiple stressors can be more detrimental to organisms than individual stressors alone. These findings elucidate how changes in the resource utilization of species induced by environmental stressors can potentially influence species interactions and the structural dynamics of food webs in freshwater ecosystems.
Collapse
Affiliation(s)
- Jiayi Xie
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, PR China.
| | - Tao Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, PR China.
| | - Peiyu Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Huan Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Huan Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China.
| | - Kang Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, PR China.
| | - Min Zhang
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Huazhong Agricultural University, Wuhan, PR China.
| | - Jun Xu
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
7
|
Boldorini GX, Mccary MA, Romero GQ, Mills KL, Sanders NJ, Reich PB, Michalko R, Gonçalves-Souza T. Predators control pests and increase yield across crop types and climates: a meta-analysis. Proc Biol Sci 2024; 291:20232522. [PMID: 38444337 PMCID: PMC10915543 DOI: 10.1098/rspb.2023.2522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
Pesticides have well-documented negative consequences to control crop pests, and natural predators are alternatives and can provide an ecosystem service as biological control agents. However, there remains considerable uncertainty regarding whether such biological control can be a widely applicable solution, especially given ongoing climatic variation and climate change. Here, we performed a meta-analysis focused on field studies with natural predators to explore broadly whether and how predators might control pests and in turn increase yield. We also contrasted across studies pest suppression by a single and multiple predators and how climate influence biological control. Predators reduced pest populations by 73% on average, and increased crop yield by 25% on average. Surprisingly, the impact of predators did not depend on whether there were many or a single predator species. Precipitation seasonality was a key climatic influence on biological control: as seasonality increased, the impact of predators on pest populations increased. Taken together, the positive contribution of predators in controlling pests and increasing yield, and the consistency of such responses in the face of precipitation variability, suggest that biocontrol has the potential to be an important part of pest management and increasing food supplies as the planet precipitation patterns become increasingly variable.
Collapse
Affiliation(s)
- Gabriel X. Boldorini
- Department of Biology, Ecological Synthesis and Biodiversity Conservation Lab, Federal Rural University of Pernambuco, Recife, Brazil
- Graduate Program in Ethnobiology and Nature Conservation, Department of Biology, Federal Rural University of Pernambuco, Recife, Brazil
| | | | - Gustavo Q. Romero
- Department of Animal Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Kirby L. Mills
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Nathan J. Sanders
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Peter B. Reich
- Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
- Department of Forest Resources, University of Minnesota, St Paul, MN 55108, USA
| | - Radek Michalko
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - Thiago Gonçalves-Souza
- Department of Biology, Ecological Synthesis and Biodiversity Conservation Lab, Federal Rural University of Pernambuco, Recife, Brazil
- Graduate Program in Ethnobiology and Nature Conservation, Department of Biology, Federal Rural University of Pernambuco, Recife, Brazil
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Chauvier-Mendes Y, Pollock LJ, Verburg PH, Karger DN, Pellissier L, Lavergne S, Zimmermann NE, Thuiller W. Transnational conservation to anticipate future plant shifts in Europe. Nat Ecol Evol 2024; 8:454-466. [PMID: 38253754 DOI: 10.1038/s41559-023-02287-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/22/2023] [Indexed: 01/24/2024]
Abstract
To meet the COP15 biodiversity framework in the European Union (EU), one target is to protect 30% of its land by 2030 through a resilient transnational conservation network. The European Alps are a key hub of this network hosting some of the most extensive natural areas and biodiversity hotspots in Europe. Here we assess the robustness of the current European reserve network to safeguard the European Alps' flora by 2080 using semi-mechanistic simulations. We first highlight that the current network needs strong readjustments as it does not capture biodiversity patterns as well as our conservation simulations. Overall, we predict a strong shift in conservation need through time along latitudes, and from lower to higher elevations as plants migrate upslope and shrink their distribution. While increasing species, trait and evolutionary diversity, migration could also threaten 70% of the resident flora. In the face of global changes, the future European reserve network will need to ensure strong elevation and latitudinal connections to complementarily protect multifaceted biodiversity beyond national borders.
Collapse
Affiliation(s)
- Yohann Chauvier-Mendes
- Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland.
- Department of Environmental Systems Science, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland.
| | - Laura J Pollock
- Department of Biology, McGill University, Montreal, Canada, Quebec
| | - Peter H Verburg
- Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
- Environmental Geography Group, Institute for Environmental Studies, Vrije Universiteit, Amsterdam, Netherlands
| | - Dirk N Karger
- Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
| | - Loïc Pellissier
- Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
- Department of Environmental Systems Science, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Sébastien Lavergne
- Laboratoire d'Ecologie Alpine, LECA, CNRS, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, Grenoble, France
| | - Niklaus E Zimmermann
- Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
- Department of Environmental Systems Science, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Wilfried Thuiller
- Laboratoire d'Ecologie Alpine, LECA, CNRS, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, Grenoble, France
| |
Collapse
|
9
|
Kilner CL, Carrell AA, Wieczynski DJ, Votzke S, DeWitt K, Yammine A, Shaw J, Pelletier DA, Weston DJ, Gibert JP. Temperature and CO 2 interactively drive shifts in the compositional and functional structure of peatland protist communities. GLOBAL CHANGE BIOLOGY 2024; 30:e17203. [PMID: 38433341 DOI: 10.1111/gcb.17203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Microbes affect the global carbon cycle that influences climate change and are in turn influenced by environmental change. Here, we use data from a long-term whole-ecosystem warming experiment at a boreal peatland to answer how temperature and CO2 jointly influence communities of abundant, diverse, yet poorly understood, non-fungi microbial Eukaryotes (protists). These microbes influence ecosystem function directly through photosynthesis and respiration, and indirectly, through predation on decomposers (bacteria and fungi). Using a combination of high-throughput fluid imaging and 18S amplicon sequencing, we report large climate-induced, community-wide shifts in the community functional composition of these microbes (size, shape, and metabolism) that could alter overall function in peatlands. Importantly, we demonstrate a taxonomic convergence but a functional divergence in response to warming and elevated CO2 with most environmental responses being contingent on organismal size: warming effects on functional composition are reversed by elevated CO2 and amplified in larger microbes but not smaller ones. These findings show how the interactive effects of warming and rising CO2 levels could alter the structure and function of peatland microbial food webs-a fragile ecosystem that stores upwards of 25% of all terrestrial carbon and is increasingly threatened by human exploitation.
Collapse
Affiliation(s)
- Christopher L Kilner
- Department of Biology, Duke University, Durham, North Carolina, USA
- Bird Conservancy of the Rockies, Fort Collins, Colorado, USA
| | - Alyssa A Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Samantha Votzke
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Katrina DeWitt
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Andrea Yammine
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Jonathan Shaw
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Dale A Pelletier
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jean P Gibert
- Department of Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
10
|
Guo P, Li C, Liu J, Chai B. Predation has a significant impact on the complexity and stability of microbial food webs in subalpine lakes. Microbiol Spectr 2023; 11:e0241123. [PMID: 37787559 PMCID: PMC10714739 DOI: 10.1128/spectrum.02411-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/18/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE As an important part of microbial food webs, protists transfer organic carbon and nutrients to higher trophic levels in aquatic ecosystems. Protist predation often influences the abundance and composition of bacterial communities. However, we still do not understand whether and how predation affects the complexity and stability of microbial food webs. This study assessed the seasonal dynamic characteristics and driving factors of microbial food webs in terms of complexity and stability. Our findings have implications for future surveys to reveal the effects of climate and environmental changes.
Collapse
Affiliation(s)
- Ping Guo
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
- Central Laboratory, Changzhi Medical College, Changzhi, China
| | - Cui Li
- Faculty of Environment Economics, Shanxi University of Finance and Economics, Taiyuan, China
| | - Jinxain Liu
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Baofeng Chai
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| |
Collapse
|
11
|
Winners and Losers of Atlantification: The Degree of Ocean Warming Affects the Structure of Arctic Microbial Communities. Genes (Basel) 2023; 14:genes14030623. [PMID: 36980894 PMCID: PMC10048660 DOI: 10.3390/genes14030623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Arctic microbial communities (i.e., protists and bacteria) are increasingly subjected to an intrusion of new species via Atlantification and an uncertain degree of ocean warming. As species differ in adaptive traits, these oceanic conditions may lead to compositional changes with functional implications for the ecosystem. In June 2021, we incubated water from the western Fram Strait at three temperatures (2 °C, 6 °C, and 9 °C), mimicking the current and potential future properties of the Arctic Ocean. Our results show that increasing the temperature to 6 °C only minorly affects the community, while an increase to 9 °C significantly lowers the diversity and shifts the composition. A higher relative abundance of large hetero- and mixotrophic protists was observed at 2 °C and 6 °C compared to a higher abundance of intermediate-sized temperate diatoms at 9 °C. The compositional differences at 9 °C led to a higher chlorophyll a:POC ratio, but the C:N ratio remained similar. Our results contradict the common assumption that smaller organisms and heterotrophs are favored under warming and strongly indicate a thermal limit between 6 °C and 9 °C for many Arctic species. Consequently, the magnitude of temperature increase is a crucial factor for microbial community reorganization and the ensuing ecological consequences in the future Arctic Ocean.
Collapse
|
12
|
Han ZY, Wieczynski DJ, Yammine A, Gibert JP. Temperature and nutrients drive eco-phenotypic dynamics in a microbial food web. Proc Biol Sci 2023; 290:20222263. [PMID: 36722083 PMCID: PMC9890118 DOI: 10.1098/rspb.2022.2263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/03/2023] [Indexed: 02/02/2023] Open
Abstract
Anthropogenic increases in temperature and nutrient loads will likely impact food web structure and stability. Although their independent effects have been reasonably well studied, their joint effects-particularly on coupled ecological and phenotypic dynamics-remain poorly understood. Here we experimentally manipulated temperature and nutrient levels in microbial food webs and used time-series analysis to quantify the strength of reciprocal effects between ecological and phenotypic dynamics across trophic levels. We found that (1) joint-often interactive-effects of temperature and nutrients on ecological dynamics are more common at higher trophic levels, (2) temperature and nutrients interact to shift the relative strength of top-down versus bottom-up control, and (3) rapid phenotypic change mediates observed ecological responses to changes in temperature and nutrients. Our results uncover how feedback between ecological and phenotypic dynamics mediate food web responses to environmental change. This suggests important but previously unknown ways that temperature and nutrients might jointly control the rapid eco-phenotypic feedback that determine food web dynamics in a changing world.
Collapse
Affiliation(s)
- Ze-Yi Han
- Department of Biology, Duke University, Durham, NC, USA
| | | | | | | |
Collapse
|
13
|
Gibert JP, Wieczynski DJ, Han Z, Yammine A. Rapid eco-phenotypic feedback and the temperature response of biomass dynamics. Ecol Evol 2023; 13:e9685. [PMID: 36644704 PMCID: PMC9831973 DOI: 10.1002/ece3.9685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 01/13/2023] Open
Abstract
Biomass dynamics capture information on population dynamics and ecosystem-level processes (e.g., changes in production over time). Understanding how rising temperatures associated with global climate change influence biomass dynamics is thus a pressing issue in ecology. The total biomass of a species depends on its density and its average mass. Consequently, disentangling how biomass dynamics responds to increasingly warm and variable temperatures ultimately depends on understanding how temperature influences both density and mass dynamics. Here, we address this issue by keeping track of experimental microbial populations growing to carrying capacity for 15 days at two different temperatures, and in the presence and absence of temperature variability. We develop a simple mathematical expression to partition the contribution of changes in density and mass to changes in biomass and assess how temperature responses in either one influence biomass shifts. Moreover, we use time-series analysis (Convergent Cross Mapping) to address how temperature and temperature variability influence reciprocal effects of density on mass and vice versa. We show that temperature influences biomass through its effects on density and mass dynamics, which have opposite effects on biomass and can offset each other. We also show that temperature variability influences biomass, but that effect is independent of any effects on density or mass dynamics. Last, we show that reciprocal effects of density and mass shift significantly across temperature regimes, suggesting that rapid and environment-dependent eco-phenotypic dynamics underlie biomass responses. Overall, our results connect temperature effects on population and phenotypic dynamics to explain how biomass responds to temperature regimes, thus shedding light on processes at play in cosmopolitan and abundant microbes as the world experiences increasingly warm and variable temperatures.
Collapse
Affiliation(s)
- Jean P. Gibert
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| | | | - Ze‐Yi Han
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| | - Andrea Yammine
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
14
|
Litchman E, Thomas MK. Are we underestimating the ecological and evolutionary effects of warming? Interactions with other environmental drivers may increase species vulnerability to high temperatures. OIKOS 2022. [DOI: 10.1111/oik.09155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Elena Litchman
- Kellogg Biological Station, Michigan State Univ. Hickory Corners MI USA
- Dept of Global Ecology, Carnegie Inst. for Science Stanford CA USA
| | - Mridul K. Thomas
- Dept F.‐A. Forel for Environmental and Aquatic Sciences, Univ. of Geneva Geneva Switzerland
| |
Collapse
|
15
|
Composition and structure of winter aphid–parasitoid food webs along a latitudinal gradient in Chile. Oecologia 2022; 200:425-440. [DOI: 10.1007/s00442-022-05270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/27/2022] [Indexed: 10/31/2022]
|
16
|
Yun HY, Larsen T, Choi B, Won E, Shin K. Amino acid nitrogen and carbon isotope data: Potential and implications for ecological studies. Ecol Evol 2022; 12:e8929. [PMID: 35784034 PMCID: PMC9163675 DOI: 10.1002/ece3.8929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
Explaining food web dynamics, stability, and functioning depend substantially on understanding of feeding relations within a community. Bulk stable isotope ratios (SIRs) in natural abundance are well-established tools to express direct and indirect feeding relations as continuous variables across time and space. Along with bulk SIRs, the SIRs of individual amino acids (AAs) are now emerging as a promising and complementary method to characterize the flow and transformation of resources across a diversity of organisms, from microbial domains to macroscopic consumers. This significant AA-SIR capacity is based on empirical evidence that a consumer's SIR, specific to an individual AA, reflects its diet SIR coupled with a certain degree of isotopic differences between the consumer and its diet. However, many empirical ecologists are still unfamiliar with the scope of applicability and the interpretative power of AA-SIR. To fill these knowledge gaps, we here describe a comprehensive approach to both carbon and nitrogen AA-SIR assessment focusing on two key topics: pattern in AA-isotope composition across spatial and temporal scales, and a certain variability of AA-specific isotope differences between the diet and the consumer. On this basis we review the versatile applicability of AA-SIR to improve our understanding of physiological processes as well as food web functioning, allowing us to reconstruct dominant basal dietary sources and trace their trophic transfers at the specimen and community levels. Given the insightful and opportunities of AA-SIR, we suggest future applications for the dual use of carbon and nitrogen AA-SIR to study more realistic food web structures and robust consumer niches, which are often very difficult to explain in nature.
Collapse
Affiliation(s)
- Hee Young Yun
- Deparment of Marine Science and Convergent TechnologyHanyang UniversityAnsanKorea
| | - Thomas Larsen
- Department of ArchaeologyMax Planck Institute for the Science of Human HistoryJenaGermany
| | - Bohyung Choi
- Deparment of Marine Science and Convergent TechnologyHanyang UniversityAnsanKorea
- Inland Fisheries Research InstituteNational Institute of Fisheries ScienceGeumsan‐gunKorea
| | - Eun‐Ji Won
- Deparment of Marine Science and Convergent TechnologyHanyang UniversityAnsanKorea
| | - Kyung‐Hoon Shin
- Deparment of Marine Science and Convergent TechnologyHanyang UniversityAnsanKorea
| |
Collapse
|
17
|
Garrison JA, Nordström MC, Albertsson J, Nascimento FJA. Temporal and spatial changes in benthic invertebrate trophic networks along a taxonomic richness gradient. Ecol Evol 2022; 12:e8975. [PMID: 35784047 PMCID: PMC9168554 DOI: 10.1002/ece3.8975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/31/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
Species interactions underlie most ecosystem functions and are important for understanding ecosystem changes. Representing one type of species interaction, trophic networks were constructed from biodiversity monitoring data and known trophic links to assess how ecosystems have changed over time. The Baltic Sea is subject to many anthropogenic pressures, and low species diversity makes it an ideal candidate for determining how pressures change food webs. In this study, we used benthic monitoring data for 20 years (1980-1989 and 2010-2019) from the Swedish coast of the Baltic Sea and Skagerrak to investigate changes in benthic invertebrate trophic interactions. We constructed food webs and calculated fundamental food web metrics evaluating network horizontal and vertical diversity, as well as stability that were compared over space and time. Our results show that the west coast of Sweden (Skagerrak) suffered a reduction in benthic invertebrate biodiversity by 32% between the 1980s and 2010s, and that the number of links, generality of predators, and vulnerability of prey have been significantly reduced. The other basins (Bothnian Sea, Baltic Proper, and Bornholm Basin) do not show any significant changes in species richness or consistent significant trends in any food web metrics investigated, demonstrating resilience at a lower species diversity. The decreased complexity of the Skagerrak food webs indicates vulnerability to further perturbations and pressures should be limited as much as possible to ensure continued ecosystem functions.
Collapse
Affiliation(s)
- Julie A. Garrison
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
| | | | - Jan Albertsson
- Umeå Marine Sciences CentreUmeå UniversityHörneforsSweden
| | - Francisco J. A. Nascimento
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- Baltic Sea CentreStockholm UniversityStockholmSweden
| |
Collapse
|
18
|
Affiliation(s)
| | - John M. Grady
- National Great Rivers Research and Education Center, East Alton IL USA
| | - Anthony I. Dell
- National Great Rivers Research and Education Center, East Alton IL USA
- Department of Biology Washington University in St Louis St Louis MO USA
| |
Collapse
|
19
|
Cossa D, Knoery J, Bănaru D, Harmelin-Vivien M, Sonke JE, Hedgecock IM, Bravo AG, Rosati G, Canu D, Horvat M, Sprovieri F, Pirrone N, Heimbürger-Boavida LE. Mediterranean Mercury Assessment 2022: An Updated Budget, Health Consequences, and Research Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3840-3862. [PMID: 35244390 DOI: 10.1021/acs.est.1c03044] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) and especially its methylated species (MeHg) are toxic chemicals that contaminate humans via the consumption of seafood. The most recent UNEP Global Mercury Assessment stressed that Mediterranean populations have higher Hg levels than people elsewhere in Europe. The present Critical Review updates current knowledge on the sources, biogeochemical cycling, and mass balance of Hg in the Mediterranean and identifies perspectives for future research especially in the context of global change. Concentrations of Hg in the Western Mediterranean average 0.86 ± 0.27 pmol L-1 in the upper water layer and 1.02 ± 0.12 pmol L-1 in intermediate and deep waters. In the Eastern Mediterranean, Hg measurements are in the same range but are too few to determine any consistent oceanographical pattern. The Mediterranean waters have a high methylation capacity, with MeHg representing up to 86% of the total Hg, and constitute a source of MeHg for the adjacent North Atlantic Ocean. The highest MeHg concentrations are associated with low oxygen water masses, suggesting a microbiological control on Hg methylation, consistent with the identification of hgcA-like genes in Mediterranean waters. MeHg concentrations are twice as high in the waters of the Western Basin compared to the ultra-oligotrophic Eastern Basin waters. This difference appears to be transferred through the food webs and the Hg content in predators to be ultimately controlled by MeHg concentrations of the waters of their foraging zones. Many Mediterranean top-predatory fish still exceed European Union regulatory Hg thresholds. This emphasizes the necessity of monitoring the exposure of Mediterranean populations, to formulate adequate mitigation strategies and recommendations, without advising against seafood consumption. This review also points out other insufficiencies of knowledge of Hg cycling in the Mediterranean Sea, including temporal variations in air-sea exchange, hydrothermal and cold seep inputs, point sources, submarine groundwater discharge, and exchanges between margins and the open sea. Future assessment of global change impacts under the Minamata Convention Hg policy requires long-term observations and dedicated high-resolution Earth System Models for the Mediterranean region.
Collapse
Affiliation(s)
- Daniel Cossa
- Université Grenoble Alpes, ISTerre, CS 40700, 38058 Grenoble Cedex 9, France
| | - Joël Knoery
- Ifremer, Centre Atlantique de Nantes, BP 44311, 44980 Nantes, France
| | - Daniela Bănaru
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| | - Mireille Harmelin-Vivien
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| | - Jeroen E Sonke
- Géosciences Environnement Toulouse, CNRS/Observatoire Midi-Pyrénées (OMP)/Université de Toulouse, 31400 Toulouse, France
| | - Ian M Hedgecock
- Istituto sull'inquinamento atmosferico, CNR-IIA, 87036 Rende, Italy
| | | | - Ginevra Rosati
- Istituto Nazionale di Oceanografia e di Geofisca Sperimentale (OGS), 34010 Trieste, Italy
| | - Donata Canu
- Istituto Nazionale di Oceanografia e di Geofisca Sperimentale (OGS), 34010 Trieste, Italy
| | | | | | - Nicola Pirrone
- Istituto sull'inquinamento atmosferico, CNR-IIA, 87036 Rende, Italy
| | - Lars-Eric Heimbürger-Boavida
- Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France
| |
Collapse
|
20
|
Trophic Patterns of Freshwater Fish across the Balkan Biodiversity Hotspot. WATER 2022. [DOI: 10.3390/w14071112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ecological information regarding trophic patterns and the inherent structure of freshwater aquatic communities is considered fundamental in ecological research. In this study, the trophic patterns of the Greek freshwater fish fauna, belonging to the Balkan biodiversity hotspot, were investigated, and comparisons of freshwater fish species feeding habits among the Greek freshwater ecoregions were performed. The analyses based on the widely used trophic level index and the available composition feeding datasets, along with the utilization of clustering methods, indicated seven major distinct trophic guilds in the Greek ecoregions. The trophic level of the studied fish species ranged from 2.0 to 4.5, thus being within the expected values for freshwater ecosystems, revealing the presence of both top predators and primary consumers. The highest trophic level values were found in the ecoregions of northern Greece. The results also exhibited considerable predominance of higher-trophic-level zooplanktivorous and insectivorous freshwater fish species in the mainland, compared to lower-trophic-level opportunist species in the island-isolated ecoregions. These results could be used for the application of ecosystem-based models and the formulation of conservation and fishery management schemes.
Collapse
|
21
|
Zoccarato L, Sher D, Miki T, Segrè D, Grossart HP. A comparative whole-genome approach identifies bacterial traits for marine microbial interactions. Commun Biol 2022; 5:276. [PMID: 35347228 PMCID: PMC8960797 DOI: 10.1038/s42003-022-03184-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
Microbial interactions shape the structure and function of microbial communities with profound consequences for biogeochemical cycles and ecosystem health. Yet, most interaction mechanisms are studied only in model systems and their prevalence is unknown. To systematically explore the functional and interaction potential of sequenced marine bacteria, we developed a trait-based approach, and applied it to 473 complete genomes (248 genera), representing a substantial fraction of marine microbial communities. We identified genome functional clusters (GFCs) which group bacterial taxa with common ecology and life history. Most GFCs revealed unique combinations of interaction traits, including the production of siderophores (10% of genomes), phytohormones (3-8%) and different B vitamins (57-70%). Specific GFCs, comprising Alpha- and Gammaproteobacteria, displayed more interaction traits than expected by chance, and are thus predicted to preferentially interact synergistically and/or antagonistically with bacteria and phytoplankton. Linked trait clusters (LTCs) identify traits that may have evolved to act together (e.g., secretion systems, nitrogen metabolism regulation and B vitamin transporters), providing testable hypotheses for complex mechanisms of microbial interactions. Our approach translates multidimensional genomic information into an atlas of marine bacteria and their putative functions, relevant for understanding the fundamental rules that govern community assembly and dynamics.
Collapse
Affiliation(s)
- Luca Zoccarato
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775, Stechlin, Germany.
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 3498838, Haifa, Israel.
| | - Takeshi Miki
- Faculty of Advanced Science and Technology, Ryukoku University, 520-2194, Otsu, Japan
| | - Daniel Segrè
- Departments of Biology, Biomedical Engineering, Physics, Boston University, 02215, Boston, MA, USA
- Bioinformatics Program & Biological Design Center, Boston University, 02215, Boston, MA, USA
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775, Stechlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195, Berlin, Germany.
- Institute of Biochemistry and Biology, Potsdam University, 14476, Potsdam, Germany.
| |
Collapse
|
22
|
Rodriguez ID, Marina TI, Schloss IR, Saravia LA. Marine food webs are more complex but less stable in sub-Antarctic (Beagle Channel, Argentina) than in Antarctic (Potter Cove, Antarctic Peninsula) regions. MARINE ENVIRONMENTAL RESEARCH 2022; 174:105561. [PMID: 35026725 DOI: 10.1016/j.marenvres.2022.105561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/26/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Food web structure plays an important role in determining ecosystem stability against perturbations. High-latitude marine ecosystems are being affected by environmental stressors and biological invasions. In the West Antarctic Peninsula these transformations are mainly driven by climate change, while in the sub-Antarctic region by anthropogenic activities. Understanding the differences between these areas is necessary to monitor the changes that are expected to occur in the upcoming decades. Here, we compared the structure and stability of Antarctic (Potter Cove) and sub-Antarctic (Beagle Channel) marine food webs. We compiled species trophic interactions (predator-prey) and calculated complexity, structure and stability metrics. Even if both food webs presented the same connectance, we found important differences between them. The Beagle Channel food web is more complex, but less stable and sensitive to the loss of its most connected species, while the Potter Cove food web presented lower complexity and greater stability against perturbations.
Collapse
Affiliation(s)
- Iara Diamela Rodriguez
- Biology and Bioinformatics Area, Instituto de Ciencias (ICI), Universidad Nacional de General Sarmiento (UNGS), Juan María Gutiérrez 1150, CP 1613, Los Polvorines, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Tomás I Marina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Oceanografía Biológica, Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200, CP 9410, Ushuaia, Argentina
| | - Irene Ruth Schloss
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Oceanografía Biológica, Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200, CP 9410, Ushuaia, Argentina; Instituto Antártico Argentino (IAA), Av. 25 de Mayo 1147, CP 1650, San Martín, Buenos Aires, Argentina
| | - Leonardo Ariel Saravia
- Biology and Bioinformatics Area, Instituto de Ciencias (ICI), Universidad Nacional de General Sarmiento (UNGS), Juan María Gutiérrez 1150, CP 1613, Los Polvorines, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Singleton AL, Liu MH, Votzke S, Yammine A, Gibert JP. Increasing temperature weakens the positive effect of genetic diversity on population growth. Ecol Evol 2021; 11:17810-17816. [PMID: 35003641 PMCID: PMC8717318 DOI: 10.1002/ece3.8335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/02/2022] Open
Abstract
Genetic diversity and temperature increases associated with global climate change are known to independently influence population growth and extinction risk. Whether increasing temperature may influence the effect of genetic diversity on population growth, however, is not known. We address this issue in the model protist system Tetrahymena thermophila. We test the hypothesis that at temperatures closer to the species' thermal optimum (i.e., the temperature at which population growth is maximal, or T opt), genetic diversity should have a weaker effect on population growth compared to temperatures away from the thermal optimum. To do so, we grew populations of T. thermophila with varying levels of genetic diversity at increasingly warmer temperatures and quantified their intrinsic population growth rate, r. We found that genetic diversity increases population growth at cooler temperatures, but that as temperature increases, this effect weakens. We also show that a combination of changes in the amount of expressed genetic diversity (G) in r, plastic changes in population growth across temperatures (E), and strong G × E interactions underlie this temperature effect. Our results uncover important but largely overlooked temperature effects that have implications for the management of small populations with depauperate genetic stocks in an increasingly warming world.
Collapse
Affiliation(s)
| | - Megan H. Liu
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| | | | - Andrea Yammine
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| | - Jean P. Gibert
- Department of BiologyDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
24
|
Capitani L, de Araujo JN, Vieira EA, Angelini R, Longo GO. Ocean Warming Will Reduce Standing Biomass in a Tropical Western Atlantic Reef Ecosystem. Ecosystems 2021. [DOI: 10.1007/s10021-021-00691-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Chowdhury S, Brown JL, Swedell L. Costs of seasonality at a southern latitude: Behavioral endocrinology of female baboons in the Cape Peninsula of South Africa. Horm Behav 2021; 134:105020. [PMID: 34391183 DOI: 10.1016/j.yhbeh.2021.105020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 10/20/2022]
Abstract
Environmental challenges in the form of temperature extremes and unusual precipitation, which may lead to prolonged periods outside the thermoneutral zone, can be detrimental to animal physiology. Chacma baboons in the Cape Peninsula of South Africa, one of the highest latitudes at which nonhuman primates are found, experience extremes of both temperature and rainfall, as well as seasonal differences in day length that require animals to condense their daily routine into dramatically reduced daylight hours. Here we examine the effects of these climatic factors on the behavior (activity budgets and foraging patterns) and physiology (fecal glucocorticoid concentrations) of adult females (N = 33) in three groups of chacma baboons (Papio ursinus) inhabiting the Cape Peninsula, where temperatures ranged from 7 to 39 °C, monthly rainfall ranged from 2 to 158 mm, and day length varied by 4.5 h across seasons. Climatic variables showed a clear relationship to female baboon glucocorticoid concentrations, which significantly increased with lower temperatures, higher rainfall and shorter day lengths. Activity budgets also differed between summer and winter, with females generally spending less time socializing, moving and resting in the winter compared to summer, with some differences between troops in their feeding-related activities. Cold temperatures accompanied by rainfall and short day lengths may thus represent an ecological constraint for this population. This study highlights the potential impact of anthropogenic climate change on the physiology, behavior, and, ultimately, survival of wildlife populations.
Collapse
Affiliation(s)
- Shahrina Chowdhury
- Department of Anthropology, Brooklyn College, CUNY, 2900 Bedford Ave, Brooklyn, NY 11210, USA; Anthropology Program, Graduate Center, CUNY, 365 Fifth Ave, New York, NY 10016, USA; New York Consortium in Evolutionary Primatology (NYCEP), New York, NY, USA.
| | - Janine L Brown
- Smithsonian Conservation Biology Institute, 1500 Remount Rd, Front Royal, VA 22630, USA
| | - Larissa Swedell
- Anthropology Program, Graduate Center, CUNY, 365 Fifth Ave, New York, NY 10016, USA; New York Consortium in Evolutionary Primatology (NYCEP), New York, NY, USA; Department of Anthropology, Queens College, CUNY, 65-30 Kissena Blvd, Flushing, NY 11367, USA; Department of Archaeology, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
26
|
Functional response of Harmonia axyridis preying on Acyrthosiphon pisum nymphs: the effect of temperature. Sci Rep 2021; 11:13565. [PMID: 34193927 PMCID: PMC8245531 DOI: 10.1038/s41598-021-92954-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/11/2021] [Indexed: 11/08/2022] Open
Abstract
In the current study, we investigated the functional response of Harmonia axyridis adults and larvae foraging on Acyrthosiphon pisum nymphs at temperatures between 15 and 35 °C. Logistic regression and Roger’s random predator models were employed to determine the type and parameters of the functional response. Harmonia axyridis larvae and adults exhibited Type II functional responses to A. pisum, and warming increased both the predation activity and host aphid control mortality. Female and 4th instar H. axyridis consumed the most aphids. For fourth instar larvae and female H. axyridis adults, the successful attack rates were 0.23 ± 0.014 h−1 and 0.25 ± 0.015 h−1; the handling times were 0.13 ± 0.005 h and 0.16 ± 0.004 h; and the estimated maximum predation rates were 181.28 ± 14.54 and 153.85 ± 4.06, respectively. These findings accentuate the high performance of 4th instar and female H. axyridis and the role of temperature in their efficiency. Further, we discussed such temperature-driven shifts in predation and prey mortality concerning prey-predator foraging interactions towards biological control.
Collapse
|
27
|
Ma G, Bai C, Rudolf VHW, Ma C. Night warming alters mean warming effects on predator–prey interactions by modifying predator demographics and interaction strengths. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gang Ma
- Climate Change Biology Research Group State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China
| | - Chun‐Ming Bai
- Climate Change Biology Research Group State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China
| | | | - Chun‐Sen Ma
- Climate Change Biology Research Group State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
28
|
Barbour MA, Gibert JP. Genetic and plastic rewiring of food webs under climate change. J Anim Ecol 2021; 90:1814-1830. [PMID: 34028791 PMCID: PMC8453762 DOI: 10.1111/1365-2656.13541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022]
Abstract
Climate change is altering ecological and evolutionary processes across biological scales. These simultaneous effects of climate change pose a major challenge for predicting the future state of populations, communities and ecosystems. This challenge is further exacerbated by the current lack of integration of research focused on these different scales. We propose that integrating the fields of quantitative genetics and food web ecology will reveal new insights on how climate change may reorganize biodiversity across levels of organization. This is because quantitative genetics links the genotypes of individuals to population‐level phenotypic variation due to genetic (G), environmental (E) and gene‐by‐environment (G × E) factors. Food web ecology, on the other hand, links population‐level phenotypes to the structure and dynamics of communities and ecosystems. We synthesize data and theory across these fields and find evidence that genetic (G) and plastic (E and G × E) phenotypic variation within populations will change in magnitude under new climates in predictable ways. We then show how changes in these sources of phenotypic variation can rewire food webs by altering the number and strength of species interactions, with consequences for ecosystem resilience. We also find evidence suggesting there are predictable asymmetries in genetic and plastic trait variation across trophic levels, which set the pace for phenotypic change and food web responses to climate change. Advances in genomics now make it possible to partition G, E and G × E phenotypic variation in natural populations, allowing tests of the hypotheses we propose. By synthesizing advances in quantitative genetics and food web ecology, we provide testable predictions for how the structure and dynamics of biodiversity will respond to climate change.
Collapse
Affiliation(s)
- Matthew A Barbour
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jean P Gibert
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
29
|
Steube TR, Altenritter ME, Walther BD. Distributive stress: individually variable responses to hypoxia expand trophic niches in fish. Ecology 2021; 102:e03356. [PMID: 33811651 PMCID: PMC8244237 DOI: 10.1002/ecy.3356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/05/2021] [Accepted: 02/05/2021] [Indexed: 01/18/2023]
Abstract
Environmental stress can reshape trophic interactions by excluding predators or rendering prey vulnerable, depending on the relative sensitivity of species to the stressor. Classical models of food web responses to stress predict either complete predator exclusion from stressed areas or complete prey vulnerability if predators are stress tolerant. However, if the consumer response to the stress is individually variable, the result may be a distributive stress model (DSM) whereby predators distribute consumption pressure across a range of prey guilds and their trophic niche is expanded. We test these models in one of the largest hypoxic “Dead Zones” in the world, the northern Gulf of Mexico, by combining geochemical tracers of hypoxia exposure and isotope ratios to assess individual‐level trophic responses. Hypoxia‐exposed fish occupied niche widths that were 14.8% and 400% larger than their normoxic counterparts in two different years, consistent with variable displacement from benthic to pelagic food webs. The degree of isotopic displacement depended on the magnitude of hypoxia exposure. These results are consistent with the DSM and highlight the need to account for individually variable sublethal effects when predicting community responses to environmental stress.
Collapse
Affiliation(s)
- Tyler R Steube
- Department of Life Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, Texas, 78412, USA
| | - Matthew E Altenritter
- Department of Life Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, Texas, 78412, USA.,Department of Environmental Science & Ecology, The College at Brockport, State University of New York, 350 New Campus Drive, Brockport, New York, 14420, USA
| | - Benjamin D Walther
- Department of Life Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, Texas, 78412, USA
| |
Collapse
|
30
|
Abstract
Predicting food web structure in future climates is a pressing goal of ecology. These predictions may be impossible without a solid understanding of the factors that structure current food webs. The most fundamental aspect of food web structure-the relationship between the number of links and species-is still poorly understood. Some species interactions may be physically or physiologically 'forbidden'-like consumption by non-consumer species-with possible consequences for food web structure. We show that accounting for these 'forbidden interactions' constrains the feasible link-species space, in tight agreement with empirical data. Rather than following one particular scaling relationship, food webs are distributed throughout this space according to shared biotic and abiotic features. Our study provides new insights into the long-standing question of which factors determine this fundamental aspect of food web structure.
Collapse
Affiliation(s)
- Jean P Gibert
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
31
|
Macfarlan SJ, Schacht R, Bourland I, Kapp S, Glad T, Lewis L, Claflin S, Darmiento N, Clegg T, Thorpe C, Peppelar T, Hall RG, Nguyen B, Davis CA, Santiago M, Henrickson C. NDVI predicts birth seasonality in historical Baja California Sur, Mexico: adaptive responses to arid ecosystems and the North American Monsoon. BIODEMOGRAPHY AND SOCIAL BIOLOGY 2021; 66:145-155. [PMID: 34182853 DOI: 10.1080/19485565.2020.1870924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Birth seasonality is a phenomenon whereby populations can be characterized by a single month or season in which births peak. While non-human animal research suggests that seasonal birth-pulses are related to variation in climate and local energy availability, social scientists debate the mechanisms responsible for it in humans. Here we investigate the role of precipitation, temperature, and energy availability on seasonal conception and birth pulses using a historical dataset from the Baja California peninsula - a hot, arid desert that experiences seasonal climatic fluctuations associated with the North American Monsoon. Analyses suggest that 1) local energy availability had a negative relationship with conception pulses; and 2) birth pulses had a positive relationship with local energy availability and a negative relationship with temperature. Taken together, our analyses suggest that women timed conceptions when local energy availability was lowest (challenging expectations of conception rates as simply reflecting ecological influences on female fecundity), so that children were born during the seasonal "green-up" associated with the North American Monsoon. Given our results, we speculate that birth seasonality represents a form of traditional ecological knowledge to improve neonate health and wellbeing.
Collapse
Affiliation(s)
- Shane J Macfarlan
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
- Center for Latin American Studies, University of Utah, Salt Lake City, Utah, USA
- Global Change and Sustainability Center, University of Utah, Salt Lake City, Utah, USA
| | - Ryan Schacht
- Department of Anthropology, East Carolina University, Greenville, North Carolina, USA
| | - Izabella Bourland
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
- Environmental and Sustainability Studies, University of Utah, Salt Lake City, Utah, USA
| | - Savannah Kapp
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
| | - Trevor Glad
- Department of Music, University of Utah, Salt Lake City, Utah, USA
| | - Lauren Lewis
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
| | - Spencer Claflin
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
| | - Nathan Darmiento
- Center for Latin American Studies, University of Utah, Salt Lake City, Utah, USA
- Department of History, University of Utah, Salt Lake City, Utah, USA
| | - Tanner Clegg
- College of Humanities, University of Utah, Salt Lake City, Utah, USA
| | - Cole Thorpe
- Center for Latin American Studies, University of Utah, Salt Lake City, Utah, USA
- Department of Linguistics, University of Utah, Salt Lake City, Utah, USA
| | - Taylor Peppelar
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
| | - R Grace Hall
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
| | - Brian Nguyen
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
| | - Connor A Davis
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
| | - Melissa Santiago
- Department of Anthropology, East Carolina University, Greenville, North Carolina, USA
| | - Celeste Henrickson
- Department of Anthropology, University of Utah, Salt Lake City, Utah, USA
- General Education, Nightingale College, Salt Lake City, Utah, USA
| |
Collapse
|
32
|
Khangaonkar T, Nugraha A, Premathilake L, Keister J, Borde A. Projections of algae, eelgrass, and zooplankton ecological interactions in the inner Salish Sea – for future climate, and altered oceanic states. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2020.109420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Yeakel JD, Pires MM, de Aguiar MAM, O'Donnell JL, Guimarães PR, Gravel D, Gross T. Diverse interactions and ecosystem engineering can stabilize community assembly. Nat Commun 2020; 11:3307. [PMID: 32620766 PMCID: PMC7335095 DOI: 10.1038/s41467-020-17164-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 06/11/2020] [Indexed: 12/02/2022] Open
Abstract
The complexity of an ecological community can be distilled into a network, where diverse interactions connect species in a web of dependencies. Species interact directly with each other and indirectly through environmental effects, however to our knowledge the role of these ecosystem engineers has not been considered in ecological network models. Here we explore the dynamics of ecosystem assembly, where species colonization and extinction depends on the constraints imposed by trophic, service, and engineering dependencies. We show that our assembly model reproduces many key features of ecological systems, such as the role of generalists during assembly, realistic maximum trophic levels, and increased nestedness with mutualistic interactions. We find that ecosystem engineering has large and nonlinear effects on extinction rates. While small numbers of engineers reduce stability by increasing primary extinctions, larger numbers of engineers increase stability by reducing primary extinctions and extinction cascade magnitude. Our results suggest that ecological engineers may enhance community diversity while increasing persistence by facilitating colonization and limiting competitive exclusion.
Collapse
Affiliation(s)
- Justin D Yeakel
- University of California Merced, 5200 Lake Road, Merced, CA, 95343, USA.
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA.
| | - Mathias M Pires
- Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz-Barão Geraldo, Campinas, São Paulo, 13083-970, Brazil
| | - Marcus A M de Aguiar
- Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz-Barão Geraldo, Campinas, São Paulo, 13083-970, Brazil
| | | | - Paulo R Guimarães
- Universidade de São Paulo, Cidade Universitária, São Paulo-State of São Paulo, São Paulo, Brazil
| | - Dominique Gravel
- Universitè de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Thilo Gross
- University of California, Davis, CA, 95616, USA
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstrasse 231, 26129, Oldenburg, Germany
- University of Oldenburg, ICBM, 26129, Oldenburg, Germany
| |
Collapse
|
34
|
Lyons K, Dugon MM, Healy K. Diet Breadth Mediates the Prey Specificity of Venom Potency in Snakes. Toxins (Basel) 2020; 12:toxins12020074. [PMID: 31979380 PMCID: PMC7076792 DOI: 10.3390/toxins12020074] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 12/30/2022] Open
Abstract
Venoms are best known for their ability to incapacitate prey. In predatory groups, venom potency is predicted to reflect ecological and evolutionary drivers relating to diet. While venoms have been found to have preyspecific potencies, the role of diet breadth on venom potencies has yet to be tested at large macroecological scales. Here, using a comparative analysis of 100 snake species, we show that the evolution of prey-specific venom potencies is contingent on the breadth of a species' diet. We find that while snake venom is more potent when tested on species closely related to natural prey items, we only find this prey-specific pattern in species with taxonomically narrow diets. While we find that the taxonomic diversity of a snakes' diet mediates the prey specificity of its venom, the species richness of its diet was not found to affect these prey-specific potency patterns. This indicates that the physiological diversity of a species' diet is an important driver of the evolution of generalist venom potencies. These findings suggest that the venoms of species with taxonomically diverse diets may be better suited to incapacitating novel prey species and hence play an important role for species within changing environments.
Collapse
Affiliation(s)
- Keith Lyons
- Correspondence: (K.L.); (K.H.); Tel.: +353-91-493744 (K.H.)
| | | | - Kevin Healy
- Correspondence: (K.L.); (K.H.); Tel.: +353-91-493744 (K.H.)
| |
Collapse
|
35
|
Van Dievel M, Tüzün N, Stoks R. Latitude-associated evolution and drivers of thermal response curves in body stoichiometry. J Anim Ecol 2019; 88:1961-1972. [PMID: 31408526 DOI: 10.1111/1365-2656.13088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/10/2019] [Accepted: 07/21/2019] [Indexed: 12/26/2022]
Abstract
Trait-based studies are needed to understand the plastic and genetic responses of organisms to warming. A neglected organismal trait is elemental composition, despite its potential to cascade into effects on the ecosystem level. Warming is predicted to shape elemental composition through shifts in storage molecules associated with responses in growth, body size and metabolic rate. Our goals were to quantify thermal response patterns in body composition and to obtain insights into their underlying drivers and their evolution across latitudes. We reconstructed the thermal response curves (TRCs) for body elemental composition [C (carbon), N (nitrogen) and the C:N ratio] of damselfly larvae from high- and low-latitude populations. Additionally, we quantified the TRCs for survival, growth and development rates and body size to assess local thermal adaptation, as well as the TRCs for metabolic rate and key macromolecules (proteins, fat, sugars and cuticular melanin and chitin) as these may underlie the elemental TRCs. All larvae died at 36°C. Up to 32°C, low-latitude larvae increased growth and development rates and did not suffer increased mortality. Instead, growth and development rates of high-latitude larvae were lower and levelled off at 24°C, and mortality increased at 32°C. This latitude-associated thermal adaptation pattern matched the 'hotter-is-better' hypothesis. With increasing temperatures, low-latitude larvae decreased C:N, while high-latitude larvae increased C:N. These patterns were driven by associated changes in N contents, while C contents did not respond to temperature. Consistent with the temperature-size rule and the thermal melanism hypothesis, body size and melanin levels decreased with warming. While all traits and associated macromolecules (except for metabolic rate that showed thermal compensation) assumed to underlie thermal responses in elemental composition showed thermal plasticity, these were largely independent and none could explain the stoichiometric TRCs. Our results highlight that thermal responses in elemental composition cannot be explained by traditionally assumed drivers, asking for a broader perspective including the thermal dependence of elemental fluxes. Another key implication is that thermal evolution can reverse the plastic stoichiometric thermal responses and hence reverse how warming may shape food web dynamics through changes in body composition at different latitudes.
Collapse
Affiliation(s)
- Marie Van Dievel
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| |
Collapse
|