1
|
Georgiev P, Han S, Huang AY, Nguyen TH, Drijvers JM, Creasey H, Pereira JA, Yao CH, Park JS, Conway TS, Fung ME, Liang D, Peluso M, Joshi S, Rowe JH, Miller BC, Freeman GJ, Sharpe AH, Haigis MC, Ringel AE. Age-Associated Contraction of Tumor-Specific T Cells Impairs Antitumor Immunity. Cancer Immunol Res 2024; 12:1525-1541. [PMID: 39186561 PMCID: PMC11532741 DOI: 10.1158/2326-6066.cir-24-0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Progressive decline of the adaptive immune system with increasing age coincides with a sharp increase in cancer incidence. In this study, we set out to understand whether deficits in antitumor immunity with advanced age promote tumor progression and/or drive resistance to immunotherapy. We found that multiple syngeneic cancers grew more rapidly in aged versus young adult mice, driven by dysfunctional CD8+ T-cell responses. By systematically mapping immune cell profiles within tumors, we identified loss of tumor antigen-specific CD8+ T cells as a primary feature accelerating the growth of tumors in aged mice and driving resistance to immunotherapy. When antigen-specific T cells from young adult mice were administered to aged mice, tumor outgrowth was delayed and the aged animals became sensitive to PD-1 blockade. These studies reveal how age-associated CD8+ T-cell dysfunction may license tumorigenesis in elderly patients and have important implications for the use of aged mice as preclinical models of aging and cancer.
Collapse
Affiliation(s)
- Peter Georgiev
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - SeongJun Han
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amy Y. Huang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Thao H. Nguyen
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jefte M. Drijvers
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hannah Creasey
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joseph A. Pereira
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Cong-Hui Yao
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joon Seok Park
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Thomas S. Conway
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Megan E. Fung
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dan Liang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael Peluso
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shakchhi Joshi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jared H. Rowe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Brian C. Miller
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Arlene H. Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marcia C. Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alison E. Ringel
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
2
|
Wang Z, Cho H, Choyke P, Levy D, Sato N. A Mathematical Model of TCR-T Cell Therapy for Cervical Cancer. Bull Math Biol 2024; 86:57. [PMID: 38625492 DOI: 10.1007/s11538-024-01261-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/11/2024] [Indexed: 04/17/2024]
Abstract
Engineered T cell receptor (TCR)-expressing T (TCR-T) cells are intended to drive strong anti-tumor responses upon recognition of the specific cancer antigen, resulting in rapid expansion in the number of TCR-T cells and enhanced cytotoxic functions, causing cancer cell death. However, although TCR-T cell therapy against cancers has shown promising results, it remains difficult to predict which patients will benefit from such therapy. We develop a mathematical model to identify mechanisms associated with an insufficient response in a mouse cancer model. We consider a dynamical system that follows the population of cancer cells, effector TCR-T cells, regulatory T cells (Tregs), and "non-cancer-killing" TCR-T cells. We demonstrate that the majority of TCR-T cells within the tumor are "non-cancer-killing" TCR-T cells, such as exhausted cells, which contribute little or no direct cytotoxicity in the tumor microenvironment (TME). We also establish two important factors influencing tumor regression: the reversal of the immunosuppressive TME following depletion of Tregs, and the increased number of effector TCR-T cells with antitumor activity. Using mathematical modeling, we show that certain parameters, such as increasing the cytotoxicity of effector TCR-T cells and modifying the number of TCR-T cells, play important roles in determining outcomes.
Collapse
Affiliation(s)
- Zuping Wang
- Department of Mathematics, University of Maryland, College Park, MD, 20742, USA
| | - Heyrim Cho
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Peter Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Doron Levy
- Department of Mathematics, University of Maryland, College Park, MD, 20742, USA.
| | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Headley CA, Gautam S, Olmo‐Fontanez A, Garcia‐Vilanova A, Dwivedi V, Akhter A, Schami A, Chiem K, Ault R, Zhang H, Cai H, Whigham A, Delgado J, Hicks A, Tsao PS, Gelfond J, Martinez‐Sobrido L, Wang Y, Torrelles JB, Turner J. Extracellular Delivery of Functional Mitochondria Rescues the Dysfunction of CD4 + T Cells in Aging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303664. [PMID: 37990641 PMCID: PMC10837346 DOI: 10.1002/advs.202303664] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/17/2023] [Indexed: 11/23/2023]
Abstract
Mitochondrial dysfunction alters cellular metabolism, increases tissue oxidative stress, and may be principal to the dysregulated signaling and function of CD4+ T lymphocytes in the elderly. In this proof of principle study, it is investigated whether the transfer of functional mitochondria into CD4+ T cells that are isolated from old mice (aged CD4+ T cells), can abrogate aging-associated mitochondrial dysfunction, and improve the aged CD4+ T cell functionality. The results show that the delivery of exogenous mitochondria to aged non-activated CD4+ T cells led to significant mitochondrial proteome alterations highlighted by improved aerobic metabolism and decreased cellular mitoROS. Additionally, mito-transferred aged CD4+ T cells showed improvements in activation-induced TCR-signaling kinetics displaying markers of activation (CD25), increased IL-2 production, enhanced proliferation ex vivo. Importantly, immune deficient mouse models (RAG-KO) showed that adoptive transfer of mito-transferred naive aged CD4+ T cells, protected recipient mice from influenza A and Mycobacterium tuberculosis infections. These findings support mitochondria as targets of therapeutic intervention in aging.
Collapse
Affiliation(s)
- Colwyn A. Headley
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
- Biomedical Sciences Graduate ProgramThe Ohio State UniversityColumbusOhio43201USA
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCA94305USA
| | - Shalini Gautam
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | | | | | - Varun Dwivedi
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Anwari Akhter
- Population Health ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Alyssa Schami
- Population Health ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Kevin Chiem
- Disease Intervention & Prevention ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Russell Ault
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
- Biomedical Sciences Graduate ProgramThe Ohio State UniversityColumbusOhio43201USA
| | - Hao Zhang
- Department of Molecular Microbiology and ImmunologySouth Texas Center for Emerging Infectious DiseasesThe University of Texas at San AntonioSan AntonioTX78249USA
| | - Hong Cai
- Department of Molecular Microbiology and ImmunologySouth Texas Center for Emerging Infectious DiseasesThe University of Texas at San AntonioSan AntonioTX78249USA
| | - Alison Whigham
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Jennifer Delgado
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Amberlee Hicks
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Philip S. Tsao
- Stanford Cardiovascular InstituteStanford University School of MedicineStanfordCA94305USA
| | - Jonathan Gelfond
- UT‐Health San AntonioDepartment of Epidemiology & BiostatisticsSan AntonioTexas78229USA
| | - Luis Martinez‐Sobrido
- Disease Intervention & Prevention ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Yufeng Wang
- Department of Molecular Microbiology and ImmunologySouth Texas Center for Emerging Infectious DiseasesThe University of Texas at San AntonioSan AntonioTX78249USA
| | - Jordi B. Torrelles
- Population Health ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| | - Joanne Turner
- Host‐Pathogen Interactions ProgramTexas Biomedical Research InstituteSan AntonioTexas78227USA
| |
Collapse
|
4
|
Fu X, Qin P, Li F, Zhu H, You H, Zhang Y, Xu B, Li T, Zhang F, Han L, Zhao L, Ma B, Wang Z, Gao Q. The inter-link of ageing, cancer and immunity: findings from real-world retrospective study. Immun Ageing 2023; 20:75. [PMID: 38102684 PMCID: PMC10722682 DOI: 10.1186/s12979-023-00399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Although the concept of declined immune function associated with cancer has been accepted extensively, real-world clinical studies focusing on analysis of the peripheral blood immune changes underlying ageing, immunity and cancer are scarce. METHODS In this case-control study, we retrospectively analysed 1375 cancer patients and enrolled 275 age and gender matched healthy individuals. Flow cytometry was conducted to assess the immune changes. Further analysis was examined by SPSS 17.0 and GraphPad Prism 9 software. RESULTS Cancer patients showed obviously decreased CD3+ T, CD3+CD4+ Th, CD3+CD8+ CTL, CD19+ B, CD16+CD56+ NK cell counts and lower percentage of PD-1 (programmed cell death protein-1, PD-1) positive cells than healthy control (P < 0.0001). For cancer patients, the reference range of circulating percentage of PD-1+CD45+ cells, PD-1+CD3+ T cells, PD-1+CD3+CD4+ Th cells and PD-1+CD3+CD8+ CTL (Cytotoxic T Lymphocyte, CTL) were 11.2% (95% CI 10.8%-11.6%), 15.5% (95% CI 14.7%-16.0%), 15.4% (95% CI 14.9%-16.0%) and 14.5% (95% CI 14.0%-15.5%), respectively. Moreover, the reduction of CD3+ T, CD3+CD4+ Th, CD3+CD8+ CTL, CD19+ B cell counts accompanied with age and stage advancing (P < 0.05). CD16+CD56+ NK cells decreased with stage, but elevated in aged and male cancer patients (P < 0.05). Additionally, the percentage of PD-1 positive cells varied across cancer types, raised with age and stage. Head and neck, pancreatic, gynaecological and lung demonstrated a higher level of the percentage of PD-1 positive cells than melanoma, prostate, and breast cancer (P < 0.05). CONCLUSIONS This study provides the reference range of the percentage of PD-1 positive cells on peripheral blood, confirms the decreased immune cells and a series of immune changes accompanying with cancer, expands our real world evidence to better understand the interactions of ageing, cancer and immunity. Moreover, the circulating percentage of PD-1 positive cells shows similar tumor type distribution with tumor mutational burden (TMB), supports that it maybe a potential predictive biomarker for immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Xiaomin Fu
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450003, China
| | - Peng Qin
- GMP Laboratory of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450003, China
| | - Fanghui Li
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450003, China
| | - Huifang Zhu
- GMP Laboratory of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450003, China
| | - Hongqin You
- GMP Laboratory of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450003, China
| | - Yong Zhang
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450003, China
| | - Benling Xu
- GMP Laboratory of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450003, China
| | - Tiepeng Li
- GMP Laboratory of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450003, China
| | - Fang Zhang
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450003, China
| | - Lu Han
- GMP Laboratory of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450003, China
| | - Lingdi Zhao
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450003, China
| | - Baozhen Ma
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450003, China
| | - Zibing Wang
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450003, China.
| | - Quanli Gao
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450003, China.
| |
Collapse
|
5
|
Cavallone IN, Belda W, de Carvalho CHC, Laurenti MD, Passero LFD. New Immunological Markers in Chromoblastomycosis-The Importance of PD-1 and PD-L1 Molecules in Human Infection. J Fungi (Basel) 2023; 9:1172. [PMID: 38132773 PMCID: PMC10744586 DOI: 10.3390/jof9121172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The pathogenesis of chromoblastomycosis (CBM) is associated with Th2 and/or T regulatory immune responses, while resistance is associated with a Th1 response. However, even in the presence of IFN-γ, fungi persist in the lesions, and the reason for this persistence is unknown. To clarify the factors associated with pathogenesis, this study aimed to determine the polarization of the cellular immune response and the densities of cells that express markers of exhaustion in the skin of CBM patients. In the skin of patients with CBM, a moderate inflammatory infiltrate was observed, characterized primarily by the occurrence of histiocytes. Analysis of fungal density allowed us to divide patients into groups that exhibited low and high fungal densities; however, the intensity of the inflammatory response was not related to mycotic loads. Furthermore, patients with CBM exhibited a significant increase in the number of CD4+ and CD8+ cells associated with a high density of IL-10-, IL-17-, and IFN-γ-producing cells, indicating the presence of a chronic and mixed cellular immune response, which was also independent of fungal load. A significant increase in the number of PD-1+ and PD-L1+ cells was observed, which may be associated with the maintenance of the fungus in the skin and the progression of the disease.
Collapse
Affiliation(s)
- Italo N. Cavallone
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, Brazil;
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School, São Paulo University, São Paulo 01246-903, Brazil
| | - Walter Belda
- Dermatology Department, Medical School, São Paulo University, Clinics Hospital, São Paulo 05403-000, Brazil; (W.B.J.); (C.H.C.d.C.); (M.D.L.)
| | - Caroline Heleno C. de Carvalho
- Dermatology Department, Medical School, São Paulo University, Clinics Hospital, São Paulo 05403-000, Brazil; (W.B.J.); (C.H.C.d.C.); (M.D.L.)
| | - Marcia D. Laurenti
- Dermatology Department, Medical School, São Paulo University, Clinics Hospital, São Paulo 05403-000, Brazil; (W.B.J.); (C.H.C.d.C.); (M.D.L.)
| | - Luiz Felipe D. Passero
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, Brazil;
- Institute for Advanced Studies of Ocean (IEAMAR), São Paulo State University (UNESP), Rua João Francisco Bensdorp, 1178, São Vicente 11350-011, Brazil
| |
Collapse
|
6
|
Asghari F, Karimi MH, Pourfathollah AA. mTORC1 inhibition may improve T lymphocytes affected by aging. Immunopharmacol Immunotoxicol 2023; 45:719-729. [PMID: 37581412 DOI: 10.1080/08923973.2023.2232101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/23/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Due to the increase of the elderly's population and related social and economic problems, it is very important to provide strategies on health. In this regard, induction of T lymphocytes responses, the most important cells of the immune system, may be a good approach. Among different agents considered as antiaging factors, mTORC1 pathway inhibitors are significant. So, the purpose of this study was to evaluate the effect of two mTORC1 inhibitors, Everolimus and Metformin, on age-related features of activated T cells. MATERIALS AND METHODS Optimum doses of drugs was determined with evaluating the effect of treatments on IL-2 gene expression. T cells isolated from old and young mice were treated with drugs and PHA. IL-2 production was evaluated by ELISA. Also, the expression of CD28, PD-1, and KLRG-1, proliferation, and intracellular oxidative stress were assessed by flow cytometry-based assays, phenotyping, CFSE, and DCF-DA assay respectively. RESULTS Both drugs increased IL-2 production in the T cells of old mice. Also, using drugs especially Metformin could improve age-related phenotypical markers and increase the proliferation of T cells of old mice significantly. In addition, Metformin and Everolimus reduced intracellular oxidative stress in aged cells. However, the effect of both drugs on the T cells of young mice wasn't significant or was in opposite to the results of old mice T cells. DISCUSSION In line with studies noting mTOR inhibitors as antiaging drugs, Metformin and Everolimus may improve T cells affected from aging in vitro, and a decrease in intracellular oxidative stress may be one of their mechanism of function.
Collapse
Affiliation(s)
- F Asghari
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - M H Karimi
- Larestan University of Medical Sciences, Larestan, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A A Pourfathollah
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Poloni C, Schonhofer C, Ivison S, Levings MK, Steiner TS, Cook L. T-cell activation-induced marker assays in health and disease. Immunol Cell Biol 2023; 101:491-503. [PMID: 36825901 PMCID: PMC10952637 DOI: 10.1111/imcb.12636] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
Activation-induced marker (AIM) assays have proven to be an accessible and rapid means of antigen-specific T-cell detection. The method typically involves short-term incubation of whole blood or peripheral blood mononuclear cells with antigens of interest, where autologous antigen-presenting cells process and present peptides in complex with major histocompatibility complex (MHC) molecules. Recognition of peptide-MHC complexes by T-cell receptors then induces upregulation of activation markers on the T cells that can be detected by flow cytometry. In this review, we highlight the most widely used activation markers for assays in the literature while identifying nuances and potential downfalls associated with the technique. We provide a summary of how AIM assays have been used in both discovery science and clinical studies, including studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunity. This review primarily focuses on AIM assays using human blood or peripheral blood mononuclear cell samples, with some considerations noted for tissue-derived T cells and nonhuman samples. AIM assays are a powerful tool that enables detailed analysis of antigen-specific T-cell frequency, phenotype and function without needing to know the precise antigenic peptides and their MHC restriction elements, enabling a wider analysis of immunity generated following infection and/or vaccination.
Collapse
Affiliation(s)
- Chad Poloni
- Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverBCCanada
- BC Children's Hospital Research InstituteVancouverBCCanada
| | - Cole Schonhofer
- Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverBCCanada
- BC Children's Hospital Research InstituteVancouverBCCanada
| | - Sabine Ivison
- BC Children's Hospital Research InstituteVancouverBCCanada
- Department of SurgeryUniversity of British ColumbiaVancouverBCCanada
| | - Megan K Levings
- BC Children's Hospital Research InstituteVancouverBCCanada
- Department of SurgeryUniversity of British ColumbiaVancouverBCCanada
| | - Theodore S Steiner
- Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverBCCanada
- BC Children's Hospital Research InstituteVancouverBCCanada
| | - Laura Cook
- Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Department of Critical Care, Melbourne Medical SchoolUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
8
|
Chen J, Deng JC, Goldstein DR. How aging impacts vaccine efficacy: known molecular and cellular mechanisms and future directions. Trends Mol Med 2022; 28:1100-1111. [PMID: 36216643 PMCID: PMC9691569 DOI: 10.1016/j.molmed.2022.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 01/26/2023]
Abstract
Aging leads to a gradual dysregulation of immune functions, one consequence of which is reduced vaccine efficacy. In this review, we discuss several key contributing factors to the age-related decline in vaccine efficacy, such as alterations within the lymph nodes where germinal center (GC) reactions take place, alterations in the B cell compartment, alterations in the T cell compartment, and dysregulation of innate immune pathways. Additionally, we discuss several methods currently used in vaccine development to bolster vaccine efficacy in older adults. This review highlights the multifactorial defects that impair vaccine responses with aging.
Collapse
Affiliation(s)
- Judy Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jane C Deng
- Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA; Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Daniel R Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Wang TW, Johmura Y, Suzuki N, Omori S, Migita T, Yamaguchi K, Hatakeyama S, Yamazaki S, Shimizu E, Imoto S, Furukawa Y, Yoshimura A, Nakanishi M. Blocking PD-L1-PD-1 improves senescence surveillance and ageing phenotypes. Nature 2022; 611:358-364. [PMID: 36323784 DOI: 10.1038/s41586-022-05388-4] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
The accumulation of senescent cells is a major cause of age-related inflammation and predisposes to a variety of age-related diseases1. However, little is known about the molecular basis underlying this accumulation and its potential as a target to ameliorate the ageing process. Here we show that senescent cells heterogeneously express the immune checkpoint protein programmed death-ligand 1 (PD-L1) and that PD-L1+ senescent cells accumulate with age in vivo. PD-L1- cells are sensitive to T cell surveillance, whereas PD-L1+ cells are resistant, even in the presence of senescence-associated secretory phenotypes (SASP). Single-cell analysis of p16+ cells in vivo revealed that PD-L1 expression correlated with higher levels of SASP. Consistent with this, administration of programmed cell death protein 1 (PD-1) antibody to naturally ageing mice or a mouse model with normal livers or induced nonalcoholic steatohepatitis reduces the total number of p16+ cells in vivo as well as the PD-L1+ population in an activated CD8+ T cell-dependent manner, ameliorating various ageing-related phenotypes. These results suggest that the heterogeneous expression of PD-L1 has an important role in the accumulation of senescent cells and inflammation associated with ageing, and the elimination of PD-L1+ senescent cells by immune checkpoint blockade may be a promising strategy for anti-ageing therapy.
Collapse
Affiliation(s)
- Teh-Wei Wang
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoshikazu Johmura
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- Division of Cancer and Senescence Biology, Cancer Research Institute, Kanazawa University, Kakuma, Kanazawa, Japan.
| | - Narumi Suzuki
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Satotaka Omori
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Toshiro Migita
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Seira Hatakeyama
- Division of Clinical Genome Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Satoshi Yamazaki
- Division of Stem Cell Biology, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Eigo Shimizu
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
10
|
Zhang Q, Jazwinski SM. A Novel Strategy to Model Age-Related Cancer for Elucidation of the Role of Th17 Inflammaging in Cancer Progression. Cancers (Basel) 2022; 14:5185. [PMID: 36358603 PMCID: PMC9657135 DOI: 10.3390/cancers14215185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer is a disease of aging, but most studies on cancer are in young but not aged animal models, and cancer clinical trials are rarely performed in older adults. Recognition of the connections between aging and cancer and improvement of treatment for elderly cancer patients has become one of the most critical medical issues with the global increase in the elderly population. Mouse models are essential experimental tools for understanding the molecular mechanisms of complex processes and related gene pathways of biological aging. However, few mouse models can be used to understand the role of aging in cancer development and the underlying mechanisms. One of the hallmarks of aging is chronic inflammation, often called inflammaging. This is our rationale for examining the role of aging-related inflammation in prostate cancer, a major aging malignancy. We have now developed a novel method to generate age-related cancer models in mice to better understand how age impacts cancer initiation and progression in the natural aging process. We discuss its application to elucidate some of the contributing mechanisms.
Collapse
Affiliation(s)
- Qiuyang Zhang
- Department of Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - S. Michal Jazwinski
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
11
|
Verschoor CP, Belsky DW, Andrew MK, Haynes L, Loeb M, Pawelec G, McElhaney JE, Kuchel GA. Advanced biological age is associated with improved antibody responses in older high-dose influenza vaccine recipients over four consecutive seasons. Immun Ageing 2022; 19:39. [PMID: 35999604 PMCID: PMC9396565 DOI: 10.1186/s12979-022-00296-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022]
Abstract
Background Biological aging represents a loss of integrity and functionality of physiological systems over time. While associated with an enhanced risk of adverse outcomes such as hospitalization, disability and death following infection, its role in perceived age-related declines in vaccine responses has yet to be fully elucidated. Using data and biosamples from a 4-year clinical trial comparing immune responses of standard- and high-dose influenza vaccination, we quantified biological age (BA) prior to vaccination in adults over 65 years old (n = 292) using a panel of ten serological biomarkers (albumin, alanine aminotransferase, creatinine, ferritin, free thyroxine, cholesterol, high-density lipoprotein, triglycerides, tumour necrosis factor, interleukin-6) as implemented in the BioAge R package. Hemagglutination inhibition antibody titres against influenza A/H1N1, A/H3N2 and B were quantified prior to vaccination and 4-, 10- and 20- weeks post-vaccination. Results Counter to our hypothesis, advanced BA was associated with improved post-vaccination antibody titres against the different viral types and subtypes. However, this was dependent on both vaccine dose and CMV serostatus, as associations were only apparent for high-dose recipients (d = 0.16–0.26), and were largely diminished for CMV positive high-dose recipients. Conclusions These findings emphasize two important points: first, the loss of physiological integrity related to biological aging may not be a ubiquitous driver of immune decline in older adults; and second, latent factors such as CMV infection (prevalent in up to 90% of older adults worldwide) may contribute to the heterogeneity in vaccine responses of older adults more than previously thought. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-022-00296-7.
Collapse
|
12
|
Klein J, Wood J, Jaycox J, Lu P, Dhodapkar RM, Gehlhausen JR, Tabachnikova A, Tabacof L, Malik AA, Kamath K, Greene K, Monteiro VS, Peña-Hernandez M, Mao T, Bhattacharjee B, Takahashi T, Lucas C, Silva J, Mccarthy D, Breyman E, Tosto-Mancuso J, Dai Y, Perotti E, Akduman K, Tzeng TJ, Xu L, Yildirim I, Krumholz HM, Shon J, Medzhitov R, Omer SB, van Dijk D, Ring AM, Putrino D, Iwasaki A. Distinguishing features of Long COVID identified through immune profiling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.08.09.22278592. [PMID: 35982667 PMCID: PMC9387160 DOI: 10.1101/2022.08.09.22278592] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SARS-CoV-2 infection can result in the development of a constellation of persistent sequelae following acute disease called post-acute sequelae of COVID-19 (PASC) or Long COVID 1-3 . Individuals diagnosed with Long COVID frequently report unremitting fatigue, post-exertional malaise, and a variety of cognitive and autonomic dysfunctions 1-3 ; however, the basic biological mechanisms responsible for these debilitating symptoms are unclear. Here, 215 individuals were included in an exploratory, cross-sectional study to perform multi-dimensional immune phenotyping in conjunction with machine learning methods to identify key immunological features distinguishing Long COVID. Marked differences were noted in specific circulating myeloid and lymphocyte populations relative to matched control groups, as well as evidence of elevated humoral responses directed against SARS-CoV-2 among participants with Long COVID. Further, unexpected increases were observed in antibody responses directed against non-SARS-CoV-2 viral pathogens, particularly Epstein-Barr virus. Analysis of circulating immune mediators and various hormones also revealed pronounced differences, with levels of cortisol being uniformly lower among participants with Long COVID relative to matched control groups. Integration of immune phenotyping data into unbiased machine learning models identified significant distinguishing features critical in accurate classification of Long COVID, with decreased levels of cortisol being the most significant individual predictor. These findings will help guide additional studies into the pathobiology of Long COVID and may aid in the future development of objective biomarkers for Long COVID.
Collapse
|
13
|
Abstract
Ageing leads to profound alterations in the immune system and increases susceptibility to some chronic, infectious and autoimmune diseases. In recent years, widespread application of single-cell techniques has enabled substantial progress in our understanding of the ageing immune system. These comprehensive approaches have expanded and detailed the current views of ageing and immunity. Here we review a body of recent studies that explored how the immune system ages using unbiased profiling techniques at single-cell resolution. Specifically, we discuss an emergent understanding of age-related alterations in innate and adaptive immune cell populations, antigen receptor repertoires and immune cell-supporting microenvironments of the peripheral tissues. Focusing on the results obtained in mice and humans, we describe the multidimensional data that align with established concepts of immune ageing as well as novel insights emerging from these studies. We further discuss outstanding questions in the field and highlight techniques that will advance our understanding of immune ageing in the future.
Collapse
Affiliation(s)
- Denis A Mogilenko
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Irina Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
14
|
Drapela S, Ilter D, Gomes AP. Metabolic reprogramming: a bridge between aging and tumorigenesis. Mol Oncol 2022; 16:3295-3318. [PMID: 35666002 PMCID: PMC9490145 DOI: 10.1002/1878-0261.13261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Aging is the most robust risk factor for cancer development, with more than 60% of cancers occurring in those aged 60 and above. However, how aging and tumorigenesis are intertwined is poorly understood and a matter of significant debate. Metabolic changes are hallmarks of both aging and tumorigenesis. The deleterious consequences of aging include dysfunctional cellular processes, the build‐up of metabolic byproducts and waste molecules in circulation and within tissues, and stiffer connective tissues that impede blood flow and oxygenation. Collectively, these age‐driven changes lead to metabolic reprogramming in different cell types of a given tissue that significantly affects their cellular functions. Here, we put forward the idea that metabolic changes that happen during aging help create a favorable environment for tumorigenesis. We review parallels in metabolic changes that happen during aging and how these changes function both as adaptive mechanisms that enable the development of malignant phenotypes in a cell‐autonomous manner and as mechanisms that suppress immune surveillance, collectively creating the perfect environment for cancers to thrive. Hence, antiaging therapeutic strategies that target the metabolic reprogramming that occurs as we age might provide new opportunities to prevent cancer initiation and/or improve responses to standard‐of‐care anticancer therapies.
Collapse
Affiliation(s)
- Stanislav Drapela
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Didem Ilter
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
15
|
Pieren DKJ, Smits NAM, Postel RJ, Kandiah V, de Wit J, van Beek J, van Baarle D, Guichelaar T. Co-Expression of TIGIT and Helios Marks Immunosenescent CD8+ T Cells During Aging. Front Immunol 2022; 13:833531. [PMID: 35651622 PMCID: PMC9148977 DOI: 10.3389/fimmu.2022.833531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Aging leads to alterations in the immune system that result in ineffective responsiveness against pathogens. Features of this process, collectively known as immunosenescence, accumulate in CD8+ T cells with age and have been ascribed to differentiation of these cells during the course of life. Here we aimed to identify novel markers in CD8+ T cells associated with immunosenescence. Furthermore, we assessed how these markers relate to the aging-related accumulation of highly differentiated CD27-CD28- cells. We found that co-expression of the transcription factor Helios and the aging-related marker TIGIT identifies CD8+ T cells that fail to proliferate and show impaired induction of activation markers CD69 and CD25 in response to stimulation in vitro. Despite this, in blood of older adults we found TIGIT+Helios+ T cells to become highly activated during an influenza-A virus infection, but these higher frequencies of activated TIGIT+Helios+ T cells associate with longer duration of coughing. Moreover, in healthy individuals, we found that TIGIT+Helios+ CD8+ T cells accumulate with age in the highly differentiated CD27-CD28- population. Interestingly, TIGIT+Helios+ CD8+ T cells also accumulate with age among the less differentiated CD27+CD28- T cells before their transit into the highly differentiated CD27-CD28- stage. This finding suggests that T cells with immunosenescent features become prominent at old age also within the earlier differentiation states of these cells. Our findings show that co-expression of TIGIT and Helios refines the definition of immunosenescent CD8+ T cells and challenge the current dogma of late differentiation stage as proxy for T-cell immunosenescence.
Collapse
Affiliation(s)
- Daan K. J. Pieren
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Noortje A. M. Smits
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Rimke J. Postel
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Vinitha Kandiah
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Jelle de Wit
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Josine van Beek
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
| | - Debbie van Baarle
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Teun Guichelaar
- Centre for Infectious Disease Control, National Institute for Public Health and The Environment, Bilthoven, Netherlands
- *Correspondence: Teun Guichelaar,
| |
Collapse
|
16
|
Jazbec K, Jež M, Švajger U, Smrekar B, Miceska S, Rajčevič U, Justin M, Završnik J, Malovrh T, Švara T, Gombač M, Ramšak Ž, Rožman P. The Influence of Heterochronic Non-Myeloablative Bone Marrow Transplantation on the Immune System, Frailty, General Health, and Longevity of Aged Murine Recipients. Biomolecules 2022; 12:biom12040595. [PMID: 35454183 PMCID: PMC9028083 DOI: 10.3390/biom12040595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
The stem cell theory of aging postulates that stem cells become inefficient at maintaining the original functions of the tissues. We, therefore, hypothesized that transplanting young bone marrow (BM) to old recipients would lead to rejuvenating effects on immunity, followed by improved general health, decreased frailty, and possibly life span extension. We developed a murine model of non-myeloablative heterochronic BM transplantation in which old female BALB/c mice at 14, 16, and 18(19) months of age received altogether 125.1 ± 15.6 million nucleated BM cells from young male donors aged 7–13 weeks. At 21 months, donor chimerism was determined, and the immune system’s innate and adaptive arms were analyzed. Mice were then observed for general health and frailty until spontaneous death, when their lifespan, post-mortem examinations, and histopathological changes were recorded. The results showed that the old mice developed on average 18.7 ± 9.6% donor chimerism in the BM and showed certain improvements in their innate and adaptive arms of the immune system, such as favorable counts of neutrophils in the spleen and BM, central memory Th cells, effector/effector memory Th and Tc cells in the spleen, and B1a and B1b cells in the peritoneal cavity. Borderline enhanced lymphocyte proliferation capacity was also seen. The frailty parameters, pathomorphological results, and life spans did not differ significantly in the transplanted vs. control group of mice. In conclusion, although several favorable effects are obtained in our heterochronic non-myeloablative transplantation model, additional optimization is needed for better rejuvenation effects.
Collapse
Affiliation(s)
- Katerina Jazbec
- Diagnostic Services, Blood Transfusion Centre of Slovenia, 1000 Ljubljana, Slovenia; (M.J.); (U.Š.); (B.S.); (S.M.); (U.R.); (M.J.); (P.R.)
- Correspondence:
| | - Mojca Jež
- Diagnostic Services, Blood Transfusion Centre of Slovenia, 1000 Ljubljana, Slovenia; (M.J.); (U.Š.); (B.S.); (S.M.); (U.R.); (M.J.); (P.R.)
| | - Urban Švajger
- Diagnostic Services, Blood Transfusion Centre of Slovenia, 1000 Ljubljana, Slovenia; (M.J.); (U.Š.); (B.S.); (S.M.); (U.R.); (M.J.); (P.R.)
- Chair of Clinical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Boštjan Smrekar
- Diagnostic Services, Blood Transfusion Centre of Slovenia, 1000 Ljubljana, Slovenia; (M.J.); (U.Š.); (B.S.); (S.M.); (U.R.); (M.J.); (P.R.)
| | - Simona Miceska
- Diagnostic Services, Blood Transfusion Centre of Slovenia, 1000 Ljubljana, Slovenia; (M.J.); (U.Š.); (B.S.); (S.M.); (U.R.); (M.J.); (P.R.)
| | - Uroš Rajčevič
- Diagnostic Services, Blood Transfusion Centre of Slovenia, 1000 Ljubljana, Slovenia; (M.J.); (U.Š.); (B.S.); (S.M.); (U.R.); (M.J.); (P.R.)
| | - Mojca Justin
- Diagnostic Services, Blood Transfusion Centre of Slovenia, 1000 Ljubljana, Slovenia; (M.J.); (U.Š.); (B.S.); (S.M.); (U.R.); (M.J.); (P.R.)
| | - Janja Završnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia;
| | - Tadej Malovrh
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Tanja Švara
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.Š.); (M.G.)
| | - Mitja Gombač
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.Š.); (M.G.)
| | - Živa Ramšak
- National Institute of Biology, 1000 Ljubljana, Slovenia;
| | - Primož Rožman
- Diagnostic Services, Blood Transfusion Centre of Slovenia, 1000 Ljubljana, Slovenia; (M.J.); (U.Š.); (B.S.); (S.M.); (U.R.); (M.J.); (P.R.)
| |
Collapse
|
17
|
Zeng N, Capelle CM, Baron A, Kobayashi T, Cire S, Tslaf V, Leonard C, Coowar D, Koseki H, Westendorf AM, Buer J, Brenner D, Krüger R, Balling R, Ollert M, Hefeng FQ. DJ-1 depletion prevents immunoaging in T-cell compartments. EMBO Rep 2022; 23:e53302. [PMID: 35037711 PMCID: PMC8892345 DOI: 10.15252/embr.202153302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022] Open
Abstract
Decline in immune function during aging increases susceptibility to different aging-related diseases. However, the underlying molecular mechanisms, especially the genetic factors contributing to imbalance of naïve/memory T-cell subpopulations, still remain largely elusive. Here, we show that loss of DJ-1 encoded by PARK7/DJ-1, causing early-onset familial Parkinson's disease (PD), unexpectedly diminished signs of immunoaging in T-cell compartments of both human and mice. Compared with two gender-matched unaffected siblings of similar ages, the index PD patient with DJ-1 deficiency showed a decline in many critical immunoaging features, including almost doubled non-senescent T cells. The observation was further consolidated by the results in 45-week-old DJ-1 knockout mice. Our data demonstrated that DJ-1 regulates several immunoaging features via hematopoietic-intrinsic and naïve-CD8-intrinsic mechanisms. Mechanistically, DJ-1 depletion reduced oxidative phosphorylation (OXPHOS) and impaired TCR sensitivity in naïve CD8 T cells at a young age, accumulatively leading to a reduced aging process in T-cell compartments in older mice. Our finding suggests an unrecognized critical role of DJ-1 in regulating immunoaging, discovering a potent target to interfere with immunoaging- and aging-associated diseases.
Collapse
Affiliation(s)
- Ni Zeng
- Department of Infection and ImmunityLuxembourg Institute of Health (LIH)Esch‐sur‐AlzetteLuxembourg
- Faculty of Science, Technology and MedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Christophe M Capelle
- Department of Infection and ImmunityLuxembourg Institute of Health (LIH)Esch‐sur‐AlzetteLuxembourg
- Faculty of Science, Technology and MedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Alexandre Baron
- Department of Infection and ImmunityLuxembourg Institute of Health (LIH)Esch‐sur‐AlzetteLuxembourg
| | - Takumi Kobayashi
- Department of Infection and ImmunityLuxembourg Institute of Health (LIH)Esch‐sur‐AlzetteLuxembourg
| | - Severine Cire
- Department of Infection and ImmunityLuxembourg Institute of Health (LIH)Esch‐sur‐AlzetteLuxembourg
| | - Vera Tslaf
- Department of Infection and ImmunityLuxembourg Institute of Health (LIH)Esch‐sur‐AlzetteLuxembourg
- Faculty of Science, Technology and MedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
- Transversal Translational MedicineLuxembourg Institute of Health (LIH)StrassenLuxembourg
| | - Cathy Leonard
- Department of Infection and ImmunityLuxembourg Institute of Health (LIH)Esch‐sur‐AlzetteLuxembourg
| | - Djalil Coowar
- Luxembourg Centre for Systems Biomedicine (LCSB)University of LuxembourgBelvauxLuxembourg
| | - Haruhiko Koseki
- Laboratory for Developmental GeneticsRIKEN Center for Integrative Medical SciencesYokohamaJapan
- AMED‐CRESTJapanese Agency for Medical Research and DevelopmentYokohamaJapan
| | - Astrid M Westendorf
- Institute of Medical MicrobiologyUniversity Hospital EssenUniversity Duisburg‐EssenEssenGermany
| | - Jan Buer
- Institute of Medical MicrobiologyUniversity Hospital EssenUniversity Duisburg‐EssenEssenGermany
| | - Dirk Brenner
- Department of Infection and ImmunityLuxembourg Institute of Health (LIH)Esch‐sur‐AlzetteLuxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB)University of LuxembourgBelvauxLuxembourg
| | - Rejko Krüger
- Transversal Translational MedicineLuxembourg Institute of Health (LIH)StrassenLuxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB)University of LuxembourgBelvauxLuxembourg
- Centre Hospitalier de Luxembourg (CHL)LuxembourgLuxembourg
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine (LCSB)University of LuxembourgBelvauxLuxembourg
- Present address:
Institute of Molecular PsychiatryUniversity of BonnBonnGermany
| | - Markus Ollert
- Department of Infection and ImmunityLuxembourg Institute of Health (LIH)Esch‐sur‐AlzetteLuxembourg
- Department of Dermatology and Allergy CenterOdense Research Center for Anaphylaxis (ORCA)University of Southern DenmarkOdenseDenmark
| | - Feng Q Hefeng
- Department of Infection and ImmunityLuxembourg Institute of Health (LIH)Esch‐sur‐AlzetteLuxembourg
- Institute of Medical MicrobiologyUniversity Hospital EssenUniversity Duisburg‐EssenEssenGermany
| |
Collapse
|
18
|
He SWJ, van de Garde MDB, Pieren DKJ, Poelen MCM, Voß F, Abdullah MR, Hammerschmidt S, van Els CACM. Diminished Pneumococcal-Specific CD4+ T-Cell Response is Associated With Increased Regulatory T Cells at Older Age. FRONTIERS IN AGING 2021; 2:746295. [PMID: 35822055 PMCID: PMC9261371 DOI: 10.3389/fragi.2021.746295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022]
Abstract
Respiratory infection caused by Streptococcus pneumoniae is a leading cause of morbidity and mortality in older adults. Acquired CD4+ T cell mechanism are essential for the protection against colonization and subsequent development of infections by S. pneumoniae. In this study, we hypothesized that age-related changes within the CD4+ T-cell population compromise CD4+ T-cell specific responses to S. pneumoniae, thereby contributing to increased susceptibility at older age. To this end, we interrogated the CD4+ T-cell response against the immunogenic pneumococcal protein AliB, part of the unique oligopeptide ABC transporter system responsible for the uptake of nutrients for the bacterium and crucial for the development of pneumococcal meningitis, in healthy young and older adults. Specifically, proliferation of CD4+ T cells as well as concomitant cytokine profiles and phenotypic markers implied in immunosenescence were studied. Older adults showed decreased AliB-induced CD4+ T-cell proliferation that is associated with an increased frequency of regulatory T cells and lower levels of active CD25+CD127+CTLA-4−TIGIT-CD4+T cells. Additionally, levels of pro-inflammatory cytokines IFNy and IL-17F were decreased at older age. Our findings indicate that key features of a pneumococcal-specific CD4+ T-cell immune response are altered at older age, which may contribute to enhanced susceptibility for pneumococcal infections.
Collapse
Affiliation(s)
- Samantha W J He
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Martijn D B van de Garde
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Daan K J Pieren
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Martien C M Poelen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Franziska Voß
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Mohammed R Abdullah
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| |
Collapse
|
19
|
Alikhan MA, Jaw J, Shochet LR, Robson KJ, Ooi JD, Brouwer E, Heeringa P, Holdsworth SR, Kitching AR. Ageing enhances cellular immunity to myeloperoxidase and experimental anti-myeloperoxidase glomerulonephritis. Rheumatology (Oxford) 2021; 61:2132-2143. [PMID: 34508583 DOI: 10.1093/rheumatology/keab682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/01/2021] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis is an autoimmune disease characterised by small blood vessel inflammation, commonly affecting the kidneys and respiratory tract. It is unclear why the incidence of this condition increases with age. Previous studies in a passive antibody transfer system in aged mice have implicated innate effectors. To test the hypothesis that autoimmunity to myeloperoxidase, an autoantigen responsible for ANCA-associated vasculitis, increases with age, anti-myeloperoxidase autoimmunity was studied in murine models of active autoimmunity and disease induced by cellular immunity. METHODS Young (8 weeks) and aged (either 15 or 22 month) mice were immunised with whole proteins or peptides from ovalbumin, as a model foreign antigen, or myeloperoxidase protein or peptides. Mice were subjected to a model of active anti-myeloperoxidase glomerulonephritis. Cellular and humoral immune responses and tissue inflammation were assessed. RESULTS While cellular immunity to ovalbumin was diminished in aged mice, cellular autoimmunity to myeloperoxidase and its immunodominant CD4+ and CD8+ T cell epitopes was increased after immunization with either MPO peptides or whole MPO protein, assessed by peptide and antigen specific production of the pro-inflammatory cytokines interferon-γ and interleukin-17A. MPO-ANCA titres were not increased in aged mice compared with young mice. In experimental anti-MPO glomerulonephritis, cell mediated injury was increased, likely due to CD4+ and CD8+ T cells, innate immunity and the increased vulnerability of aged kidneys. CONCLUSION Heightened cellular immunity to MPO develops with ageing in mice and may contribute to the increased incidence and severity of ANCA-associated vasculitis in older people.
Collapse
Affiliation(s)
- Maliha A Alikhan
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| | - Juli Jaw
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria, Australia.,Department of Nephrology, Monash Health, Clayton, Victoria, Australia
| | - Lani R Shochet
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria, Australia.,Department of Nephrology, Monash Health, Clayton, Victoria, Australia
| | - Kate J Robson
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria, Australia.,Department of Nephrology, Monash Health, Clayton, Victoria, Australia
| | - Joshua D Ooi
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Stephen R Holdsworth
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria, Australia.,Department of Clinical Immunology, Monash Health, Clayton, Victoria, Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Monash University, Clayton, Victoria, Australia.,Department of Nephrology, Monash Health, Clayton, Victoria, Australia.,Department of Paediatric Nephrology, Monash Health, Clayton, Victoria, Australia
| |
Collapse
|
20
|
Shademan B, Karamad V, Nourazarian A, Avcı CB. CAR T Cells: Cancer Cell Surface Receptors Are the Target for Cancer Therapy. Adv Pharm Bull 2021; 12:476-489. [PMID: 35935042 PMCID: PMC9348524 DOI: 10.34172/apb.2022.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/12/2021] [Accepted: 08/17/2021] [Indexed: 11/09/2022] Open
Abstract
Immunotherapy has become a prominent strategy for the treatment of cancer. A method that improves the immune system's ability to attack a tumor (Enhances antigen binding). Targeted killing of malignant cells by adoptive transfer of chimeric antigen receptor (CAR) T cells is a promising immunotherapy technique in the treatment of cancers. For this purpose, the patient's immune cells, with genetic engineering aid, are loaded with chimeric receptors that have particular antigen binding and activate cytotoxic T lymphocytes. That increases the effectiveness of immune cells and destroying cancer cells. This review discusses the basic structure and function of CAR-T cells and how antigenic targets are identified to treat different cancers and address the disadvantages of this treatment for cancer.
Collapse
Affiliation(s)
- Behrouz Shademan
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Vahidreza Karamad
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Alireza Nourazarian
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Cigir Biray Avcı
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| |
Collapse
|
21
|
Stojić-Vukanić Z, Pilipović I, Arsenović-Ranin N, Dimitrijević M, Leposavić G. Sex-specific remodeling of T-cell compartment with aging: Implications for rat susceptibility to central nervous system autoimmune diseases. Immunol Lett 2021; 239:42-59. [PMID: 34418487 DOI: 10.1016/j.imlet.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/12/2021] [Accepted: 08/12/2021] [Indexed: 11/15/2022]
Abstract
The incidence of multiple sclerosis (MS) and susceptibility of animals to experimental autoimmune encephalomyelitis (EAE), the most commonly used experimental model of MS, decrease with aging. Generally, autoimmune diseases develop as the ultimate outcome of an imbalance between damaging immune responses against self and regulatory immune responses (keeping the former under control). Thus, in this review the age-related changes possibly underlying this balance were discussed. Specifically, considering the central role of T cells in MS/EAE, the impact of aging on overall functional capacity (reflecting both overall count and individual functional cell properties) of self-reactive conventional T cells (Tcons) and FoxP3+ regulatory T cells (Tregs), as the most potent immunoregulatory/suppressive cells, was analyzed, as well. The analysis encompasses three distinct compartments: thymus (the primary lymphoid organ responsible for the elimination of self-reactive T cells - negative selection and the generation of Tregs, compensating for imperfections of the negative selection), peripheral blood/lymphoid tissues ("afferent" compartment), and brain/spinal cord tissues ("target" compartment). Given that the incidence of MS and susceptibility of animals to EAE are greater in women/females than in age-matched men/males, sex as independent variable was also considered. In conclusion, with aging, sex-specific alterations in the balance of self-reactive Tcons/Tregs are likely to occur not only in the thymus/"afferent" compartment, but also in the "target" compartment, reflecting multifaceted changes in both T-cell types. Their in depth understanding is important not only for envisaging effects of aging, but also for designing interventions to slow-down aging without any adverse effect on incidence of autoimmune diseases.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, University of Belgrade - Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia.
| |
Collapse
|
22
|
Conway J, A Duggal N. Ageing of the gut microbiome: Potential influences on immune senescence and inflammageing. Ageing Res Rev 2021; 68:101323. [PMID: 33771720 DOI: 10.1016/j.arr.2021.101323] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 02/08/2023]
Abstract
Advancing age is accompanied by changes in the gut microbiota characterised by a loss of beneficial commensal microbes that is driven by intrinsic and extrinsic factors such as diet, medications, sedentary behaviour and chronic health conditions. Concurrently, ageing is accompanied by an impaired ability to mount a robust immune response, termed immunesenescence, and age-associated inflammation, termed inflammaging. The microbiome has been proposed to impact the immune system and is a potential determinant of healthy aging. In this review we summarise the knowledge on the impact of ageing on microbial dysbiosis, intestinal permeability, inflammaging, and the immune system and investigate whether dysbiosis of the gut microbiota could be a potential mechanism underlying the decline in immune function, overall health and longevity with advancing age. Furthermore, we examine the potential of altering the gut microbiome composition as a novel intervention strategy to reverse the immune ageing clock and possibly support overall good health during old age.
Collapse
|
23
|
Regulatory T cells and vaccine effectiveness in older adults. Challenges and prospects. Int Immunopharmacol 2021; 96:107761. [PMID: 34162139 DOI: 10.1016/j.intimp.2021.107761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
Since the discovery of lymphocytes with immunosuppressive activity, increasing interest has arisen in their possible influence on the immune response induced by vaccines. Regulatory T cells (Tregs) are essential for maintaining peripheral tolerance, preventing autoimmune diseases, and limiting chronic inflammatory diseases. However, they also limit beneficial immune responses by suppressing anti-infectious and anti-tumor immunity. Mounting evidence suggests that Tregs are involved, at least in part, in the low effectiveness of immunization against various diseases where it has been difficult to obtain protective vaccines. Interestingly, increased activity of Tregs is associated with aging, suggesting a key role for these cells in the lower vaccine effectiveness observed in older people. In this review, we analyze the impact of Tregs on vaccination, with a focus on older adults. Finally, we address an overview of current strategies for Tregs modulation with potential application to improve the effectiveness of future vaccines targeting older populations.
Collapse
|
24
|
Pieren DKJ, Smits NAM, Imholz S, Nagarajah B, van Oostrom CT, Brandt RMC, Vermeij WP, Dollé MET, Guichelaar T. Compromised DNA Repair Promotes the Accumulation of Regulatory T Cells With an Aging-Related Phenotype and Responsiveness. FRONTIERS IN AGING 2021; 2. [PMID: 35474946 PMCID: PMC9037984 DOI: 10.3389/fragi.2021.667193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Decline of immune function during aging has in part been ascribed to the accumulation of regulatory T cells (Tregs) and decreased T-cell responses with age. Aside from changes to T cells that occur over a lifetime, the impact of intracellular aging processes such as compromised DNA repair on T cells remains incompletely defined. Here we aimed to define the impact of compromised DNA repair on T-cell phenotype and responsiveness by studying T cells from mice with a deficiency in their DNA excision-repair gene Ercc1. These Ercc1 mutant (Ercc1−/Δ7) mice show accumulation of nuclear DNA damage resulting in accelerated aging. Similarly to wild-type aged mice, Ercc1−/Δ7 mice accumulated Tregs with reduced CD25 and increased PD-1 expression among their naive T cells. Ercc1-deficiency limited the capacity of Tregs, helper T cells, and cytotoxic T cells to proliferate and upregulate CD25 in response to T-cell receptor- and IL-2-mediated stimulation. The recent demonstration that the mammalian target of rapamycin (mTOR) may impair DNA repair lead us to hypothesize that changes induced in the T-cell population by compromised DNA repair may be slowed down or reversed by blocking mTOR with rapamycin. In vivo dietary treatment of Ercc1−/Δ7 mice with rapamycin did not reduce Treg levels, but highly increased the proportion of CD25+ and PD-1+ memory Tregs instead. Our study elucidates that compromised DNA repair promotes the accumulation of Tregs with an aging-related phenotype and causes reduced T-cell responsiveness, which may be independent of mTOR activation.
Collapse
Affiliation(s)
- Daan K. J. Pieren
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Noortje A. M. Smits
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Sandra Imholz
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Bhawani Nagarajah
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Conny T. van Oostrom
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | | - Wilbert P. Vermeij
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Martijn E. T. Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Teun Guichelaar
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- *Correspondence: Teun Guichelaar,
| |
Collapse
|
25
|
Izraelson M, Metsger M, Davydov AN, Shagina IA, Dronina MA, Obraztsova AS, Miskevich DA, Mamedov IZ, Volchkova LN, Nakonechnaya TO, Shugay M, Bolotin DA, Staroverov DB, Sharonov GV, Kondratyuk EY, Zagaynova EV, Lukyanov S, Shams I, Britanova OV, Chudakov DM. Distinct organization of adaptive immunity in the long-lived rodent Spalax galili. NATURE AGING 2021; 1:179-189. [PMID: 37118630 DOI: 10.1038/s43587-021-00029-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/08/2021] [Indexed: 04/30/2023]
Abstract
A balanced immune response is a cornerstone of healthy aging. Here, we uncover distinctive features of the long-lived blind mole-rat (Spalax spp.) adaptive immune system, relative to humans and mice. The T-cell repertoire remains diverse throughout the Spalax lifespan, suggesting a paucity of large long-lived clones of effector-memory T cells. Expression of master transcription factors of T-cell differentiation, as well as checkpoint and cytotoxicity genes, remains low as Spalax ages. The thymus shrinks as in mice and humans, while interleukin-7 and interleukin-7 receptor expression remains high, potentially reflecting the sustained homeostasis of naive T cells. With aging, immunoglobulin hypermutation level does not increase and the immunoglobulin-M repertoire remains diverse, suggesting shorter B-cell memory and sustained homeostasis of innate-like B cells. The Spalax adaptive immune system thus appears biased towards sustained functional and receptor diversity over specialized, long-lived effector-memory clones-a unique organizational strategy that potentially underlies this animal's extraordinary longevity and healthy aging.
Collapse
Affiliation(s)
- M Izraelson
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M Metsger
- Central European Institute of Technology, Brno, Czech Republic
| | - A N Davydov
- Central European Institute of Technology, Brno, Czech Republic
| | - I A Shagina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M A Dronina
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - A S Obraztsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - D A Miskevich
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - I Z Mamedov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
- Central European Institute of Technology, Brno, Czech Republic
| | - L N Volchkova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - T O Nakonechnaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M Shugay
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - D A Bolotin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - D B Staroverov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - G V Sharonov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E Y Kondratyuk
- Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
| | - E V Zagaynova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - S Lukyanov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - I Shams
- Institute of Evolution & Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - O V Britanova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
| | - D M Chudakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia.
- Pirogov Russian National Research Medical University, Moscow, Russia.
- Central European Institute of Technology, Brno, Czech Republic.
| |
Collapse
|
26
|
Zöphel D, Hof C, Lis A. Altered Ca 2+ Homeostasis in Immune Cells during Aging: Role of Ion Channels. Int J Mol Sci 2020; 22:ijms22010110. [PMID: 33374304 PMCID: PMC7794837 DOI: 10.3390/ijms22010110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
Aging is an unstoppable process and begins shortly after birth. Each cell of the organism is affected by the irreversible process, not only with equal density but also at varying ages and with different speed. Therefore, aging can also be understood as an adaptation to a continually changing cellular environment. One of these very prominent changes in age affects Ca2+ signaling. Especially immune cells highly rely on Ca2+-dependent processes and a strictly regulated Ca2+ homeostasis. The intricate patterns of impaired immune cell function may represent a deficit or compensatory mechanisms. Besides, altered immune function through Ca2+ signaling can profoundly affect the development of age-related disease. This review attempts to summarize changes in Ca2+ signaling due to channels and receptors in T cells and beyond in the context of aging.
Collapse
Affiliation(s)
| | | | - Annette Lis
- Correspondence: ; Tel.: +49-(0)-06841-1616318; Fax: +49-(0)-6841-1616302
| |
Collapse
|
27
|
Hamilton JA, Henry CJ. Aging and immunotherapies: New horizons for the golden ages. AGING AND CANCER 2020; 1:30-44. [PMID: 35874875 PMCID: PMC9307207 DOI: 10.1002/aac2.12014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The life expectancy of the world’s elderly population (65 and older) continues to reach new milestones with older individuals currently comprising greater than 8.5% (617 million) of the world’s population. This percentage is predicted to approach 20% of the world’s population by 2050 (representing 1.6 billion people). Despite this amazing feat, many healthcare systems are not equipped to handle the multitude of diseases that commonly manifest with age, including most types of cancers. As the world’s aging population grows, cancer treatments continue to evolve. Immunotherapies are a new drug class that has revolutionized our ability to treat previously intractable cancers; however, their efficacy in patients with compromised immune systems remains unclear. In this review, we will discuss how aging-associated losses in immune homeostasis impact the efficacy and safety of immunotherapy treatment in preclinical models of aging. We will also discuss how these findings translate to elderly patients receiving immunotherapy treatment for refractory and relapsed cancers, as well as, strategies that could be explored to improve the efficacy of immunotherapies in aged patients.
Collapse
Affiliation(s)
- Jamie A.G. Hamilton
- Department of Pediatrics Emory University School of Medicine Atlanta Georgia USA
- Aflac Cancer and Blood Disorders Center Children's Healthcare of Atlanta Atlanta Georgia USA
| | - Curtis J. Henry
- Department of Pediatrics Emory University School of Medicine Atlanta Georgia USA
- Aflac Cancer and Blood Disorders Center Children's Healthcare of Atlanta Atlanta Georgia USA
| |
Collapse
|
28
|
van der Rijt S, Molenaars M, McIntyre RL, Janssens GE, Houtkooper RH. Integrating the Hallmarks of Aging Throughout the Tree of Life: A Focus on Mitochondrial Dysfunction. Front Cell Dev Biol 2020; 8:594416. [PMID: 33324647 PMCID: PMC7726203 DOI: 10.3389/fcell.2020.594416] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Since the identification and definition of the hallmarks of aging, these aspects of molecular and cellular decline have been most often described as isolated or distinct mechanisms. However, there is significant evidence demonstrating interplay between most of these hallmarks and that they have the capacity to influence and regulate one another. These interactions are demonstrable across the tree of life, yet not all aspects are conserved. Here, we describe an integrative view on the hallmarks of aging by using the hallmark "mitochondrial dysfunction" as a focus point, and illustrate its capacity to both influence and be influenced by the other hallmarks of aging. We discuss the effects of mitochondrial pathways involved in aging, such as oxidative phosphorylation, mitochondrial dynamics, mitochondrial protein synthesis, mitophagy, reactive oxygen species and mitochondrial DNA damage in relation to each of the primary, antagonistic and integrative hallmarks. We discuss the similarities and differences in these interactions throughout the tree of life, and speculate how speciation may play a role in the variation in these mechanisms. We propose that the hallmarks are critically intertwined, and that mapping the full extent of these interactions would be of significant benefit to the aging research community.
Collapse
Affiliation(s)
- Sanne van der Rijt
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marte Molenaars
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Rebecca L McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
29
|
Pietrobon AJ, Teixeira FME, Sato MN. I mmunosenescence and Inflammaging: Risk Factors of Severe COVID-19 in Older People. Front Immunol 2020; 11:579220. [PMID: 33193377 PMCID: PMC7656138 DOI: 10.3389/fimmu.2020.579220] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/29/2020] [Indexed: 01/08/2023] Open
Abstract
Old individuals are more susceptible to various infections due to immunological changes that occur during the aging process. These changes named collectively as "immunosenescence" include decreases in both the innate and adaptive immune responses in addition to the exacerbated production of inflammatory cytokines. This scenario of immunological dysfunction and its relationship with disease development in older people has been widely studied, especially in infections that can be fatal, such as influenza and, more recently, COVID-19. In the current scenario of SARS-CoV-2 infection, many mechanisms of disease pathogenesis in old individuals have been proposed. To better understand the dynamics of COVID-19 in this group, aspects related to immunological senescence must be well elucidated. In this article, we discuss the main mechanisms involved in immunosenescence and their possible correlations with the susceptibility of individuals of advanced age to SARS-CoV-2 infection and the more severe conditions of the disease.
Collapse
Affiliation(s)
- Anna Julia Pietrobon
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Franciane Mouradian Emidio Teixeira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Notomi Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|