1
|
Salagean AA, Moldovan CAD, Slevin M. Utilisation of High Molecular Weight and Ultra-High Molecular Weight Hyaluronan in Management of Glioblastoma. Gels 2025; 11:50. [PMID: 39852021 PMCID: PMC11764969 DOI: 10.3390/gels11010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
HA (hyaluronan) has been considered in recent years as a naturally occurring modifiable gel-like scaffold that has the capability to absorb and release drugs over an extended period of time making it suitable as a potential chemotherapeutic delivery agent. Considering the limited treatment options available in the treatment of glioblastoma, in this review, we discuss the novel utilisation of ultra-high molecular weight HA-originally identified as a mechanism for maintaining longevity in the naked mole-rat-as both a protective and extracellular matrix-optimizing colloidal scaffold, and a means to deliver therapy in resected brain tumours. The unique properties of this unique form of HA cross-linked gel indicate potential future use in the prevention and treatment of both proliferative-based and inflammation-driven disease.
Collapse
Affiliation(s)
- Alex-Adrian Salagean
- Department of Histology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Cezara-Anca-Denisa Moldovan
- School of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Mark Slevin
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| |
Collapse
|
2
|
Lagunas-Rangel FA. Naked mole-rat hyaluronan. Biochimie 2024; 220:58-66. [PMID: 38158036 DOI: 10.1016/j.biochi.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Naked mole rats (NMRs) are renowned for their exceptional longevity and remarkable maintenance of health throughout their lifetime. Their subterranean lifestyle has led to adaptations that have resulted in elevated levels of a very high molecular weight hyaluronan in their tissues. Hyaluronan, a glycosaminoglycan, is a key component of the extracellular matrix, which plays a critical role in maintaining tissue structure and regulating cell signaling pathways. This phenomenon in NMRs is attributed to a higher processing and production capacity by some of their hyaluronan synthases, along with lower degradation by certain hyaluronidases. Furthermore, this adaptation indirectly confers several advantages to NMRs, such as the preservation of skin elasticity and youthful appearance, accelerated wound healing, protection against oxidative stress, and resistance to conditions such as cancer and arthritis, largely attributable to CD44 signaling and other intricate mechanisms. Thus, the main objective of this study was to conduct a comprehensive study of the distinctive features of NMR hyaluronan, particularly emphasizing the currently known molecular mechanisms that contribute to its beneficial properties. Furthermore, this research delves into the potential applications of NMR hyaluronan in both cosmetic and therapeutic fields, as well as the challenges involved.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
3
|
Zhang X, Zhuang H, Wu S, Mao C, Dai Y, Yan H. Marine Bioactive Peptides: Anti-Photoaging Mechanisms and Potential Skin Protective Effects. Curr Issues Mol Biol 2024; 46:990-1009. [PMID: 38392181 PMCID: PMC10887644 DOI: 10.3390/cimb46020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 02/24/2024] Open
Abstract
Skin photoaging, resulting from prolonged exposure to ultraviolet radiation, is a form of exogenous aging that not only impacts the aesthetic aspect of the skin but also exhibits a strong correlation with the onset of skin cancer. Nonetheless, the safety profile of non-natural anti-photoaging medications and the underlying physiological alterations during the process of photoaging remain inadequately elucidated. Consequently, there exists a pressing necessity to devise more secure interventions involving anti-photoaging drugs. Multiple studies have demonstrated the noteworthy significance of marine biomolecules in addressing safety concerns related to anti-photoaging and safeguarding the skin. Notably, bioactive peptides have gained considerable attention in anti-photoaging research due to their capacity to mitigate the physiological alterations associated with photoaging, including oxidative stress; inflammatory response; the abnormal expression of matrix metalloproteinase, hyaluronidase, and elastase; and excessive melanin synthesis. This review provides a systematic description of the research progress on the anti-photoaging and skin protection mechanism of marine bioactive peptides. The focus is on the utilization of marine bioactive peptides as anti-photoaging agents, aiming to offer theoretical references for the development of novel anti-photoaging drugs and methodologies. Additionally, the future prospects of anti-aging drugs are discussed, providing an initial reference for further research in this field.
Collapse
Affiliation(s)
- Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chen Mao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yaxi Dai
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
4
|
Zhao Y, Zheng Z, Zhang Z, Xu Y, Hillpot E, Lin YS, Zakusilo FT, Lu JY, Ablaeva J, Biashad SA, Miller RA, Nevo E, Seluanov A, Gorbunova V. Evolution of high-molecular-mass hyaluronic acid is associated with subterranean lifestyle. Nat Commun 2023; 14:8054. [PMID: 38052795 PMCID: PMC10698142 DOI: 10.1038/s41467-023-43623-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Hyaluronic acid is a major component of extracellular matrix which plays an important role in development, cellular response to injury and inflammation, cell migration, and cancer. The naked mole-rat (Heterocephalus glaber) contains abundant high-molecular-mass hyaluronic acid in its tissues, which contributes to this species' cancer resistance and possibly to its longevity. Here we report that abundant high-molecular-mass hyaluronic acid is found in a wide range of subterranean mammalian species, but not in phylogenetically related aboveground species. These subterranean mammalian species accumulate abundant high-molecular-mass hyaluronic acid by regulating the expression of genes involved in hyaluronic acid degradation and synthesis and contain unique mutations in these genes. The abundant high-molecular-mass hyaluronic acid may benefit the adaptation to subterranean environment by increasing skin elasticity and protecting from oxidative stress due to hypoxic conditions. Our work suggests that high-molecular-mass hyaluronic acid has evolved with subterranean lifestyle.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 301158, China
| | - Zhizhong Zheng
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Zhihui Zhang
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Yandong Xu
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 301158, China
| | - Eric Hillpot
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Yifei S Lin
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Frances T Zakusilo
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - J Yuyang Lu
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Julia Ablaeva
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Seyed Ali Biashad
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY, 14627, USA.
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA.
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY, 14627, USA.
| |
Collapse
|
5
|
Zhao Y, Zheng Z, Zhang Z, Hillpot E, Lin YS, Zakusilo FT, Lu JY, Ablaeva J, Miller RA, Nevo E, Seluanov A, Gorbunova V. Evolution of High-Molecular-Mass Hyaluronic Acid is Associated with Subterranean Lifestyle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539764. [PMID: 37215017 PMCID: PMC10197608 DOI: 10.1101/2023.05.08.539764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Hyaluronic acid (HA) is a major component of extracellular matrix (ECM) which plays an important role in development, cellular response to injury and inflammation, cell migration, and cancer. The naked mole-rat (NMR, Heterocephalus glaber ) contains abundant high-molecular-mass HA (HMM-HA) in its tissues, which contributes to this species' cancer resistance and possibly longevity. Here we report that abundant HMM-HA is found in a wide range of subterranean mammalian species, but not in phylogenetically related aboveground species. These species accumulate abundant HMM-HA by regulating the expression of genes involved in HA degradation and synthesis and contain unique mutations in these genes. The abundant high molecular weight HA may benefit the adaptation to subterranean environment by increasing skin elasticity and protecting from oxidative stress due to hypoxic subterranean environment. HMM-HA may also be coopted to confer cancer resistance and longevity to subterranean mammals. Our work suggests that HMM-HA has evolved with subterranean lifestyle.
Collapse
|
6
|
Tønnesen J, Hrabĕtová S, Soria FN. Local diffusion in the extracellular space of the brain. Neurobiol Dis 2023; 177:105981. [PMID: 36581229 DOI: 10.1016/j.nbd.2022.105981] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/27/2022] Open
Abstract
The brain extracellular space (ECS) is a vast interstitial reticulum of extreme morphological complexity, composed of narrow gaps separated by local expansions, enabling interconnected highways between neural cells. Constituting on average 20% of brain volume, the ECS is key for intercellular communication, and understanding its diffusional properties is of paramount importance for understanding the brain. Within the ECS, neuroactive substances travel predominantly by diffusion, spreading through the interstitial fluid and the extracellular matrix scaffold after being focally released. The nanoscale dimensions of the ECS render it unresolvable by conventional live tissue compatible imaging methods, and historically diffusion of tracers has been used to indirectly infer its structure. Novel nanoscopic imaging techniques now show that the ECS is a highly dynamic compartment, and that diffusivity in the ECS is more heterogeneous than anticipated, with great variability across brain regions and physiological states. Diffusion is defined primarily by the local ECS geometry, and secondarily by the viscosity of the interstitial fluid, including the obstructive and binding properties of the extracellular matrix. ECS volume fraction and tortuosity both strongly determine diffusivity, and each can be independently regulated e.g. through alterations in glial morphology and the extracellular matrix composition. Here we aim to provide an overview of our current understanding of the ECS and its diffusional properties. We highlight emerging technological advances to respectively interrogate and model diffusion through the ECS, and point out how these may contribute in resolving the remaining enigmas of the ECS.
Collapse
Affiliation(s)
- Jan Tønnesen
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sabina Hrabĕtová
- Department of Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, USA; The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Federico N Soria
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Spain.
| |
Collapse
|
7
|
Jia X, Shi M, Wang Q, Hui J, Shofaro JH, Erkhembayar R, Hui M, Gao C, Gantumur MA. Anti-Inflammatory Effects of the 35kDa Hyaluronic Acid Fragment (B-HA/HA35). J Inflamm Res 2023; 16:209-224. [PMID: 36686276 PMCID: PMC9846287 DOI: 10.2147/jir.s393495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Background Hyaluronic acid (HA) and HA fragments interact with a variety of human body receptors and are involved in the regulation of various physiological functions and leukocyte trafficking in the body. Accordingly, the development of an injectable HA fragment with good tissue permeability, the identification of its indications, and molecular mechanisms are of great significance for its clinical application. The previous studies showed that the clinical effects of injectable 35kDa B-HA result from B-HA binding to multiple receptors in different cells, tissues, and organs. This study lays the foundation for further studies on the comprehensive clinical effects of injectable B-HA. Methods We elaborated on the production process, bioactivity assay, efficacy analyses, and safety evaluation of an injectable novel HA fragment with an average molecular weight of 35 kDa (35 kDa B-HA), produced by recombinant human hyaluronidase PH20 digestion. Results The results showed that 35 kDa B-HA induced human erythrocyte aggregation (rouleaux formation) and accelerated erythrocyte sedimentation rates through the CD44 receptor. B-HA application and injection treatment significantly promoted the removal of mononuclear cells from the site of inflammation and into the lymphatic circulation. At a low concentration, 35 kDa B-HA inhibited production of reactive oxygen species and tumor necrosis factor by neutrophils; at a higher concentration, 35 kDa B-HA promoted the migration of monocytes. Furthermore, 35 kDa B-HA significantly inhibited the migration of neutrophils with or without lipopolysaccharide treatment, suggesting that in local tissues, higher concentrations of 35 kDa B-HA have antiinflammatory effects. After 99mTc radiolabeled 35 kDa B-HA was intravenously injected into mice, it quickly entered into the spleen, liver, lungs, kidneys and other organs through the blood circulation. Conclusion This study demonstrated that the HA fragment B-HA has good tissue permeability and antiinflammatory effects, laying a theoretical foundation for further clinical studies.
Collapse
Affiliation(s)
- XiaoXiao Jia
- College of Life Science, Northeast Agricultural University, Harbin, People’s Republic of China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Ming Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - Qifei Wang
- College of Life Science, Northeast Agricultural University, Harbin, People’s Republic of China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Jessica Hui
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua Hui Shofaro
- College of Life Science, Northeast Agricultural University, Harbin, People’s Republic of China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Ryenchindorj Erkhembayar
- Department of International Cyber Education, Graduate School, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Mizhou Hui
- College of Life Science, Northeast Agricultural University, Harbin, People’s Republic of China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Chenzhe Gao
- College of Life Science, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Munkh-Amgalan Gantumur
- College of Life Science, Northeast Agricultural University, Harbin, People’s Republic of China
| |
Collapse
|
8
|
Fatima I, Chen G, Botchkareva NV, Sharov AA, Thornton D, Wilkinson HN, Hardman MJ, Grutzkau A, Pedro de Magalhaes J, Seluanov A, Smith ESJ, Gorbunova V, Mardaryev AN, Faulkes CG, Botchkarev VA. Skin Aging in Long-Lived Naked Mole-Rats Is Accompanied by Increased Expression of Longevity-Associated and Tumor Suppressor Genes. J Invest Dermatol 2022; 142:2853-2863.e4. [PMID: 35691364 PMCID: PMC9613526 DOI: 10.1016/j.jid.2022.04.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 10/31/2022]
Abstract
Naked mole-rats (NMRs) (Heterocephalus glaber) are long-lived mammals that possess a natural resistance to cancer and other age-related pathologies, maintaining a healthy life span >30 years. In this study, using immunohistochemical and RNA-sequencing analyses, we compare skin morphology, cellular composition, and global transcriptome signatures between young and aged (aged 3‒4 vs. 19‒23 years, respectively) NMRs. We show that similar to aging in human skin, aging in NMRs is accompanied by a decrease in epidermal thickness; keratinocyte proliferation; and a decline in the number of Merkel cells, T cells, antigen-presenting cells, and melanocytes. Similar to that in human skin aging, expression levels of dermal collagens are decreased, whereas matrix metalloproteinase 9 and matrix metalloproteinase 11 levels increased in aged versus in young NMR skin. RNA-sequencing analyses reveal that in contrast to human or mouse skin aging, the transcript levels of several longevity-associated (Igfbp3, Igf2bp3, Ing2) and tumor-suppressor (Btg2, Cdkn1a, Cdkn2c, Dnmt3a, Hic1, Socs3, Sfrp1, Sfrp5, Thbs1, Tsc1, Zfp36) genes are increased in aged NMR skin. Overall, these data suggest that specific features in the NMR skin aging transcriptome might contribute to the resistance of NMRs to spontaneous skin carcinogenesis and provide a platform for further investigations of NMRs as a model organism for studying the biology and disease resistance of human skin.
Collapse
Affiliation(s)
- Iqra Fatima
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Guodong Chen
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Natalia V Botchkareva
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Andrey A Sharov
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Daniel Thornton
- Genomics of Aging and Rejuvenation Laboratory, Institute of Life Course and Medical Sciences, Univeristy of Liverpool, Liverpool, United Kingdom
| | - Holly N Wilkinson
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Matthew J Hardman
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Andreas Grutzkau
- Deutsches Rheuma-Forschungszentrum Berlin, Institute of the Leibniz Association, Berlin, Germany
| | - Joao Pedro de Magalhaes
- Genomics of Aging and Rejuvenation Laboratory, Institute of Life Course and Medical Sciences, Univeristy of Liverpool, Liverpool, United Kingdom
| | - Andrei Seluanov
- Department of Biology, School of Arts & Sciences, University of Rochester, Rochester, New York, USA; Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Ewan St J Smith
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Vera Gorbunova
- Department of Biology, School of Arts & Sciences, University of Rochester, Rochester, New York, USA; Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Andrei N Mardaryev
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Chris G Faulkes
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Vladimir A Botchkarev
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
9
|
Buffenstein R, Amoroso V, Andziak B, Avdieiev S, Azpurua J, Barker AJ, Bennett NC, Brieño‐Enríquez MA, Bronner GN, Coen C, Delaney MA, Dengler‐Crish CM, Edrey YH, Faulkes CG, Frankel D, Friedlander G, Gibney PA, Gorbunova V, Hine C, Holmes MM, Jarvis JUM, Kawamura Y, Kutsukake N, Kenyon C, Khaled WT, Kikusui T, Kissil J, Lagestee S, Larson J, Lauer A, Lavrenchenko LA, Lee A, Levitt JB, Lewin GR, Lewis Hardell KN, Lin TD, Mason MJ, McCloskey D, McMahon M, Miura K, Mogi K, Narayan V, O'Connor TP, Okanoya K, O'Riain MJ, Park TJ, Place NJ, Podshivalova K, Pamenter ME, Pyott SJ, Reznick J, Ruby JG, Salmon AB, Santos‐Sacchi J, Sarko DK, Seluanov A, Shepard A, Smith M, Storey KB, Tian X, Vice EN, Viltard M, Watarai A, Wywial E, Yamakawa M, Zemlemerova ED, Zions M, Smith ESJ. The naked truth: a comprehensive clarification and classification of current 'myths' in naked mole-rat biology. Biol Rev Camb Philos Soc 2022; 97:115-140. [PMID: 34476892 PMCID: PMC9277573 DOI: 10.1111/brv.12791] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022]
Abstract
The naked mole-rat (Heterocephalus glaber) has fascinated zoologists for at least half a century. It has also generated considerable biomedical interest not only because of its extraordinary longevity, but also because of unusual protective features (e.g. its tolerance of variable oxygen availability), which may be pertinent to several human disease states, including ischemia/reperfusion injury and neurodegeneration. A recent article entitled 'Surprisingly long survival of premature conclusions about naked mole-rat biology' described 28 'myths' which, those authors claimed, are a 'perpetuation of beautiful, but falsified, hypotheses' and impede our understanding of this enigmatic mammal. Here, we re-examine each of these 'myths' based on evidence published in the scientific literature. Following Braude et al., we argue that these 'myths' fall into four main categories: (i) 'myths' that would be better described as oversimplifications, some of which persist solely in the popular press; (ii) 'myths' that are based on incomplete understanding, where more evidence is clearly needed; (iii) 'myths' where the accumulation of evidence over the years has led to a revision in interpretation, but where there is no significant disagreement among scientists currently working in the field; (iv) 'myths' where there is a genuine difference in opinion among active researchers, based on alternative interpretations of the available evidence. The term 'myth' is particularly inappropriate when applied to competing, evidence-based hypotheses, which form part of the normal evolution of scientific knowledge. Here, we provide a comprehensive critical review of naked mole-rat biology and attempt to clarify some of these misconceptions.
Collapse
Affiliation(s)
| | - Vincent Amoroso
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - Blazej Andziak
- Graduate Center City University of New York365 Fifth AvenueNew YorkNY10016U.S.A.
| | | | - Jorge Azpurua
- Department of AnesthesiologyStony Brook University101 Nicolls RoadStony BrookNY11794U.S.A.
| | - Alison J. Barker
- Max Delbrück Center for Molecular MedicineRobert‐Rössle‐Str 10Berlin‐Buch13092Germany
| | - Nigel C. Bennett
- Mammal Research Institute, Department of Zoology and EntomologyUniversity of PretoriaPretoria0002South Africa
| | - Miguel A. Brieño‐Enríquez
- Department of Obstetrics, Gynecology & Reproductive MedicineMagee‐Womens Research Institute204 Craft AvenuePittsburghPA15213U.S.A.
| | - Gary N. Bronner
- Department Biological SciencesRondeboschCape Town7701South Africa
| | - Clive Coen
- Reproductive Neurobiology, Division of Women's HealthSchool of Medicine, King's College LondonWestminster Bridge RoadLondonSE1 7EHU.K.
| | - Martha A. Delaney
- Zoological Pathology ProgramUniversity of Illinois3505 Veterinary Medicine Basic Sciences Building, 2001 S Lincoln AvenueUrbanaIL6180U.S.A.
| | - Christine M. Dengler‐Crish
- Department of Pharmaceutical SciencesNortheast Ohio Medical University4209 State Route 44RootstownOH44272U.S.A.
| | - Yael H. Edrey
- Northwest Vista College3535 N. Ellison DriveSan AntonioTX78251U.S.A.
| | - Chris G. Faulkes
- School of Biological and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSU.K.
| | - Daniel Frankel
- School of EngineeringNewcastle UniversityMerz CourtNewcastle Upon TyneNE1 7RUU.K.
| | - Gerard Friedlander
- Université Paris DescartesFaculté de Médecine12 Rue de l'École de MédecineParis5006France
| | - Patrick A. Gibney
- Cornell University College of Veterinary MedicineIthacaNY14853U.S.A.
| | - Vera Gorbunova
- Departments of BiologyUniversity of Rochester402 Hutchison HallRochesterNY14627U.S.A.
| | - Christopher Hine
- Cleveland ClinicLerner Research Institute9500 Euclid AvenueClevelandOH44195U.S.A.
| | - Melissa M. Holmes
- Department of PsychologyUniversity of Toronto Mississauga3359 Mississauga Road NorthMississaugaONL5L 1C6Canada
| | | | - Yoshimi Kawamura
- Department of Aging and Longevity ResearchKumamoto University1‐1‐1 HonjoKumamoto860‐0811Japan
| | - Nobuyuki Kutsukake
- Department of Evolutionary Studies of BiosystemsThe Graduate University for Advanced StudiesHayama240‐0193Japan
| | - Cynthia Kenyon
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Walid T. Khaled
- The School of the Biological SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 1PDU.K.
| | - Takefumi Kikusui
- Companion Animal Research, School of Veterinary MedicineAzabu UniversitySagamihara252‐5201Japan
| | - Joseph Kissil
- Department of Cancer BiologyThe Scripps Research InstituteScripps FloridaJupiterFL33458U.S.A.
| | - Samantha Lagestee
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - John Larson
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - Amanda Lauer
- Department of OtolaryngologyJohns Hopkins School of MedicineBaltimoreMD21205U.S.A.
| | - Leonid A. Lavrenchenko
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesLeninskii pr. 33Moscow119071Russia
| | - Angela Lee
- Graduate Center City University of New York365 Fifth AvenueNew YorkNY10016U.S.A.
| | - Jonathan B. Levitt
- Biology DepartmentThe City College of New York138th Street and Convent AvenueNew YorkNY10031U.S.A.
| | - Gary R. Lewin
- Max Delbrück Center for Molecular MedicineRobert‐Rössle‐Str 10Berlin‐Buch13092Germany
| | | | - TzuHua D. Lin
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Matthew J. Mason
- The School of the Biological SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 1PDU.K.
| | - Dan McCloskey
- College of Staten Island in the City University of New York2800 Victory BlvdStaten IslandNY10314U.S.A.
| | - Mary McMahon
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Kyoko Miura
- Department of Aging and Longevity ResearchKumamoto University1‐1‐1 HonjoKumamoto860‐0811Japan
| | - Kazutaka Mogi
- Companion Animal Research, School of Veterinary MedicineAzabu UniversitySagamihara252‐5201Japan
| | - Vikram Narayan
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | | | - Kazuo Okanoya
- Department of Life SciencesThe University of Tokyo7‐3‐1 HongoTokyo153‐8902Japan
| | | | - Thomas J. Park
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - Ned J. Place
- Cornell University College of Veterinary MedicineIthacaNY14853U.S.A.
| | - Katie Podshivalova
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | | | - Sonja J. Pyott
- Groningen Department of OtorhinolaryngologyUniversity Medical CenterPostbus 30.001GroningenRB9700The Netherlands
| | - Jane Reznick
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University Hospital CologneJoseph‐Stelzmann‐Street 26Cologne50931Germany
| | - J. Graham Ruby
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Adam B. Salmon
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center4939 Charles Katz Dr.San AntonioTX78229U.S.A.
| | - Joseph Santos‐Sacchi
- Department of NeuroscienceYale University School of Medicine200 South Frontage Road, SHM C‐303New HavenCT06510U.S.A.
| | - Diana K. Sarko
- Department of AnatomySchool of Medicine, Southern Illinois University975 S. NormalCarbondaleIL62901U.S.A.
| | - Andrei Seluanov
- Departments of BiologyUniversity of Rochester402 Hutchison HallRochesterNY14627U.S.A.
| | - Alyssa Shepard
- Department of Cancer BiologyThe Scripps Research InstituteScripps FloridaJupiterFL33458U.S.A.
| | - Megan Smith
- Calico Life Sciences LLC1170 Veterans BlvdSouth San FranciscoCA94080U.S.A.
| | - Kenneth B. Storey
- Department of BiologyCarleton University1125 Colonel By DriveOttawaONK1S 5B6Canada
| | - Xiao Tian
- Department of Genetics – Blavatnik InstituteHarvard Medical School77 Avenue Louis PasteurBostonMA02115U.S.A.
| | - Emily N. Vice
- Department of Biological SciencesUniversity of Illinois at ChicagoChicagoIL60607U.S.A.
| | - Mélanie Viltard
- Fondation pour la recherche en PhysiologieUniversité Catholique de LouvainClos Chapelle‐aux‐Champs 30Woluwe‐saint Lambert1200Belgium
| | - Akiyuki Watarai
- Companion Animal Research, School of Veterinary MedicineAzabu UniversitySagamihara252‐5201Japan
| | - Ewa Wywial
- Biology DepartmentThe City College of New York138th Street and Convent AvenueNew YorkNY10031U.S.A.
| | - Masanori Yamakawa
- Department of Evolutionary Studies of BiosystemsThe Graduate University for Advanced StudiesHayama240‐0193Japan
| | - Elena D. Zemlemerova
- A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesLeninskii pr. 33Moscow119071Russia
| | - Michael Zions
- Graduate Center City University of New York365 Fifth AvenueNew YorkNY10016U.S.A.
| | - Ewan St. John Smith
- The School of the Biological SciencesUniversity of CambridgeTennis Court RoadCambridgeCB2 1PDU.K.
| |
Collapse
|
10
|
OUP accepted manuscript. Glycobiology 2022; 32:743-750. [DOI: 10.1093/glycob/cwac028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 01/10/2023] Open
|
11
|
Zakusilo FT, Kerry O'Banion M, Gelbard HA, Seluanov A, Gorbunova V. Matters of size: Roles of hyaluronan in CNS aging and disease. Ageing Res Rev 2021; 72:101485. [PMID: 34634492 PMCID: PMC8903057 DOI: 10.1016/j.arr.2021.101485] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022]
Abstract
Involvement of extracellular matrix (ECM) components in aging and age-related neurodegeneration is not well understood. The role of hyaluronan (HA), a major extracellular matrix glycosaminoglycan, in malignancy and inflammation is gaining new understanding. In particular, the differential biological effects of high molecular weight (HMW-HA) and low molecular weight hyaluronan (LMW-HA), and the mechanism behind such differences are being uncovered. Tightly regulated in the brain, HA can have diverse effects on cellular development, growth and degeneration. In this review, we summarize the homeostasis and signaling of HA in healthy tissue, discuss its distribution and ontogeny in the central nervous system (CNS), summarize evidence for its involvement in age-related neurodegeneration and Alzheimer Disease (AD), and assess the potential of HA as a therapeutic target in the CNS.
Collapse
Affiliation(s)
- Frances Tolibzoda Zakusilo
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA; Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA; Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Harris A Gelbard
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA; Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY, USA
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
12
|
Thevalingam D, Naik AA, Hrabe J, McCloskey DP, Hrabĕtová S. Brain extracellular space of the naked mole-rat expands and maintains normal diffusion under ischemic conditions. Brain Res 2021; 1771:147646. [PMID: 34499876 DOI: 10.1016/j.brainres.2021.147646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
Brain extracellular space (ECS) forms a conduit for diffusion, an essential mode of molecular transport between brain vasculature, neurons and glia. ECS volume is reduced under conditions of hypoxia and ischemia, contributing to impaired extracellular diffusion and consequent neuronal dysfunction and death. We investigated the ECS volume fraction and diffusion permeability of the African naked mole-rat (NM-R; Heterocephalus Glaber), a rodent with a remarkably high tolerance for hypoxia and ischemia. Real-Time Iontophoretic and Integrative Optical Imaging methods were used to evaluate diffusion transport in cortical slices under normoxic and ischemic conditions, and results were compared to values previously collected in rats. NM-R brains under normoxic conditions had a smaller ECS volume fraction than rats, and a correspondingly decreased diffusion permeability for macromolecules. Surprisingly, and in sharp contrast to rats, the NM-R ECS responded to ischemic conditions at the center of thick brain slices by expanding, rather than shrinking, and preserving diffusion permeabilities for small and large molecules. The NM-R thick slices also showed a blunted accumulation of ECS potassium compared to rats. The remarkable dynamic response of the NM-R ECS to ischemia likely demonstrates an adaptation for NM-R to maintain brain function in their extreme nest environment.
Collapse
Affiliation(s)
- Donald Thevalingam
- PhD Program in Neuroscience, Graduate Center of The City University of New York, New York, NY, USA; Center for Developmental Neuroscience, College of Staten Island in The City University of New York, Staten Island, NY, USA
| | - Aditi A Naik
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA; Neural and Behavioral Science Graduate Program, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Jan Hrabe
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA; Medical Physics Laboratory, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute, Orangeburg, NY, USA
| | - Dan P McCloskey
- PhD Program in Neuroscience, Graduate Center of The City University of New York, New York, NY, USA; Center for Developmental Neuroscience, College of Staten Island in The City University of New York, Staten Island, NY, USA; Department of Psychology, College of Staten Island in The City University of New York, Staten Island, NY, USA.
| | - Sabina Hrabĕtová
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA; The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
13
|
Del Marmol D, Holtze S, Kichler N, Sahm A, Bihin B, Bourguignon V, Dogné S, Szafranski K, Hildebrandt TB, Flamion B. Abundance and size of hyaluronan in naked mole-rat tissues and plasma. Sci Rep 2021; 11:7951. [PMID: 33846452 PMCID: PMC8041917 DOI: 10.1038/s41598-021-86967-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Large amounts of ultra-high molecular weight hyaluronan (HA) have been described as the main cause of cancer resistance in naked mole-rats (Heterocephalus glaber, NMR). Our work examined HA metabolism in these rodents more closely. HA was localized and quantified using HA binding proteins. Its molecular weight was determined using size exclusion chromatography and gel electrophoresis, HA family gene expression using RNAseq analysis, and hyaluronidase activity using zymography. Guinea pigs (Cavia porcellus) and mice (Mus musculus) were used as controls for some experiments. We found that HA localization was similar in NMR, guinea pig, and mouse tissues but NMR had larger amounts and higher molecular weight (maximum, around 2.5 MDa) of HA in serum and almost all tissues tested. We could not find ultra-high molecular weight HA (≥ 4 MDa) in NMR samples, in contrast to previous descriptions. Hyaluronidase-1 had lower expression and activity in NMR than mouse lymph nodes. RNAseq results showed that, among HA family genes, Tnfaip6 and hyaluronidase-3 (Hyal3) were systematically overexpressed in NMR tissues. In conclusion, NMR samples, contrary to expectations, do not harbor ultra-high molecular weight HA, although its amount and average molecular weight are higher in NMR than in guinea pig tissues and serum. Although hyaluronidase expression and activity are lower in NMR than mouse lymph nodes, this not sufficient to explain the presence of high molecular weight HA. A different activity of the NMR HA synthases remains possible. These characteristics, together with extremely high Hyal3 and Tnfaip6 expression, may provide the NMR with a bespoke, and perhaps protective, HA metabolism.
Collapse
Affiliation(s)
- Delphine Del Marmol
- Molecular Physiology Research Unit (URPhyM), NARILIS, University of Namur, Namur, Belgium.
| | - Susanne Holtze
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Nadia Kichler
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Arne Sahm
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Benoit Bihin
- Unit of Methodology and Didactic in Biology (UMDB), NARILIS, University of Namur, Namur, Belgium
| | - Virginie Bourguignon
- Molecular Physiology Research Unit (URPhyM), NARILIS, University of Namur, Namur, Belgium
| | - Sophie Dogné
- Molecular Physiology Research Unit (URPhyM), NARILIS, University of Namur, Namur, Belgium
| | - Karol Szafranski
- Core Facility Life Science Computing, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Thomas Bernd Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Bruno Flamion
- Molecular Physiology Research Unit (URPhyM), NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
14
|
Hadi F, Smith ESJ, Khaled WT. Naked Mole-Rats: Resistant to Developing Cancer or Good at Avoiding It? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:341-352. [PMID: 34424524 DOI: 10.1007/978-3-030-65943-1_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is widely accepted that cancer is driven by genetic mutations that confer uncontrolled cell proliferation and tumor formation. For tumors to take hold and grow, cancer cells evolve mechanisms to favorably shape their microenvironment and avoid being cleared by the immune system. Cancer is not unique to human, but rather affects nearly all multicellular organisms albeit to different degrees. The different degrees of cancer susceptibility across the animal kingdom could be attributed to several factors, which have been the subject of several studies in recent years. The naked mole-rat (NMR, Heterocephalus glaber), an exceptionally long-lived rodent, which, as discussed in detail in the next section, displays significant cancer resistance with only a small number of animals being reported to exhibit spontaneous neoplasms. The reason why studying cancer resistance in NMRs is of particular interest is that not only are they now an established laboratory species, but that NMRs are mammals and thus there is great potential for translating knowledge about their cancer resistance into preventing and/or treating cancer in humans and companion animals.
Collapse
Affiliation(s)
- Fazal Hadi
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Ewan St J Smith
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| | - Walid T Khaled
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
15
|
Braude S, Holtze S, Begall S, Brenmoehl J, Burda H, Dammann P, Marmol D, Gorshkova E, Henning Y, Hoeflich A, Höhn A, Jung T, Hamo D, Sahm A, Shebzukhov Y, Šumbera R, Miwa S, Vyssokikh MY, Zglinicki T, Averina O, Hildebrandt TB. Surprisingly long survival of premature conclusions about naked mole‐rat biology. Biol Rev Camb Philos Soc 2020; 96:376-393. [DOI: 10.1111/brv.12660] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Stan Braude
- Biology Department Washington University, One Brookings Drive St. Louis MO 63130 U.S.A
| | - Susanne Holtze
- Department of Reproduction Management Leibniz‐Institute for Zoo and Wildlife Research Berlin 10315 Germany
| | - Sabine Begall
- Department of General Zoology, Faculty of Biology University of Duisburg‐Essen, Universitätsstr Essen 45147 Germany
| | - Julia Brenmoehl
- Institute for Genome Biology Leibniz‐Institute for Farm Animal Biology Dummerstorf 18196 Germany
| | - Hynek Burda
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences Czech University of Life Sciences Praha 16500 Czech Republic
| | - Philip Dammann
- Department of General Zoology, Faculty of Biology University of Duisburg‐Essen, Universitätsstr Essen 45147 Germany
- University Hospital Essen Hufelandstr Essen 45141 Germany
| | - Delphine Marmol
- Molecular Physiology Research Unit (URPhyM), NARILIS University of Namur Namur 5000 Belgium
| | - Ekaterina Gorshkova
- Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilova str. 32 Moscow 119991 Russia
- Faculty of Biology Lomonosov Moscow State University Moscow 119991 Russia
| | - Yoshiyuki Henning
- University Hospital Essen Hufelandstr Essen 45141 Germany
- Institute of Physiology Department of General Zoology University of Duisburg Essen Germany
| | - Andreas Hoeflich
- Division Signal Transduction Institute for Genome Biology, Leibniz‐Institute for Farm Animal Biology, FBN Dummerstorf, Wilhelm‐Stahl‐Allee 2 Dummerstorf 18196 Germany
| | - Annika Höhn
- Department of Molecular Toxicology German Institute of Human Nutrition (DIfE) Potsdam‐Rehbrücke Nuthetal 14558 Germany
- German Center for Diabetes Research (DZD) München‐Neuherberg 85764 Germany
| | - Tobias Jung
- Department of Molecular Toxicology German Institute of Human Nutrition (DIfE) Potsdam‐Rehbrücke Nuthetal 14558 Germany
| | - Dania Hamo
- Charité ‐ Universitätsmedizin Berlin Berlin Institute of Health Center for Regenerative Therapies (BCRT) Berlin 13353 Germany
- German Rheumatism Research Centre Berlin (DRFZ) Berlin 10117 Germany
| | - Arne Sahm
- Computational Biology Group Leibniz Institute on Aging – Fritz Lipmann Institute Jena 07745 Germany
| | - Yury Shebzukhov
- Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilova str. 32 Moscow 119991 Russia
- Charité ‐ Universitätsmedizin Berlin Berlin Institute of Health Center for Regenerative Therapies (BCRT) Berlin 13353 Germany
| | - Radim Šumbera
- Faculty of Science University of South Bohemia České Budějovice 37005 Czech Republic
| | - Satomi Miwa
- Biosciences Institute, Edwardson building, Campus for Ageing and Vitality Newcastle University Newcastle upon Tyne NE4 5PL U.K
| | - Mikhail Y. Vyssokikh
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow 119991 Russia
| | - Thomas Zglinicki
- Biosciences Institute, Edwardson building, Campus for Ageing and Vitality Newcastle University Newcastle upon Tyne NE4 5PL U.K
| | - Olga Averina
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow 119991 Russia
| | - Thomas B. Hildebrandt
- Department of Reproduction Management Leibniz‐Institute for Zoo and Wildlife Research Berlin 10315 Germany
| |
Collapse
|
16
|
Mikuła-Pietrasik J, Pakuła M, Markowska M, Uruski P, Szczepaniak-Chicheł L, Tykarski A, Książek K. Nontraditional systems in aging research: an update. Cell Mol Life Sci 2020; 78:1275-1304. [PMID: 33034696 PMCID: PMC7904725 DOI: 10.1007/s00018-020-03658-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
Research on the evolutionary and mechanistic aspects of aging and longevity has a reductionist nature, as the majority of knowledge originates from experiments on a relatively small number of systems and species. Good examples are the studies on the cellular, molecular, and genetic attributes of aging (senescence) that are primarily based on a narrow group of somatic cells, especially fibroblasts. Research on aging and/or longevity at the organismal level is dominated, in turn, by experiments on Drosophila melanogaster, worms (Caenorhabditis elegans), yeast (Saccharomyces cerevisiae), and higher organisms such as mice and humans. Other systems of aging, though numerous, constitute the minority. In this review, we collected and discussed a plethora of up-to-date findings about studies of aging, longevity, and sometimes even immortality in several valuable but less frequently used systems, including bacteria (Caulobacter crescentus, Escherichia coli), invertebrates (Turritopsis dohrnii, Hydra sp., Arctica islandica), fishes (Nothobranchius sp., Greenland shark), reptiles (giant tortoise), mammals (blind mole rats, naked mole rats, bats, elephants, killer whale), and even 3D organoids, to prove that they offer biogerontologists as much as the more conventional tools. At the same time, the diversified knowledge gained owing to research on those species may help to reconsider aging from a broader perspective, which should translate into a better understanding of this tremendously complex and clearly system-specific phenomenon.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Martyna Pakuła
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Małgorzata Markowska
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | | | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| |
Collapse
|
17
|
Boddy AM, Harrison TM, Abegglen LM. Comparative Oncology: New Insights into an Ancient Disease. iScience 2020; 23:101373. [PMID: 32738614 PMCID: PMC7394918 DOI: 10.1016/j.isci.2020.101373] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer has deep evolutionary roots and is an important source of selective pressure in organismal evolution. Yet, we find a great deal of variation in cancer vulnerabilities across the tree of life. Comparative oncology offers insights into why some species vary in their susceptibility to cancer and the mechanisms responsible for the diversity of cancer defenses. Here we provide an overview for why cancer persists across the tree of life. We then summarize current data on cancer in mammals, reptiles, and birds in comparison with commonly reported human cancers. We report on both novel and shared mechanisms of cancer protection in animals. Cross-discipline collaborations, including zoological and aquarium institutions, wildlife and evolutionary biologists, veterinarians, medical doctors, cancer biologists, and oncologists, will be essential for progress in the field of comparative oncology. Improving medical treatment of humans and animals with cancer is the ultimate promise of comparative oncology.
Collapse
Affiliation(s)
- Amy M Boddy
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Tara M Harrison
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Lisa M Abegglen
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
18
|
Hadi F, Kulaberoglu Y, Lazarus KA, Bach K, Ugur R, Beattie P, Smith ESJ, Khaled WT. Transformation of naked mole-rat cells. Nature 2020; 583:E1-E7. [PMID: 32612221 DOI: 10.1038/s41586-020-2410-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Fazal Hadi
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | | | - Kyren A Lazarus
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Karsten Bach
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Rosemary Ugur
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Paul Beattie
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Walid T Khaled
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Cancer Centre, Cambridge, UK.
- Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
19
|
Mavrogonatou E, Pratsinis H, Kletsas D. The role of senescence in cancer development. Semin Cancer Biol 2020; 62:182-191. [DOI: 10.1016/j.semcancer.2019.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
|