1
|
Lin F, Luo J, Zhu Y, Liang H, Li D, Han D, Chang Q, Pan P, Zhang Y. Association Between Adverse Early Life Factors and Telomere Length in Middle and Late Life. Innov Aging 2024; 8:igae070. [PMID: 39350941 PMCID: PMC11441326 DOI: 10.1093/geroni/igae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Indexed: 10/04/2024] Open
Abstract
Background and Objectives Telomere length (TL) has been acknowledged as biomarker of biological aging. Numerous investigations have examined associations between individual early life factors and leukocyte TL; however, the findings were far from consistent. Research Design and Methods We evaluated the relationship between individual and combined early life factors and leukocytes TL in middle and late life using data from the UK Biobank. The early life factors (eg, maternal smoking, breastfeeding, birth weight, and comparative body size and height to peers at age 10) were measured. The regression coefficients (β) and 95% confidence interval (CI) were applied to assess the link of the early life factors and TL in adulthood. Flexible parametric survival models incorporated age to calculate the relationship between early life factors and life expectancy. Results Exposure to maternal smoking, lack of breastfeeding, low birth weight, and shorter height compared to peers at age 10 were identified to be associated with shorter TL in middle and older age according to the large population-based study with 197 504 participants. Individuals who experienced more than 3 adverse early life factors had the shortest TL in middle and late life (β = -0.053; 95% CI = -0.069 to -0.038; p < .0001), as well as an average of 0.54 years of life loss at the age of 45 and 0.49 years of life loss at the age of 60, compared to those who were not exposed to any early life risk factors. Discussion and Implications Early life factors including maternal smoking, non-breastfed, low birth weight, and shorter height compared to peers at age 10 were associated with shorter TL in later life. In addition, an increased number of the aforementioned factors was associated with a greater likelihood of shorter TL in adulthood, as well as a reduced life expectancy.
Collapse
Affiliation(s)
- Fengyu Lin
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiefeng Luo
- Department of Gynecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- International Collaborative Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiqun Zhu
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
| | - Huaying Liang
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dianwu Li
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Duoduo Han
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qinyu Chang
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pinhua Pan
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Central South University, Changsha, Hunan, China
| | - Yan Zhang
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Li R, Wang J, Wang Y, Lin X, Sun C, Xu L. Telomere length as a modifier in the relationship between phthalate metabolites exposure and glucose homeostasis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123309. [PMID: 38190874 DOI: 10.1016/j.envpol.2024.123309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
Given the rising concern over the potential impact of environmental factors on metabolic heath, we conducted a cross-sectional analysis among 645 adults aged 20 and older in the National Health and Nutrition Examination Survey (NHANES), examining the association between nine phthalate metabolites (Mono-n-butyl phthalate (MBP), Mono-ethyl phthalate (MEP), Mono-(2-ethyl)-hexyl phthalate (MEHP), Mono-benzyl phthalate (MBzP), Mono-n-methyl phthalate (MnMP), Mono-(3-carboxy propyl) phthalate (MCPP), Mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), Mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), Mono-isobutyl phthalate (MiBP)) and six glucose homeostasis indices (fasting glucose, fasting insulin, hemoglobin A1C (HbA1C), homeostatic model assessment of insulin resistance (HOMA-IR), single Point Insulin Sensitivity Estimator (SPISE), and HOMA-β). Latent Class Analysis identified three phthalate metabolites exposure patterns: high MEP-low MEOHP (n = 282), high MBzP-low MEHHP (n = 214), and high MEHHP, MEOHP (n = 149). The high MBzP-low MEHHP and high MEHHP, MEOHP, versus the high MEP-low MEOHP, exposure groups showed significantly higher levels of fasting insulin (β = 0.126, 95% CI: 0.023-0.228), SPISE (β = 0.091, 95% CI: 0.018-0.164), and HOMA-IR (β = 0.091, 95% CI: 0.018-0.164). In the shorter telomere length group, high MEHHP, MEOHP exposure showed an increase in SPISE levels (β = 0.153, 95% CI: 0.037-0.269), while in the overweight/obese subgroup, high MEHHP, MEOHP exposure was significantly positively associated with HOMA-IR (β = 0.392, 95% CI: 0.150-0.735). Bayesian kernel machine regression analyses showed positive associations between higher combined phthalate exposure and increased glucose homeostasis indices (fasting glucose, HbA1C, fasting insulin, SPISE, and HOMA-IR). The quantile of g-calculation analysis also supported the positive associations with HbA1C, HOMA-IR, and fasting insulin. Our findings indicate that phthalate exposure was positively associated with glucose homeostasis indices, which strengthen the call for proactive measures to reduce phthalate exposure and mitigate potential risks to glucose metabolism.
Collapse
Affiliation(s)
- Ruiqiang Li
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiao Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ying Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyi Lin
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ce Sun
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lin Xu
- School of Public Health, Sun Yat-sen University, Guangzhou, China; School of Public Health, The University of Hong Kong, Hong Kong, China; Institute of Applied Health Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
3
|
Salih AM, Galazzo IB, Menegaz G, Altmann A. Leukocyte Telomere Length and Cardiac Structure and Function: A Mendelian Randomization Study. J Am Heart Assoc 2024; 13:e032708. [PMID: 38293941 PMCID: PMC11056120 DOI: 10.1161/jaha.123.032708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Existing research demonstrates the association of shorter leukocyte telomere length with increased risk of age-related health outcomes including cardiovascular diseases. However, the direct causality of these relationships has not been definitively established. Cardiovascular aging at an organ level may be captured using image-derived phenotypes of cardiac anatomy and function. METHODS AND RESULTS In the current study, we use 2-sample Mendelian randomization to assess the causal link between leukocyte telomere length and 54 cardiac magnetic resonance imaging measures representing structure and function across the 4 cardiac chambers. Genetically predicted shorter leukocyte telomere length was causally linked to smaller ventricular cavity sizes including left ventricular end-systolic volume, left ventricular end-diastolic volume, lower left ventricular mass, and pulmonary artery. The association with left ventricular mass (β =0.217, Pfalse discovery rate=0.016) remained significant after multiple testing adjustment, whereas other associations were attenuated. CONCLUSIONS Our findings support a causal role for shorter leukocyte telomere length and faster cardiac aging, with the most prominent relationship with left ventricular mass.
Collapse
Affiliation(s)
- Ahmed M. Salih
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of LondonUK
- Department of Population Health SciencesUniversity of LeicesterUK
- Department of Computer ScienceUniversity of ZakhoKurdistan of IraqIraq
| | | | | | - André Altmann
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical EngineeringUniversity College LondonUK
| |
Collapse
|
4
|
Sharaf R, Jin DX, Grady J, Napier C, Ebot E, Frampton GM, Albacker LA, Thomas DM, Montesion M. A pan-sarcoma landscape of telomeric content shows that alterations in RAD51B and GID4 are associated with higher telomeric content. NPJ Genom Med 2023; 8:26. [PMID: 37709802 PMCID: PMC10502097 DOI: 10.1038/s41525-023-00369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
Tumor cells need to activate a telomere maintenance mechanism, enabling limitless replication. The bulk of evidence supports that sarcomas predominantly use alternative lengthening of telomeres (ALT) mechanism, commonly associated with alterations in ATRX and DAXX. In our dataset, only 12.3% of sarcomas harbored alterations in these genes. Thus, we checked for the presence of other genomic determinants of high telomeric content in sarcomas. Our dataset consisted of 13555 sarcoma samples, sequenced as a part of routine clinical care on the FoundationOne®Heme platform. We observed a median telomeric content of 622.3 telomeric reads per GC-matched million reads (TRPM) across all samples. In agreement with previous studies, telomeric content was significantly higher in ATRX altered and POT1 altered sarcomas. We further observed that sarcomas with alterations in RAD51B or GID4 were enriched in samples with high telomeric content, specifically within uterus leiomyosarcoma for RAD51B and soft tissue sarcoma (not otherwise specified, nos) for GID4, Furthermore, RAD51B and POT1 alterations were mutually exclusive with ATRX and DAXX alterations, suggestive of functional redundancy. Our results propose a role played by RAD51B and GID4 in telomere elongation in sarcomas and open research opportunities for agents aimed at targeting this critical pathway in tumorigenesis.
Collapse
Affiliation(s)
| | | | - John Grady
- Omico Australian Genomic Cancer Medicine, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Christine Napier
- Omico Australian Genomic Cancer Medicine, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Ericka Ebot
- Foundation Medicine Inc., Cambridge, MA, USA
| | | | | | - David M Thomas
- Omico Australian Genomic Cancer Medicine, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
5
|
Kahrizi MS, Patra I, Jalil AT, Achmad H, Alesaeidi S, Al-Gazally ME, Alesaeidi S. Leukocyte telomere length and obesity in children and adolescents: A systematic review and meta-analysis. Front Genet 2022; 13:861101. [PMID: 36160016 PMCID: PMC9490371 DOI: 10.3389/fgene.2022.861101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Several studies have revealed the negative effects of adiposity on telomere length shortening. However, the results of the studies assessing the negative relationship between obesity and leukocyte telomere length (LTL) are not consistent. This systematic review and meta-analysis are aimed to pool the results of articles assessing the relationship between obesity and LTL among children and adolescents. Methods: To retrieve the related studies, four online databases including PubMed, Embase, ProQuest, and Scopus were searched until May 2022. Observational studies evaluating the relationship between obesity and LTL among apparently healthy children and adolescents (aged ≤18 years) were included in the study. We considered the studies that had reported a mean ± standard deviation of LTL. The random-effects model was used to assess the pooled weighted mean difference (WMD) and a 95% confidence interval (CI). Results: The search yielded seven studies from an initial 3,403 records identified. According to the results of seven articles with 4,546 participants, obesity was associated with LTL shortening among children and adolescents (WMD = -0.081; 95% CI: -0.137 to -0.026; p = 0.004; I2 = 99.9%). Also, no publication bias was observed. According to the results of subgrouping, significant results were only attributed to the studies conducted in Europe, with high quality scores, among overweight and obese adolescents, with a baseline LTL lower than 1, and performed in community-based school settings. Also, according to the subgrouping and meta-regression results, the obesity definition criteria and baseline LTL were the possible sources of between-study heterogeneity. Conclusion: We observed shorter LTL among overweight and obese children and adolescents. To obtain more reliable results, further longitudinal prospective studies with large sample sizes and more consistent and accurate definitions of obesity are required.
Collapse
Affiliation(s)
| | - Indrajit Patra
- An Independent Researcher, PhD from NIT Durgapur, Durgapur, West Bengal, India
| | | | - Harun Achmad
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Samira Alesaeidi
- Department of Internal Medicine and Rheumatology, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sogol Alesaeidi
- Department of Pediatric Medicine, Imam Hossein Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Ngwa NE, Matsha TE, Lombard C, Levitt N, Sobngwi E, Kengne AP, Peer N. Cardiometabolic profile and leukocyte telomere length in a Black South African population. Sci Rep 2022; 12:3323. [PMID: 35228641 PMCID: PMC8885820 DOI: 10.1038/s41598-022-07328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/31/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractSeveral studies have reported a possible association between leucocyte telomere length (LTL) and cardio-metabolic diseases (CMDs). However, studies investigating such association are lacking in South Africa despite having a very high prevalence of CMDs. We investigated the association between LTL and CMD risk profile in a black South African population. This was a cross-sectional study with participants > 21 years of age and residing in five townships in Cape Town. CMD markers were compared between men and women and across quartiles of LTL. Linear and logistic regressions relate increasing quartile and Log10LTL with CMD risk profile, with appropriate adjustment. Among 676-participants, diabetes, obesity and hypertension prevalence were 11.5%, 23.1% and 47.5%. Waist-circumference, hip-circumference and highly sensitive c-reactive protein values were significantly higher in women (all p < 0.001), while HDL-C (p = 0.023), creatinine (p = 0.005) and gamma glutamyl transferase (p < 0.001) values were higher in men. In age, sex and BMI adjusted linear regression model, Log10 of LTL was associated with low HDL-C (beta = 0.221; p = 0.041) while logistic regression showed a significant association between Log10LTL and prevalent dyslipidaemia characterised by high LDL-C. In this population, the relationship between LTL and CMD is weak given its association with only HDL-C and LDL-C.
Collapse
|
7
|
Athanasopoulou S, Kapetanou M, Magouritsas MG, Mougkolia N, Taouxidou P, Papacharalambous M, Sakellaridis F, Gonos E. Antioxidant and Antiaging Properties of a Novel Synergistic Nutraceutical Complex: Readouts from an In Cellulo Study and an In Vivo Prospective, Randomized Trial. Antioxidants (Basel) 2022; 11:antiox11030468. [PMID: 35326118 PMCID: PMC8944750 DOI: 10.3390/antiox11030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Aging is a dynamic procedure that is developed in multiple layers and characterized by distinct hallmarks. The use of biomarkers that target different hallmarks of aging is substantial in predicting adverse outcomes during the aging process, implementing specifically designed antiaging interventions and monitoring responses to these interventions. The present study aimed to develop a novel composition of plant extracts, comprising identified active ingredients that synergistically target different hallmarks of aging in cellulo and in vivo. The selected single extracts and the developed composition were tested through a powerful set of biomarkers that we have previously identified and studied. The composition of selected extracts simultaneously increased cellular lifespan, reduced the cellular oxidative load and enhanced antioxidant defense mechanisms by increasing proteasome activity and content. In addition, the combination prevented telomere attrition and preserved optimum DNA methylation levels. Remarkably, biomarker profiling of healthy volunteers who received the identified combination in the form of a nutritional supplement within the frame of a prospective, randomized, controlled 3-month trial revealed an unprecedented antioxidant capacity in humans. In conclusion, our results support the notion that interventions with specifically designed combinations of natural compounds targeting multiple hallmarks of aging represent an effective way to improve healthspan and well-being.
Collapse
Affiliation(s)
- Sophia Athanasopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (S.A.); (M.K.); (N.M.)
- Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece
| | - Marianna Kapetanou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (S.A.); (M.K.); (N.M.)
| | | | - Nikoletta Mougkolia
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (S.A.); (M.K.); (N.M.)
| | - Polykseni Taouxidou
- Department of Physical Education and Sport Science, Aristotle University, 57001 Thessaloniki, Greece;
| | | | | | - Efstathios Gonos
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (S.A.); (M.K.); (N.M.)
- Hellenic Pasteur Institute, 11521 Athens, Greece
- Correspondence: ; Tel.: +30-210-6478860
| |
Collapse
|
8
|
Telomeres and Cancer. Life (Basel) 2021; 11:life11121405. [PMID: 34947936 PMCID: PMC8704776 DOI: 10.3390/life11121405] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Telomeres cap the ends of eukaryotic chromosomes and are indispensable chromatin structures for genome protection and replication. Telomere length maintenance has been attributed to several functional modulators, including telomerase, the shelterin complex, and the CST complex, synergizing with DNA replication, repair, and the RNA metabolism pathway components. As dysfunctional telomere maintenance and telomerase activation are associated with several human diseases, including cancer, the molecular mechanisms behind telomere length regulation and protection need particular emphasis. Cancer cells exhibit telomerase activation, enabling replicative immortality. Telomerase reverse transcriptase (TERT) activation is involved in cancer development through diverse activities other than mediating telomere elongation. This review describes the telomere functions, the role of functional modulators, the implications in cancer development, and the future therapeutic opportunities.
Collapse
|
9
|
Lee RS, Zandi PP, Santos A, Aulinas A, Carey JL, Webb SM, McCaul ME, Resmini E, Wand GS. Cross-species Association Between Telomere Length and Glucocorticoid Exposure. J Clin Endocrinol Metab 2021; 106:e5124-e5135. [PMID: 34265046 PMCID: PMC8787853 DOI: 10.1210/clinem/dgab519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 12/12/2022]
Abstract
CONTEXT Chronic exposure to glucocorticoids (GCs) or stress increases the risk of medical disorders, including cardiovascular and neuropsychiatric disorders. GCs contribute to accelerated aging; however, while the link between chronic GC exposure and disease onset is well established, the underpinning mechanisms are not clear. OBJECTIVE We explored the potential nexus between GCs or stress exposure and telomere length. METHODS In addition to rats exposed to 3 weeks of chronic stress, an iatrogenic mouse model of Cushing syndrome (CS), and a mouse neuronal cell line, we studied 32 patients with CS and age-matched controls and another cohort of 75 healthy humans. RESULTS (1) Exposure to stress in rats was associated with a 54.5% (P = 0.036) reduction in telomere length in T cells. Genomic DNA (gDNA) extracted from the dentate gyrus of stressed and unstressed rats showed 43.2% reduction in telomere length (P = 0.006). (2) Mice exposed to corticosterone had a 61.4% reduction in telomere length in blood gDNA (P = 5.75 × 10-5) and 58.8% reduction in telomere length in the dentate gyrus (P = 0.002). (3) We observed a 40.8% reduction in the telomere length in patients with active CS compared to healthy controls (P = 0.006). There was a 17.8% reduction in telomere length in cured CS patients, which was not different from that of healthy controls (P = 0.08). For both cured and active CS, telomere length correlated significantly with duration of hypercortisolism (R2 = 0.22, P = 0.007). (4) There was a 27.6% reduction in telomere length between low and high tertiles in bedtime cortisol levels of healthy participants (P = 0.019). CONCLUSION Our findings demonstrate that exposure to stress and/or GCs is associated with shortened telomeres, which may be partially reversible.
Collapse
Affiliation(s)
- Richard S Lee
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Mental Health, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | - Alicia Santos
- Endocrinology/Medicine Department, Hospital Sant Pau, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER, Unit747), IIB-Sant Pau, ISCIII and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Anna Aulinas
- Endocrinology/Medicine Department, Hospital Sant Pau, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER, Unit747), IIB-Sant Pau, ISCIII and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Jenny L Carey
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Susan M Webb
- Endocrinology/Medicine Department, Hospital Sant Pau, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER, Unit747), IIB-Sant Pau, ISCIII and Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Mary E McCaul
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Eugenia Resmini
- Correspondence: Eugenia Resmini, MD, PhD, Endocrinology/Medicine Department, Hospital Sant Pau, CIBER-ER, Unit747, IIB-Sant Pau, ISCIII, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
| | - Gary S Wand
- Gary S. Wand, MD, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Deo P, Dhillon VS, Lim WM, Jaunay EL, Donnellan L, Peake B, McCullough C, Fenech M. Advanced glycation end-products accelerate telomere attrition and increase pro-inflammatory mediators in human WIL2-NS cells. Mutagenesis 2021; 35:291-297. [PMID: 32319517 DOI: 10.1093/mutage/geaa012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
This study investigated the effect of dietary sugars and advanced glycation end-products (AGE) on telomere dynamics in WIL2-NS cells. Dietary sugars [glucose (Glu) and fructose (Fru); 0.1 M each] were incubated with bovine serum albumin (BSA) (10 mg/ml) at 60 ± 1°C for 6 weeks to generate AGE-BSA. Liquid chromatography-mass spectrometry (LC-MS/MS) analysis showed total AGE levels as 87.74 ± 4.46 nmol/mg and 84.94 ± 4.28 nmol/mg respectively in Glu-BSA and Fru-BSA model. Cell treatment studies using WIL2-NS cells were based on either glucose, fructose (each 2.5-40 mM) or AGE-BSA (200-600 µg/ml) in a dose-dependent manner for 9 days. Telomere length (TL) was measured using qPCR. Nitric oxide (NO) production and tumour necrosis factor-α (TNF-α) levels were measured in WIL2-NS culture medium. An increasing trend for TNF-α and NO production was observed with higher concentration of glucose (R2 = 0.358; P = 0.019; R2 = 0.307; P = 0.027) and fructose (R2 = 0.669; P = 0.001; R2 = 0.339; P = 0.006). A decreasing trend for TL (R2 = 0.828; P = 0.000), and an increasing trend for NO production (R2 = 0.352; P = 0.031) were observed with increasing Glu-BSA concentrations. Fru-BSA treatment did not show significant trend on TL (R2 = 0.135; P = 0.352) with increasing concentration, however, a significant reduction was observed at 600 µg/ml (P < 0.01) when compared to BSA treatment. No trends for TNF-α levels and a decreasing trend on NO production (R2 = 0.5201; P = 0.019) was observed with increasing Fru-BSA treatment. In conclusion, this study demonstrates a potential relationship between dietary sugars, AGEs and telomere attrition. AGEs may also exert telomere shortening through the production of pro-inflammatory metabolites, which ultimately increase the risk of diabetes complications and age-related disease throughout lifespan.
Collapse
Affiliation(s)
- Permal Deo
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Varinderpal S Dhillon
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Wai Mun Lim
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Emma L Jaunay
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Leigh Donnellan
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Brock Peake
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Caitlin McCullough
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Michael Fenech
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Genome Health Foundation, North Brighton, Australia
| |
Collapse
|
11
|
Cheng F, Carroll L, Joglekar MV, Januszewski AS, Wong KK, Hardikar AA, Jenkins AJ, Ma RCW. Diabetes, metabolic disease, and telomere length. Lancet Diabetes Endocrinol 2021; 9:117-126. [PMID: 33248477 DOI: 10.1016/s2213-8587(20)30365-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Telomeres are regions of repetitive nucleotide sequences at the ends of chromosomes. Telomere length is a marker of DNA damage, which is often considered a biomarker for biological ageing, and has also been linked with cardiovascular disease, diabetes, and cancer. Emerging studies have highlighted the role of genetic and environmental factors, and explored the effect of modulating telomere length. We provide an overview of studies to date on diabetes and telomere length, and compare different methods and assays for evaluating telomere length and telomerase activity. We highlight the limitations of current studies and areas that warrant further research to unravel the link between diabetes and telomere length. The value of adding telomere length to clinical risk factors to improve risk prediction of diabetes and related complications also merits further investigation.
Collapse
Affiliation(s)
- Feifei Cheng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Luke Carroll
- NHMRC Clinical Trial Centre, University of Sydney, Sydney, NSW, Australia
| | - Mugdha V Joglekar
- NHMRC Clinical Trial Centre, University of Sydney, Sydney, NSW, Australia; School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | | | - Kwun Kiu Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Anandwardhan A Hardikar
- NHMRC Clinical Trial Centre, University of Sydney, Sydney, NSW, Australia; School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.
| | - Alicia J Jenkins
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; NHMRC Clinical Trial Centre, University of Sydney, Sydney, NSW, Australia.
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; NHMRC Clinical Trial Centre, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Millan AL, Trobo SI, de Dios A, Cerrato García M, Pérez MS, Cerrone GE, Frechtel GD, López AP. MODY patients exhibit shorter telomere length than non-diabetic subjects. Diabetes Metab Res Rev 2021; 37:e3374. [PMID: 32588935 DOI: 10.1002/dmrr.3374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Given the increasing evidence supporting the association between telomere shortening and diabetes, the aim of the present work was to establish whether MODY patients suffer a reduction in telomere lenght (TL) due to oxidative stress produced by chronic hyperglycemia, despite not presenting insulin resistance or inflammation. METHODS We analysed clinical and biochemical parameters in 35 MODY2 and 12 MODY3 patients compared with 48 control subjects. The absolute telomere length (aTL) of peripheral blood leukocytes was measured using the quantitative polymerase chain reaction (qPCR). RESULTS A significant negative correlation was observed between aTL and age in the whole population, among MODY patients and in each subtype studied, MODY2 and MODY3, which allowed us to validate the method. We found, for the first time, that MODY patients have shorter aTL with respect to non-diabetic controls (6.49 ± 3.31 kbp vs 11.13 ± 7.82 kbp, p = .006). However, no differences were found between MODY2 and MODY3. In addition, aTL showed a negative correlation with duration of the disease and fasting plasma glucose (FPG) levels in MODY patients in general and also with HbA1c in MODY2 patients in particular. CONCLUSIONS Both MODY2 and MODY3 types present telomere shortening, which, at least partly, responds to HbA1c and FPG levels. These findings suggest comparable mechanisms underlying the attrition of TL. Taken together, our results on aTL in MODY patients may provide a parameter relatively easy and inexpensive to quantify in order to measure the impact of high glucose levels and potentially carry out antidiabetic treatment with stricter targets.
Collapse
Affiliation(s)
- Andrea L Millan
- Facultad de Farmacia y Bioquímica, Laboratorio de Diabetes y Metabolismo, Instituto de Inmunología, Genética y Metabolismo (INIGEM-UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Cátedra de Genética y Biología Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sofía I Trobo
- Facultad de Farmacia y Bioquímica, Cátedra de Genética y Biología Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro de Dios
- Hospital de Clínicas José de San Martín, Facultad de Medicina, División Nutrición, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martina Cerrato García
- Facultad de Farmacia y Bioquímica, Cátedra de Genética y Biología Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Gloria E Cerrone
- Facultad de Farmacia y Bioquímica, Laboratorio de Diabetes y Metabolismo, Instituto de Inmunología, Genética y Metabolismo (INIGEM-UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Cátedra de Genética y Biología Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo D Frechtel
- Facultad de Farmacia y Bioquímica, Laboratorio de Diabetes y Metabolismo, Instituto de Inmunología, Genética y Metabolismo (INIGEM-UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Cátedra de Genética y Biología Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina
- Hospital de Clínicas José de San Martín, Facultad de Medicina, División Nutrición, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ariel P López
- Facultad de Farmacia y Bioquímica, Laboratorio de Diabetes y Metabolismo, Instituto de Inmunología, Genética y Metabolismo (INIGEM-UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Cátedra de Genética y Biología Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina
- Hospital de Clínicas José de San Martín, Facultad de Medicina, Programa de Biología Molecular, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
13
|
Dudinskaya EN, Tkacheva ON, Brailova NV, Strazhesko ID, Shestakova MV. [Telomere biology and metabolic disorders: the role of insulin resistance and type 2 diabetes]. ACTA ACUST UNITED AC 2020; 66:35-44. [PMID: 33351357 DOI: 10.14341/probl12510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Insulin resistance accelerates the aging process, but its speed depends on the individual characteristics of the metabolism. One of the reasons for the different aging rates in individuals with insulin resistance is the initially different "genetic protection" of cells, which many scientists associate with replicative cellular aging. AIMS to study the relationship between the state of carbohydrate metabolism and markers of replicative cell aging in individuals with different sensitivity to insulin. MATERIALS AND METHODS The observation study included 305 patients. The parameters of glucose metabolism and telomere biology were studied. RESULTS The mean age of the patients was 51.5±13.3 years. Patients were divided into three groups depending on presence of insulin resistance: healthy, with insulin resistance and with type 2 diabetes. The mean age of healthy patients was 48.82±13.87 years, in insulin resistance group - 53.04±12.8, in 2 diabetes mellitus - 58.4±7.90. The median telomere length was 9.76. The median telomerase activity was 0.48. Both telomere length and telomerase activity progressively decrease as insulin resistance increases. In patients with diabetes, short telomere lengths and low telomerase activity predominated. The insulin resistance index has the greatest impact on the risk of detecting "short" telomeres. In patients with insulin resistance, an increase in glycated hemoglobin increases the likelihood of detecting short telomeres by 2.4 times, and in diabetes mellitus by 4.26 times, an increase in fasting plasma glucose by 90%, and an increase in HOMA-IR by 35%. An increase in insulin resistance increases the risk of detecting «low» telomerase activity by 53% and the risk of detecting «very low» telomerase activity by 92%. A decrease in synsulin resistance increases the chance of increasing telomerase activity to «very high» by 51%. CONCLUSION Shorter telomeres are associated with more pronounced disorders of carbohydrate metabolism and a higher degree of insulin resistance. Further studies of metabolic status are necessary to personalize their lifestyle and treatment goals.
Collapse
Affiliation(s)
- Ekaterina N Dudinskaya
- Pirogov Russian National Research Medical University of Ministry of Health of Russian Federation "Russian Gerontology Research and Clinical Centre"
| | - Olga N Tkacheva
- Pirogov Russian National Research Medical University of Ministry of Health of Russian Federation "Russian Gerontology Research and Clinical Centre"
| | - Natalia V Brailova
- Pirogov Russian National Research Medical University of Ministry of Health of Russian Federation "Russian Gerontology Research and Clinical Centre"
| | - Irina D Strazhesko
- Pirogov Russian National Research Medical University of Ministry of Health of Russian Federation "Russian Gerontology Research and Clinical Centre"
| | - Marina V Shestakova
- The National Medical Research Center for Endocrinology of Ministry of Health of Russian Federation
| |
Collapse
|